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Abstract

This paper develops a Pontryagin Differentiable Programming (PDP) methodology,
which establishes a unified framework to solve a broad class of learning and control
tasks. The PDP distinguishes from existing methods by two novel techniques: first,
we differentiate through Pontryagin’s Maximum Principle, and this allows to obtain
the analytical derivative of a trajectory with respect to tunable parameters within an
optimal control system, enabling end-to-end learning of dynamics, policies, or/and
control objective functions; and second, we propose an auxiliary control system in
the backward pass of the PDP framework, and the output of this auxiliary control
system is the analytical derivative of the original system’s trajectory with respect
to the parameters, which can be iteratively solved using standard control tools. We
investigate three learning modes of the PDP: inverse reinforcement learning, system
identification, and control/planning. We demonstrate the capability of the PDP in
each learning mode on different high-dimensional systems, including multi-link
robot arm, 6-DoF maneuvering quadrotor, and 6-DoF rocket powered landing.

1 Introduction

Many learning tasks can find their counterpart problems in control fields. These tasks both seek to
obtain unknown aspects of a decision-making system with different terminologies compared below.

Table 1: Topic connections between control and learning (details presented in Section 2)

UNKNOWNS IN A SYSTEM LEARNING METHODS CONTROL METHODS

Dynamics xt+1=fθ(xt,ut) Markov decision processes System identification

Policy ut = πθ(t,xt) Reinforcement learning (RL) Optimal control (OC)

Control objective J=
∑

t cθ(xt,ut) Inverse RL Inverse OC
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Figure 1: left: PDP learns rocket landing
control, right: PDP learns quadrotor dy-
namics and control objective for imitation.

With the above connections, learning and control fields
have begun to explore the complementary benefits of
each other: control theory may provide abundant models
and structures that allow for efficient or certificated algo-
rithms for high-dimensional tasks, while learning enables
to obtain these models from data, which are otherwise
not readily attainable via classic control tools. Examples
that enjoy both benefits include model-based RL [1, 2],
where dynamics models are used for sample efficiency;
and Koopman-operator control [3, 4], where via learning,
nonlinear systems are lifted to a linear observable space
to facilitate control design. Inspired by those, this paper
aims to exploit the advantage of integrating learning and control and develop a unified framework that
enables to solve a wide range of learning and control tasks, e.g., the challenging problems in Fig. 1.
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2 Background and Related Work

Learning dynamics. This is usually referred as to as system identification in control fields, which
typically consider linear systems represented by transfer functions [5]. For nonlinear systems, the
Koopman theory [6] provides a way to lift states to a (infinite-dimensional) linear observable space
[3, 7]. In learning, dynamics is characterized by Markov decision proceses and implemented using
linear regression [8], observation-transition modeling [9], latent-space modeling [10], (deep) neural
networks [11], Gaussian process [12], transition graphs [13], etc. Although off-the-shelf, most of
these methods have to trade off between data efficiency and long-term prediction accuracy. To achieve
both, physically-informed learning [14–17] injects physics laws into learning models, but they are
limited to mechanical systems. Recently, a trend of work starts to use dynamical systems to explain
(deep) neural networks, and some new algorithms [18–25] have been established.

This paper focuses on learning general dynamical models, encompassing either physical dynamics
with unknown parameters or neural difference equations. The proposed learning framework is injected
with inductive knowledge of optimal control theory to achieve efficiency and explainability.

Learning optimal polices. In learning fields, it relates to reinforcement learning (RL). Model-free RL
provides a general-purpose framework to learn policies directly from interacting with environments
[26–28], but usually suffers from significant data complexity. Model-based RL addresses this by first
learning a dynamics model from experience and then integrating it to policy improvement [1, 12, 29–
31]. The use of a model can assist to augment experience data [32, 33], perform back-propagation
through time [12], or test policies before deployment. Model-based RL also faces some challenges
that are not well-addressed. For example, how to efficiently leverage imperfect models [34], and
how to maximize the joint benefit by combining policy learning and motion planning (trajectory
optimization) [31, 35], where a policy has the advantage of execution coherence and fast deployment
while the trajectory planning has the competence of adaption to unseen or future situations.

The counterpart topic in control is optimal control (OC), which is more concerned with characterizing
optimal trajectories in presence of dynamics models. As in RL, the main strategy for OC is based on
dynamic programming, and many valued-based methods are available, such as HJB [36], differential
dynamical programming (DDP) [37] (by quadratizing dynamics and value function), and iterative
linear quadratic regulator (iLQR) [38] (by linearizing dynamics and quadratizing value function). The
second strategy to solve OC is based on the Pontryagin’s Maximum/Minimal Principle (PMP) [39].
Derived from calculus of variations, PMP can be thought of as optimizing directly over trajectories,
thus avoiding solving for value functions. Popular methods in this vein include shooting methods [40]
and collocation methods [41]. However, the OC methods based on PMP are essentially open loop
control and thus susceptible to model errors or disturbances in deployment. To address these, model
predictive control (MPC) [42] generates controls given the system current state by repeatedly solving
an OC problem over a finite prediction horizon (only the first optimal input is executed), leading to a
closed-loop control form. Although MPC has dominated across many industrial applications [43],
developing fast MPC implementations is still an active research direction [44].

The proposed learning framework in this work has a special mode for model-based control tasks. The
method can be viewed as a complement to classic open-loop OC methods, because, although derived
from PMP (trajectory optimization), the method here is to learn a feedback/closed-loop control policy.
Depending on the specific policy parameterization, the method here can also be used for motion
planning. All these features will provide new perspectives for model-based RL or MPC control.

Learning control objective functions. In learning, this relates to inverse reinforcement learning
(IRL), whose goal is to find a control objective function to explain the given optimal demonstrations.
The unknown objective function is typically parameterized as a weighted sum of features [45–47].
Strategies to learn the unknown weights include feature matching [45] (matching the feature values
between demonstrations and reproduced trajectories), maximum entropy [46] (finding a trajectory
distribution of maximum entropy subject to empirical feature values), and maximum margin [47]
(maximizing the margin of objective values between demonstrations and reproduced trajectories). The
learning update in the above IRL methods is preformed on a selected feature space by taking advantage
of linearity of feature weights, and thus cannot be directly applied to learning objective functions
that are nonlinear in parameters. The counterpart topic in the control field is inverse optimal control
(IOC) [48–51]. With knowledge of dynamics, IOC focuses on more efficient learning paradigms. For
example, by directly minimizing the violation of optimality conditions by the observed demonstration
data, [48, 50–52] directly compute feature weights without repetitively solving the OC problems.
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Despite the efficiency, minimizing optimality violation does not directly assure the closeness between
the final reproduced trajectory and demonstrations or the closeness of their objective values.

Fundamentally different from existing IRL/IOC methods, this paper will develop a new framework
that enables to learn complex control objective functions, e.g., neural objective functions, by directly
minimizing the loss (e.g., the distance) between the reproduced trajectory and demonstrations.

A unified perspective on learning dynamics/policy/control objective functions. Consider a gen-
eral decision-making system, which typically consists of aspects of dynamics, control policy, and
control objective function. In a unified perspective, learning dynamics, policies, or control objective
functions can be viewed as instantiations of the same learning problem but with (i) unknown parame-
ters appearing in the system’s different aspects and (ii) the different losses. For example, in learning
dynamics, a differential/difference equation is parameterized and the loss function can be defined as
the prediction error between the equation’s output and target data; in learning policies, the unknown
parameters are in a feedback policy and the loss function is just the control objective function; and
in learning control objective functions, the control objective function is parameterized and the loss
function can be the discrepancy between the reproduced trajectory and the observed demonstrations.

Claim of contributions. Motivated by the above, this paper develops a unified learning framework,
named as PDP, that is flexible enough to be customized for different learning and control tasks and
capable enough to efficiently solve high-dimensional and continuous-space problems. The proposed
PDP framework borrows the idea of ‘end-to-end’ learning [53] and chooses to optimize a loss function
directly with respect to the tunable parameters in the aspect(s) of a decision-making system, such
as the dynamics, policy, or/and control objective function. The key contribution of the PDP is that
we inject the optimal control theory as an inductive bias into the learning process to expedite the
learning efficiency and explainability. Specifically, the PDP framework centers around the system’s
trajectory and differentiates through PMP, and this allows us to obtain the analytical derivative of the
trajectory with respect to the tunable parameters, a key quantity for end-to-end learning of (neural)
dynamics, (neural) policies, and (neural) control objective functions. Furthermore, we introduce an
auxiliary control system in the back pass of the PDP framework, and its output trajectory is exactly
the derivative of the trajectory with respect to the parameters, which can be iteratively solved using
standard control tools. In control fields, to our best knowledge, this is the first work to propose the
technique of the differential PMP, and more importantly, we show that the differential PMP can be
easily obtained using the introduced auxiliary control system.

3 Problem Formulation

We begin with formulating a base problem and then discuss how to accommodate the base problem
to specific applications. Consider a class of optimal control systems Σ(θ), which is parameterized by
a tunable θ ∈ R

r in both dynamics and control (cost) objective function:

Σ(θ) :
dynamics: xt+1 = f(xt,ut,θ) with given x0,

control objective: J(θ) =
∑T−1

t=0
ct(xt,ut,θ) + h(xT ,θ).

(1)

Here, xt ∈ R
n is the system state; ut ∈ R

m is the control input; f : Rn × R
m × R

r 7→ R
n is the

dynamics model, which is assumed to be twice-differentiable; t = 0, 1, · · · , T is the time step with
T being the time horizon; and J(θ) is the control objective function with ct : R

n × R
m × R

r 7→ R

and h : Rn × R
r 7→ R denoting the stage/running and final costs, respectively, both of which are

twice-differentiable. For a choice of θ, Σ(θ) will produce a trajectory of state-inputs:

ξθ={xθ
0:T ,u

θ
0:T−1} ∈ arg min{x0:T ,u0:T -1} J(θ)

subject to xt+1=f(xt,ut,θ) for all t given x0

, (2)

that is, ξθ optimizes J(θ) subject to the dynamics constraint f(θ). For many applications (we will
show next), one evaluates the above ξθ using a scalar-valued differentiable loss L(ξθ,θ). Then, the
problem of interest is to tune the parameter θ, such that ξθ has the minimal loss:

min
θ

L(ξθ,θ) subject to ξθ is in (2). (3)

Under the above base formulation, for a specific learning or control task, one only needs to accordingly
change precise details of Σ(θ) and define a specific loss function L(ξθ,θ), as we discuss below.
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IRL/IOC Mode. Suppose that we are given optimal demonstrations ξd = {xd
0:T ,u

d
0:T−1

} of an
expert optimal control system. We seek to learn the expert’s dynamics and control objective function

from ξd. To this end, we use Σ(θ) in (1) to represent the expert, and define the loss in (3) as

L(ξθ,θ) = l(ξθ, ξ
d), (4)

where l is a scalar function that penalizes the inconsistency of ξθ with ξd, e.g., l(ξθ, ξ
d) = ‖ξθ−ξd‖

2
.

By solving (3) with (4), we can obtain a Σ(θ∗) whose trajectory is consistent with the observed
demonstrations. It should be noted that even if the demonstrations ξd significantly deviate from the
optimal ones, the above formulation still finds the ‘best’ control objective function (and dynamics)

within the parameterized set Σ(θ) such that its reproduced ξθ in (2) has the minimal distance to ξd.

SysID Mode. Suppose that we are given data ξo = {xo
0:T ,u0:T−1} collected from, say, a physical

system (here, unlike ξd, ξo is not necessarily optimal), and we wish to identify the system’s dynamics.
Here, u0:T−1 are usually externally supplied to ensure the physical system is of persistent excitation
[54]. In order for Σ(θ) in (1) to only represent dynamics (as we do not care about its internal control

law), we set J(θ) = 0. Then, ξθ in (2) accepts any uθ
0:T−1 = u0:T−1 as it always optimizes J(θ)=0.

In other words, by setting J(θ) = 0, Σ(θ) in (1) now only represent a class of dynamics models:

Σ(θ) : dynamics: xt+1 = f(xt,ut,θ) with x0 and uθ
0:T−1 = u0:T−1. (5)

Now, Σ(θ) produces ξθ = {xθ
0:T ,u

θ
0:T−1} subject to (5). To use (3) for identifying θ, we define

L(ξθ,θ) = l(ξθ, ξ
o), (6)

where l is to quantify the prediction error between ξo and ξθ under the same inputs u0:T−1.

Control/Planning Mode. Consider a system with its dynamics learned in the above SysID. We
want to obtain a feedback controller or trajectory such that the system achieves a performance of
minimizing a given cost function. To that end, we specialize Σ(θ) in (1) as follows: first, set f as the
learned dynamics and J(θ) = 0; and second, through a close-loop link, we connect the input ut and
state xt via a parameterized policy block ut = u(t,xt,θ) (reminder: unlike SysID Mode with ut

supplied externally, the inputs here are from a policy via a feedback loop). Σ(θ) now becomes

Σ(θ) :
dynamics: xt+1 = f(xt,ut) with x0,

control policy: ut = u(t,xt,θ).
(7)

Now, Σ(θ) produces a trajectory ξθ = {xθ
0:T ,u

θ
0:T−1} subject to (7). We set the loss in (3) as

L(ξθ,θ) =
∑T−1

t=0
l(xθ

t ,u
θ
t ) + lf (x

θ
T ), (8)

where l and lf are the stage and final costs, respectively. Then, (3) is an optimal control or planning
problem: if ut=u(t,xt,θ) (i.e., feedback policy explicitly depends on xt), (3) is a close-loop optimal
control problem; otherwise if ut=u(t,θ) (e.g., polynomial parameterization), (3) is an open-loop
motion planning problem. This mode can also be used as a component to solve (1) in IRL/IOC Mode.

4 An End-to-End Learning Framework

To solve the generic problem in (3), the idea of end-to-end learning [53] seeks to optimize the loss
L(ξθ,θ) directly with respect to the tunable parameter θ, by applying the gradient descent

θk+1 = θk − ηk
dL

dθ

∣

∣

∣

θk

with
dL

dθ

∣

∣

∣

θk

=
∂L

∂ξ

∣

∣

∣

ξθk

∂ξθ

∂θ

∣

∣

∣

θk

+
∂L

∂θ

∣

∣

∣

θk

. (9)

Here, k = 0, 1, · · · is the iteration index; dL
dθ

∣

∣

θk

is the gradient of the loss with respect to θ evaluated

at θk; and ηk is the learning rate. From (9), we can draw a learning architecture in Fig. 2. Each update
of θ consists of a forward pass, where at θk, the corresponding trajectory ξθk

is solved from Σ(θk)

and the loss is computed, and a backward pass, where ∂L
∂ξ

∣

∣

ξ
θk

,
∂ξ

θ

∂θ

∣

∣

θk

, and ∂L
∂θ

∣

∣

θk

are computed.

In the forward pass, ξθ is obtained by solving an optimal control problem in Σ(θ) using any available
OC methods, such as iLQR or Control/Planning Mode, (note that in SysID or Control/Planning

modes, it is reduced to integrating difference equations (5) or (7)). In backward pass, ∂L
∂ξ

and ∂L
∂θ

are

easily obtained from the loss function L(ξθ,θ). The main challenge, however, is to solve
∂ξ

θ

∂θ
, i.e.,

the derivative of a trajectory with respect to the parameters in the system. Next, we will analytically

solve
∂ξ

θ

∂θ
by proposing two techniques: differential PMP and auxiliary control system.
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Figure 2: PDP end-to-end learning framework.

5 Key Contributions: Differential PMP & Auxiliary Control System

We first recall the discrete-time Pontryagin’s Maximum/Minimum Principle (PMP) [39] (a derivation
of discrete-time PMP is given in Appendix C). For the optimal control system Σ(θ) in (1) with a

fixed θ, PMP describes a set of optimality conditions which the trajectory ξθ = {xθ
0:T ,u

θ
0:T−1} in

(2) must satisfy. To introduce these conditions, we first define the following Hamiltonian,

Ht = ct(xt,ut;θ) + f(xt,ut;θ)
′λt+1, (10)

where λt ∈ R
n (t = 1, 2, · · · , T ) is called the costate variable, which can be also thought of as the

Lagrange multipliers for the dynamics constraints. According to PMP, there exists a sequence of

costates λθ
1:T , which together with the optimal trajectory ξθ = {xθ

0:T ,u
θ
0:T−1} satisfy

dynamics equation: x
θ
t+1 =

∂Ht

∂λθ
t+1

= f(xθ
t ,u

θ
t ;θ), (11a)

costate equation: λ
θ
t =

∂Ht

∂xθ
t

=
∂ct

∂xθ
t

+
∂f ′

∂xθ
t

λ
θ
t+1, (11b)

input equation: 0 =
∂Ht

∂uθ
t

=
∂ct

∂uθ
t

+
∂f ′

∂uθ
t

λ
θ
t+1, (11c)

boundary conditions: λ
θ
T =

∂h

∂xθ
T

, x
θ
0 = x0. (11d)

For notation simplicity, ∂g
∂xt

means the derivative of function g(x) with respect to x evaluated at xt.

5.1 Differential PMP

To begin, recall that our goal (in Section 4) is to obtain
∂ξ

θ

∂θ
, that is,

∂ξθ
∂θ

=

{

∂xθ
0:T

∂θ
,
∂uθ

0:T−1

∂θ

}

. (12)

To this end, we are motivated to differentiate the PMP conditions in (11) on both sides with respect to
θ. This leads to the following differential PMP:

differential dynamics equation:
∂xθ

t+1

∂θ
= Ft

∂xθ
t

∂θ
+Gt

∂uθ
t

∂θ
+ Et, (13a)

differential costate equation:
∂λθ

t

∂θ
= H

xx

t

∂xθ
t

∂θ
+H

xu

t

∂uθ
t

∂θ
+ F

′

t

∂λθ
t+1

∂θ
+H

xe

t , (13b)

differential input equation: 0 = H
ux

t

∂xθ
t

∂θ
+H

uu

t

∂uθ
t

∂θ
+G

′

t

∂λθ
t+1

∂θ
+H

ue

t , (13c)

differential boundary conditions:
∂λθ

T

∂θ
= H

xx

T

∂xθ
T

∂θ
+H

xe

T ,
∂xθ

0

∂θ
=

∂x0

∂θ
= 0. (13d)

Here, to simplify notations and distinguish knowns and unknowns, the coefficient matrices in the
above differential PMP (13) are defined as follows:

Ft=
∂f

∂xθ
t

, Gt=
∂f

∂uθ
t

, H
xx

t =
∂2Ht

∂xθ
t ∂x

θ
t

, H
xe

t =
∂2Ht

∂xθ
t ∂θ

, H
xu

t =
∂2Ht

∂xθ
t ∂u

θ
t

=(Hux

t )′, (14a)

Et=
∂f

∂θ
, H

uu

t =
∂2Ht

∂uθ
t ∂u

θ
t

, H
ue

t =
∂2Ht

∂uθ
t ∂θ

, H
xx

T =
∂2h

∂xθ
T
∂xθ

T

, H
xe

T =
∂2h

∂xθ
T
∂θ

, (14b)

where we use ∂2g
∂xt∂ut

to denote the second-order derivative of a function g(x,u) evaluated at (xt,ut).

Since the trajectory ξθ = {xθ
0:T ,u

θ
0:T−1} is obtained in the forward pass (recall Fig. 2), all matrices
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in (14) are thus known (note that the computation of these matrices also requires λθ
1:T , which can be

obtained by iteratively solving (11b) and (11d) given ξθ). From the differential PMP in (13), we note

that to obtain
∂ξ

θ

∂θ
in (12), it is sufficient to compute the unknowns

{

∂xθ

0:T

∂θ
,
∂xθ

0:T−1

∂θ
,
∂λθ

1:T

∂θ

}

in (13).

Next we will show that how these unknowns are elegantly solved by introducing a new system.

5.2 Auxiliary Control System

One important observation to the differential PMP in (13) is that it shares a similar structure to the
original PMP in (11); so it can be viewed as a new set of PMP equations corresponding to an ‘oracle
control optimal system’ whose the ‘optimal trajectory’ is exactly (12). This motivates us to ‘unearth’
this oracle optimal control system, because by doing so, (12) can be obtained from this oracle system
by an OC solver. To this end, we first define the new ‘state’ and ’control’ (matrix) variables:

Xt =
∂xt

∂θ
∈ R

n×r
, Ut =

∂ut

∂θ
∈ R

m×r
, (15)

respectively. Then, we ‘artificially’ define the following auxiliary control system Σ(ξθ):

Σ(ξθ) :

dynamics: Xt+1 = FtXt +GtUt + Et with X0 = 0,

control objective: J̄ = Tr

T−1
∑

t=0

(

1

2

[

Xt

Ut

]′ [

Hxx
t Hxu

t

Hux
t Huu

t

] [

Xt

Ut

]

+

[

Hxe
t

Hue
t

]′ [

Xt

Ut

]

)

+Tr

(

1

2
X

′

T H
xx

T UT + (Hxe

T )′ XT

)

.

(16)

Here, X0 = ∂x0

∂θ
= 0 because x0 in (1) is given; J̄ is the defined control objective function which

needs to be optimized in the auxiliary control system; and Tr denotes matrix trace. Before presenting

the key results, we make some comments on the above auxiliary control system Σ(ξθ). First, its
state and control variables are both matrix variables defined in (15). Second, its dynamics is linear
and control objective function J̄ is quadratic, for which the coefficient matrices are given in (14).
Third, its dynamics and objective function are determined by the trajectory ξθ of the system Σ(θ) in

forward pass, and this is why we denote it as Σ(ξθ). Finally, we have the following important result.

Lemma 5.1. Let {Xθ
0:T , U

θ
0:T−1} be a stationary solution to the auxiliary control system Σ(ξθ) in

(16). Then, {Xθ
0:T , U

θ
0:T−1} satisfies Pontryagin’s Maximum Principle of Σ(ξθ), which is (13), and

{Xθ
0:T , U

θ
0:T−1} =

{

∂xθ
0:T

∂θ
,
∂uθ

0:T−1

∂θ

}

=
∂ξθ

∂θ
. (17)

A proof of Lemma 5.1 is in Appendix A. Lemma 5.1 states two assertions. First, the PMP condition

for the auxiliary control system Σ(ξθ) is exactly the differential PMP in (13) for the original system
Σ(θ); and second, importantly, the trajectory {Xθ

0:T , U
θ
0:T−1} produced by the auxiliary control

system Σ(ξθ) is exactly the derivative of trajectory of the original system Σ(θ) with respect to the

parameter θ. Based on Lemma 5.1, we can obtain
∂ξ

θ

∂θ
from Σ(ξθ) efficiently by the lemma below.

Lemma 5.2. If Huu
t in (16) is invertible for all t = 0, 1 · · · , T − 1, define the following recursions

Pt = Qt +A′
t(I + Pt+1Rt)

−1Pt+1At, (18a)

Wt = A′
t(I + Pt+1Rt)

−1(Wt+1+P t+1Mt) +Nt, (18b)

with PT = Hxx
T and WT = Hxe

T . Here, I is identity matrix, At=Ft − Gt(H
uu
t )-1Hux

t , Rt =
Gt(H

uu
t )-1G′

t,Mt=Et−Gt(H
uu
t )-1Hue

t , Qt=Hxx
t −Hxu

t (Huu
t )-1Hux

t , Nt=Hxe
t −Hxu

t (Huu
t )-1Hue

t

are all known given (14). Then, the stationary solution {Xθ
0:T , U

θ
0:T−1} in (17) can be obtained by

iteratively solving the following equations from t = 0 to T − 1 with Xθ
0 = X0 = 0:

U
θ
t = −(Huu

t )-1
(

H
ux

t X
θ
t +H

ue

t +Gt
′(I + Pt+1Rt)

−1
(

Pt+1AtX
θ
t + Pt+1Mt +Wt+1

))

, (19a)

X
θ
t+1 = FtX

θ
t +GtU

θ
t + Et. (19b)

A proof of Lemma 5.2 is in Appendix B. Lemma 5.2 states that the trajectory of the above auxiliary

control system Σ(ξθ) can be obtained by two steps: first, iteratively solve (18) backward in time to
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obtain matrices Pt and Wt (all other coefficient matrices are known given Σ(ξθ)); second, calculate
{Xθ

0:T , U
θ
0:T−1} by iteratively integrating a feedback-control system (19) forward in time. In fact,

these two steps constitute the standard procedure to solve general finite-time LQR problems [55].

As a conclusion to the techniques developed in Section 5, in Algorithm 1 we summarize the procedure
of computing ∂ξθ

∂θ
via the introduced auxiliary control system. Algorithm 1 serves as a key component

in the backward pass of the PDP learning framework, as shown in Fig. 2.

Algorithm 1: Solving
∂ξ

θ

∂θ
using Auxiliary Control System (See detailed version in Appendix D )

Input: The trajectory ξθ in (2) produced by the system Σ(θ) in (1) in the forward pass.

Compute the coefficient matrices (14) to obtain the auxiliary control system Σ(ξθ) in (16);

Solve the auxiliary control system Σ(ξθ) to obtain {Xθ
0:T , U

θ
0:T−1} using Lemma 5.2;

Return:
∂ξθ

∂θ
= {Xθ

0:T , U
θ
0:T−1}

6 Applications to Different Learning Modes and Experiments

We investigate three learning modes of PDP, as described in Section 3. For each mode, we demonstrate
its capability in four environments listed in Table 2, and a baseline and a state-of-the-art method are
compared. Both PDP and environment codes are available at https://github.com/wanxinjin.

Table 2: Experimental environments (results for 6-DoF rocket landing is in Appendix I)

Systems Dynamics parameter θdyn Control objective parameter θobj

Cartpole cart mass, pole mass and length

c(x,u)=‖θ′

obj(x− xg)‖
2+‖u‖2

h(x,u) = ‖θ′

obj(x− xg)‖
2

Two-link robot arm length and mass for each link

6-DoF quadrotor maneuvering mass, wing length, inertia matrix

6-DoF rocket powered landing mass, rocket length, inertia matrix

We fix the unit weight to ‖u‖2, because estimating all weights will incur ambiguity [48]; xg is the goal state.

IRL/IOC Mode. The parameterized Σ(θ) is in (1) and the loss in (4). In the forward pass of PDP,

ξθ is solved from Σ(θ) by any OC solver. In the backward pass, ∂ξθ

∂θ
is computed from the auxiliary

control system Σ(ξθ) in (16) using Algorithm 1. The full algorithm is in Appendix D.

Experiment: imitation learning. We use IRL/IOC Mode to solve imitation learning in environments
in Table 2. The true dynamics is parameterized, and control objective is parameterized as a weighted
distance to the goal, θ = {θdyn,θobj}. Set imitation loss L(ξθ,θ)=‖ξd − ξθ‖

2
. Two other methods are

compared: (i) neural policy cloning, and (ii) inverse KKT [52]. We set learning rate η = 10−4 and run
five trials given random initial θ0. The results in Fig. 3a-3c show that PDP significantly outperforms
the policy cloning and inverse-KKT for a much lower training loss and faster convergence. In Fig.
3d, we apply the PDP to learn a neural control objective function for the robot arm using the same
demonstration data in Fig. 3b, and we also compare with the GAIL [56]. Results in Fig. 3d show that
the PDP successfully learns a neural objective function and the imitation loss of PDP is much lower
than that of GAIL. It should note that because the demonstrations are not strictly realizable (optimal)
under the parameterized neural objective function, the final loss for the PDP is small but not zero.
This indicates that given sub-optimal demonstrations, PDP can still find the ‘best’ control objective
function within the function set J(θ) such that its reproduced ξθ has the minimal distance to the
demonstrations. Please refer to Appendix E.2 for more experiment details and additional validations.
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Figure 3: (a-c) imitation loss v.s. iteration, (d) PDP learns a neural objective function and comparison.

SysID Mode. In this mode, Σ(θ) is (5) and loss is (6). PDP is greatly simplified: in forward pass,

ξθ is solved by integrating the difference equation (5). In the backward pass, Σ(ξθ) is reduced to

Σ(ξθ) : dynamics: X
θ
t+1 = FtX

θ
t + Et with X0 = 0. (20)
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This is because Σ(θ) in (5) results from letting J(θ) = 0, (13b-13d) and J̄ in (16) are then trivialized,
and due to u0:T−1 given, Uθ

t = 0 in (13a). The algorithm is in Appendix D.

Experiment: system identification. We use the SysID Mode to identify the dynamics parameter

θdyn for the systems in Table 2. Set the SysID loss L(ξθ,θ) = ‖ξo − ξθ‖
2
. Two other methods

are compared: (i) learning a neural network (NN) dynamics model, and (ii) DMDc [57]. For all
methods, we set learning rate η = 10−4, and run five trials with random θ0. The results are in Fig. 4.
Fig. 4a-4c show an obvious advantage of PDP over the NN baseline and DMDc in terms of lower
training loss and faster convergence speed. In Fig. 4d, we compare PDP and Adam [58] (here both
with η = 10−5) for training the same neural dynamics model for the robot arm. The results again
show that PDP outperforms Adam for faster learning speed and lower training loss. Such advantages
are due to that PDP has injected an inductive bias of optimal control into learning, making it more
efficient for handling dynamical systems. More experiments and validations are in Appendix E.3.
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Figure 4: (a-c) SysID loss v.s. iteration, (d) PDP learns a neural dynamics model.

Control/Planning Mode. The parameterized system Σ(θ) is (7) and loss is (8). PDP for this mode
is also simplified. In forward pass, ξθ is solved by integrating a (controlled) difference equation (7).
In backward pass, J̄ in the auxiliary control system (16) is trivialized because we have considered
J(θ) = 0 in (7). Since the control is now given by ut = u(t,xt,θ), U

θ
t is obtained by differentiating

the policy on both side with respect to θ, that is, Uθ
t = Ux

t X
θ
t +Ue

t with Ux
t = ∂ut

∂xt
and Ue

t = ∂ut

∂θ
. Thus,

Σ(ξθ) :
dynamics: X

θ
t+1 = FtX

θ
t +GtU

θ
t with X0 = 0,

control policy: U
θ
t = U

x

t X
θ
t + U

e

t .
(21)

Integrating (21) from t = 0 to T leads to {Xθ
0:T , U

θ
0:T−1} = ∂ξθ

∂θ
. The algorithm is in Appendix D.

Experiment: control and planning. Based on identified dynamics, we learn policies of each system
to optimize a control objective with given θobj. We set loss (8) as the control objective (below called
control loss). To parameterize policy (7), we use a Lagrange polynomial of degree N (for planning) or
neural network (for feedback control). iLQR [38] and guided policy search (GPS) [59] are compared.
We set learning rate η=10−4 or 10−6 and run five trials for each system. Fig. 5a-5b are learning
neural network feedback policies for the cart-pole and robot arm, respectively. The results show that
PDP outperforms GPS for having lower control loss. Fig. 5c is motion planning for quadrotor using a
polynomial policy. It shows that PDP achieves a competitive performance with iLQR. Compared to
iLQR, PDP minimizes over polynomial policies instead of input sequences, and thus has a higher final
loss which depends on the expressiveness of the polynomial: e.g., the polynomial of degree N=35
has a lower loss than that of N=5. Since iLQR can be viewed as ‘1.5-order’ method (discussed in
Section 2), it has faster converging speed than PDP which is only first-order, as shown in Fig. 5c. But
iLQR is computationally extensive, PDP, instead, has a huge advantage of running time, as illustrated
in Fig. 5d. Due to space constraint, we put detailed analysis between GPS and PDP in Appendix E.4.
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Figure 5: (a-c) control loss v.s. iteration, (d) comparison for running time per iteration.
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7 Discussion

The related end-to-end learning frameworks. Two lines of recent work are related to PDP. One
is the recent work [60–64] that seeks to replace a layer within a deep neural network by an argmin
layer, in order to capture the information flow characterized by a solution of an optimization. Similar
to PDP, these methods differentiate the argmin layer through KKT conditions. They mainly focus on
static optimization problems, which can not directly be applied to dynamical systems. The second
line is the recent RL development [65–68] that embeds an implicit planner within a policy. The idea
is analogous to MPC, because using a predictive OC system (i.e., embedded planner) to generate
controls leads to better adaption to unseen situations. The key problem in these methods is to learn
a planner (i.e., OC system), which is similar to our formulation. [65, 66] learn a path-integral OC
system [69], which is a special class of OC systems. [68] learns an OC system in a latent space.
However, all these methods adopt the ‘unrolling’ strategy to facilitate differentiation. Specifically,
they treat the forward pass of solving an OC problem as an ‘unrolled’ computational graph of multiple
steps of applying gradient descent, because by this computational graph, automatic differentiation
tool [70] can be immediately applied. The drawbacks of this ‘unrolling’ strategy are apparent: (i) they
need to store all intermediate results over the entire computational graph, thus are memory-expensive;
and (ii) the accuracy of gradient depends on the length of the ‘unrolled’ graph, thus facing trade-off
between complexity and accuracy. To address these, [67] develops a differentiable MPC framework,
where in forward pass, a LQR approximation of the OC system is obtained, and in backward pass, the
gradient is solved by differentiating such LQR approximation. Although promising, this framework
has one main weakness: differentiating LQR requires to solve a large linear equation, which involves
the inverse of a matrix of size (2n+m)T × (2n+m)T , thus can incur huge cost when handling
systems of longer horizons T . Detailed descriptions for all these methods is in Appendix F.

Figure 6: Runtime (per iteration) compari-
son between PDP and differentiable MPC
for varying horizons of a pendulum system.

Compared to [35, 65–68], the efficiency of PDP stems
from the following novel aspects. First, in forward pass,
without needing an unrolled computational graph, PDP
only computes and stores the resulting trajectory of the
OC system, ξθ , (does not care about how ξθ is solved).
Second, without obtaining intermediate (LQR) approx-
imations, PDP differentiates through PMP of the OC
system to directly obtain the exact analytical gradient.
Third, in the backward pass, unlike differentiable MPC
which costs at least a complexity of O

(

(m+2n)2T 2
)

to differentiate a LQR approximation, PDP explicitly

solves
∂ξ

θ

∂θ
by an auxiliary control system, where thanks to the recursion structure, the memory and

comptuation complexity of PDP is only O ((m+2n)T ). In Fig. 6, we have compared the running
time of PDP with that of differentiable MPC. The results show PDP is 1000x faster than differentiable
MPC. Due to space constraint, we put the detailed complexity analysis of PDP in Appendix G.

Convergence and limitation of PDP. Since all gradient quantities in PDP are analytical and exact,
and the development of PDP does not involves any second-order derivative of functions or models,
PDP essentially is a first-order gradient-descent framework to solve non-convex bi-level optimization.
Therefore, in general, PDP can only achieve local minima. As explored by [71], if we pose further
assumptions such as convexity and smoothness on all functions (dynamics, policy, loss, and control
objective function), the global convergence of the bi-level programming could be established. But we
do think these conditions are too restrictive for dynamical control systems. As a direction of future
work, we will investigate the mild conditions for good convergence by taking advantage of control
theory, e.g., Lyapunov theory. Due to space constraint, limitation of PDP is detailed in Appendix H.

8 Conclusions

This paper proposes a Pontryagin differentiable programming (PDP) methodology to establish an
end-to-end learning framework for solving a range of learning and control tasks. The key contribution
in PDP is that we incorporate the knowledge of optimal control theory as an inductive bias into the
learning framework. Such combination enables PDP to achieve higher efficiency and capability than
existing learning and control methods in solving many tasks including inverse reinforcement learning,
system identification, and control/planning. We envision the proposed PDP could benefit to both
learning and control fields for solving many high-dimensional continuous-space problems.
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Broader Impact

This work is expected to have the impacts on both learning and control fields.

• To the learning field, this work connects some fundamental topics in machine learning to
their counterparts in the control field, and unifies some concepts from reinforcement learning,
backpropagation/deep learning, and control theory in one generic learning framework. The
contribution of this framework is a deep integration of optimal control theory into end-to-end
learning process, leading to an optimal-control-informed end-to-end learning framework
that is flexible enough to solve a broad range of learning and control tasks and efficient
enough to handle high-dimensional and continuous-space problems. In a broad perspective,
we hope that this paper could motivate more future work that integrates the benefits of both
control and learning to promote efficiency and explainability of artificial intelligence.

• To the control field, this work proposes a generic paradigm, which shows how a challenging
control task can be converted into a learning formulation and solved using readily-available
learning techniques, such as (deep) neural networks and backpropagation. For example, the
proposed framework, equipped with (deep) neural networks, shows significant advantage for
handling non-linear system identification and optimal control over state-of-the-art control
methods. Since classic control theory typically requires knowledge of models, we expect
that this work could pave a new way to extend classic control with data-driven techniques.

Since the formulation of this paper does not consider the boundness or constraints of a decision-
making system, the real-world use of this work on physical systems might possibly raise safety issues
during the training process; e.g., the state or input of the physical system at some time instance might
exceeds the safety bounds that are physically required. One option to address this is to include these
safety boundness as soft constraints added to the control objective or loss that is optimized. In future
work, we will formally discuss PDP within a safety framework.
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