
Pontryagin Differentiable Programming:

An End-to-End Learning and Control Framework

Wanxin Jin Zhaoran Wang
Purdue University Northwestern University
{wanxinjin,zhaoranwang}@gmail.com

Zhuoran Yang
Princeton University
zy6@princeton.edu

Shaoshuai Mou
Purdue University
mous@purdue.edu

Abstract

This paper develops a Pontryagin Differentiable Programming (PDP) methodology,
which establishes a unified framework to solve a broad class of learning and control
tasks. The PDP distinguishes from existing methods by two novel techniques: first,
we differentiate through Pontryagin’s Maximum Principle, and this allows to obtain
the analytical derivative of a trajectory with respect to tunable parameters within an
optimal control system, enabling end-to-end learning of dynamics, policies, or/and
control objective functions; and second, we propose an auxiliary control system in
the backward pass of the PDP framework, and the output of this auxiliary control
system is the analytical derivative of the original system’s trajectory with respect
to the parameters, which can be iteratively solved using standard control tools. We
investigate three learning modes of the PDP: inverse reinforcement learning, system
identification, and control/planning. We demonstrate the capability of the PDP in
each learning mode on different high-dimensional systems, including multi-link
robot arm, 6-DoF maneuvering quadrotor, and 6-DoF rocket powered landing.

1 Introduction

Many learning tasks can find their counterpart problems in control fields. These tasks both seek to
obtain unknown aspects of a decision-making system with different terminologies compared below.

Table 1: Topic connections between control and learning (details presented in Section 2)

UNKNOWNS IN A SYSTEM LEARNING METHODS CONTROL METHODS

Dynamics xt+1=fθ(xt,ut) Markov decision processes System identification

Policy ut = πθ(t,xt) Reinforcement learning (RL) Optimal control (OC)

Control objective J=
∑

t cθ(xt,ut) Inverse RL Inverse OC

East (m)

8 4 0 4 8
North (m)

6 3 0 3 6

Up
w

ar
d 

(m
)

0
3
6
9
12

Learning to control 
 rocket powered landing

X (m)

8 4 0 4 8 Y (m)6 3 0 3 6

Z 
(m

)

0
3
6
9
12

Imitation learning for 
 quadrotor maneuvering

learner
expert

Figure 1: left: PDP learns rocket landing
control, right: PDP learns quadrotor dy-
namics and control objective for imitation.

With the above connections, learning and control fields
have begun to explore the complementary benefits of
each other: control theory may provide abundant models
and structures that allow for efficient or certificated algo-
rithms for high-dimensional tasks, while learning enables
to obtain these models from data, which are otherwise
not readily attainable via classic control tools. Examples
that enjoy both benefits include model-based RL [1, 2],
where dynamics models are used for sample efficiency;
and Koopman-operator control [3, 4], where via learning,
nonlinear systems are lifted to a linear observable space
to facilitate control design. Inspired by those, this paper
aims to exploit the advantage of integrating learning and control and develop a unified framework that
enables to solve a wide range of learning and control tasks, e.g., the challenging problems in Fig. 1.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



2 Background and Related Work

Learning dynamics. This is usually referred as to as system identification in control fields, which
typically consider linear systems represented by transfer functions [5]. For nonlinear systems, the
Koopman theory [6] provides a way to lift states to a (infinite-dimensional) linear observable space
[3, 7]. In learning, dynamics is characterized by Markov decision proceses and implemented using
linear regression [8], observation-transition modeling [9], latent-space modeling [10], (deep) neural
networks [11], Gaussian process [12], transition graphs [13], etc. Although off-the-shelf, most of
these methods have to trade off between data efficiency and long-term prediction accuracy. To achieve
both, physically-informed learning [14–17] injects physics laws into learning models, but they are
limited to mechanical systems. Recently, a trend of work starts to use dynamical systems to explain
(deep) neural networks, and some new algorithms [18–25] have been established.

This paper focuses on learning general dynamical models, encompassing either physical dynamics
with unknown parameters or neural difference equations. The proposed learning framework is injected
with inductive knowledge of optimal control theory to achieve efficiency and explainability.

Learning optimal polices. In learning fields, it relates to reinforcement learning (RL). Model-free RL
provides a general-purpose framework to learn policies directly from interacting with environments
[26–28], but usually suffers from significant data complexity. Model-based RL addresses this by first
learning a dynamics model from experience and then integrating it to policy improvement [1, 12, 29–
31]. The use of a model can assist to augment experience data [32, 33], perform back-propagation
through time [12], or test policies before deployment. Model-based RL also faces some challenges
that are not well-addressed. For example, how to efficiently leverage imperfect models [34], and
how to maximize the joint benefit by combining policy learning and motion planning (trajectory
optimization) [31, 35], where a policy has the advantage of execution coherence and fast deployment
while the trajectory planning has the competence of adaption to unseen or future situations.

The counterpart topic in control is optimal control (OC), which is more concerned with characterizing
optimal trajectories in presence of dynamics models. As in RL, the main strategy for OC is based on
dynamic programming, and many valued-based methods are available, such as HJB [36], differential
dynamical programming (DDP) [37] (by quadratizing dynamics and value function), and iterative
linear quadratic regulator (iLQR) [38] (by linearizing dynamics and quadratizing value function). The
second strategy to solve OC is based on the Pontryagin’s Maximum/Minimal Principle (PMP) [39].
Derived from calculus of variations, PMP can be thought of as optimizing directly over trajectories,
thus avoiding solving for value functions. Popular methods in this vein include shooting methods [40]
and collocation methods [41]. However, the OC methods based on PMP are essentially open loop
control and thus susceptible to model errors or disturbances in deployment. To address these, model
predictive control (MPC) [42] generates controls given the system current state by repeatedly solving
an OC problem over a finite prediction horizon (only the first optimal input is executed), leading to a
closed-loop control form. Although MPC has dominated across many industrial applications [43],
developing fast MPC implementations is still an active research direction [44].

The proposed learning framework in this work has a special mode for model-based control tasks. The
method can be viewed as a complement to classic open-loop OC methods, because, although derived
from PMP (trajectory optimization), the method here is to learn a feedback/closed-loop control policy.
Depending on the specific policy parameterization, the method here can also be used for motion
planning. All these features will provide new perspectives for model-based RL or MPC control.

Learning control objective functions. In learning, this relates to inverse reinforcement learning
(IRL), whose goal is to find a control objective function to explain the given optimal demonstrations.
The unknown objective function is typically parameterized as a weighted sum of features [45–47].
Strategies to learn the unknown weights include feature matching [45] (matching the feature values
between demonstrations and reproduced trajectories), maximum entropy [46] (finding a trajectory
distribution of maximum entropy subject to empirical feature values), and maximum margin [47]
(maximizing the margin of objective values between demonstrations and reproduced trajectories). The
learning update in the above IRL methods is preformed on a selected feature space by taking advantage
of linearity of feature weights, and thus cannot be directly applied to learning objective functions
that are nonlinear in parameters. The counterpart topic in the control field is inverse optimal control
(IOC) [48–51]. With knowledge of dynamics, IOC focuses on more efficient learning paradigms. For
example, by directly minimizing the violation of optimality conditions by the observed demonstration
data, [48, 50–52] directly compute feature weights without repetitively solving the OC problems.

2



Despite the efficiency, minimizing optimality violation does not directly assure the closeness between
the final reproduced trajectory and demonstrations or the closeness of their objective values.

Fundamentally different from existing IRL/IOC methods, this paper will develop a new framework
that enables to learn complex control objective functions, e.g., neural objective functions, by directly
minimizing the loss (e.g., the distance) between the reproduced trajectory and demonstrations.

A unified perspective on learning dynamics/policy/control objective functions. Consider a gen-
eral decision-making system, which typically consists of aspects of dynamics, control policy, and
control objective function. In a unified perspective, learning dynamics, policies, or control objective
functions can be viewed as instantiations of the same learning problem but with (i) unknown parame-
ters appearing in the system’s different aspects and (ii) the different losses. For example, in learning
dynamics, a differential/difference equation is parameterized and the loss function can be defined as
the prediction error between the equation’s output and target data; in learning policies, the unknown
parameters are in a feedback policy and the loss function is just the control objective function; and
in learning control objective functions, the control objective function is parameterized and the loss
function can be the discrepancy between the reproduced trajectory and the observed demonstrations.

Claim of contributions. Motivated by the above, this paper develops a unified learning framework,
named as PDP, that is flexible enough to be customized for different learning and control tasks and
capable enough to efficiently solve high-dimensional and continuous-space problems. The proposed
PDP framework borrows the idea of ‘end-to-end’ learning [53] and chooses to optimize a loss function
directly with respect to the tunable parameters in the aspect(s) of a decision-making system, such
as the dynamics, policy, or/and control objective function. The key contribution of the PDP is that
we inject the optimal control theory as an inductive bias into the learning process to expedite the
learning efficiency and explainability. Specifically, the PDP framework centers around the system’s
trajectory and differentiates through PMP, and this allows us to obtain the analytical derivative of the
trajectory with respect to the tunable parameters, a key quantity for end-to-end learning of (neural)
dynamics, (neural) policies, and (neural) control objective functions. Furthermore, we introduce an
auxiliary control system in the back pass of the PDP framework, and its output trajectory is exactly
the derivative of the trajectory with respect to the parameters, which can be iteratively solved using
standard control tools. In control fields, to our best knowledge, this is the first work to propose the
technique of the differential PMP, and more importantly, we show that the differential PMP can be
easily obtained using the introduced auxiliary control system.

3 Problem Formulation

We begin with formulating a base problem and then discuss how to accommodate the base problem
to specific applications. Consider a class of optimal control systems Σ(θ), which is parameterized by
a tunable θ ∈ R

r in both dynamics and control (cost) objective function:

Σ(θ) :
dynamics: xt+1 = f(xt,ut,θ) with given x0,

control objective: J(θ) =
∑T−1

t=0
ct(xt,ut,θ) + h(xT ,θ).

(1)

Here, xt ∈ R
n is the system state; ut ∈ R

m is the control input; f : Rn × R
m × R

r 7→ R
n is the

dynamics model, which is assumed to be twice-differentiable; t = 0, 1, · · · , T is the time step with
T being the time horizon; and J(θ) is the control objective function with ct : R

n × R
m × R

r 7→ R

and h : Rn × R
r 7→ R denoting the stage/running and final costs, respectively, both of which are

twice-differentiable. For a choice of θ, Σ(θ) will produce a trajectory of state-inputs:

ξθ={xθ
0:T ,u

θ
0:T−1} ∈ arg min{x0:T ,u0:T -1} J(θ)

subject to xt+1=f(xt,ut,θ) for all t given x0

, (2)

that is, ξθ optimizes J(θ) subject to the dynamics constraint f(θ). For many applications (we will
show next), one evaluates the above ξθ using a scalar-valued differentiable loss L(ξθ,θ). Then, the
problem of interest is to tune the parameter θ, such that ξθ has the minimal loss:

min
θ

L(ξθ,θ) subject to ξθ is in (2). (3)

Under the above base formulation, for a specific learning or control task, one only needs to accordingly
change precise details of Σ(θ) and define a specific loss function L(ξθ,θ), as we discuss below.

3



IRL/IOC Mode. Suppose that we are given optimal demonstrations ξd = {xd
0:T ,u

d
0:T−1

} of an
expert optimal control system. We seek to learn the expert’s dynamics and control objective function

from ξd. To this end, we use Σ(θ) in (1) to represent the expert, and define the loss in (3) as

L(ξθ,θ) = l(ξθ, ξ
d), (4)

where l is a scalar function that penalizes the inconsistency of ξθ with ξd, e.g., l(ξθ, ξ
d) = ‖ξθ−ξd‖

2
.

By solving (3) with (4), we can obtain a Σ(θ∗) whose trajectory is consistent with the observed
demonstrations. It should be noted that even if the demonstrations ξd significantly deviate from the
optimal ones, the above formulation still finds the ‘best’ control objective function (and dynamics)

within the parameterized set Σ(θ) such that its reproduced ξθ in (2) has the minimal distance to ξd.

SysID Mode. Suppose that we are given data ξo = {xo
0:T ,u0:T−1} collected from, say, a physical

system (here, unlike ξd, ξo is not necessarily optimal), and we wish to identify the system’s dynamics.
Here, u0:T−1 are usually externally supplied to ensure the physical system is of persistent excitation
[54]. In order for Σ(θ) in (1) to only represent dynamics (as we do not care about its internal control

law), we set J(θ) = 0. Then, ξθ in (2) accepts any uθ
0:T−1 = u0:T−1 as it always optimizes J(θ)=0.

In other words, by setting J(θ) = 0, Σ(θ) in (1) now only represent a class of dynamics models:

Σ(θ) : dynamics: xt+1 = f(xt,ut,θ) with x0 and uθ
0:T−1 = u0:T−1. (5)

Now, Σ(θ) produces ξθ = {xθ
0:T ,u

θ
0:T−1} subject to (5). To use (3) for identifying θ, we define

L(ξθ,θ) = l(ξθ, ξ
o), (6)

where l is to quantify the prediction error between ξo and ξθ under the same inputs u0:T−1.

Control/Planning Mode. Consider a system with its dynamics learned in the above SysID. We
want to obtain a feedback controller or trajectory such that the system achieves a performance of
minimizing a given cost function. To that end, we specialize Σ(θ) in (1) as follows: first, set f as the
learned dynamics and J(θ) = 0; and second, through a close-loop link, we connect the input ut and
state xt via a parameterized policy block ut = u(t,xt,θ) (reminder: unlike SysID Mode with ut

supplied externally, the inputs here are from a policy via a feedback loop). Σ(θ) now becomes

Σ(θ) :
dynamics: xt+1 = f(xt,ut) with x0,

control policy: ut = u(t,xt,θ).
(7)

Now, Σ(θ) produces a trajectory ξθ = {xθ
0:T ,u

θ
0:T−1} subject to (7). We set the loss in (3) as

L(ξθ,θ) =
∑T−1

t=0
l(xθ

t ,u
θ
t ) + lf (x

θ
T ), (8)

where l and lf are the stage and final costs, respectively. Then, (3) is an optimal control or planning
problem: if ut=u(t,xt,θ) (i.e., feedback policy explicitly depends on xt), (3) is a close-loop optimal
control problem; otherwise if ut=u(t,θ) (e.g., polynomial parameterization), (3) is an open-loop
motion planning problem. This mode can also be used as a component to solve (1) in IRL/IOC Mode.

4 An End-to-End Learning Framework

To solve the generic problem in (3), the idea of end-to-end learning [53] seeks to optimize the loss
L(ξθ,θ) directly with respect to the tunable parameter θ, by applying the gradient descent

θk+1 = θk − ηk
dL

dθ

∣

∣

∣

θk

with
dL

dθ

∣

∣

∣

θk

=
∂L

∂ξ

∣

∣

∣

ξθk

∂ξθ

∂θ

∣

∣

∣

θk

+
∂L

∂θ

∣

∣

∣

θk

. (9)

Here, k = 0, 1, · · · is the iteration index; dL
dθ

∣

∣

θk

is the gradient of the loss with respect to θ evaluated

at θk; and ηk is the learning rate. From (9), we can draw a learning architecture in Fig. 2. Each update
of θ consists of a forward pass, where at θk, the corresponding trajectory ξθk

is solved from Σ(θk)

and the loss is computed, and a backward pass, where ∂L
∂ξ

∣

∣

ξ
θk

,
∂ξ

θ

∂θ

∣

∣

θk

, and ∂L
∂θ

∣

∣

θk

are computed.

In the forward pass, ξθ is obtained by solving an optimal control problem in Σ(θ) using any available
OC methods, such as iLQR or Control/Planning Mode, (note that in SysID or Control/Planning

modes, it is reduced to integrating difference equations (5) or (7)). In backward pass, ∂L
∂ξ

and ∂L
∂θ

are

easily obtained from the loss function L(ξθ,θ). The main challenge, however, is to solve
∂ξ

θ

∂θ
, i.e.,

the derivative of a trajectory with respect to the parameters in the system. Next, we will analytically

solve
∂ξ

θ

∂θ
by proposing two techniques: differential PMP and auxiliary control system.

4



Loss

Auxiliary control system Chain rule

Update Parameterized control system

System trajectory

Figure 2: PDP end-to-end learning framework.

5 Key Contributions: Differential PMP & Auxiliary Control System

We first recall the discrete-time Pontryagin’s Maximum/Minimum Principle (PMP) [39] (a derivation
of discrete-time PMP is given in Appendix C). For the optimal control system Σ(θ) in (1) with a

fixed θ, PMP describes a set of optimality conditions which the trajectory ξθ = {xθ
0:T ,u

θ
0:T−1} in

(2) must satisfy. To introduce these conditions, we first define the following Hamiltonian,

Ht = ct(xt,ut;θ) + f(xt,ut;θ)
′λt+1, (10)

where λt ∈ R
n (t = 1, 2, · · · , T ) is called the costate variable, which can be also thought of as the

Lagrange multipliers for the dynamics constraints. According to PMP, there exists a sequence of

costates λθ
1:T , which together with the optimal trajectory ξθ = {xθ

0:T ,u
θ
0:T−1} satisfy

dynamics equation: x
θ
t+1 =

∂Ht

∂λθ
t+1

= f(xθ
t ,u

θ
t ;θ), (11a)

costate equation: λ
θ
t =

∂Ht

∂xθ
t

=
∂ct

∂xθ
t

+
∂f ′

∂xθ
t

λ
θ
t+1, (11b)

input equation: 0 =
∂Ht

∂uθ
t

=
∂ct

∂uθ
t

+
∂f ′

∂uθ
t

λ
θ
t+1, (11c)

boundary conditions: λ
θ
T =

∂h

∂xθ
T

, x
θ
0 = x0. (11d)

For notation simplicity, ∂g
∂xt

means the derivative of function g(x) with respect to x evaluated at xt.

5.1 Differential PMP

To begin, recall that our goal (in Section 4) is to obtain
∂ξ

θ

∂θ
, that is,

∂ξθ
∂θ

=

{

∂xθ
0:T

∂θ
,
∂uθ

0:T−1

∂θ

}

. (12)

To this end, we are motivated to differentiate the PMP conditions in (11) on both sides with respect to
θ. This leads to the following differential PMP:

differential dynamics equation:
∂xθ

t+1

∂θ
= Ft

∂xθ
t

∂θ
+Gt

∂uθ
t

∂θ
+ Et, (13a)

differential costate equation:
∂λθ

t

∂θ
= H

xx

t

∂xθ
t

∂θ
+H

xu

t

∂uθ
t

∂θ
+ F

′

t

∂λθ
t+1

∂θ
+H

xe

t , (13b)

differential input equation: 0 = H
ux

t

∂xθ
t

∂θ
+H

uu

t

∂uθ
t

∂θ
+G

′

t

∂λθ
t+1

∂θ
+H

ue

t , (13c)

differential boundary conditions:
∂λθ

T

∂θ
= H

xx

T

∂xθ
T

∂θ
+H

xe

T ,
∂xθ

0

∂θ
=

∂x0

∂θ
= 0. (13d)

Here, to simplify notations and distinguish knowns and unknowns, the coefficient matrices in the
above differential PMP (13) are defined as follows:

Ft=
∂f

∂xθ
t

, Gt=
∂f

∂uθ
t

, H
xx

t =
∂2Ht

∂xθ
t ∂x

θ
t

, H
xe

t =
∂2Ht

∂xθ
t ∂θ

, H
xu

t =
∂2Ht

∂xθ
t ∂u

θ
t

=(Hux

t )′, (14a)

Et=
∂f

∂θ
, H

uu

t =
∂2Ht

∂uθ
t ∂u

θ
t

, H
ue

t =
∂2Ht

∂uθ
t ∂θ

, H
xx

T =
∂2h

∂xθ
T
∂xθ

T

, H
xe

T =
∂2h

∂xθ
T
∂θ

, (14b)

where we use ∂2g
∂xt∂ut

to denote the second-order derivative of a function g(x,u) evaluated at (xt,ut).

Since the trajectory ξθ = {xθ
0:T ,u

θ
0:T−1} is obtained in the forward pass (recall Fig. 2), all matrices

5



in (14) are thus known (note that the computation of these matrices also requires λθ
1:T , which can be

obtained by iteratively solving (11b) and (11d) given ξθ). From the differential PMP in (13), we note

that to obtain
∂ξ

θ

∂θ
in (12), it is sufficient to compute the unknowns

{

∂xθ

0:T

∂θ
,
∂xθ

0:T−1

∂θ
,
∂λθ

1:T

∂θ

}

in (13).

Next we will show that how these unknowns are elegantly solved by introducing a new system.

5.2 Auxiliary Control System

One important observation to the differential PMP in (13) is that it shares a similar structure to the
original PMP in (11); so it can be viewed as a new set of PMP equations corresponding to an ‘oracle
control optimal system’ whose the ‘optimal trajectory’ is exactly (12). This motivates us to ‘unearth’
this oracle optimal control system, because by doing so, (12) can be obtained from this oracle system
by an OC solver. To this end, we first define the new ‘state’ and ’control’ (matrix) variables:

Xt =
∂xt

∂θ
∈ R

n×r
, Ut =

∂ut

∂θ
∈ R

m×r
, (15)

respectively. Then, we ‘artificially’ define the following auxiliary control system Σ(ξθ):

Σ(ξθ) :

dynamics: Xt+1 = FtXt +GtUt + Et with X0 = 0,

control objective: J̄ = Tr

T−1
∑

t=0

(

1

2

[

Xt

Ut

]′ [

Hxx
t Hxu

t

Hux
t Huu

t

] [

Xt

Ut

]

+

[

Hxe
t

Hue
t

]′ [

Xt

Ut

]

)

+Tr

(

1

2
X

′

T H
xx

T UT + (Hxe

T )′ XT

)

.

(16)

Here, X0 = ∂x0

∂θ
= 0 because x0 in (1) is given; J̄ is the defined control objective function which

needs to be optimized in the auxiliary control system; and Tr denotes matrix trace. Before presenting

the key results, we make some comments on the above auxiliary control system Σ(ξθ). First, its
state and control variables are both matrix variables defined in (15). Second, its dynamics is linear
and control objective function J̄ is quadratic, for which the coefficient matrices are given in (14).
Third, its dynamics and objective function are determined by the trajectory ξθ of the system Σ(θ) in

forward pass, and this is why we denote it as Σ(ξθ). Finally, we have the following important result.

Lemma 5.1. Let {Xθ
0:T , U

θ
0:T−1} be a stationary solution to the auxiliary control system Σ(ξθ) in

(16). Then, {Xθ
0:T , U

θ
0:T−1} satisfies Pontryagin’s Maximum Principle of Σ(ξθ), which is (13), and

{Xθ
0:T , U

θ
0:T−1} =

{

∂xθ
0:T

∂θ
,
∂uθ

0:T−1

∂θ

}

=
∂ξθ

∂θ
. (17)

A proof of Lemma 5.1 is in Appendix A. Lemma 5.1 states two assertions. First, the PMP condition

for the auxiliary control system Σ(ξθ) is exactly the differential PMP in (13) for the original system
Σ(θ); and second, importantly, the trajectory {Xθ

0:T , U
θ
0:T−1} produced by the auxiliary control

system Σ(ξθ) is exactly the derivative of trajectory of the original system Σ(θ) with respect to the

parameter θ. Based on Lemma 5.1, we can obtain
∂ξ

θ

∂θ
from Σ(ξθ) efficiently by the lemma below.

Lemma 5.2. If Huu
t in (16) is invertible for all t = 0, 1 · · · , T − 1, define the following recursions

Pt = Qt +A′
t(I + Pt+1Rt)

−1Pt+1At, (18a)

Wt = A′
t(I + Pt+1Rt)

−1(Wt+1+P t+1Mt) +Nt, (18b)

with PT = Hxx
T and WT = Hxe

T . Here, I is identity matrix, At=Ft − Gt(H
uu
t )-1Hux

t , Rt =
Gt(H

uu
t )-1G′

t,Mt=Et−Gt(H
uu
t )-1Hue

t , Qt=Hxx
t −Hxu

t (Huu
t )-1Hux

t , Nt=Hxe
t −Hxu

t (Huu
t )-1Hue

t

are all known given (14). Then, the stationary solution {Xθ
0:T , U

θ
0:T−1} in (17) can be obtained by

iteratively solving the following equations from t = 0 to T − 1 with Xθ
0 = X0 = 0:

U
θ
t = −(Huu

t )-1
(

H
ux

t X
θ
t +H

ue

t +Gt
′(I + Pt+1Rt)

−1
(

Pt+1AtX
θ
t + Pt+1Mt +Wt+1

))

, (19a)

X
θ
t+1 = FtX

θ
t +GtU

θ
t + Et. (19b)

A proof of Lemma 5.2 is in Appendix B. Lemma 5.2 states that the trajectory of the above auxiliary

control system Σ(ξθ) can be obtained by two steps: first, iteratively solve (18) backward in time to

6



obtain matrices Pt and Wt (all other coefficient matrices are known given Σ(ξθ)); second, calculate
{Xθ

0:T , U
θ
0:T−1} by iteratively integrating a feedback-control system (19) forward in time. In fact,

these two steps constitute the standard procedure to solve general finite-time LQR problems [55].

As a conclusion to the techniques developed in Section 5, in Algorithm 1 we summarize the procedure
of computing ∂ξθ

∂θ
via the introduced auxiliary control system. Algorithm 1 serves as a key component

in the backward pass of the PDP learning framework, as shown in Fig. 2.

Algorithm 1: Solving
∂ξ

θ

∂θ
using Auxiliary Control System (See detailed version in Appendix D )

Input: The trajectory ξθ in (2) produced by the system Σ(θ) in (1) in the forward pass.

Compute the coefficient matrices (14) to obtain the auxiliary control system Σ(ξθ) in (16);

Solve the auxiliary control system Σ(ξθ) to obtain {Xθ
0:T , U

θ
0:T−1} using Lemma 5.2;

Return:
∂ξθ

∂θ
= {Xθ

0:T , U
θ
0:T−1}

6 Applications to Different Learning Modes and Experiments

We investigate three learning modes of PDP, as described in Section 3. For each mode, we demonstrate
its capability in four environments listed in Table 2, and a baseline and a state-of-the-art method are
compared. Both PDP and environment codes are available at https://github.com/wanxinjin.

Table 2: Experimental environments (results for 6-DoF rocket landing is in Appendix I)

Systems Dynamics parameter θdyn Control objective parameter θobj

Cartpole cart mass, pole mass and length

c(x,u)=‖θ′

obj(x− xg)‖
2+‖u‖2

h(x,u) = ‖θ′

obj(x− xg)‖
2

Two-link robot arm length and mass for each link

6-DoF quadrotor maneuvering mass, wing length, inertia matrix

6-DoF rocket powered landing mass, rocket length, inertia matrix

We fix the unit weight to ‖u‖2, because estimating all weights will incur ambiguity [48]; xg is the goal state.

IRL/IOC Mode. The parameterized Σ(θ) is in (1) and the loss in (4). In the forward pass of PDP,

ξθ is solved from Σ(θ) by any OC solver. In the backward pass, ∂ξθ

∂θ
is computed from the auxiliary

control system Σ(ξθ) in (16) using Algorithm 1. The full algorithm is in Appendix D.

Experiment: imitation learning. We use IRL/IOC Mode to solve imitation learning in environments
in Table 2. The true dynamics is parameterized, and control objective is parameterized as a weighted
distance to the goal, θ = {θdyn,θobj}. Set imitation loss L(ξθ,θ)=‖ξd − ξθ‖

2
. Two other methods are

compared: (i) neural policy cloning, and (ii) inverse KKT [52]. We set learning rate η = 10−4 and run
five trials given random initial θ0. The results in Fig. 3a-3c show that PDP significantly outperforms
the policy cloning and inverse-KKT for a much lower training loss and faster convergence. In Fig.
3d, we apply the PDP to learn a neural control objective function for the robot arm using the same
demonstration data in Fig. 3b, and we also compare with the GAIL [56]. Results in Fig. 3d show that
the PDP successfully learns a neural objective function and the imitation loss of PDP is much lower
than that of GAIL. It should note that because the demonstrations are not strictly realizable (optimal)
under the parameterized neural objective function, the final loss for the PDP is small but not zero.
This indicates that given sub-optimal demonstrations, PDP can still find the ‘best’ control objective
function within the function set J(θ) such that its reproduced ξθ has the minimal distance to the
demonstrations. Please refer to Appendix E.2 for more experiment details and additional validations.

0 2000 4000 6000 8000 10000
Iteration

10 4

10 3

10 2

10 1

100

101

102

103

104

Im
ita

tio
n 

Lo
ss

PDP
Inverse KKT
Policy cloning

(a) Cart-pole

0 2000 4000 6000 8000 10000
Iteration

10 5

10 3

10 1

101

103

Im
ita

tio
n 

Lo
ss

PDP
Inverse KKT
Policy cloning

(b) Robot arm

0 2000 4000 6000 8000 10000
Iteration

10 4

10 3

10 2

10 1

100

101

102

103

104

Im
ita

tio
n 

Lo
ss

PDP
Inverse KKT
Policy cloning

(c) Quadrotor

0 1000 2000 3000
Iteration

100

101

102

103

Im
ita

tio
n 

Lo
ss

PDP
GAIL

(d) Comparison

Figure 3: (a-c) imitation loss v.s. iteration, (d) PDP learns a neural objective function and comparison.

SysID Mode. In this mode, Σ(θ) is (5) and loss is (6). PDP is greatly simplified: in forward pass,

ξθ is solved by integrating the difference equation (5). In the backward pass, Σ(ξθ) is reduced to

Σ(ξθ) : dynamics: X
θ
t+1 = FtX

θ
t + Et with X0 = 0. (20)

7

https://github.com/wanxinjin


This is because Σ(θ) in (5) results from letting J(θ) = 0, (13b-13d) and J̄ in (16) are then trivialized,
and due to u0:T−1 given, Uθ

t = 0 in (13a). The algorithm is in Appendix D.

Experiment: system identification. We use the SysID Mode to identify the dynamics parameter

θdyn for the systems in Table 2. Set the SysID loss L(ξθ,θ) = ‖ξo − ξθ‖
2
. Two other methods

are compared: (i) learning a neural network (NN) dynamics model, and (ii) DMDc [57]. For all
methods, we set learning rate η = 10−4, and run five trials with random θ0. The results are in Fig. 4.
Fig. 4a-4c show an obvious advantage of PDP over the NN baseline and DMDc in terms of lower
training loss and faster convergence speed. In Fig. 4d, we compare PDP and Adam [58] (here both
with η = 10−5) for training the same neural dynamics model for the robot arm. The results again
show that PDP outperforms Adam for faster learning speed and lower training loss. Such advantages
are due to that PDP has injected an inductive bias of optimal control into learning, making it more
efficient for handling dynamical systems. More experiments and validations are in Appendix E.3.

0 2000 4000 6000 8000 10000
Iteration

10 25

10 21

10 17

10 13

10 9

10 5

10 1

103

Sy
sID

 L
os

s

PDP
DMDc
NN dynamics

(a) Cart-pole

0 2000 4000 6000 8000 10000
Iteration

10 19

10 16

10 13

10 10

10 7

10 4

10 1

102

105

Sy
sID

 L
os

s

PDP
DMDc
NN dynamics

(b) Robot arm

0 2000 4000 6000 8000 10000
Iteration

10 10

10 8

10 6

10 4

10 2

100

102

104

106

Sy
sID

 L
os

s

PDP
DMDc
NN dynamics

(c) Quadrotor

0 2000 4000 6000 8000 10000
Iteration

200

400

600

800

1000

Sy
sID

 L
os

s

PDP
Pytorch Adam

(d) Learn neural dynamics

Figure 4: (a-c) SysID loss v.s. iteration, (d) PDP learns a neural dynamics model.

Control/Planning Mode. The parameterized system Σ(θ) is (7) and loss is (8). PDP for this mode
is also simplified. In forward pass, ξθ is solved by integrating a (controlled) difference equation (7).
In backward pass, J̄ in the auxiliary control system (16) is trivialized because we have considered
J(θ) = 0 in (7). Since the control is now given by ut = u(t,xt,θ), U

θ
t is obtained by differentiating

the policy on both side with respect to θ, that is, Uθ
t = Ux

t X
θ
t +Ue

t with Ux
t = ∂ut

∂xt
and Ue

t = ∂ut

∂θ
. Thus,

Σ(ξθ) :
dynamics: X

θ
t+1 = FtX

θ
t +GtU

θ
t with X0 = 0,

control policy: U
θ
t = U

x

t X
θ
t + U

e

t .
(21)

Integrating (21) from t = 0 to T leads to {Xθ
0:T , U

θ
0:T−1} = ∂ξθ

∂θ
. The algorithm is in Appendix D.

Experiment: control and planning. Based on identified dynamics, we learn policies of each system
to optimize a control objective with given θobj. We set loss (8) as the control objective (below called
control loss). To parameterize policy (7), we use a Lagrange polynomial of degree N (for planning) or
neural network (for feedback control). iLQR [38] and guided policy search (GPS) [59] are compared.
We set learning rate η=10−4 or 10−6 and run five trials for each system. Fig. 5a-5b are learning
neural network feedback policies for the cart-pole and robot arm, respectively. The results show that
PDP outperforms GPS for having lower control loss. Fig. 5c is motion planning for quadrotor using a
polynomial policy. It shows that PDP achieves a competitive performance with iLQR. Compared to
iLQR, PDP minimizes over polynomial policies instead of input sequences, and thus has a higher final
loss which depends on the expressiveness of the polynomial: e.g., the polynomial of degree N=35
has a lower loss than that of N=5. Since iLQR can be viewed as ‘1.5-order’ method (discussed in
Section 2), it has faster converging speed than PDP which is only first-order, as shown in Fig. 5c. But
iLQR is computationally extensive, PDP, instead, has a huge advantage of running time, as illustrated
in Fig. 5d. Due to space constraint, we put detailed analysis between GPS and PDP in Appendix E.4.

0 100 200 300 400
Iteration

130

140

150

160

170

180

190

200

Co
nt

ro
l l

os
s

PDP with neural policy
GPS with neural policy

(a) Cart-pole control

0 200 400 600 800
Iteration

0

10

20

30

40

50

Co
nt

ro
l l

os
s

PDP with neural policy
GPS with neural policy

(b) Robot arm control

0 50 100 150
Iteration

1

2

3

4

Co
nt

ro
l l

os
s

×104

iLQR
PDP with poly policy (N=5)
PDP with poly policy (N=35)
solved by OC solver

(c) Quadrotor planning

PDP iLQR GPS
10 3

10 2

10 1

100

Ti
m

e 
[s

] p
er

 it
er

at
io

n Forward pass
Backward pass
Overall

(d) Timing results

Figure 5: (a-c) control loss v.s. iteration, (d) comparison for running time per iteration.

8



7 Discussion

The related end-to-end learning frameworks. Two lines of recent work are related to PDP. One
is the recent work [60–64] that seeks to replace a layer within a deep neural network by an argmin
layer, in order to capture the information flow characterized by a solution of an optimization. Similar
to PDP, these methods differentiate the argmin layer through KKT conditions. They mainly focus on
static optimization problems, which can not directly be applied to dynamical systems. The second
line is the recent RL development [65–68] that embeds an implicit planner within a policy. The idea
is analogous to MPC, because using a predictive OC system (i.e., embedded planner) to generate
controls leads to better adaption to unseen situations. The key problem in these methods is to learn
a planner (i.e., OC system), which is similar to our formulation. [65, 66] learn a path-integral OC
system [69], which is a special class of OC systems. [68] learns an OC system in a latent space.
However, all these methods adopt the ‘unrolling’ strategy to facilitate differentiation. Specifically,
they treat the forward pass of solving an OC problem as an ‘unrolled’ computational graph of multiple
steps of applying gradient descent, because by this computational graph, automatic differentiation
tool [70] can be immediately applied. The drawbacks of this ‘unrolling’ strategy are apparent: (i) they
need to store all intermediate results over the entire computational graph, thus are memory-expensive;
and (ii) the accuracy of gradient depends on the length of the ‘unrolled’ graph, thus facing trade-off
between complexity and accuracy. To address these, [67] develops a differentiable MPC framework,
where in forward pass, a LQR approximation of the OC system is obtained, and in backward pass, the
gradient is solved by differentiating such LQR approximation. Although promising, this framework
has one main weakness: differentiating LQR requires to solve a large linear equation, which involves
the inverse of a matrix of size (2n+m)T × (2n+m)T , thus can incur huge cost when handling
systems of longer horizons T . Detailed descriptions for all these methods is in Appendix F.

Figure 6: Runtime (per iteration) compari-
son between PDP and differentiable MPC
for varying horizons of a pendulum system.

Compared to [35, 65–68], the efficiency of PDP stems
from the following novel aspects. First, in forward pass,
without needing an unrolled computational graph, PDP
only computes and stores the resulting trajectory of the
OC system, ξθ , (does not care about how ξθ is solved).
Second, without obtaining intermediate (LQR) approx-
imations, PDP differentiates through PMP of the OC
system to directly obtain the exact analytical gradient.
Third, in the backward pass, unlike differentiable MPC
which costs at least a complexity of O

(

(m+2n)2T 2
)

to differentiate a LQR approximation, PDP explicitly

solves
∂ξ

θ

∂θ
by an auxiliary control system, where thanks to the recursion structure, the memory and

comptuation complexity of PDP is only O ((m+2n)T ). In Fig. 6, we have compared the running
time of PDP with that of differentiable MPC. The results show PDP is 1000x faster than differentiable
MPC. Due to space constraint, we put the detailed complexity analysis of PDP in Appendix G.

Convergence and limitation of PDP. Since all gradient quantities in PDP are analytical and exact,
and the development of PDP does not involves any second-order derivative of functions or models,
PDP essentially is a first-order gradient-descent framework to solve non-convex bi-level optimization.
Therefore, in general, PDP can only achieve local minima. As explored by [71], if we pose further
assumptions such as convexity and smoothness on all functions (dynamics, policy, loss, and control
objective function), the global convergence of the bi-level programming could be established. But we
do think these conditions are too restrictive for dynamical control systems. As a direction of future
work, we will investigate the mild conditions for good convergence by taking advantage of control
theory, e.g., Lyapunov theory. Due to space constraint, limitation of PDP is detailed in Appendix H.

8 Conclusions

This paper proposes a Pontryagin differentiable programming (PDP) methodology to establish an
end-to-end learning framework for solving a range of learning and control tasks. The key contribution
in PDP is that we incorporate the knowledge of optimal control theory as an inductive bias into the
learning framework. Such combination enables PDP to achieve higher efficiency and capability than
existing learning and control methods in solving many tasks including inverse reinforcement learning,
system identification, and control/planning. We envision the proposed PDP could benefit to both
learning and control fields for solving many high-dimensional continuous-space problems.

9



Broader Impact

This work is expected to have the impacts on both learning and control fields.

• To the learning field, this work connects some fundamental topics in machine learning to
their counterparts in the control field, and unifies some concepts from reinforcement learning,
backpropagation/deep learning, and control theory in one generic learning framework. The
contribution of this framework is a deep integration of optimal control theory into end-to-end
learning process, leading to an optimal-control-informed end-to-end learning framework
that is flexible enough to solve a broad range of learning and control tasks and efficient
enough to handle high-dimensional and continuous-space problems. In a broad perspective,
we hope that this paper could motivate more future work that integrates the benefits of both
control and learning to promote efficiency and explainability of artificial intelligence.

• To the control field, this work proposes a generic paradigm, which shows how a challenging
control task can be converted into a learning formulation and solved using readily-available
learning techniques, such as (deep) neural networks and backpropagation. For example, the
proposed framework, equipped with (deep) neural networks, shows significant advantage for
handling non-linear system identification and optimal control over state-of-the-art control
methods. Since classic control theory typically requires knowledge of models, we expect
that this work could pave a new way to extend classic control with data-driven techniques.

Since the formulation of this paper does not consider the boundness or constraints of a decision-
making system, the real-world use of this work on physical systems might possibly raise safety issues
during the training process; e.g., the state or input of the physical system at some time instance might
exceeds the safety bounds that are physically required. One option to address this is to include these
safety boundness as soft constraints added to the control objective or loss that is optimized. In future
work, we will formally discuss PDP within a safety framework.

Acknowledgments and Disclosure of Funding

We acknowledge support for this research from Northrop Grumman Mission Systems’ University
Research Program.

References

[1] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning
with model-based acceleration. In International Conference on Machine Learning, pages
2829–2838, 2016.

[2] Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa.
Learning continuous control policies by stochastic value gradients. In Advances in Neural
Information Processing Systems, pages 2944–2952, 2015.

[3] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Generalizing koopman theory to allow
for inputs and control. SIAM Journal on Applied Dynamical Systems, 17(1):909–930, 2018.

[4] Ian Abraham and Todd D Murphey. Active learning of dynamics for data-driven control using
koopman operators. IEEE Transactions on Robotics, 35(5):1071–1083, 2019.

[5] Rolf Johansson. System modeling and identification. Prentice Hall, 1993.

[6] Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of
the National Academy of Sciences of the United States of America, 17(5):315, 1931.

[7] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approxima-
tion of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear
Science, 25(6):1307–1346, 2015.

[8] Masahiko Haruno, Daniel M Wolpert, and Mitsuo Kawato. Mosaic model for sensorimotor
learning and control. Neural computation, 13(10):2201–2220, 2001.

10



[9] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interac-
tion through video prediction. In Advances in Neural Information Processing Systems, pages
64–72, 2016.

[10] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. In Advances in
Neural Information Processing Systems, pages 2746–2754, 2015.

[11] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. Recurrent network
models for human dynamics. In IEEE International Conference on Computer Vision, pages
4346–4354, 2015.

[12] Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In International Conference on Machine Learning, pages 465–472,
2011.

[13] Amy Zhang, Sainbayar Sukhbaatar, Adam Lerer, Arthur Szlam, and Rob Fergus. Composable
planning with attributes. In International Conference on Machine Learning, pages 5842–5851,
2018.

[14] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[15] Steindor Saemundsson, Alexander Terenin, Katja Hofmann, and Marc Deisenroth. Variational
integrator networks for physically structured embeddings. In International Conference on
Artificial Intelligence and Statistics, pages 3078–3087, 2020.

[16] Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as
model prior for deep learning. arXiv preprint arXiv:1907.04490, 2019.

[17] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ode-net: Learning
hamiltonian dynamics with control. arXiv preprint arXiv:1909.12077, 2019.

[18] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, pages 6571–6583,
2018.

[19] Jiequn Han and Weinan E. Deep learning approximation for stochastic control problems. Deep
Reinforcement Learning Workshop, Advances in Neural Information Processing Systems, 2016.

[20] Qianxiao Li, Long Chen, Cheng Tai, and E Weinan. Maximum principle based algorithms for
deep learning. Journal of Machine Learning Research, 18(1):5998–6026, 2017.

[21] Qianxiao Li and Shuji Hao. An optimal control approach to deep learning and applications to
discrete-weight neural networks. arXiv preprint arXiv:1803.01299, 2018.

[22] Weinan E, Jiequn Han, and Qianxiao Li. A mean-field optimal control formulation of deep
learning. Research in the Mathematical Sciences, 6(1), 2019.

[23] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
once: Painless adversarial training using maximal principle. arXiv preprint arXiv:1905.00877,
2019.

[24] Martin Benning, Elena Celledoni, Matthias J Ehrhardt, Brynjulf Owren, and Carola-Bibiane
Schönlieb. Deep learning as optimal control problems: models and numerical methods. arXiv
preprint arXiv:1904.05657, 2019.

[25] Hailiang Liu and Peter Markowich. Selection dynamics for deep neural networks. arXiv preprint
arXiv:1905.09076, 2019.

[26] Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, and Honglak Lee. Control of memory,
active perception, and action in minecraft. arXiv preprint arXiv:1605.09128, 2016.

11



[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[28] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[29] Jeff G Schneider. Exploiting model uncertainty estimates for safe dynamic control learning. In
Advances in Neural Information Processing Systems, pages 1047–1053, 1997.

[30] Pieter Abbeel, Morgan Quigley, and Andrew Y Ng. Using inaccurate models in reinforcement
learning. In International Conference on Machine Learning, pages 1–8, 2006.

[31] Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search
under unknown dynamics. In Advances in Neural Information Processing Systems, pages
1071–1079, 2014.

[32] Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
Sigart Bulletin, 2(4):160–163, 1991.

[33] Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate
Saenko, and Trevor Darrell. Adapting deep visuomotor representations with weak pairwise
constraints. In Algorithmic Foundations of Robotics XII, pages 688–703. Springer, 2020.

[34] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. In Advances in Neural Information Processing Systems,
pages 12519–12530, 2019.

[35] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
In Advances in Neural Information Processing Systems, pages 2154–2162, 2016.

[36] Jiongmin Yong and Xun Yu Zhou. Stochastic controls: Hamiltonian systems and HJB equations,
volume 43. Springer Science & Business Media, 1999.

[37] David H Jacobson and David Q Mayne. Differential dynamic programming. 1970.

[38] Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear bio-
logical movement systems. In International Conference on Informatics in Control, Automation
and Robotics, pages 222–229, 2004.

[39] Lev Semenovich Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze, and E. F. Mishchenko. The
Mathematical Theory of Optimal Processes. John Wiley & Sons, Inc., 1962.

[40] Hans Georg Bock and Karl-Josef Plitt. A multiple shooting algorithm for direct solution of
optimal control problems. IFAC Proceedings Volumes, 17(2):1603–1608, 1984.

[41] Michael A Patterson and Anil V Rao. Gpops-ii: A matlab software for solving multiple-phase
optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse
nonlinear programming. ACM Transactions on Mathematical Software, 41(1):1, 2014.

[42] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer Science &
Business Media, 2013.

[43] S Joe Qin and Thomas A Badgwell. An overview of nonlinear model predictive control
applications. In Nonlinear model predictive control, pages 369–392. Springer, 2000.

[44] Yang Wang and Stephen Boyd. Fast model predictive control using online optimization. IEEE
Transactions on control systems technology, 18(2):267–278, 2009.

[45] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.
In International Conference on Machine Learning, pages 1–8, 2004.

12



[46] Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In AAAI Conference on Artificial Intelligence, pages 1433–1438,
2008.

[47] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In
International Conference on Machine Learning, pages 729–736, 2006.

[48] Arezou Keshavarz, Yang Wang, and Stephen Boyd. Imputing a convex objective function. In
IEEE International Symposium on Intelligent Control, pages 613–619, 2011.

[49] Katja Mombaur, Anh Truong, and Jean-Paul Laumond. From human to humanoid locomo-
tion—an inverse optimal control approach. Autonomous Robots, 28(3):369–383, 2010.

[50] Wanxin Jin, Dana Kulić, Shaoshuai Mou, and Sandra Hirche. Inverse optimal control from
incomplete trajectory observations. arXiv preprint arXiv:1803.07696, 2018.

[51] Wanxin Jin, Dana Kulić, Jonathan Feng-Shun Lin, Shaoshuai Mou, and Sandra Hirche. Inverse
optimal control for multiphase cost functions. IEEE Transactions on Robotics, 35(6):1387–1398,
2019.

[52] Peter Englert, Ngo Anh Vien, and Marc Toussaint. Inverse kkt: Learning cost functions of
manipulation tasks from demonstrations. The International Journal of Robotics Research,
36(13-14):1474–1488, 2017.

[53] Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann L Cun. Off-road obstacle avoidance
through end-to-end learning. In Advances in Neural Information Processing Systems, pages
739–746, 2006.

[54] Michael Green and John B Moore. Persistence of excitation in linear systems. Systems &
control letters, 7(5):351–360, 1986.

[55] Huibert Kwakernaak and Raphael Sivan. Linear optimal control systems, volume 1. New York:
Wiley-Interscience, 1972.

[56] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. arXiv preprint
arXiv:1606.03476, 2016.

[57] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode decomposition with
control. SIAM Journal on Applied Dynamical Systems, 15(1):142–161, 2016.

[58] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

[59] Sergey Levine and Vladlen Koltun. Guided policy search. In International Conference on
Machine Learning, pages 1–9, 2013.

[60] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. International Conference on Machine Learning, 2017.

[61] Po-Wei Wang, Priya L Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning
and logical reasoning using a differentiable satisfiability solver. International Conference on
Machine Learning, 2019.

[62] Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In AAAI Conference on Artificial Intelligence,
volume 33, pages 1658–1665, 2019.

[63] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico Kolter.
End-to-end differentiable physics for learning and control. In Advances in Neural Information
Processing Systems, pages 7178–7189, 2018.

[64] Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in
stochastic optimization. In Advances in Neural Information Processing Systems, pages 5484–
5494, 2017.

13



[65] Masashi Okada, Luca Rigazio, and Takenobu Aoshima. Path integral networks: End-to-end
differentiable optimal control. arXiv preprint arXiv:1706.09597, 2017.

[66] Marcus Pereira, David D Fan, Gabriel Nakajima An, and Evangelos Theodorou. Mpc-inspired
neural network policies for sequential decision making. arXiv preprint arXiv:1802.05803, 2018.

[67] Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter. Differentiable mpc
for end-to-end planning and control. In Advances in Neural Information Processing Systems,
pages 8289–8300, 2018.

[68] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal
planning networks. arXiv preprint arXiv:1804.00645, 2018.

[69] Hilbert J Kappen. Path integrals and symmetry breaking for optimal control theory. Journal of
Statistical Mechanics: Theory and Experiment, 2005.

[70] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[71] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

[72] Michael Athans. The matrix minimum principle. Information and Control, 11(5-6):592–606,
1967.

[73] Mordecai Avriel. Nonlinear programming: analysis and methods. Courier Corporation, 2003.

[74] Daniel Liberzon. Calculus of variations and optimal control theory: a concise introduction.
Princeton University Press, 2011.

[75] Jack B Kuipers. Quaternions and rotation sequences, volume 66. Princeton University Press,
1999.

[76] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Geometric tracking control of a
quadrotor uav on se(3). In IEEE Conference on Decision and Control, pages 5420–5425, 2010.

[77] Mark W Spong and Mathukumalli Vidyasagar. Robot dynamics and control. John Wiley &
Sons, 2008.

[78] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[79] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl. CasADi – A
software framework for nonlinear optimization and optimal control. Mathematical Programming
Computation, 11(1):1–36, 2019.

[80] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas,
graphs, and mathematical tables, volume 55. U.S. Government Printing Office, 1948.

[81] Gamal Elnagar, Mohammad A Kazemi, and Mohsen Razzaghi. The pseudospectral legendre
method for discretizing optimal control problems. IEEE Transactions on Automatic Control,
40(10):1793–1796, 1995.

[82] Aviv Tamar, Garrett Thomas, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. Learning from
the hindsight plan—episodic mpc improvement. In IEEE International Conference on Robotics
and Automation, pages 336–343, 2017.

[83] Peng Xu, Fred Roosta, and Michael W Mahoney. Second-order optimization for non-convex
machine learning: An empirical study. In SIAM International Conference on Data Mining,
pages 199–207, 2020.

[84] Michael Szmuk and Behcet Acikmese. Successive convexification for 6-dof mars rocket
powered landing with free-final-time. In AIAA Guidance, Navigation, and Control Conference,
page 0617, 2018.

14


	Introduction
	Background and Related Work
	Problem Formulation
	An End-to-End Learning Framework
	Key Contributions: Differential PMP & Auxiliary Control System
	Differential PMP
	Auxiliary Control System

	Applications to Different Learning Modes and Experiments
	Discussion
	Conclusions
	Proof of Lemma 5.1 
	Proof of Lemma 5.2 
	Proof of the Discrete-Time Pontryagin's Maximum Principle
	Algorithms Details for Different Learning Modes
	Experiment Details
	System/Environment Setup
	Experiment of Imitation Learning
	Experiment of System Identification
	Experiment of Control/Planning

	Related End-to-End Learning Frameworks
	Complexity of PDP
	Limitation of PDP
	PDP to Solve 6-DoF Rocket Powered Landing Problems

