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Abstract. In this paper we investigate optimal control problems governed by variational inequalities. We present a

method for deriving optimality conditions in the form of Pontryagin’s principle. The main tools used are the Ekeland’s

variational principle combined with penalization and spike variation techniques.
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1. Introduction. The purpose of this paper is to present a method for deriving a Pontryagin type

maximum principle as a first order necessary condition of optimal controls for problems governed by

variational inequalities. We allow various kinds of constraints to be imposed on the state. To be more

precise, we consider the following variational inequality

∂y

∂t
+Ay + f(y) + ∂ϕ(y) ∋ u in Q = Ω×]0, T [ ,(1.1a)

y = 0 on Σ = Γ×]0, T [ ,(1.1b)

y(0) = yo in Ω .(1.1c)

where Ω ⊂ R
n, T > 0, u is a distributed control, A is a second order elliptic operator and

∂y

∂t
denotes

the derivative of y with respect to t; ∂ϕ(y) is the subdifferential of the function ϕ at y. We shall give all

the definitions we need in Section 3 and (1.1) will be made precise as well. The control variable u and

the state variable y must satisfy constraints of the form

u ∈ Uad = { u ∈ Lp(Q) | u(x, t) ∈ KU (x, t) a.e. in Q } ⊂ Lp(Q),(1.2a)

where KU is a measurable set-valued mapping from Q with closed values in P(R) (P(R) being the set of

all subsets of R),

Φ(y) ∈ C(1.2b)

with 1 < p <∞, Φ is a C1 mapping from C(Q) into C(Q), C ⊂ C(Q) is a closed convex subset with finite

codimension.

The control problem is

(P) inf{J(y, u) | y ∈ C(Q), u ∈ Uad, (y, u) satisfies (1.1), (1.2)},
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where the cost functional is defined by

J(y, u) =

∫

Q

F (x, t, y(x, t), u(x, t)) dx dt+

∫

Ω

L(x, y(x, T ))dx .(1.3)

Many authors (as for example Barbu [2], Mignot-Puel [17], Yong [23], Bonnans-Tiba [6], Bonnans-Casas

[5] or Bergounioux [3]) have already considered control problems for variational inequalities from the

theoretical or numerical point of view. Here we are interested in optimality conditions in the form of

Pontryagin’s principle. The existence of an optimal solution is assumed a priori. The novelty of this paper

is twofold: we obtain the optimality conditions in Pontryagin’s form and we think that our hypotheses

are not far to be minimal. We essentially ask for the state equation to be well posed and assume

differentiability of data with respect to the state. We allow various kinds of constraints to be added on

the control u and on the state. However, we restrict the study to the case when ϕ is the indicator function

of the closed convex set Ko = {z ∈ C(Q) | z ≥ 0} so that the variational inequality (1.1) turns to be the

so called obstacle problem.

To get Pontryagin’s principle, we use a method based on penalization of state constraints, and

Ekeland’s principle combined with diffuse perturbations [16, 20]. These techniques have been already

used by many authors in the case of optimal control of parabolic or elliptic equations [5, 16, 21]. Some of

these techniques have been also used for control problem governed by variational inequalities [5, 23, 4].

In these papers, the variational inequality is approximated via the Moreau-Yosida approximation of the

maximal monotone operator ∂ϕ.

Here, we use another idea based on the formulation of (1.1) with a slackness variable and the regularity

of its solution. In fact, the solution of (1.1) is also a weak solution of:

∂y

∂t
+Ay + f(y) = u+ ξ in Q, y = 0 on Σ, y(0) = yo in Ω(1.4)

where ξ is the Lagrange multiplier associated to the variational inequality and is introduced as an addi-

tional control variable. Therefore we obtain a problem (P̃) equivalent to (P), with constraints on both

the control variable and the state variable as well as coupled state/control constraints. We first give a

Pontryagin’s principle for (P̃). For this, we adapt the proof given in [21, 24, 7] to problem (P̃). Next we

derive optimality conditions for (P) from those for (P̃).

2. Assumptions. Let Ω be a open, smooth (with a C2 boundary Γ for example) and bounded

domain of R
n (2 ≤ n). In all the sequel, we suppose that

p > n.

Remark 2.1. We must underline that this choice of p is not optimal. Indeed, we should distinguish

the integers p (for the Lp-space of the distributed control u) and q (for the Lq-space of the initial value

yo). The optimal choice should be u ∈ Lp(Q) with p > n
2 +1 and yo ∈W 1,q

o (Ω) with q > n; each time it is

possible, we will mention how the next assumptions could be weakened from this point of view. Anyhow,

to make the presentation clearer we simply assume that p = q > n.

We suppose in addition that
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(A1) A is a linear elliptic differential operator defined by

Ay = −
n∑

i,j=1

∂xi
(aij(x)∂xj

y) + a0(x)y with

aij ∈ C2(Ω) for i, j = 1 · · ·n,

a0 ∈ L∞(Ω),
n∑

i,j=1

aij(x)ξiξj ≥ mo

n∑

i=1

ξ2i ,∀x ∈ Ω,∀ξ ∈ R
n,mo > 0 ,

(2.1)

(A2) f : R → R is a monotone increasing, globally lipschitz C1-function.

Remark 2.2. The monotonicity assumption on f can be relaxed and replaced by :

∃co ∈ R f ′y ≥ co .

An appropriate translation shows that we retrieve the case where f is monotonically increasing. So we

assume it for the sake of simplicity.

On the other hand one could consider a mapping f from R×R to R depending on both y and u. The

method would work in the same way.

(In what follows, we denote the real function f : R → R and the Nemytski operator associated to

f : y(·) 7→ f(y(·)) in Lp(Q) by the same symbol f .)

(A3) ϕ : W 1,p
o (Ω) → R ∪ {+∞} is proper (i.e. non identically equal to +∞), convex, lower semi-

continuous function such that 0 ∈ dom ϕ.

(A4) yo ∈ dom ϕ.

(A5) For every (y, u) ∈ R
2, F (·, y, u) is measurable on Q. For almost every (x, t) ∈ Q, for every u ∈ R,

F (x, t, ·, u) is C1 on R. For almost every (x, t) ∈ Q, F (x, t, ·) and F ′
y(x, t, ·) are continuous on R

2. The

following estimate holds

|F (x, t, y, u)| + |F ′
y(x, t, y, u)| ≤ (M1(x, t) +m1|u|

p)η(|y|),

where M1 ∈ L1(Q), m1 ≥ 0 and η is a nondecreasing function from R
+ to R

+ .

(A6) - For every y ∈ R, L(·, y) is measurable on Ω. For almost every x ∈ Ω, L(x, ·) is C1 on R. The

following estimate holds

|L(x, y)| + |L′
y(x, y)| ≤M2(x)η(|y|),

where M2 ∈ L1(Ω), η is as in (A5).

(A7) Φ is a C1 mapping from C(Q) into C(Q), and C is a closed convex subset of C(Q) with finite

codimension.

We recall that for p ∈ N

W 1,p(Ω) = {y ∈ Lp(Ω) | ∇y ∈ Lp(Ω)n } and

W 2,1,p(Q) = {y ∈ Lp(Q) | Dy, D2y,
∂y

∂t
∈ Lp(Q)}.

3. Existence and Regularity of Solutions to the Variational Inequality. Let be V and H

Hilbert spaces such that V ⊂ H ⊂ V ′ with continuous and dense injections. We denote by (·, ·)V the

V -scalar product, 〈·, ·〉 the duality product between V and V ′, and ‖ · ‖V the V -norm. We consider a
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linear, continuous V -elliptic operator A from V to V ′ and φ a convex, proper and lower semi-continuous

function from V to R ∪ {+∞}. Then we may define the variational inequality





∂y

∂t
(t) + Ay(t) + ∂φ(y)(t) ∋ u(t) a.e. t in [0, T ]

y(0) = yo

(3.1)

in the following (variational) sense

〈
∂y

∂t
(t) + Ay(t), y(t) − z

〉
+ φ(y(t)) − φ(z) ≤ 〈 f(t), y(t) − z 〉 a.e. t ∈ (0, T ), ∀z ∈ V .(3.2)

Here ∂φ(y(t)) denotes the subdifferential of φ at z = y(t) ∈ V :

∂φ(z) = { z∗ ∈ V ′ | φ(z) − φ(ζ) ≤ 〈z − ζ, z∗〉 , ∀ζ ∈ V } .(3.3)

Now, we set V = H1
o (Ω) and H = L2(Ω); we let g be a primitive function of f (such that g(0) = 0 for

example) and define

φ = ϕ+ g ,(3.4)

where ϕ is given by (A3). Then ∂φ = g′ + ∂ϕ = f + ∂ϕ (g is the regular part of φ). Therefore (1.1)

makes sense in the (3.1) form with A = A and we may give a first existence and regularity result

Theorem 3.1. Set p ≥ 2; let be u ∈ Lp(Q) and yo ∈W 1,p
o (Ω). Assume that

∃γ ∈ Lp(Ω) ∩ ∂ϕ(yo) ,(3.5)

then (1.1) has a unique solution y ∈W 2,1,p(Q).

Proof - We first use a result of Tiba [22], Theorem 4.5 p. 26 that ensures that, if β is a maximal monotone

graph ⊂ R × R, u ∈ Lp(Q) and yo ∈W 1,p
o (Ω), then the following parabolic variational inequality





∂y

∂t
+Ay + β(y) ∋ u a.e. in Q

y(0, x) = yo(x) a.e. on Ω

y(t, x) = 0 a.e. on Σ

has a unique solution in W 2,1,p(Q) if the compatibility relation

0 ∈ dom β , yo(x) ∈ dom β a.e. in Ω,

∃γ ∈ Lp(Ω) such that γ(x) ∈ β(yo(x)) a.e. in Ω ,
(3.6)

is fulfilled. One can apply this result to β = f + ∂ϕ which is a maximal monotone graph since f is

monotone increasing and ϕ is convex, lower semicontinuous and proper. It remains to check (3.6) that is

∃γ ∈ Lp(Ω) such that γ(x) ∈ f(yo(x)) + ∂ϕ(yo(x)) a.e. in Ω.

This is equivalent to

∃γ such that γ + f(yo) ∈ Lp(Ω), and γ(x) ∈ ∂ϕ(yo(x)) a.e. in Ω. .

As f is globally lipschitz then f(yo) ∈ Lp(Ω) and we get the result
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We set

ξ = u−
∂y

∂t
−Ay − f(y) ∈ Lp(Q) ,

(since f is globally lipschitz and y ∈W 2,1,p(Q)). In addition, ξ(t) ∈ ∂ϕ(y(t)) almost everywhere in ]0, T [;

using the characterization of the subdifferential of a function in Banach spaces this gives

ϕ(y(t)) + ϕ∗(ξ(t)) − 〈y(t), ξ(t)〉 = 0 a.e in ]0, T [.(3.7)

In this last relation 〈 , 〉 denotes the duality product between V = W 1,p
o (Ω) and V ′, and ϕ∗ is the

conjugate function of ϕ. For more details one can refer to Barbu and Precupanu [1] or Ekeland-Temam

[13]. It follows that the variational inequality (1.1) is equivalent to

∂y

∂t
+Ay + f(y) = u+ ξ in Q ,

y = 0 on Σ ,

y(x, 0) = yo(x) in Ω ,

(3.8)

and (3.7). As yo ∈ W 1,p
o (Ω), and (u, ξ) ∈ Lp(Q) × Lp(Q), the solution y of equation (3.8) belongs to

C(Q) ∩W 2,1,p(Q). More precisely, we have:

Theorem 3.2. (i) If p >
n

2
+ 1 and (u, ξ, yo) ∈ Lp(Q) × Lp(Q) × C(Ω) then equation (3.8) has a

unique weak solution yuξ in W (0, T ) ∩ C(Q) which satisfies

‖yuξ‖∞,Q ≤ C1(‖u‖p,Q + ‖ξ‖p,Q + ‖yo‖∞,Ω + 1),

where C1 = C1(T,Ω,m0, n, p). Moreover, for every ε > 0, yuξ is Hölder continuous on [ε, T ] × Ω and

belongs to W 2,1,p(Ω×]ε, T [).

(ii) if p > n and (u, ξ, yo) ∈ Lp(Q)× Lp(Q)×W 1,p
o (Ω), equation (3.8) has a unique weak solution yuξ in

W 2,1,p(Q) ∩ C(Q).

Proof - The existence of a unique weak solution yuξ in W (0, T )∩C(Q) for equation (3.8), can be proved

as in the case of Robin boundary condition (see Raymond-Zidani [20, 21]). The Hölder continuity result

holds thanks to [9].

The point (ii) can be found in Bergounioux-Tröltzsch [4].

4. Optimal Control of the Obstacle Problem.

4.1. The Obstacle problem. Now we focus on the very case of control of obstacle problem

where

Ko = {z ∈W 1,p
o (Ω) | z ≥ 0 a.e. in Ω } ,(4.1)

and ϕ is the indicator function of Ko :

ϕ(z) =

{
0 if z ∈ Ko

+∞ else .

It is clear that 0 ∈ dom ϕ = Ko. Moreover the compatibility condition (3.5) is fulfilled with γ = 0, so

that Theorem 3.1 is valid. On the other hand, the (classical) calculus of ϕ∗ show that relation (3.7) is

equivalent to

y(t) ≥ 0 in Ω ∀t ∈]0, T [ , ξ(t) ≥ 0 in Ω and

∫

Ω

y(t, x) ξ(t, x) dx = 0 a.e. t ∈]0, T [ ,(4.2)
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that is, at last

y ≥ 0 in Q , ξ ≥ 0 a.e. in Q and

∫

Q

y(t, x) ξ(t, x) dx dt = 0 .

We may summarize in the following

Theorem 4.1. Assume p > n, (u, yo) ∈ Lp(Q)×W 1,p
o (Ω); then the following variational vnequality

∂y

∂t
+Ay + f(y) + ∂ϕ(y) ∋ u in Q , y = 0 on Σ , y(0) = yo in Ω ,(4.3)

where ϕ is the indicator function of Ko, has a unique solution y ∈ C(Q) ∩W 2,1,p(Q). Moreover it is

equivalent to





∂y

∂t
+Ay + f(y) = u+ ξ in Q , y = 0 on Σ , y(x, 0) = yo(x) in Ω ,

ξ ≥ 0, y ≥ 0,

∫

Q

y(t, x) ξ(t, x) dx dt = 0 .

(4.4)

In the sequel we denote

Vad = {ξ ∈ Lp(Q) | ξ ≥ 0 a.e. in Q } .(4.5)

4.2. Pontryagin principle . From now we consider the following problem (P̃):

Minimize J(y, u) subject to :

∂y

∂t
+Ay + f(y) = u+ ξ in Q, y = 0 on Σ, y(., 0) = yo in Ω(4.6a)

Φ̃(y) ∈ C̃ (“Pure” state constraint)(4.6b)

(u, ξ) ∈ Uad × Vad (“Pure” control constraints)(4.6c)

∫

Q

y(t, x) ξ(t, x) dx dt = 0 (Mixed State/Control integral constraints) ,(4.6d)

where

Φ̃(y) = (Φ(y), y) and C̃ = C × {y ∈ C(Q) | y ≥ 0 } .(4.7)

The results of Section 3. yield that problems (P) and (P̃) are equivalent. In particular, if (ȳ, ū)

is solution of (P), then there exists ξ̄ ∈ Lp(Q) such that (ȳ, ū, ξ̄) is an optimal solution of (P̃) with

ξ̄ =
∂ȳ

∂t
+Aȳ + f(ȳ) − ū. Let us mention that we are not interested in existence results (though we will

give an example in the last section of this paper ) but in optimality conditions for (ȳ, ū). Consequently,

we study optimality conditions for (ȳ, ū, ξ̄) to get those for (ȳ, ū) .

Let us define the Hamiltonian functions by:

H1(x, t, y, u, q, ν) = νF (x, t, y, u) + q u(4.8)

for every (x, t, y, u, q, ν) ∈ Q× R
4, and

H2(y, ξ, q, λ) = q ξ + λ y ξ(4.9)

6



for every (y, ξ, q, λ) ∈ R
4.

Theorem 4.2. [Pontryagin Principle for (P̃)] If (A1)− (A7) are fulfilled and if (ȳ, ū, ξ̄) is a solution

of (P̃), then there exist q̄ ∈ L1(0, T ;W 1,1
o (Ω)), ν̄ ∈ R, λ̄ ∈ R and (µ̄, θ̄) ∈ M(Q) ×M(Q)( M(Q) is the

space of Radon measures on Q)), such that

(ν̄, λ̄, µ̄, θ̄) 6= 0, ν̄ ≥ 0,(4.10a)

∀z ∈ {z ∈ C(Q) | z ≥ 0 } 〈µ̄, z − ȳ〉Q ≤ 0, and ∀z ∈ C 〈θ̄, z − Φ(ȳ)〉Q ≤ 0(4.10b)





−
∂q̄

∂t
+A∗q̄ + f ′y(ȳ)q̄ = ν̄F ′

y(x, t, ȳ, ū) + µ̄|Q + [Φ′(ȳ)∗θ̄]|Q + λ̄ξ̄ in Q,

q̄ = 0 on Σ, q̄(T ) = ν̄L′
y(x, ȳ(T )) + µ̄|ΩT

+ [Φ′(ȳ)∗θ̄]|ΩT
in Ω,

(4.10c)

q̄ ∈ Lδ′

(0, T ;W 1,d′

o (Ω)) for every (δ, d) satisfying
n

2d
+

1

δ
<

1

2
,(4.10d)

H1(x, t, ȳ(x, t), ū(x, t), q̄(x, t), ν̄) = min
u∈KU (x,t)

H1(x, t, ȳ(x, t), u(x, t), q̄(x, t), ν̄) a.e. in Q,(4.10e)

H2(ȳ(x, t), ξ̄(x, t), q̄(x, t), λ̄) = min
ξ∈R+

H2(ȳ(x, t), ξ, q̄(x, t), λ̄) a.e. in Q,(4.10f)

where µ̄|Q (resp. [Φ′(ȳ)∗θ̄]|Q) is the restriction of µ̄ (resp. [Φ′(ȳ)∗θ̄]) to Q, and µ̄|ΩT
(resp. [Φ′(ȳ)∗θ̄]|ΩT

)

is the restriction of µ̄ (resp. [Φ′(ȳ)∗θ̄]) to Ω×{T}, 〈·, ·〉Q denotes the duality product between M(Q) and

C(Q), A∗ is the adjoint operator of A and 1
d

+ 1
d′ = 1.

Remark 4.1. Let us comment these relations for a while: (µ̄, θ̄) are the multipliers associated to

the state constraints; µ̄ corresponds to “y ≥ 0” and an immediate consequence of relation (4.10b) is

the following complementarity result: µ̄ ≤ 0, 〈µ̄, ȳ〉Q = 0 . θ̄ is associated to the (general) constraint

“Φ(y) ∈ C”.

λ̄ is the multiplier associated to the integral constraint “

∫

Q

y(t, x) ξ(t, x) dx dt = 0 ”and q̄ is the classical

adjoint state which takes into account the cost functional via ν̄.

Condition (4.10a) is a non triviality condition. We must underline that we get (a priori) non qualified

optimality conditions. If ν̄ 6= 0, the problem turns to be qualified.

Remark 4.2. One may note that if ξ̄ = 0, then it could happen that ν̄ = µ̄ = θ̄ = 0 and λ̄ 6= 0,

so that q̄ = 0; therefore, the optimality system could appear as completely unuseful. However, this is the

case where the solution (ȳ, ū) is solution of a control problem governed by a classical semilinear parabolic

equation since we have
∂ȳ

∂t
+Aȳ + f(ȳ) = ū, and the associated optimality systems are well known for

this kind of problems. We refer for instance to [20].

Theorem 4.3. [Pontryagin Principle for (P)] If (A1) − (A7) are fulfilled and if (ȳ, ū) is a solution

of (P), then there exists q̄ ∈ L1(0, T ;W 1,1
o (Ω)), ν̄ ∈ R, λ̄ ∈ R, (µ̄, θ̄) ∈ M(Q)×M(Q) such that (4.10a),

(4.10b), (4.10d), and (4.10e) hold. Moreover, we have




−
∂q̄

∂t
+A∗q̄ + f ′y(ȳ)q̄ = ν̄F ′

y(x, t, ȳ, ū) + µ̄|Q +[Φ′(ȳ)∗θ̄]|Q +λ̄(
∂ȳ

∂t
+Aȳ +f(ȳ) − ū) in Q,

q̄ = 0 on Σ, q̄(T ) = ν̄L′
y(x, ȳ(T )) + µ̄|ΩT

+ [Φ′(ȳ)∗θ̄]|ΩT
in Ω,

(4.11a)
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q̄(x, t)

(
∂ȳ

∂t
+Aȳ + f(ȳ) − ū

)
(x, t) = 0 a.e. (x, t) ∈ Q.(4.11b)

Remark 4.3. Relation (4.11b) is a pointwise complementarity condition. Therefore, q̄ may be viewed

as a Lagrange multiplier associated to the pointwise constraint “(
∂y

∂t
+Ay + f(y) − u)(x, t) ≥ 0”.

Let us recall a regularity result for weak solution of parabolic equation with measures as data:

Proposition 4.1. Let µ be in Mb(Q \ (Ω × {0} ∪ Σ)) and let a be in Lp(Q) satisfying

a ≥ C0, ‖a‖Lp(Q) ≤M

where M > 0. Consider the equation

−
∂q

∂t
+A∗q + aq = µQ in Q, q = 0 on Σ, q(T ) = µΩT

on Ω,(4.12)

where µ = µQ + µΩT
is a bounded Radon measure on Q \ (Ω × {0} ∪ Σ), µQ is the restriction of

µ to Q, and µΩT
is the restriction of µ to Ω × {T}. Equation (4.12) admits a unique weak solution

q ∈ L1(0, T ;W 1,1
o (Ω)). For every (δ, d) satisfying d > 2, δ > 2, n

2d
+ 1

δ
< 1

2 , q ∈ Lδ′

(0, T ;W 1,d′

o (Ω)) and

we have:

‖q‖
Lδ′ (0,T ;W 1,d′

o (Ω))
≤ C2‖µ‖Mb(Q\(Ω×{0}∪Σ)),

where C2 = C2(T,Ω, n, C0,M, p, δ, d) is independent of a. Moreover, there exists a function q(0) ∈ L1(Ω)

such that :
∫

Q

q{
∂y

∂t
+Ay + ay} dxdt = 〈y, µ〉b − 〈y(0), q(0)〉C(Ω)×M(Ω)

for every y ∈ Y = {y ∈W (0, T )∩C(Q) | ∂y
∂t

+Ay ∈ Lp(Q), y = 0 in Σ)}, where 〈·, ·〉b denotes the duality

product between Cb(Q \ (Ω × {0} ∪ Σ)) and Mb(Q \ (Ω × {0} ∪ Σ)). (Cb(Q \ (Ω × {0} ∪ Σ)) denotes the

space of bounded continuous functions on Q\(Ω×{0}∪Σ), while Mb(Q\(Ω×{0}∪Σ)) denotes the space

of bounded Radon measures on Q \ (Ω×{0} ∪Σ), that is, the topological dual of Co(Q \ (Ω×{0} ∪Σ)).)

Proof - The proof is the same to the one given in [19] for the Neumann boundary conditions (see also [7]).

An easy adaptation of this proof yields the previous result. However, for the convenience of the reader

we recall that q is the weak solution of (4.12) if and only if q belongs to L1(0, T ;W 1,1
o (Ω)), aq ∈ L1(Q)

and for every ϕ ∈ C1(Q) satisfying ϕ(x, 0) = 0 on Ω and ϕ(·) = 0 on Σ, we have

∫

Q

{
q
∂ϕ

∂t
+ Σi,jaijDjϕDiq + aϕq

}
dx dt = 〈ϕ, µ〉b.

As in [7], we can prove that the weak solution q belongs to Lδ′

(0, T ;W 1,d′

o (Ω)) for every (δ, d) satisfying

the condition

d > 2, δ > 2,
n

2d
+

1

δ
<

1

2
.(4.13)

We remark that the set of pairs (δ, d) satisfying the above condition is nonempty. We remark also that

if (δ, d) satisfies (4.13), if a belongs to Lp(Q) and if q belongs to Lδ′

(0, T ;W 1,d′

o (Ω)), then aq ∈ L1(Q).

Now, since q ∈ Lδ′

(0, T ;W 1,d′

o (Ω)) (where (δ, d) satisfies (4.24)), and since

divxt ((ΣjaijDjq)1≤i≤n, q) =
∂q

∂t
−Aq belongs to Mb(Q),
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then we can define the normal trace of the vector field ((
∑

j aijDjq)1≤i≤n, q), in the spaceW
−1

m
,m(∂Q) (for

some 1 < m < n+1
n

). If we denote by γo((
∑

j aijDjq)1≤i≤n, q) this normal trace, we can prove (see The-

orem 4.2 in [19] that this normal trace belongs to M(∂Q) and the restriction of γo((
∑

j aijDjq)1≤i≤n, q)

to Ω×{T} is equal to µΩT
, and if q(0) is the measure on Ω which satisfies the Green formula of Theorem

3.2, then −q(0) is the restriction of γo((
∑

j aijDjq)1≤i≤n, q) to Ω × {0}. In fact, it can be proved that

q(0) belongs to L1(Ω) (see Theorem 4.3 in [19]).

4.3. Proof of Theorems 4.2-4.3 . First we assume that Theorem 4.2 is valid. As mentioned before,

if (ȳ, ū) is an optimal solution for (P), then (ȳ, ū, ξ̄) is a solution for (P̃), where ξ̄ = ∂ȳ
∂t

+Aȳ+f(ȳ)− ū ∈

Lp(Q). Thanks to Theorem 4.2, there exist (ν̄, λ̄, µ̄, q̄) such that (4.10) holds. Replacing ξ̄ by its value in

(4.10c) obviously leads to (4.11a). Furthermore, relation (4.10f) implies

(q̄(x, t) + λ̄ȳ(x, t)) (ξ̄(x, t) − ξ) ≤ 0 a.e. (x, t) ∈ Q, ∀ξ ∈ R
+ ,

which gives

(q̄(x, t) + λ̄ȳ(x, t)) ξ̄(x, t) = 0 a.e. (x, t) ∈ Q .

As ȳ(x, t) ξ̄(x, t) = 0 a.e. in Q we obtain (4.11b). This concludes the proof of Theorem 4.3.

It remains to show that Theorem 4.2 is valid. Note that Pontryagin’s principle for control problem

with unbounded controls, with pointwise state constraints, and with state/control constraints in integral

form have been already studied in [7]. For convenience of the reader, we give the main ideas of the proof.

Step 1: Metric space of controls.

In the sequel, we shall consider control problems for which the state constraints (4.6b) and the

state/control integral constraints (4.6d) are penalized. These problems are constructed in such a way to

make (ȳ, ū, ξ̄) be an approximate solution. The idea is to apply next the Ekeland variational principle. For

this we have to define a metric space of controls, endowed with the so-called Ekeland distance d, to make

the mapping (u, ξ) 7−→ yuξ continuous from this metric space into C(Q). Thanks to Theorem 3.2, this

continuity condition will be realized if convergence in the metric space of controls implies convergence in

Lp(Q)×Lp(Q). Here, since we deal with (generally) unbounded controls, the convergence in (Uad×Vad, d)

does not imply the convergence in Lp(Q) × Lp(Q) (see [14], p. 227). To overcome this difficulty, as in

[24, 20], we define a new metric as following. For 0 < k <∞, we set:

Uad(ū, k) = {u ∈ Uad | |u(x, t) − ū(x, t)| ≤ k a.e. (x, t) ∈ Q},

Vad(ξ̄, k) = {ξ ∈ Vad | |ξ(x, t) − ξ̄(x, t)| ≤ k a.e. (x, t) ∈ Q}.

We endow the control space with Ekeland’s metric:

d((u1, ξ1), (u2, ξ2)) = Ln+1({(x, t | u1(x, t) 6= u2(x, t)}) + Ln+1({(x, t) | ξ1(x, t) 6= ξ2(x, t)})

where Ln+1 denotes the Lebesgue measure in R
n+1. Then as in [24, 20], we can prove the following

Lemma:

Lemma 4.1. (Uad(ū, k)×Vad(ξ̄, k), d) is a complete metric space for the distance d, and the mapping

which associates (yuξ, J(yuξ, u)) with (u, ξ) is continuous from (Uad(ū, k) × Vad(ξ̄, k), d) into C(Q) × R.
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In [7], the authors have used another method to build the metric space of controls. This construction

was adapted to the type of constraints they have considered.

Step 2: Penalized problems

Since C(Q) is separable, there exists a norm | · |C(Q), which is equivalent to the norm ‖ · ‖C(Q) such that

(C(Q), | · |C(Q)) is strictly convex and M(Q), endowed with the dual norm of | · |C(Q) (denoted by | · |M(Q)),

is also strictly convex (see [11], Corollary 2 p. 148, or Corollary 2 p. 167). Let K be a convex subset of

C(Q). We define the distance function to K (for the new norm | · |C(Q)) by

δK(ζ) = inf
z∈K

|ζ − z|C(Q).

Since K is convex, then δK is convex and Lipschitz of rank 1, and we have

lim sup
ρց0,

ζ′→ζ

δK(ζ ′ + ρz) − δK(ζ ′)

ρ
= max{〈ξ, z〉Q | ξ ∈ ∂δK(ζ)}(4.14)

for every ζ, z ∈ C(Q), where ∂δK(ζ) is the subdifferential of δK at (ζ). Moreover, as K is a closed convex

subset of C(Q), it is proved in ([16], Lemma 3.4) that for every ζ 6∈ K, and every ξ ∈ ∂δK(ζ), |ξ|M(Q) = 1.

Since ∂δK(ζ) is convex in M(Q) and (M(Q), | · |M(Q)) is strictly convex, then if ζ 6∈ K, ∂δK(ζ) is a

singleton and δK is Gâteaux-differentiable at ζ. Let us notice that when K := {z ∈ C(Q) | z ≥ 0}, the

distance function to K is given by δK(ζ) = |ζ−|C(Q), where ζ− = min(0, ζ).

Endowing C(Q) × C(Q) with the product norm we have similarly δeC(Φ̃(y))2 = |y−|2
C(Q)

+ δC(Φ(y))2 (C̃ is

defined by (4.7)). Let us consider the penalized functional:

Jε(y, u, ξ) =

{[(
J(y, u) − J(ȳ, ū) + ε2

)+
]2

+ δeC(Φ̃(y))2 +

(∫

Q

y(x, t)ξ(x, t) dx dt

)2
} 1

2

.

With such a choice, for every ε > 0 and k > 0, (ȳ, ū, ξ̄) is a ε2-solution of the penalized problem

(Pk,ε) inf{Jε(y, u, ξ) | y ∈ C(Q), (u, ξ) ∈ Uad(ū, k) × Vad(ξ̄, k), (y, u, ξ) satisfies (4.6a)},

i.e.

inf(Pk,ε) ≤ Jε(ȳ, ū, ξ̄) ≤ inf(Pk,ε) + ε2

( since inf(Pk,ε) ≥ 0 and Jε(ȳ, ū, ξ̄) = ε2).

For every k > 0, we choose ε(k) = εk ≤ 1
k2p and we denote by (Pk) the penalized problem (Pk,εk

).

Thanks to Ekeland’s principle ([13] p. 30), for every k ≥ 1, there exists (uk, ξk) ∈ Uad(ū, k) × Vad(ξ̄, k)

such that

d((uk, ξk), (ū, ξ̄)) ≤ εk ≤
1

k2p
,(4.15a)

Jεk
(yk, uk, ξk) ≤ Jεk

(yuξ, u, ξ) + εk d((uk, ξk), (u, ξ))(4.15b)

for every (u, ξ) ∈ Uad(ū, k)×Vad(ξ̄, k)) (yk and yuξ being the states corresponding respectively to (uk, ξk)

and to (u, ξ)). In view of the definition of εk, we have lim
k

‖uk − ū‖p,Q = lim
k

‖ξk − ξ̄‖p,Q = 0. Indeed,

Ln+1({(x, t) | uk(x, t) 6= ū(x, t)}) + Ln+1({(x, t) | ξk(x, t) 6= ξ̄(x, t)}) ≤ 1
k2p , and |uk(x, t) − ū(x, t)| ≤

k, |ξk(x, t) − ξ̄(x, t)| ≤ k a.e. on Q. Thus ‖uk − ū‖p,Q ≤ 1
k
, ‖ξk − ξ̄‖p,Q ≤ 1

k
.
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To exploit the approximate optimality conditions (4.15), we introduce a particular perturbation of

(uk, ξk).

Step 3: Diffuse perturbations.

For fixed (uo, ξo) in Uad×Vad, we denote by (uok, ξok) (k > 0) the pair of functions in Uad(ū, k)×Vad(ξ̄, k)

defined by

uok(x, t) =

{
uo(x, t) if |uo(x, t) − ū(x, t)| ≤ k,

ū(x, t) if not,
(4.16a)

ξok(x, t) =

{
ξo(x, t) if |ξo(x, t) − ξ̄(x, t)| ≤ k,

ξ̄(x, t) if not.
(4.16b)

Observe that for every k ≥ 1, (uok, ξok) belongs to Uad(ū, k) × Vad(ξ̄, k), and that (uok, ξok)k converges

to (uo, ξo) in Lp(Q)×Lp(Q). Applying Theorem 4.1 of [7] (see also [24, 21] for more details), we deduce

the existence of measurable sets Ek
ρ with Ln+1(Ek

ρ ) = ρLn+1(Q), such that if we denote by (uρ
k, ξ

ρ
k) the

pair of controls defined by

u
ρ
k(x, t) =

{
uk(x, t) on Q \ Ek

ρ

uok(x, t) on Ek
ρ

, ξ
ρ
k(x, t) =

{
ξk(x, t) on Q \ Ek

ρ

ξok(x, t) on Ek
ρ

(4.17)

and if yρ
k is the state corresponding to (uρ

k, ξ
ρ
k), then we have

y
ρ
k = yk + ρzk + r

ρ
k, lim

ρ→0

1

ρ
|rρ

k|C(Q) = 0,(4.18a)

J(yρ
k, u

ρ
k) = J(yk, uk) + ρ∆kJ + o(ρ),(4.18b)

∫

Q

y
ρ
kξ

ρ
k dx dt =

∫

Q

ykξk dx dt+ ρ

∫

Q

[zkξk + yk(ξok − ξk)] dx dt+ o(ρ),(4.18c)

where zk is the weak solution of

∂zk

∂t
+Azk + f ′y(yk)zk = uk − uok + ξk − ξok in Q, zk = 0 on Σ, zk(0) = 0 in Ω,

and

∆kJ =

∫

Q

[
F ′

y(x, t, yk, u)zk + F (x, t, yk, uok) − F (x, t, yk, uk)
]
dx dt+

∫

Ω

L′
y(x, yk(T ))zk(T ) dx.

Setting (u, ξ) = (uρ
k, ξ

ρ
k) in (4.15b), it follows that

lim sup
ρ→0

Jεk
(yk, uk, ξk) − Jεk

(yρ
k, u

ρ
k, ξ

ρ
k)

ρ
≤ εkL

n+1(Q).(4.19)

Taking (4.18) and the definition of Jεk
into account, we get

−νk∆kJ − 〈µk, zk〉Q − 〈θk,Φ
′(yk)zk〉Q − λk

[
〈ξk, zk〉Q + 〈yk, ξok − ξk〉Q

]
≤ εkL

n+1(Q)(4.20)

where

νk =
(J(yk, uk) − J(ȳ, ū) + ε2k)+

Jεk
(yk, uk, ξk)

, λk =

(∫

Q

yk(x, t)ξk(x, t) dx dt

)

Jεk
(yk, uk, ξk)

,
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µk =





|y−k |C(Q)∇|y−k |C(Q)

Jεk
(yk, uk, ξk)

if |y−k |C(Q) 6= 0,

0 otherwise,

θk =





δC(Φ(yk)∇δC(Φ(yk))

Jεk
(yk, uk, ξk)

if δC(Φ(yk)) 6= 0,

0 otherwise,

For every k > 0, we consider the weak solution qk of




−
∂qk

∂t
+A∗qk + f ′y(yk)qk = νkF

′
y(x, t, yk, uk) + µk|Q + [Φ′(yk)∗θk]|Q + λkξk in Q,

qk = 0 on Σ, qk(T ) = νkL
′
y(x, yk(T )) + [Φ′(yk)∗θk]|ΩT

+ µk|ΩT
in Ω,

(4.21)

where µk|Q (resp. [Φ′(yk)∗θk]|Q) is the restriction of µk (resp. [Φ′(yk)∗θk]) to Q, and µk|ΩT
(resp.

[Φ′(yk)∗θk]|ΩT
) is the restriction of µk (resp. [Φ′(yk)∗θk]) to Ω × {T}. By using the Green formula of

Proposition 4.1 with zk, we obtain
∫

Q

νkF
′
y(x, t, yk, uk)zk dx dt+ λk

∫

Q

zk(x, t)ξk(x, t) dx dt+

∫

Ω

νkL
′
y(x, yk(T ))zk(T ) dx+

〈µk, zk〉Q + 〈θk,Φ
′(yk)zk〉Q =

∫

Q

qk (uok − uk + ξok − ξk) dx dt.

With this equality, (4.20) and the definition of ∆kJ , we get
∫

Q

[νkF (x, t, yk, uk) + qkuk + qkξk + λkykξk] ds dt

≤

∫

Q

[νkF (s, t, yk, uok) + qkuok + qkξok + λkykξok] ds dt+
1

k2p
Ln+1(Q)(4.22)

for every k > 0 and every (uo, ξo) ∈ Uad × Vad (where (uok, ξok) is defined with respect to (uo, ξo)).

Step 4. Convergence of sequence (νk, λk, µk, θk, qk)k. Pontryagin principle

Observing that ν2
k + λ2

k + |µk|
2
M(Q)

+ |θk|
2
M(Q)

= 1, there exist (ν̄, λ̄, µ̄, θ̄) ∈ R
+ × R

+ ×M(Q) ×M(Q)

and a subsequence, still denoted by (νk, λk, µk, θk)k, such that

νk → ν̄, λk → λ̄, µk ⇀ µ̄ and θk ⇀ θ̄ weak∗ in M(Q).

With the same arguments as in ([21], Section 6.2, Step 4), we prove that (qk)k, or at least a subsequence

of (qk)k, weakly converges to q̄ in Lδ′

(0, T ;W 1,d′

0 (Ω)) for every (δ, d) such that n
2d

+ 1
δ
< 1

2 . Recall that

(uk, ξk)k converges to (ū, ξ̄) in Lp(Q) × Lp(Q). Hence, yk also converges to ȳ. Passing to the limit when

k tends to infinity in (4.22) gives
∫

Q

[
H1(x, t, ȳ, ū, q̄, ν̄) +H2(ȳ, ξ̄, q̄, λ̄)

]
dx dt ≤

∫

Q

[
H1(x, t, ȳ, u, q̄, ν̄) +H2(ȳ, ξ, q̄, λ̄)

]
dx dt,

for every (u, ξ) ∈ Uad × Vad. This inequality is equivalent to
∫

Q

H1(x, t, ȳ(x, t), ū(x, t), q̄(x, t), ν̄) dx dt = min
u∈Uad

∫

Q

H1(x, t, ȳ(x, t), u(x, t), q̄(x, t), ν̄) dx dt(4.23a)

12



∫

Q

H2(ȳ(x, t), ξ̄(x, t), q̄(x, t), λ̄) dx dt = min
ξ∈Vad

∫

Q

H2(ȳ(x, t), ξ(x, t), q̄(x, t), λ̄) dx dt.(4.23b)

Now, by using Lebesgue’s points argument (see [21, 24]), we obtain (4.10e) and (4.10f). On the other

hand, it is clear that ν̄ ≥ 0. Moreover, from the definitions of µk and θk, we deduce

〈µk, z − yk〉Q ≤ 0 ∀z ∈ {z ∈ C(Q) | z ≥ 0}, and 〈θk, z − Φ(yk)〉Q ≤ 0 ∀z ∈ C.(4.24)

When k tends to infinity, we obtain (4.10b) and a part of (4.10a). It remains to prove that (ν̄, λ̄, µ̄, θ̄)

is nonzero; for this, we recall that ν2
k + λ2

k + |µk|
2
M(Q)

+ |θk|
2
M(Q)

= 1.

If (ν̄, λ̄) 6= 0, then the proof is complete. If not, we can prove that |µ̄|M(Q) + |θ̄|M(Q) > 0.

First we recall that C has a finite codimension in C(Q) and that {z ∈ C(Q) | z ≥ 0} is a subset of

C(Q) with a nonempty interior. Then C̃ is a subset of C(Q)× C(Q) with a finite codimension. Moreover,

from (4.24), we deduce that, for every (z1, z2) ∈ C̃:

〈µk, z2− ȳ〉Q + 〈θk, z1−Φ(ȳ)〉Q ≤ 〈µk, yk − ȳ〉Q + 〈θk,Φ(yk)−Φ(ȳ)〉Q ≤ |yk − ȳ|C(Q) + |Φ(yk)−Φ(ȳ)|C(Q) .

The last right-hand side quantity tends to 0 as k → +∞. With this estimate and using limk |µk|M(Q) +

limk |θk|M(Q) = 1, thanks to Lemma 3.6 of [16], we conclude that (µ̄, θ̄) 6= 0 when (ν̄, λ̄) = 0.

5. Examples . Let us consider the following optimal control problem where the cost functional is

defined by

J(y, u) =

∫ T

0

[g(t, y(t)) + h(u(t))] dt+ ψ(y(T )) ,(5.1)

where

(A5∗) the function h : L2(Ω) → R ∪ {+∞} is convex and lower semicontinuous and there exist c1 >

0, c2 ∈ R such that

∀u ∈ L2(Ω) h(u) ≥ c1|u|
2
L2(Ω) − c2(5.2)

(A6∗) the function g : [0, T ] × L2(Ω) → R ∪ {+∞} is measurable in t, g(., 0) ∈ L1(0, T ), and for every

r > 0 there exists γr > 0 independent of t such that :

∀t ∈ [0, T ], |y|L2(Ω) + |z|L2(Ω) ≤ r

|g(t, y) − g(t, z)| + |ψ(y) − ψ(z)| ≤ γr|y − z|L2(Ω) .
(5.3)

Conditions on g and ψ could be weakened. For more details one can refer to Barbu [2] p.317.

Now we consider

(P)





Minimize J(y(yo, u), u)

u ∈ Uad ,

y(yo, u) is the solution of (4.3) .

where Uad is a nonempty, convex subset of Lp(Q), closed for the L2(Q)-topology and p is an integer such

that n < p. Though we are especially interested in optimality conditions for solutions of problem (P) we

may give an existence result anyhow. More precisely :

Theorem 5.1. For any yo ∈ Ko (defined by (4.1)), problem (P) has at least one solution u. Moreover

the corresponding state belongs to C(Q) ∩W 2,1,p(Q).
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Proof - One can find this result in Barbu [2] Proposition 1.1. p.319, when Uad = L2(Q). It is easy to

adapt it to the case where Uad is a closed convex subset of L2(Q). A priori estimations do not change

so that we get the “suitable” convergence in the “suitable” spaces. The only modification concerns the

cluster points of the control sequences. As Uad is convex and closed for the L2(Q)-topology these points

belong to Uad. As Uad ⊂ Lp(Q) we can use regularity results of Theorem 4.1.

Remark 5.1. The assumption that Uad has to be a convex subset of Lp(Q) (for some p > n) closed

for the L2(Q)-topology, may be difficult to ensure: for example Uad = Lp(Q) is not suitable. However,

we give more precise example sets Uad in the sequel. Let us precise a little more the example; we set

J(y, u) =
1

2

∫

Ω

(y(x, T ) − zd(x))
2 dx+

N

2

∫

Q

u(x, t)2 dx dt(5.4)

(with N > 0), so that with the previous notations we get

F (x, t, y, u) =
N

2
u2 , h(u(t)) =

N

2
‖u(t)‖2

L2(Ω) ,

L(x, y) =
1

2
(y − zd(x))

2 , g(t, y(t)) ≡ 0 , ψ(y(T )) =
1

2
‖y(T ) − zd‖

2
L2(Ω) .

It is easy to see that both (A5∗) and (A6∗) are fulfilled for such a choice of h, g, ψ. Therefore the

following optimal control problem

(P2)





min J(y, u)

∂y

∂t
+Ay + f(y) ≥ u in Q, y = 0 on Σ, y(0) = yo in Ω,

u ∈ Uad ,

y(x, t) ≥ 0 ∀(x, t) ∈ Q,

with yo ∈ W 1,p
o (Ω) , yo ≥ 0, zd ∈ L2(Ω) and Uad a nonempty,convex subset of Lp(Q) closed for the

L2(Q)-topology has an optimal solution.

We always assume of course (A1)-(A2) (one may choose A = −∆ for instance, where ∆ is the

laplacian operator); we have already seen that (A3) and (A4) are fulfilled with the special choice of ϕ

and yo. It is also easy to see that (A5) and (A6) are ensured with F and L defined as above. So we may

give optimality conditions for (P2)

Theorem 5.2. Assume (A1) and (A2). Then problem (P2) has an optimal solution (ȳ, ū) ∈

[W 2,1,p(Q) ∩ C(Q)] × Lp(Q). Moreover, there exist (ν̄, λ̄, µ̄, q̄) ∈ R × R × M(Q) × L1(0, T ;W 1,1
o (Ω))

such that the following optimality system holds

(ν̄, λ̄, µ̄) 6= 0, ν̄ ≥ 0,(5.5a)

∀z ∈ {z ∈ C(Q) | z ≥ 0 } 〈µ̄, z − ȳ〉Q ≤ 0 ,(5.5b)





∂ȳ

∂t
+Aȳ + f(ȳ) = ū+ ξ̄ in Q,

ȳ = 0 on Σ, ȳ(0) = yo in Ω,

(5.5c)

ȳ ≥ 0, ξ̄ ∈ Vad, ū ∈ Uad,

∫

Ω

ȳ(t) ξ̄(t) dx = 0 a.e. on [0, T ] ,(5.5d)
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



−
∂q̄

∂t
+A∗q̄ + f ′(ȳ)q̄ = µ̄|Q + λ̄ ξ̄ in Q,

q̄ = 0 on Σ, q̄(T ) = ν̄[ȳ(T ) − zd] + µ̄|ΩT
in Ω,

(5.5e)

[(ν̄Nū+ q̄)(u− ū)](x, t)) ≤ 0 for all u ∈ Uad, and a.e. (x, t) ∈ Q,(5.5f)

q̄(x, t) ξ̄(x, t) = 0 a.e. (x, t) ∈ Q,(5.5g)

where ξ̄ =
∂ȳ

∂t
+Aȳ + f(ȳ) − ū.

Proof - It is a direct consequence of Theorem 4.2 with Φ = Id and C is the whole space. Considering the

Hamiltonian functions and relations (4.10e) and (4.10f) gives (5.5e) and (5.5f) immediately.

We end this section with two examples for Uad

5.1. Case where Uad is bounded in L∞(Q). Let us set

Uad = { u ∈ L∞(Q) | a(x, t) ≤ u(x, t) ≤ b(x, t) in Q } ,

where a, b ∈ L∞(Q). Uad is of course a convex subset of Lp(Q) for any p > n. Moreover, we get

Lemma 5.1. Uad is closed for the L2(Q)-topology.

Proof - let un ∈ Uad converging to u in L2(Q). Then un(x, t) converges to u(x, t) almost everywhere in Q

so that we get a(x, t) ≤ u(x, t) ≤ b(x, t) almost everywhere in Q. So u ∈ L∞(Q). It is clear that u ∈ Uad.

Therefore, in view of Remark 5.1 we get the following result for yo = 0 and

J(y, u) =
1

2

∫

Ω

(y(x, T ) − zd(x))
2 dx+

N

2

∫

Q

u2(x, t) dx dt

Theorem 5.3. Assume (A1) and (A2). Then problem (P2) has an optimal solution (ȳ, ū) ∈

[W 2,1,p(Q) ∩ C(Q)] × Lp(Q), for any p > n. Moreover, there exists (ν̄, λ̄, µ̄, q̄) ∈ R × R × M(Q) ×

L1(0, T ;W 1,1
o (Ω)) such that (5.5a)-(5.5d) and (5.5g) hold with





−
∂q̄

∂t
+A∗q̄ + f ′(ȳ)q̄ = µ̄|Q + λ̄ ξ̄ in Q,

q̄ = 0 on Σ, q̄(T ) = ν̄[ȳ(T ) − zd] + µ̄|ΩT
in Ω,

(5.6)

[(ν̄Nū+ q̄)(u− ū)](x, t)) ≤ 0 for all u ∈ Uad, and a.e. (x, t) ∈ Q.(5.7)

5.2. Case where Uad = {u ∈ Lp(Q) | u(x, t) ≥ 0 a.e. in Q}. When Uad = {u ∈ Lp(Q) | u(x, t) ≥ 0

a.e. in Q} and yo ≥ 0 in Ω, thanks to the maximum principle for parabolic equations the constraint

y ≥ 0 is automatically fulfilled in equation (4.6b) so that the corresponding multiplier µ̄ is equal to 0

(or at least does not appear.) So the corresponding Pontryagin optimality system consists in equations

(5.5a),(5.5c)-(5.5g) where equation (5.5e) is replaced by




−
∂q̄

∂t
+A∗q̄ + f ′(ȳ)q̄ = λ̄ ξ̄ in Q,

q̄ = 0 on Σ, q̄(T ) = ν̄[ȳ(T ) − zd] in Ω,

(5.8)

This implies in particular that q̄ ∈W 2,1,p(Q) ∩ C(Q) .

For this simple example, we can see that the optimality conditions (5.2) are not trivial, because we

cannot have ν̄ = λ̄ = 0.
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6. Conclusion. The optimality conditions we have obtained are given in a non qualified form. So

far it is difficult to compare precisely these results to those already existing, since they are most of time

in a qualified form [6, 5, 17] or concern elliptic variational inequalities. Nevertheless we must underline

that in this paper, we obtain interesting informations about optimal solutions (at least in simple cases) .

Indeed, we have seen in Example 5 that the equation (5.5e) provides a quite precise information on the

structure of the multipliers µ̄+ ξ̄ λ̄ for the distributed multiplier for instance and the adjoint state q̄: the

regular part of this adjoint state belongs to C(Q) while the non-smooth part belongs to L1(0, T ;W 1,1
o (Ω)).

These informations seem new (to compare with those given in Barbu [2], Section 5.1.4 p 331, for example).

The method developed in [5, 23] for elliptic variational inequalities, is still true for the parabolic case,

but we think that this method does not allow to obtain the condition (4.11b). However, in [23, 5], the

authors give a qualification assumption under which they can derive Pontryagin’s principle in qualified

form.

As we can preview now the generic form of the Lagrange multipliers, one can check optimal control

problems where the variational inequality is more general than the obstacle type one or occurs on the

boundary, with boundary control.
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