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Abstract Pongamia pinnata (L.) Pierre is a fast-growing
leguminous tree with the potential for high oil seed
production and the added benefit of the ability to grow on
marginal land. These properties support the suitability of
this plant for large-scale vegetable oil production required
by a sustainable biodiesel industry. The future success of P.
pinnata as a sustainable source of feedstock for the biofuels
industry is dependent on an extensive knowledge of the
genetics, physiology and propagation of this legume. In
particular, research should be targeted to maximizing plant
growth as it relates to oil biosynthesis. This review assesses
and integrates the biological, chemical and genetic attrib-
utes of the plant, providing the basis for future research into
Pongamia’s role in an emerging industry.
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Introduction

Pongamia pinnata (L.) Pierre, an arboreal legume, is a
member of the subfamily Papilionoideae, more specifically
the Millettieae tribe. This medium-size tree is indigenous to

the Indian subcontinent and south-east Asia, and has been
successfully introduced to humid tropical regions of the
world as well as parts of Australia, New Zealand, China
and the USA. Historically, this plant has been used in India
and neighbouring regions as a source of traditional
medicines, animal fodder, green manure, timber, fish poison
and fuel. More importantly, P. pinnata has recently been
recognized as a viable source of oil for the burgeoning
biofuel industry. The sustainable production of plant oils for
biodiesel production from a tree crop such as P. pinnata,
which can be cultivated on marginal land, has the potential
to not only provide a renewable energy resource but in
addition will alleviate the competitive situation that exists
with food crops as biofuels and associated arable land and
water use. Finally, P. pinnata has been identified as a
resource for agroforestry, urban landscaping (Fig. 1e), and
the bioameloriation of degraded lands. Here we describe the
current state of knowledge of the biology, taxonomy, and
biogeography of P. pinnata, and the extent to which
humans have exploited it as a valuable commodity. Further,
the degree to which extensive propagation of P. pinnata and
the extraction and processing of oil from seeds may
contribute to the success of a sustainable biofuels industry
is discussed.

ALegume Little KnownOutside the Indian Sub-continent

Pongamia pinnata is reported to be a native of India,
Myanmar, Malaysia and Indonesia. It is a nitrogen-fixing
tree and therefore a member of the family Leguminosae.
More detailed taxonomic description places it in the
subfamily Papilionoideae and the tribe Millettieae. This
plant has been synonymously known as P. pinnata Merr.,
Pongamia glabra Vent., Derris indica (Lam) Bennett and
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Millettia novo-guineensis Kane & Hat. Depending on the
language and location, common names for P. pinnata
include Indian-beech, poonga-oil-tree, pongam tree, karanja
tree, karum and kanji. The plant has been introduced to
several countries with humid tropical lowlands as well as
parts of Australia, New Zealand and the USA. An
introduction to Australia may have taken place early in
the history of human habitation, as there are reports of P.
pinnata being used by the aboriginal people of northern
Australia as a fish poison, a source of timber for the
building of tools, and the timing of flowering used as a
seasonal cue for the construction of stone fish traps [12, 18,
77]. With northern Australia in such close proximity to
south-east Asia, the question may be asked as to whether P.
pinnata may also be regarded as a native plant of Australia.

While there is a substantial pool of general descriptive
information on P. pinnata that can be accessed from the

world wide web (http://www.worldagroforestrycentre.org;
http://ecoport.org; http://www.ars-grin.gov; http://www.
winrock.org), technical reports and selected monographs
[47], there is a considerable gap in the range of detailed
scientific publications. If this plant is to become an
emerging crop and plantation species grown on extensive
tracts of land, then comprehensive studies encompassing its
physiology, agronomy, propagation, genetics and molecular
biology are needed. In reviewing the available literature, it
is clear that P. pinnata has a long history of association with
indigenous populations, primarily villagers and small land-
holders [64]. What are now required are detailed studies
providing information that will enable the successful
cultivation and management of well-defined elite varieties
of P. pinnata. Such studies would include the clonal
propagation of high oil content and high yielding individual
trees, already seen in natural populations, as well as the

Fig. 1 Botanical characteristics of Pongamia pinnata: a P. pinnata
inflorescence showing the ornamental advantages. b Characteristic
legume (pea) flower morphology. c Dissected flower showing
standard petal, two identical wings and two identical keel petals.
d Nodulated root system of P. pinnata seedling. e P. pinnata as a shade
street tree in Brisbane, Australia (27°25′ S 153°9′ E). f P. pinnata seed
cluster. In general about 25–35% of flowers set seed. Flowering in

Brisbane occurs in mid-November. Seed maturation takes about 10
months. Each seed weighs about 2 g and the dried pod wall also weighs
about 2 g. g Hand-section through a P. pinnata nodule induced by
Bradyrhizobium japonicum strain CB1809 demonstrating the reddish-
brown nitrogen fixation zone and the general spherical (determinate)
nature of the nodule
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discovery of agronomic parameters such as growth in
water-deficient and/or saline conditions.

From previous publications, the vast majority of which
come from universities and research institutes in India, it is
known that P. pinnata is a plant well-suited to “marginal
lands”. Growth is seen best from sea level to an altitude of
approximately 1,200 m and an optimal annual rainfall of
500 to 2,500 mm. Further, P. pinnata is regarded as both a
saline and drought tolerant species. Tomar and Gupta [78]
examined the survival of 16 tree species, including P.
pinnata, under variable soil salinity and moisture in both
field and pot trials. In the field, 6-month old saplings were
planted at a subsurface depth of 30 cm and over a 12 month
period, experiencing salinity in the range 12 to 19 dS m−1,
showed 13% of the 48 saplings surviving. In pot trials
under controlled moisture of 4.6 and 26.0 dS m−1 the P.
pinnata saplings displayed moderate and poor tolerance,
respectively. A longer trial over 4 years was undertaken by
Patil et al. [54]. For this study of 23 tree species, the
survival rate and growth characteristics, namely the
increases in height and collar diameter, were determined
in a sand, silt and clay mix of salinity 10 to 12 dS m−1, and
a water table within 0.5 m during the monsoon season and
to 0.8 m during the summer season. At the end of this trial
P. pinnata had a survival rate of 62%, an increase in height
from 71.8 cm at the end of the first year to 218.5 cm at the end
of the fourth year, and an increase in collar diameter from
1.65 cm to 4.61 cm for the same period. Further, P. pinnata
had a positive bioameliorative effect with contributions to
soil nitrogen, phosphorous, potassium and organic carbon.

Much of what we know regarding P. pinnata is its
contribution as a source of valuable commodities for
agriculture and medicine, and to a lesser extent some
features of its agronomy and interactions with other
organisms as a legume. Areas of research that require
particular attention are the physiology and reproduction of
P. pinnata. The structural and biochemical features of the
flowers and the mechanism of pollination have already
been described [27, 59]. The flowers are white and pink to
purple, and arise in a raceme-like inflorescence (Fig. 1a–c).
Anatomically, the flowers resemble a typical legume
flower, with two keel and two wing petals, and a single
standard petal. Pollination is insect-mediated, most often by
bees, of which P. pinnata is recognized as an important
source of nectar [37]. The abundant pollen, enclosed in the
keel petals, is released from flowers by an explosive
mechanism triggered by the predominantly nectar feeding
bees, but also by wasps. Mature flowers will open for a
single day, with nectar secretion coinciding at this time. The
volume of nectar is approximately 1 to 3.5 μl per flower
and contains up to 60% sugar, principally glucose, fructose
and sucrose. In the pods of P. pinnata it is usual for only
one of the two ovules to develop into a seed. Seed abortion

of the peduncular seed is thought to result from successful
competition for resources by the stigmatic seed [6].

Biotic Interactions

In promoting the benefits of legumes in agriculture, the
obvious advantage that legumes have over other plants is
the formation of nodules resulting from a symbiotic
relationship with nitrogen-fixing bacteria. Despite being a
legume, relatively little is known regarding the nodulation
of P. pinnata. Dayama [19] noted the nodulation of P.
pinnata grown in sandy loam soil and the stimulatory effect
of foliar applied sucrose on nodule number and plant
growth. Siddiqui [66] reported the nodulation and associ-
ated nitrate reductase activity of P. pinnata seedlings grown
on locally derived garden soil, sand and farm manure. In
both these studies the nodulation of plants was reliant on
the presence of endogenous rhizobia and their ability to
nodulate P. pinnata. In a more comprehensive study, the
plant host range was tested for Rhizobium sp. strain
NGR234 and Rhizobium fredii USDA257 against a com-
prehensive list of more than 450 species of legumes,
including P. pinnata, which failed to form nodules with
either strain [56]. Interestingly, in preliminary studies we
have been able to demonstrate the effective nodulation of P.
pinnata (Fig. 1d and g) with three strains of rhizobia;
Bradyrhizobium japonicum strain CB1809, a strain more
commonly associated with Glycine max; Bradyrhizobium
sp. strain CB564, a strain previously isolated in Australia
from P. pinnata; and Rhizobia sp. strain NGR234, the same
strain previously reported unable to form nodules on P.
pinnata [56]. While it appears from our preliminary studies
and those previously reported that P. pinnata can readily
form nodules, there is a clear need to characterize in more
detail the spectrum of rhizobia that can form an effective
symbiotic relationship with P. pinnata, as well as the
ontogeny of nodule formation.

The World Agroforestry Centre (http://www.worldagro
forestrycentre.org) cites both insect pests and fungal
diseases of P. pinnata. For example Parnara mathias,
Gracillaria spp., Indarbela quadrinotata, Myllocerus
curvicornis, and Acrocercops spp. are noted as insects
pests with Ganoderma lucidum and Fomes merilli identi-
fied as fungal pathogens of root and shoot tissues,
respectively. Our observations of Pongamia show genetic
variation in susceptibility to insect pests and microbial
infection on young and mature leaves. Clearly selection of
superior germplasm for the traits of insect and disease
resistance, and clonal propagation are essential steps
towards crop improvement.

Sandal (Santalum album L.), a native of India, is a hemi-
parasite of the roots of more than 300 host plant species. It
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is noteworthy as a source of valuable timber (sandal wood)
and essential oils. Among nine selected host species,
including Wrightia tinctoria, Tectona grandis, Atrocarpus
integrefolia, Swietenia mahogany, Azardirachta indica,
Eucalyptus camaldulensis, and Acacia auriculiformis, P.
pinnata together with Casuarina equisetifolia were shown
in both pot and field trials to be the hosts capable of
supporting the greatest biomass production of sandal timber
[46]. In an earlier study Subbarao et al. [74] demonstrated
that in the case of P. pinnata and Cajanus cajan L.,
haustorial connections by S. album were not only with the
root tissue of the host but also via direct contact to nodules.
Not surprisingly, S. album haustoria connections with root
nodules are established at the expense of the host plant in
such aspects as nodule number and plant fresh weight.

Molecular and Cytogenetics

To date there are very few genomic regions of P. pinnata
that have been sequenced and characterised. The regions
that have been characterised are exon 1 of the phytochrome
A-like gene [38], the 5.8S rRNA gene and internal tran-
scribed spacer regions 1 and 2 [25], the 18S rRNA, maturase
and ribulose-1,5-bisphosphate carboxylase/oxygenase large
subunit genes [65], and a NBS-LRR class resistance protein
gene (Ramasubramanian et al. unpublished data). Follow-
ing BLAST analysis of either the nucleotide or translated
protein sequences, it was found that the phytochrome A-
like protein is 93% identical to the phytochrome A proteins
from Pisum sativum and Medicago truncatula over 210
amino acids; the maturase protein is 97% identical to the
same protein from Glycine soja over 563 amino acids; the
NBS-LRR class resistance protein is 68% identical to G.
max NBS-LRR disease resistance protein RPG1-B over
174 amino acids; the 18S rDNA is 99% identical to the
corresponding region from P. sativum, M. truncatula and G.
max; and the 5.8S rRNA gene and internal transcribed
spacer regions 1 and 2 were 94% and 93% identical to the
corresponding regions from Millettia pulchra and Fordia
splendidissima, respectively. The sequence data for all but
the NBS-LRR class resistance protein gene have been used
for the purposes of molecular phylogenetic studies.

In addressing the issue of the phylogeny determined by
molecular methods, it is clear that P. pinnata is a member of
the “core Millettieae” group [25, 38]. The conclusions from
these DNA sequence-based studies were more recently
supported by a RAPD-PCR study of nine species from the
Millettieae [1]. In this study, 18 10-mer oligonucleotides
were used to assess the genetic relationship between
Tephrosia pumilla, Tephrosia purpurea, Tephrosia villosa,
Derris trifoliata, Derris scandens, Millettia peguensis,
Millettia racemosa, Piscidia piscipula and P. pinnata. A

dendrogram constructed on the basis of 347 polymorphic
bands showed that P. pinnata was most closely related to
the Millettia spp.

The only other reported studies on any aspect of P.
pinnata genetics are those addressing gross chromosome
organization. Cytogenetical studies have suggested a
chromosome number for P. pinnata of either 2n=20 [7] or
2n=22 [53, 57, 63]. In a preliminary study we have used a
DNA fingerprinting protocol (DAF) that employs PCR
amplificiation using short arbitrary primers [15] to address
the question of the genetic diversity of P. pinnata (Fig. 2b).
Shown in this figure are the profiles of three trees with
some common but many polymorphic DNA amplification
products. This diversity is also reflected through variation
in leaf (five and seven pinnate) and overall plant structure,
flowering time and growth vigour. These initial studies with
germplasm from Australia and India, suggesting wide
genetic diversity in this species, may be of great benefit
for the development of superior trees. Such superior
germplasm will then require vegetative propagation by
either rooted cuttings or in vitro approaches.

Initial experiments in our laboratory demonstrated the
feasibility of vegetative propagation by cuttings, resulting
in viable clonal material now planted in a field site. How-
ever, propagation by rooted cuttings may not generate the
required replication rate needed for large scale Pongamia
plantations. For example, to satisfy the existing 18 billion
litre annual diesel consumption of Australia an estimated
area of 7,000 km2 would need to be harvested, assuming a
planting density of 350 trees per hectare, a yield of 20,000
seeds per tree, 1.8 g per seed and 40% fatty acid/
triglyceride/oil recovery.

Propagation of P. pinnata

The successful introduction and subsequent expansion of
plantings of any new crop species is reliant on the ability to
develop simple and reliable methods for the propagation of
large numbers of plants. Furthermore, the long-term
viability of tree crop species such as P. pinnata is dependent
on good pruning management practices. In addressing this
second issue, coppicing and pollarding have been reported
as successful means of agroforestry management practices
for P. pinnata [42]. With respect to mass propagation, P.
pinnata can be propagated easily from seed [23, 69]. To
this, Manonmani et al. [41] found that there was a direct
relationship with seed size and germination efficiency, but
only with fresh seeds. Germination and plant vigour began to
decrease following storage of seeds for 3 months or more.

Despite the successes seen in germination trials, in the
context of the development and continued vegetative
propagation of superior genotypes, other protocols are
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Fig. 2 General molecular characteristics of Pongamia pinnata: a One
dimensional PAGE gel (14.2%) after Coomassie Blue staining of P.
pinnata seed proteins compared to a parallel isolate form soybean
(Glycine max) cultivar Bunya. b DNA amplification profile using
arbitrary primed PCR (DAF method; [15]) separated on a thin, plastic-
backed polyacrylamide gel (5%) stained with silver [10, 11]. Three
samples of leaf-extracted DNAwere amplified with primer PP-UQ-57.

c GC-MS separation of fatty acids from a single P. pinnata seed
referenced against the internal C17:0 standard (unlabelled peak).
Palmitic, stearic, oleic and linoleic acids comprised 11.3%, 12.9%,
41.4% and 26.7% of the total fatty acids, respectively. d Scheme
demonstrating the biochemical/developmental decisions made during
fatty acid biosynthesis in oil seeds [76]
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required. Palanisamy et al. [52] reported the development
of adventitious roots in shoot cuttings from P. pinnata. The
formation of adventitious roots, which was promoted by the
three auxins, indole acetic acid (IAA), indole butyric acid
(IBA) and naphthyl acetic acid (NAA), was most prominent
in association with the development of new shoots on the
planted cuttings. IBA was the most effective inducer.
Karoshi and Hegde [30] also undertook a study examining
the propagation of stem cuttings and looked at the potential
of softwood grafting. Similarly to Palanisamy et al. [52],
IBA (at 2,500 ppm) was found to promote rooting of P.
pinnata and, in addition grafting had a 95% success rate. In
a third study, Ansari et al. [5] examined the effect of
dipping semi-hardwood coppice shoot cuttings in KMnO4,
KCl, KHPO4, KH2PO4 or K2SO4 on both IAA ionization
and adventitious rhizogenesis. At an equimolar K concen-
tration of 5 mM, the S and P salts had a significantly positive
effect on the percentage of cuttings that produced new
sprouts and roots, the number of roots per cutting, and the
root length, while at the same time reducing the amount of
IAA ionization. In contrast, the Mn salt decreased adventi-
tious rhizogenesis while the chloride salt had no effect.

Sujatha and Hazra [75] report on a method for the
micropropagation of P. pinnata from mature-tree-derived
axillary meristems. Pretreatment of the explant material in
media containing the cytokinin-like compound thidiazuron
increased the mean number of shoots over explants grown
in the absence of this plant growth regulator. However, the
development of new shoots required that the explants be
sub-cultured in thidiazuron-free tissue culture media.
Thidiazuron enhances the production of meristematic cells
but inhibits their differentiation, as evidenced by the
formation of meristematic domes when cultured under
continuous thidiazuron treatment. Other plant growth
regulators, benzylaminopurine, kinetin and zeatin, failed
to induce the formation of multiple shoots from the same
explant material. Finally, Srinivas and Rao [71], at a recent
meeting of the Society for In Vitro Biology, reported on
what they claim to be an efficient and reproducible system
for the regeneration of P. pinnata from immature embryo
derived cotyledonary explant.

Biomedical and Biocidal Properties

There is a long tradition of P. pinnata being used as a
medicinal plant, particularly with the Ayurvedha and
Siddha medicine systems of India [43]. More recently, the
effectiveness of P. pinnata as a source of biomedicines has
been reported, specifically as both an antimicrobial agent
and as a therapeutic agent targeting host pathways and
processes. For example, Brijesh et al. [13] were able to
demonstrate that while a leaf decoction did not have

biocidal activity against Giardia lamblia, rotavirus, or
strains of Escherichia coli, Vibrio cholerae or Shigella
flexneri, it significantly reduced the production of cholera
toxin by V. cholerae and the invasion of HEp-2 cells by E.
coli. In contrast, a crude seed extract of P. pinnata was able
to completely inhibit the growth of herpes simplex virus
type 1 and type 2 in Vero cells [21]. Bark, leaf, and to a
lesser extent, seed extracts, inhibited the activity of the
malaria parasite Plasmodium falciparum in an in vitro assay
using parasitized erythrocytes [68]. Both aqueous and
alcohol leaf and fruit extracts of P. pinnata possessed
antifilarial activity against the cattle parasite Setaria cervi
[79]. These extracts acted both on whole worm and nerve-
muscle preparations. Using a rat model, Srinivasan et al.
[72] demonstrated that an alcohol extract of P. pinnata
leaves had significant anti-inflammatory activity. Further,
this extract did not induce ulcers in rats, indicating its
potential as an anti-inflammatory therapeutic agent. The
same research group was also able to show that an
identical leaf extract had antinociceptive (reduction in
sensitivity to painful stimuli) and antipyretic (reduction in
fever) activity, once again using mice and rat models
[73]. Interestingly, the seed oil of P. pinnata has been reported
to have spermicidal activity, with obvious implications in
contraception [9].

Extracts of P. pinnata have also been shown to have
applications in agriculture and environmental management,
with insecticidal and nematicidal activity. Kabir et al. [28]
reported that a petroleum ether extract of leaf tissue had
insecticidal activity towards the American cockroach
Periplaneta americana (L.). Similarly, the larvae of three
mosquito species, Culex quinquefasciatus, Aedes aegypti
and Anopheles stephensi, were susceptible to a petroleum
ether extract of seed tissue [22]. Kumar et al. [36] tested
extracts from bark, leaves and seeds against the cluster
caterpillar Spodoptera litura and the insect pests of stored
products Trogoderma granarium and Tribolium castaneum.
A methanolic fraction from the seed oil exhibited the
greatest toxicity towards S. litura and T. granarium, while a
leaf extract was most toxic towards T. castaneum. Nema-
ticidal activity from seed extracts has been demonstrated
against the root-knot nematode Meloidogyne incognita.
Yadav et al. [81] were able to show that P. pinnata oil cake,
as part of a seed soaking treatment, inhibited the reproduc-
tion of nematodes while simultaneously having beneficial
effects on the growth characteristics of chickpea. Similarly,
Khurma and Mangotra [31] tested the effectiveness of seed
extracts from 15 leguminosae towards the juveniles of root-
knot nematode and found that P. pinnata caused high
mortality.

While all the reports above describe the biocidal effects
of various P. pinnata tissue extracts, there was no detailed
characterization of the active constituents in these extracts.
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This is an obvious area for future research if these active
constituents are to be produced on a commercial scale.
There are reports dating back more than 50 years of natural
products chemistry with detailed descriptions of the
identification and synthesis of complex organic com-
pounds, particularly flavone-like molecules [3, 4, 14, 17,
39, 55, 60, 67, 80, 82]. Importantly, some of the studies
have also described the biomedical efficacy of these
compounds. For example, Alam et al. [4] demonstrated
the bacteriocidal activity of pongaglabol to the human
pathogens S. flexneri, Salmonella typhi, Staphylococcus
aureus, and Streptococcus haemolyticus. Similarly, Simin et
al. [67] demonstrated both antifungal and antibacterial
activity of two Pongamia derivatives pongarotene (a
rotenoid) and karanjin (a flavonol) against a wide range of
human and animal pathogens. Another interesting outcome
of these natural products chemistry studies is the synthesis
of a non-toxic polyesteramide from seed oil that has
applications as an anticorrosive coating material [2].

Pongamia as an Animal Feed Supplement

Of all the by-products of P. pinnata with commercial
applications, much of the reported research has been
associated with the use of deoiled cake as a feed
supplement for cattle, sheep and poultry [16, 32–35, 48–
51, 62, 70]. Deoiled cake is the leftover component of P.
pinnata seeds following solvent extraction and as a by-
product containing up to 30% protein has the potential to
provide a sustainable animal feed supplement. Preliminary
work in our laboratory has shown that the seed storage
proteins of P. pinnata are dominated by two proteins of
approximately 51 kDa (Fig. 2a) perhaps related to the
51 kDa 7S beta seed storage protein of soybean (variety
Bunya shown here). The characteristic 11S and other 7S
components are not very abundant, suggesting lesser
nutritional quality of P. pinnata seed cake protein.

While the deoiled cake may be a source of protein, it
contains a number of toxic and unpalatable components,
including the furanoflavones karanjin and pongamol, and
other polyphenolic compounds in the residual oil. To
overcome this undesirable characteristic, the toxic compo-
nents may be reduced by soaking the cake in water,
autoclaving, alkali treatment and/or ether extraction. P.
pinnata oil cake also contains protease inhibitors, the
activity of which can be eliminated by firstly autoclaving
the cake with lime, refluxing with 2% HCl and then
neutralizing with NaOH [40]. This treatment strategy also
improves the protein digestibility of the seed cake. In cattle
the deoiled cake has been trialed as a protein supplement
replacing that provided by groundnut cake. Modest weight
gains were obtained at levels up to 50% replacement of

groundnut cake. For poultry and sheep the poor palatability
and toxic effects lead to deleterious effects on mortality,
weight gains and other relevant performance indicators (e.g.
egg production).

There are reports that leaf material of P. pinnata also
possesses properties that make it suitable as a potential
animal feed supplement. Ramana et al. [61] evaluated the
nutritive value of the leaf material of five nitrogen-fixing
trees, including P. pinnata, and five non-nitrogen-fixing
trees, for such properties as dry matter, organic matter,
crude protein, neutral and acid detergent fibre, cellulose and
hemicellulose, lignin, total phenolics, and tannins. This
study was carried out by simple chemical analysis of dried
leaves, but also included an in sacco experiment whereby a
leaf concentrate was administered to steers fitted with
cannulae in order to determine the digestibility of the leaf
material in the rumen. In addition to its use as a feed
supplement, the leaf material has value as organic or green
manure. Muthukumar and Udaiyan [44] evaluated the effect
of organic soil amendments, including sunnhemp, cow
dung, sheep manure and leaves of P. pinnata, on arbuscular
mycorrhizal numbers, the formation of mycorrhizae, and
growth and yield of cowpea (Vigna unguiculata). As an
organic amendment, P. pinnata had positive effects on soil
N, P and K, mycorrhizal formation on cowpea roots, root
and shoot dry weight, nodulation, and pod and seed
number.

Pongamia pinnata, a Renewable and Sustainable Source
of Biodiesel

At a time when society is becoming increasingly aware of
the declining reserves of oil for the production of fossil
fuels, it has become apparent that biofuels are destined to
make a substantial contribution to the future energy demands
of the domestic and industrial economies. Pongamia pinnata
will impact most significantly through the extraction of seed
oil for use in the manufacture of biodiesel. The potential of
P. pinnata oil as a source of fuel for the biodiesel industry is
well recognized [8, 20, 29]. Moreover, the use of vegetable
oils from plants such as P. pinnata has the potential to
provide an environmentally acceptable fuel, the production
of which is greenhouse gas neutral, with reductions in
current diesel engine emissions [58]. Importantly, the
successful adoption of biofuels is reliant on the supply of
feedstock from non-food crops with the capacity to grow on
marginal land not destined to be used for the cultivation of
food crops (c.f., [24]). In this regard P. pinnata is a strong
candidate to contribute significant amounts of fuel feedstock,
meeting both of these criteria.

Existing feedstocks such as palm oil and canola are
costly (∼€600 per ton and ∼€550 per ton, respectively),
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making the production of biodiesel economically marginal
(in Australia diesel currently has a retail price of €0.9 per
litre). Sources such as tallow and waste oil from food
outlets are seen as variable in availability and/or of low
quality. For example, the dominant fatty acid of tallow is
C18:0 leading to a high cloud-point diesel, necessitating B5
or B10 mixtures with crude oil diesel. In Australia, the
unmet demand for a reliable feedstock has lead to a
“mothballing” of industrial production facilities and placed
the ailing biodiesel industry in a precarious position.
Clearly, there is an opportunity for Pongamia to fill this
unmet demand, not only in Australia but in comparable
agricultural regions. Table 1 summarises the biological and
agronomic features of Pongamia that characterize the
suitability of this tree crop for biodiesel production.

Fatty acids are the products of seed cotyledon metabo-
lism, which takes sucrose derived from photosynthesis and
converts it into three major storage components, namely
protein, starch and fatty acids. Fatty acids are synthesised
by a well defined pathway involving two carbon elongation
(by elongases) and bond desaturation (Fig. 2d). Oleic acid
is viewed as an optimal fatty acid for biodiesel production
as it generates a low cloud-point fuel. Palmitic and stearic
acids increase the cloud point, as these molecules have less
mobility. More unsaturated C18 acids (C18:2 and C18:3)
are less desirable as oxidation occurs. The seeds of P.
pinnata contain 30% to 40% oil [8, 45], which can be
converted to biodiesel (fatty acid methyl esters; FAMEs) by
esterification with methanol in the presence of KOH. The
predominant fatty acid is oleic acid (C18:1; 40% to 55%)
with palmitic acid (C16:0; 5% to 15%), stearic acid (C18:0;
5% to 10%) and linoleic acid (C18:2; 15% to 20%), and
to a much lesser extent arachidic acid (C20:0), eicosanoic

acid (C20:1), behenic acid (C22:0) and lignoceric acid (C24:0;
Fig. 2c). The composition of the seed oil and the properties
of the FAMEs meet North American and European industry
standards [8, 29]. These properties include the saponifica-
tion number (196.7 for P. pinnata), which indicates the
relative fatty acid chain length of the FAMEs; the iodine
value (80.9 for P. pinnata), which is a measure of the total
number of double bonds amongst the respective fatty acids;
and the cetane number (55.84 for P. pinnata), which gives
an indication of ignition quality of the fuel. Other important
properties of P. pinnata FAMEs are the viscosity (3.8 to
4.8 mm2/s at 40°C), flash point (135 to 150°C), pour point
(2.1°C), and cloud point (8.3°C). Of these, the pour point,
which is the lowest temperature at which oil will flow, and
the cloud point, which is the temperature that will lead to
separation of dissolved solids from the oil, are critical to the
implementation of biodiesel use in temperate and cold
climates. In the case of biodiesel from P. pinnata the values
for the pour and cloud points are satisfactory for tropical
and some temperate regions. However, if this product is to
find a market in cool and cold regions there needs to be
improvement in these properties. Nonetheless, with respect
to the cloud point of biodiesel derived from other sources P.
pinnata compares favourably with palm oil (10°C) and beef
tallow (13°C) but less so with soybean (−1°C), rapeseed
(−7°C) and sunflower (1°C) [26]. Improving the physico-
chemical properties of biodiesel derived from the oil of P.
pinnata will require a comprehensive understanding of seed
oil biosynthesis and the probable modification of seed oil
composition through genetic manipulation.

In meeting the future demands for biodiesel it will be
important to establish extensive plantations comprising elite
varieties of trees. Azam et al. [8], in discussing the potential
of seed oils for biodiesel production on wasteland in India,
calculated the area of land required for sufficient production
to replace the demand met by current fossil fuel supplies.
In comparison with Azadirachta indica (4.10×106 ha),
Calophyllum inophyllum (2.33×106 ha), Jatropha curcas
(4.38×106 ha), and Ziziphus mauritiana (7.98×106 ha), P.
pinnata compares very favourably, requiring 1.99×106 ha
to meet 10% replacement of fossil fuel derived biodiesel.

The challenging task of establishing P. pinnata as a
premium feedstock crop for the emerging biofuels industry
will require tools in the fields of genetics, molecular
biology, plant propagation and agronomy that will enable
this now important legume to be fully characterized, and for
optimal yields of oil to be achieved. At the ARC Centre of
Excellence for Integrative Legume Research we have
recently initiated a research program to address most of
these issues. We are adopting a molecular biology and
genetics approach to characterize the genome of P. pinnata,
with particular emphasis on population diversity and the
genes associated with oil biosynthesis.

Table 1 Agronomic predictions for Pongamia biodiesel production

Agronomic predictions

Biological ∼40% seed oil content
∼50% C18:1 content
∼20,000 seeds per year (10 year old tree)
∼1.8 g per seed
∼1.8 g pod wall (for biomass applications)
∼25% protein/starch meal (for biomass or animal
feed supplement)

∼20 tons CO2 sequestered per hectare
∼5 m tall trees within 5 to 7 years

Farm management Tree spacing of 5 m
350 trees per hectare
Mechanical harvesting of seed pods
Establishment/production costs ∼€600 per hectare
Maintenance costs ∼€60 per hectare per annum
Oil extraction ∼€48 per ton
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