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Homenagje es una palabra large con la que se acorrala el tiempo. ..
A Beltasar, mi maestro de aquel tiempo y este tiempo con todo mi afecto.

Abstract

In this paper we brind together the different known ways of es-
tablishing the continuity of the integral over a uniformly integrable
set of functions endowed with the topology of pointwise conver-
gence. We use these techniques to study Pettis integrability, as
well as compactness in C (K ) spaces endowed with the topology of
pointwise convergence on a dense subset D C K.

1 Introduction

This is an expository survey concerning the following problem: Given a
finite measure space (2, X, 1) and a family F of u-integrable real valued
functions, if f € F is the pointwise limit of a net fo € F, when do any
of the following hold?

C1

Hglf(fa_f)dl-*’:()

C2: lién’/E(fa—f)dp=0foreachE€2
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C3: lién_/IfO,Ff[dp:O

Note that C3 = C2 = C1. Most of the results about this problem
come from Pettis integrability, since Pettis integrability is really a prob-
lem about the continuity of the integral on a pointwise compact set of
integrable functions; see [6], {26], [23], [31], [4], [24], (11], [27], [28], {21].
Bearing in mind some results about pointwise compact sets of measur-
able functions from (12, [9], {1], [7] and [31], we collect basic ideas un-
derlying the work in the above references in order to make a systematic
exposition of different means that can be used to state the continuity of
the integral. Among others applications we show some results recently
obtained in (2],

If £1(y) is the space of p-integrable functions f : @ — R and Li(u)
the quotient space obtained by almost everywhere identification, f — f*
will be the quotient mapping. If A C £1(p), then we denote by A¥ its
canonical image in L1(u).

If 7 is equipped with the pointwise topology, denoted 7y, condition
C1 means that the integral is continuous on (F, ). Condition C3 is
equivalent to the continuity of the canonical mapping I : (F,7,) —
(L (u), || 1), If Fis | |l;-bounded then condition C2 is the continuity
of I: (F,1p) — (L), weak).

Recall that F is said to be uniformly integrable if F is || [|:-bounded
and for each ¢ > 0 there exists § > 0 such that if £ € & and u(E) < 6
then supser fp[fldu < e. Dunford’s theorem 3, p. 76] states that F
is uniformly integrable if and only if F# is a weakly relatively compact
subset of L1(x). Vitali’s theorem tell us that, in this case, the mapping
1:(F,m) — (L*w),| 1) is sequentially continuous. Using the fact
that every || ||;-convergent sequence has an almost everywhere conver-
gent subsequence and Vitali’s convergence theorem, we have

Proposition 1 If F C LY(x) is uniformly integrable, the following are
equivalent

0) I:(F,m) = (L (u), | ) is continuous;

b} For each H C F, if f € F is in the Typ-closure of H then f is the
almost everywhere limit of a sequence in H.



Pointwise compactness and continuity. .. 223

In a similar way, having in mind that every norm closed convex set
is weakly closed, the following can be proved

Proposition 2 If F C LY(u) is conver and uniformly integrable, the
following are equivalent:

a) I:(F, 1) — (L}(p), weak) is continuous;

b) For each H C F if f € F is in the tp-closure of H then f is the
almost everywhere limit of a sequence in co(H) (convez hull of H ).

2 Continuity of I : (F,7,) — (L'(x), weak)

Results in this section come from [7], [31], [4] and [27], and they con-
cern a convex family F. We start adapting some of Talagrand’s ideas
concerning Pettis integrability that can be found in (31, 5-1-2]; (see also
[26], {11], and [21], where these ideas have been also used).

If e > 0 and H is a finite set in } let F(H,¢) be the set formed by
the functions f € F such that |f{w)| < € for every w € H and

K(u,F):= n F(H,e).
(He)

Lemma 1 If F C £Y(u) is uniformly integrable and Tp-countably com-
pact let Fs be the set {f € F: [ fdp > 6}, where § > 0. Then F* and
FE are norm closed sets in L'(n). If F is convex then they are weakly
compact.

Sketch of proof: Use that every | ||1-convergent sequence in F (resp.
F5) has an almost everywhere convergent subsequence which has a 7
cluster point in F (resp. F3). When F is convex then F; is convex too,
so F* and F} are weakly closed and then they are weakly compact by
uniformly integrability. [ ]

Theorem 1 If Fc L) is absolutely convez, uniformly integrable
and Tp-countably compact, the following are equivalent:

a) The integral f — [ f du is continuous on (F,7p);
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b) There exists a countable set M C Y such thatif f € ¥ and flpy =0
then [ fdp=0;

c) If f# € K{(u, F) then [ fdu = 0;

Proof. a) = b) For each n € IN there exist a finite My, C Q and 6, > 0
such that | [ f du}| < 1/n whenever f € F and |f{w)]| < 6n for all w € M,,.
If M := |J, My, then b) holds.

b) = c¢) Assume that there exists h € £(u) such that * € K (u, F)
but fhdp # 0. For every (H,¢) there exists fiyo € F(H,c) such
that fiye = h, p-ae. If M C Q is countable and H, C M is an
increasing sequence of finite sets such that M = U, H,, let f € F be a
Tp-cluster point of the sequence fiy, 1 /my € F. Since f = h, p-ae we
have [ fdu # 0 but |y = 0 and so b) does not hold.

c) = a) If we assume that a) is false then the integral is not con-
tinuous at 0 and there exists § > 0 such that 0 is in the rp-closure of
Fs:={f € F: [fdu > 6}. Then, for each ¢ > 0 and each finite
H C () the convex set F5(H,¢) is not empty. Since Fs(H,e)* is weakly
compact in L*(z) by Lemma 1, the intersection of the nested family
Fs(H, €)# is not empty. Hence there exists h € £1(u) such that k¥ is in
K{p, F5) CK(p,F) but fhdp>6> 0. [

Theorem 2 If F C Ll(u) is absolutely convez, uniformly integrable
and T,-countably compact, the following are equivalent:

8) I:(F,1p) — (L), weak) is continuous;
b) K(u, F) =04,

Proof. a) = b) If b) is false there exists h* € K(u,F) such that
h* # 0 and then we can obtain F € ¥ such that fphdp # 0. Assume
that fphdu > 0. If up denotes the measure ug(A) = u(E N A) then
h*E € K(ug,F). By Theorem 1 we have that f — [ fdu is not
continuous on (F, 7p).

b) = a) By absolutely convexity it is enough to show the continuity
at 0. If fo € F is a net converging to 0, then f¥ is eventually in each
F(H,e)*. Since F* is weakly compact and 0 is the only cluster point
(in the weak topology) of this net we have that 0 is the weak limit. =
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The next results try to obtain the continuity of I : (F, ) — (L1(n),
weak) by splitting up the mapping I through (F|s, 7p(S)), where S is
some subset of €.

Definition 1 We say that F is determined (resp. separated) by S C §}
if the following holds: If f,g € F then fls=gls = f =g, p-a.e. (resp.
fls=glse f=4g p-ae) /

If F is determined by S we denote by J : F|g — F* the natural
mapping J(f|s) := f¥. Note that J is a bijection when F is separated
by S.

Part a) in the next theorem is a reformulation of a result of Stefans-
son [27], and part b) is an improvement due to Edgar (7] of a previous
result of lonescu-Tulcea [12], where it was assumed that 2 = S. Edgar’s
improvement consists in a weakening of separation condition and a cor-
responding weakening of conclusion using weak topology rather than the
norm topology.

Theorem 3 Let F C LYu) be conves, uniformly integrable and 7p-
countably compact.

a) If F is determined by S C Q! then the nalural map
J : (Fls, 7p(S)) — (F*#, weak) is sequentially continuous;

b) If F is separated by S C Q then J : (Fls,1p(S)) — (F*, weak) is
a homeomorphism.

Proof. a) Suppose that f, € F is pointwise convergent to f € F on
S. Since F* is weakly compact by Lemma 1, in order to show that f#
is the weak limit of f# € F* it is enough to check that for each weak
cluster point k¥ of f¥ we have h* = f¥.

For every k € IN, h* is in the weak closure of co{f} : n > k}
and we can obtain hy € F Neco{fn:n >k} © such that hy = k, p-a.e
(Let us consider a sequence in the convex hull co{fyn : n>klCF
converging to k, p-a.e. and let hg be a Tp-cluster point of this sequence).
If ¢ € F is a 1p-cluster point of the sequence hy then ¢# = h* and
g €Nco{fn:n >k} 7. If we can show that f# = g# then h¥ = f¥ as
required. Suppose that, f* # g* and take w € § such that f{w) # g(w).
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If we assume that g(w) < 6 < f(w) then for each k¥ € IN we can find a
convex combination i, of {f, : m > k} such that g(w) < ¢{w) < 8. For
some n > k we have fn{w) < § and we can obtain a subsequence Fru
such that f,, (w) < 6§ < f{w) for all £ € N, which contradicts the initial
assumption that f,(s) is converging to f(s) for each s € 8.

b} If F is separated by S the natural mapping J is a bijection and we
can consider the inverse bijection R : 7#* — F|g. The convex sets F¥,
{f e F:flw) > s}¥, and {f € F: f(w) < t}¥, (5,t € R) are weakly
compact in L'{x) by Lemma 1. Then {f# € F* : t < f(w) < s} is open
in (F*,weak) for each w € S and each (s,t) ¢ R. Thus the mapping
R : (F#, weak) — (Flg, 75(S5)) is continuous and J is a homeomorphism
because (F¥, weak) is compact and (F|g, 7p(S)) is Hausdorff. a

In order to obtain some applications of Theorem 3 we start con-
sidering special situations where we can obtain a set § such that F is
separated (determined) by S. If F is a family of continuous functions on
a completely regular topological space ? and p is a T-smooth Baire prob-
ability on Q then p extends to a Borel probability and the non empty
support of this extension is a closed set S such that F is separated by
S. Note that § = (\{Z € Z: p(Z) = 1} where Z is the family of zero
sets. 'In the general situation, a careful analysis of this case shows that
in order to obtain a set § separating a given family F it is enough to
operate on the family Z» formed by the subsets of Q obtained as finite
intersections of the following type of sets {w € Q : f(w) < g{w) + ¢},
f,9eF, te R

Definition 2 Let F be a family of real valued measurable functions on
Q.

a) We shall say that p is F-concentrated on M C Q if p(Z) = u(Q)
for each Z € Zy such that M C Z;

b) We shall say that p is F-smooth if for any net Zo € Z5 which
decreases to the empty set we have limap(Zy) = 0.

Proposition 3 If u is F-concentrated on M then F is determined by
M. If p is F-smooth the set corer(p) := (W Z € Zx : u(Z) = 1} is not
empty and F is separated by S = corer(u).
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Proof. The first assertion is immediate because the sets {w € § :
flw) = g(w)}, f.g € F, are in Zr. For the second one, note that
corer(u) # @ follows-from the definition of a F-smooth measure. It is
immediate that given f,g € F such that f = g, y-a.e. then f|s = g|s.
On the other hand, if f,g € F and f|s = g|s the set £ := {w € 2 :
f(w) = g(w)}, is in Zr and it suffices to prove that p(E) = 1. Suppose
w(E) < 1 and assume that p({w €  : f(w) > g{w)}) > 0. Then
1(Cr) > 0 for some n € IN, where Cp, = {w € @ : f(w) > g(w) +1/n}.
Now {ZNCp: Z € Z5,u(Z) = 1} is a net in Zr which decreases to the
empty set such that every set Z N C,, in this net verifies u(Z N Cp) =
p(Cr) > 0 which contradicts the hypothesis. [ ]

Corollary 1 Let F C £l(p) be conver uniformly integrable end
Tp-countably compact. If u is F-smooth then the canonical map
I:(F,7p) — (LY(p), weak) is continuous.

Corollary 2 Let F C L) be convez unifermly integrable and 7p-
countably compact. If F is determined by S C §! and the topological
space (F|s,7p(S)) has the property that every real valued sequentially
continuous function is continuous then I : (F,7p) — (L'(g), weak) is
continuous.

Obviously the condition considered in Corollary 2 holds if the topological
space (F|g, 7p(S5)) is metrizable but there are weaker conditions to obtain
the continuity of sequentiaily continuous functions. Such a condition is
the following one: For every 7p(S)-cluster point » of a set A C F|g there
exists a sequence in A which converges to h for the topology 7p(S).
Recall that a topological space T is said to be angelic if and only if
every relatively countably compact C C T is relatively compact and its
closure is formed by the limits of sequences from C. If a topological
space S contains a dense K-analytic subset then (C(S), 75(S)) is angelic
[19] so we obtain

Corollary 3 Let Q be a topological space, u a finite Baire measure on ()
and F C C(R) convex uniformly integrable and Tp-countably compact. If
F is determined by a set S C Q that contains a dense K-analytic subset
then I : (F,1p) — (L(), weak) is continuous.
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.As an application of Theorem 2 we cbtain an abstract reformulation
of a result from [4]. Recall that a subset A of a topological space is
called countably closed if 4 contains the closure of each of its countable
subsets.

Corollary 4 [Let F C El(u) be absolutely convez uniformly integrable
and Tp-compact. -Suppose than F is determined by o set S C Q such
that every conver countably closed subset of (F|s,mp(S)) is closed. Then
I:(F,7p) — (LY(n), weak) is continuous.

Proof. In view of Theorem 2 we only have to prove that K (i, F) = O~
Take h* € K(u, F), so for every ¢ and every finite # C € there exists
fir,) € F(H,€) such that f(g,) = h, p-a.e. Thus 0 is in the T -closure
of the convex countably closed set H = {f € F: f = &, p-a.e.}. By
compactness H|g is also countably closed in (F|g, 1,(S)) and therefore
it is closed and contains the 0 map. Hence there exists f € H such that
fls=0,s0 f =0, p-a.e. Then h(w) = 0 p-a.e. ]

3 Continuity of I: (F,7,) — (LY (), | 1)

Results in this section, with an additional assumption to those consid-
ered in above section, but without convexity, give us a stronger conclu-
sion. We start with Theorem 4 and its Corollary 5, essentially due to
Edgar [7], in which a separating set § still plays a tole, and continue
with the deept contributions of Bourgain-Fremlin-Talagrand [1] and Ta-
lagrand [31] and with some useful remarks to facilitate applications of
these results.

Theorem 4 If 7 C £L1(u) is uniformly integrable Tp-countably compact
and separated by S C Q the following are equivalent:

a} Every sequence fr, € F has a u-almost everywhere convergent sub-
sequence;

b) The natural bijection J : (Flg,(S)) — (F*,|| l|1) is a homeo-
morphism.
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Proof. a) = b) By Lemma 1 F* is closed in (L1(u),|| [l1) and Vitali’s
convergence theorem gives us that F# is compact in (L{g), | ||1). In or-
der to obtain b) it is enough to show that the inverse mapping R = J~
is continuous. Take a sequence fy, in F such that f¥ is || |[;-convergent
to f#, where f € F, and suppose that fp(wp) does not converges to
f(wo) for some wo € S. Then for some € > 0 there exists a subsequence
fn, (that can be assumed to be almost everywhere convergent) such that
| fr (wo) — f{wo)| > € for every £ € IN. If g € F is a 7p-cluster point of
this subsequence we have that f = g, p-a.e., but [f(wo} — g{wo)| > ¢,
which contradicts the hypothesis.

b) = a) If b) holds then F* is compact in (L!(g), || [1). Since each
Il |1-convergent sequence has a p-a.e. convergent subsequence we obtain
a). [ ]

A finite measure space (§), L, u) is called perfect if for every mea-
surable function f : 8 — IR and every E C R such that f~1(E) € &
there exists a Borel set B C E such that u(f~Y(E)) = p(f71(B)). A
remarkable tesult of Fremlin [9] states that a sequence of real valued
measurable functions on a perfect measure space either has a p-a.e.
convergent subsequence, or a subsequence all of whose 7y-cluster points
are non-measurable. As a consequence we have (7]

Corollary 5 Let F C L£L1(u) be uniformly integrable, 7,-countably com-
pact and separated by S C 1. If one of the following conditions holds:

i) F is tp-sequentially compact;
ii) The measure space (§2,2, u) is perfect;

then J : (Flg,7(S)) — (F¥ || 1) is a homeomorphism, and so
I:(F,7p} = (L}(p), || lh) is continuous.

Remark In Theorem 4 and Corollary 5 the hypothesis of uniformly inte-
grability can be removed if instead of L!(u) we consider the space LO(w),
formed by the (equivalence classes of) real valued measurable functions,
equipped with the metrizable topology of convergence in measure.

Subsequently we go on with some results of Talagrand
and Bourgain, that can be found in [31] and [24], concerning the
continuity of I:{(F,7p) — (L (%), || [1)- In [31] Talagrand introduces
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the notion of a u-stable set of functions. These are sets that satisfy an
explicit criterion for their relative rp-compactness in the space M ()
of real valued p-measurable functions

Definition 3 A 7,-relatively compact subset F of R is called p-stable
if for each E € L, u(E) > 0 and for each s < t there exists k,1 € N
such that

b (1 < s¥ x {7 > () 0 B < (u(m)*).
feF

If the measure space (2, I, 1) is complete every u-stable set is formed
by p-measurable functions and its r,-closure in R* is also p-stable so it
is a subset of M ,(§2) ([31, Chap. 9]). The notion of u-stable set is close
to relative Tp-compactness in M,(Q) (it is the same for perfect measure
spaces and countable sets of functions) but demanding a natural tech-
nical eondition avoiding some pathological behaviour of the arbitrary
relatively mp-compact subset of M (). The most important result on
p-stable sets concerning the problem we are surveying is the following
one that can be found in (31, Chap. 9] and [5, Chap. II].

Theorem 5 If F ¢ R is p-stable and uniformly iniegrable then the
canonical mapping I : (F,7p) — (F*, || |l1) is continuous.

The notion of u-stable set and the proof of Theorem 5 is rather tech-
nical. The following stronger notion due to Bourgain gives us another
way to attain the same conclusion with a shorter proof.

Definition 4 A family F C R® has the Bourgain property with respect
to p if for each A € £, u(A) > 0, and each ¢ > 0 there is a finite
collection of measurable subsets of A, A; € £, u(4i) > 0,1 <{ <'n,
such that each f € F the oscillation of f in some A; is less than ¢.

Theorem 6 (Bourgain) If ¥ C R? has the Bourgain property (with
respect to u) then the rp-closure of F also has the Bourgain property and
it is formed by p-measurable functions. Each element in the Tp-closure
of F is the p-almost everywhere limit of a sequence in F .

Proof. See {24, Th.11]. =
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Corollary 6 If F C £Yu) is uniformly , integrable and has
the Bourgain property with respect to u then the canonical map
I:(F,7p) = (LYp), [l |I1) 8 continuous.

Proof. It follows from Theorem 6 and Proposition 1. [ |

If 1 is a Radon measure on a compact space { and F is formed by
continuous functions then there is an useful condition implying Bour-
gain’s property for F. To formulate this condition we recall the notion
of independent sequence of functions ([25}). '

Definition 5 A sequence of functions f, in R® is called independent
on A C S if there exists numbers s < t such that for each pair of finite
disjoint subsets P, @ C IN we have

[N{weA: falw) <sHN[[{w € A: falw) > t}] # 0.

nepP neQ

Theorem 7 Let p be a finite Radon measure on a compact space S}
and F C C(Q) an uniformly bounded family of continuous functions. If
F does not contain an independent sequence then F has the Bourgain
property with respect to u.

Proof. See |16, Prop. 2]. ]

Remark Every family F with the Bourgain property is stable but the
converse is false [31, 9-5-4, p. 112]. However, for a compact space (2,
a uniformly bounded family F C C(€) has the Bourgain property with
respect to each Radon measure if and only if F is stable with respect to
each Radon measure (see Theorem 9).

In order to apply Theorems 6 and 7 it will be interesting to have
some useful criterion preventing the existence of independent sequences
in the family # . ¥ F is an uniformly bounded family of continuous
functions on a compact space € such that every sequence in F has a
pointwise convergent subsequence then it is easy to prove that ¥ does
not contain an independent sequence. This result can be improved and
in order to do so we introduce the following definition.

Definition 6 If f, is an uniformly bounded sequence in R? such that
its Tp-closure in R® is not homeomorphic to SIN then we shall say that
fn 18 a nerrow seguence.
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It is clear that every uniformly bounded and pointwise convergent se-
quence is a narrow sequence. Next result, that is based on ideas from
{30], is a reformulation of [2, Lemma 1].

Theorem 8 If () is a compact space and F C C(R) is an uniformly
bounded family such that every sequence in F has a narrow subsequence
then F does not contain an independent sequence, so F has the Bourgain
property with respect to each finite Radon measure on ().

Proof. Since subsequences of independent sequences are independent it
will be enough to prove that if f, € C(Q) is an independent sequence
such that || f || < 1 then the 7p-compact set K := {f, :n € N} 7 is
homeomorphic to SIN. In order to prove that K is homeomorphic to SN
we consider the continuous linear map T : C(K) — £, ¢ — (p(fn)).
Once we prove that T is a surjection then T will be an isometric isomor-
phism between the spaces (C(K). | [|) and (C(8N), || ||), (supremum
norm in both spaces) and the Banach-Stone theorem [14, §25.2.2] ap-
plies to conclude that (K,1p) is homeomorphic to SIN. Therefore, we
only have to show that for each = € £ there exists ¢ € C(K) such that
T(p) ==

First step: Note that for a compact space Q and continucus functions
fr Definition 5 of independence is equivalent to the one obtained when
the disjoint subsets P,Q of IN are not assumed to be finite. Then there
are numbers s < ¢ such that for each subset M of N there are two points
wy,wy € § verifying:

fa(w1) 2 ¢, fo(we) < sforalln € M, and fn(w1) <5, falws) > ¢

forallng M
Second step: Now we shall prove that = = (¢t — s)/8 verifies r < 1 /4
and there exists ¢ € C(K) such that

Fell <z l/4 and |2 ~T(e) | < (1 =7)|=|.

It is enough to prove this when || = || = 4. By the first step applied to
the set M := {n : z, > 2} there exist two points w;,wo € §} verifying
the condition stated above. If ¢ € C(K) is defined by the formula
@(f) == (f(w1} — f(w2))/2 then

e(fa) 2 (t~s)/2=4rsine M,y ¢(fn) < —(t—5)/2=~4rsing M
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Since || fn | <1 we have || ¢ || <150 47 <1 and then
ne€M=0<zp—o(fn) <4—4r =41-7), and

ngM=—-41l-7)=-4+4r <zpn—(fn) <2+ 1 <4(1-1).

Therefore | z — T(¢) | < 4(1 — ) and this is the required condition
when || z [|=4.

Third step: Repeating the argument with (z — T(p)) € £*° and
proceeding by induction we produce a sequence ¢n € C{K) such that

(1 -7yt
lenli < —F——leland -3 T() i <A-7)"z|.

The first inequality implies that ) | ¢n defines an element ¢ € C(K}
and the second one tell us that T(p) = z so the surjectivity of T is
obtained. =

Given a compact space (1, the uniformly bounded sets F C C(f)
which are universally stable (i.e. stable with respect to every Radon
measure on {}) are characterized in [31, 14-1-7] (see also (5, 3.11]). The
characterization is formulated by means of the equivalence of several
properties concerning either the pointwise relative compactness of ¥ in
nice spaces of measurable functions or the non existence of independent
sequences in F. Now we complete the list of properties which are equiv-
alent to the universal stability adding two properties that to the best of
our knowledge are new (these are b) and d) in the next theorem).

Theorem 9 IfS} is a compact space and F C C(Q) is uniformly bounded
the following are equivalent:

a) F is u-stable with respect to each Radon measure p on §);

b) F has the Bourgein property with respect to each Radon measure
noon §Q;

c) F is pointwise relatively compact in M, () for each Radon mea-
sure pu on §2;

d) Every sequence in F has a narrow subsequence;
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e) Every sequence in F has a pointwise convergent subsequence;

f) F does not contain an independent sequence on Q;

Proof. f} = b} by Theorem 7; b) = c) follows from Theorem 6; c) =
f} corresponds to v) = vi) of Theorem 2F in [1, p. 855] (the proof uses
that every free ultrafilter on IN is non-measurable with respect to the
canonical probability on P(IN) = {0,1}N); ) = d) because SN is not
countable; d) = f) is Theorem 8; f) = e) is an old result that comes
from [25]; f) = a) = ¢) can be found in [31, 14-1-7} and [5, 3.11]. =

4 Applications

Metrizability of pointwise compact sets. The following result of
A. Tonescu Tulcea [12] is the first significant result about the following
problem: For a given pointwise 7,-compact set of measurable functions
when do the pointwise topology and the topology of convergence in
measure agree on F ?. (See Chapter 12 in [31] which is dedicated to this
problem).

Theorem 10 If ¥ is a convez Tp-countably compact set of p-measurable
functions separated by Q then (F,1p) is metrized by the distance of con-
vergence in measure. If F is not assumed to be convex but either F is
Tp-sequentially compact or the measure p is perfect, the same conclusion
holds.

Proof. If F is uniformly integrable and convex then by Eberlein’s the-
orem and Theorem 3 we have that F is 7p-sequentially compact. If F
is not assumed to be uniformly integrable the same conclusion holds
because we can consider another measure » such that F is uniformly
v-integrable and such that the families of v-null and p-null sets agree
(since { f{w) : f € F} is bounded for each w € Q2 we can consider a mea-
surable function & : 2 — [0, +00) which is the essential supremum of F
and we can define v»(E) := [g ﬁﬁd,u). If we only assume that either F
is Tp-sequentially compact or u is perfect the conclusion is obtained as
in the proof of Corollary 5 (see the remark following this corollary). ®
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Grothendieck measures. Let T be a completely regular topological
space, Cy(T') the space of all continuous bounded functions on T and
My(T) the space of Grothendieck measures [32]: Baire measures which
are Tp-continuous on absolutely convex and 7,-compact subset of Cp(T).
Note that every 7-smooth Baire measure is in M, because every set of
continuous functions can be separated by the support of the measure
and then we can apply Corollary 1. In [20] was showed that My(T) is
sequentially complete for the topology o(Mg(T),Cs(T)). The proof of
this result can be obtained as a direct application of Theorem 1, [21].
Indeed, by a standard argument ([20]) it is enough to show that every
cluster point of a sequence in M} (T) (for a(M4(T), Cs(T)}) belongs to
M} (T) and this fact is a trivial consequence of Theorem 1.

A result on norm separable subsets of C(K). As a first application
of Theorem 8 we obtain the following result concerning the continuity
of a function defined by an integral

Theorem 11 Let H, K be compact topological spaces and suppose that
K does not contain a homeomorphic copy of SN. Let f : H X K - R
be a bounded function such that

a) For every h € H the function x — f(h,z) is continuous;

b) There exist a dense subset D of K such that for each z € D the
function h — f(h,z) is continuous.

If u is a finite Radon measure on H, then all functions h — f(h,x) are
p-measurable and the integral

o@)= [ 1(hz)au(n)

defines o continuous function on K.

Proof. Suppose |f| < 1andlet F : K — ([-1,1]¥, 7,) be the continuous
mapping defined by F(z) = f, where fz(h) = f(h,z). Then F := F(K)
is 7p-compact and does not contain a copy of SIN) (see [8, 6.3.19 ¢)]). By
assumption F(D) is an uniformly bounded set of continuous function en
H so it has the Bourgain property with respect to 2 by Theorem 8. Since
F(D) is 7p-dense in F then F also has Bourgain's property (Theorem 6)
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80.fz is u-measurable for each z € K. Now the continuity of ¢ follows
from Corollary 6. m

The last theorem, together with some of the main results in.this
paper, allows us to give a proof of the following result [15]. If K is a
compact space and D a dense subset of K then 75(D) (resp. 7(K))
denotes the topology on C(X) of pointwise convergence on D (resp. K).

Theorem 12 Let K be a separable compact space and D a countable
dense subset of K. If (C(K),7,(K)) is Lindelof then every bounded
Tp(D)-compact set H C C(K) i3 norm separable.

Proof. Suppose that H C C(K) is a 7,(D)-compact set such that
Il sl < 1for.all f € H. By a result of [18] in order to prove that
H is norm separable it is enough to show that it is fragmented by the
norm. We shall prove this fact showing that for each Radon probability
# on the compact space (H,7,(D)) every norm closed subset of H is
f-measurable [13].

Since (C(K), p(K)) is Lindelsf, K has countable tightness [29] so K
does not contain a copy of SIN. Taking 7(k, z) := h{z) the hypothesis of
Theorem 11 holds and the proof of this theorem shows that F := {fz:
z € K} has the Bourgain property with respect to p, so it is formed
by p-measurable functions. Having in mind that functions from F are
continuous on the Lindelsf space (H, 7p{K')) it is easy to conclude that u
is F-smooth and then, by Proposition 3, there exists a set § separating
the family F.

Since every Radon measure is perfect Corollary 5 gives us that the
natural mapping (F|s, 7(S)) — (F4, || |I1) is & homeomorphism. By
standard arguments the metrizability of (F|s, 7p(S)) implies that $ is
norm separable. Since S is norm closed in C (K) we have that (S, | |)
is a polish space so (S,7p(D)) is analytic and a classical result gives
us that § is a p-measurable set. Now it is easy to see that p(S) =1
(Assuming that there exists in H a 7,-open set U D S such that u(U) < 1
then ({Z\U : Z € Zr,u(Z) = 1} = §. By the Lindelsf property of
(H,7p(K)) we have that ({2, \ U} = @ for some sequence Z, € 27,
#(Zn) = 1. Then u(Z, \U) < 1 — p(U) for some n € N and we arrive
at a contradiction: u(Z,) = u(Z, NU) + u(Z,\ V) < 1).

Now, given a norm closed subset C of H we obtain that C is p-
measurable because C' = (C N S)U(C \ §) where CN S is p-measurable
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(it is analytic) and C \ S is p-null. [

Pettis integrability. If X is a Banach space a function f: Q — X is
weakly measurable (resp. weakly integrable) if z*f is measurable (resp.
integrable) for each z* € X*. If f is weakly integrable then for every
E € ¥ there exists z}' € X** such that 23 (z*) = [pz*fdp for all
z* € X*. If 23 € X for all E € I then f is called Pettis integrable. In
this case the indefinite integral my : £ — X, my(E) = =} is countably
additive. If {z*f : || z* || £ 1} is bounded in £*(u) then f is said to
be u-weakly bounded. The Banach space X is said to have the Pettis
integral property (shortly PIP) if each u-weakly bounded function from
an arbitrary finite measure space (2, Z, 1) into X is u-Pettis integrable.

Every weakly measurable function f : @ — X is Baire(X, weak)-
measurable [6] and the image measure A(B) := u(f~!(B)) defined on
Baire(X, weak) is considered in [6] and [31] in order to characterize some
facts concerning weak measurability and Pettis integrability.

In order to show how to obtain results of Pettis integrability
from the results in this paper note that the u-Pettis integrability of
a function f is equivalent to the A-Pettis integrability of the identity
i : (X, Baire(X,weak), \) — X, where A = uf~1, which is equivalent
to the continuity of I : (Bx», weak®) — (L1(n), weak) (see [6],[31, 4-1-
7]). Thus we consider a finite measure \ defined on Baire(X, weak) and
apply previous results to the measure space (X, Baire(X, weak), A) and
the family F := Bx.. Note that By is uniformly A-integrable if f is
p-weakly bounded. In this situation the notion of a weakly measurable
function f determined by a subspace Y of X, considered in [11], [28] and
[21}, translates to Bx» is determined by ¥ (with respect to the image
measure). Now Zg is formed by the sets which are finite intersections
of closed semispaces and if the Baire measure A (=uf~!) is Bx+-smooth
we shall say that it is c-smooth. In this case the closed convex set § of
Proposition 3 will be denoted core(A) and it can be showed that core())
is the closed convex hull of AR(f, 1) = {; 1E Jgpfdu: E € B, u(E} > 0}

Note that in the case we are concerned, if f is Pettis integrable then
the measure image A = uf~' has the following special property: For
every E € X, M(E) > 0, there exists wg €  such that [ fdrg = f(wE)
for each f € F, (Ag(B) := ME N B)/A(E)). This fact allows us to
characterize Pettis integrability through the image measure {7], [31].
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Theorem 13 If f : § — X is u-weakly bounded and A := uf~! is the
image measure defined on Baire(X, weak) the following are equivalent

a) X is c-smooth;
b) f is u-integrable Pettis;

Then X has the Pettis integral property if and only if every finite measure
on Baire(X, weak) is c-smooth.

Proof. a) = b) by Corollary 1. b) = a) Suppose A is not c-smooth
and take a net Z, € Zr decreasing to 9 such that infg A(Za) = ¢ > 0.
If Z,, is a decreasing sequence such that lim, A(Z,,) = € then the
set E = (nZq, has A(E)} = ¢ and by Pettis integrability there exists
zp € X such that z*(zg) = M(E)™* [pz* dp for each z* € X. We will
find a contradiction showing that xg € Z, for every o. In order to
do this we consider a fixed Zg, which is a finite intersection of closed
semispaces C = {x € X : z*(z) < t}, and for such a C we prove
that tg € C. Since Zg C C we have infa A\(C N Z,) = € and then
MCNE) = limpy A(CN Zg,) = €= AE) so E is essentially contained in
C,1e. z*(z) <t Ma.e Then 2*(zg) < ¢ and the proof of b) is finished.

In order to obtain that if X has the PIP then every Baire measure A is
c-smooth it is enough to use the following lemma, applied to the family
Bx-., to obtain a sequence of c-smooth measures which is uniformly
convergent to X, so A is c-smooth. |

Lemma 2 If F is a pointwise bounded family of measurable functions
then there ezists an increasing sequence of measurable sets , € T such
that Q = U,82,, and F is essentially bounded with respect to each measure
A(E) = ME N Q).

Proof. Let h : @ — [0,400) be a measurable function which is the
essential supremum of the family {|f]: f € F} and take @, = {h < n}.
[

A Banach space X has the Mazur property if the sequentially weak*
continuous functionals on X* are in X and has the property C (of Cor-
son) if any collection of closed convex subsets of X with the countable
intersection property has non void intersection. Pol’s dual characteri-
zation of property C [22] states that X has property C if and only if
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for each A € Bx- and each z* in the weak® closure of A there exists a
countable set M C A such that z* is in the weak® closure of co(M).

In the following theorem, parts a) and b) come from [6] and part
c¢) from [26]. Part d) is an improvement of a result in [28] where it is
showed that if the dual of X is weakly compactly generated then X has
the Pettis integral property

Theorem 14 The Benach space X has the Pettis integral properiy in
the following cases

a) X has property C;
b) X has the Mazur’s property;

¢) If each z** € X** is in the o(X*,X*)-closure of a
countable M C X;

d) X* has property C.

Proof. a) follows from Theorem 13 and b) from Corollary 2 with § = X.
¢) is a direct consequence of Theorem 1: Take 27 € X** defined by
i (z*) = [pa*fdX which is in the o (X**, X *)-closure of a countable
M C X, so M verifies the hypothesis of this theorem for F := By-..
d) is a consequence of ¢) and Pol's dual characterization of property C:
For each z** € Bx»+ there exists a countable set C C Bx such that z**
is in the weak®-closure of co(C). If M is the countable set formed by
the rational convex combinations of elements from C then the condition
required in ¢) holds. [ |

Parts b) and c) of the next theorem are reformulations, in terms of
image measure, of Stefansson’s characterization of Pettis integrability.
Part d), obtained from Drewnowsky's ideas in [4], completes this char-
acterization adding a new case in terms of property C. H X is a Baire
measure on Baire(X, weak) and Bx- is determined by Y C X with re-
spect to A (i.e. if z*|]y = 0 then =* = 0, A-a.e.) then we shall say that A
is localized on Y.

Corollary 7 If X is a Banach space and )\ a finite measure
on Baire(X, weak) the following are equivalent:

a) X is c-smooth;
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b) A is localized on a WCG subspace;
¢) A is localized on a subspace having Mazur’s property;
d) X is localized in a subspace having property C.

Proof. a) = b) If X is c-smooth, Lemma 2 applied to the family By«
provides us with a sequence of ¢-smooth measures A, such that the
identity i : (X, Baire(X,weak),A,) — X is Pettis integrable for each
n € IN (Theorem 13). Every ), is localized on the WCG subspace Y,,
generated by the range of the corresponding Pettis.integral so the WCG
subspace Y generated by UpecnYy, shows that b) holds.

b} = ¢) and b) = d) are obvious.

¢) = a) If ¢) holds and M, is the sequence given by Lemma 2 then
each A, verifies ¢). The Mazur property and part a) of Theorem 3 give
us that ¢ : (X, Baire(X, weak), An) — X is Pettis integrable. Then X is
c-smooth because it is the uniform limit of the sequence A,, formed by
c-smooth measures (Theorem 13).

d} = a) In a similar way we have that every A, verifies d) and
Pol’s dual characterization of property C ([22]) tell us that every convex
countably closed set in (By-,weak") is weak” closed. By Corollary 4
the identity ¢ : (X, Baire(X,weak), An} — X is Pettis integrable and
the proof concludes as in the previous case.. [ ]

Remark a) < b) in Corollary 7 can be used to give a easy proof of a
version of Vitali's convergence theorem for the Pettis integral [11],[27,
Th.2.10]; In the preliminary version of this result given in [10} the mea-
sure was assumed to be perfect. The general result was stated in [17]
but it was showen using the difficult theorem of James.

Using Banach spaces techniques such as the Davis-Figiel-Johnson-Pelc-
zynsky theorem, in [27] it was proved that given a bounded weakly
measurable funetion f : § — X* into a dual of a weakly compactly
generated space, then f is Pettis integrable if and only if f is determined
by a separable subspace of X*. Now we present a measure image version
of this result with a short proof based on the main result of this paper.

Theorem 15 If the Banach space X 18 isomorphic io a
subspace of a dual of a WCG space and X is a c-smooth measure defined
on Baire(X, weak) then X is localized on a separable subspace of X .
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Proof. Let Y be a WCG space such that X C Y*. The general case
reduces to the case X = Y * by considering the image measure Aof Ain
Y* which is c-smooth and verifies core(X) C X. We start assuming that
5 := core()) is bounded. It is enough to show that (Bx+|s, mp(5)) is a
metrizable compact space. By Theorem 1 we know that it is Eberlein’s
compact so it is metrizable if and only if it is separable. Since By|s is
p(S)-dense in (Bx-|s, 7p(S)) it is enough to prove that By|s is 75(S)-
separable.

If g is the restriction of A to Baire(Y *, weak’) then X¢ is By-smooth-
so there exists a weak* compact set T O S such that the family By is
separated by T with respect to the measure Ao. If Y is generated by
the weak compact K then Theorem 10 tell us that the compact space
(K |7, 7p(T)) is metrizable and so it is separable. Using a well known
theorem of Troallic we have that K|r is a norm separable subset of
(C(T). || I). Since Y|z is a subspace of (C(T), | |} generated by K|r
it follows that Y|r is norm separable. Having in mind that S C T we
obtain that By|s is 7p(S) separable as required.

If we do not assume that core()\) is bounded, the same result can be
obtained by considering a sequence of c-smooth measures An such as in
Lemma 2 (note that core(Ap) is bounded for each n € IN). [

Our last applications concern some results on universal Pettis integra-
bility in [23] and [24]. If K is a compact space let (K) be the o-
algebra formed by the universally measurable sets (subsets of K which
are measurable with respect each finite Radon measure on K). A func-
tion f: K — X is called weakly universally measurable if it is weakly
measurable with respect to U(K). Moreover, if f is Pettis integrable
with respect to each Radon measure  on K then f is said to be uni-
versally Pettis integrable.

If  is a Radon measure on K, a function f : K — X* is called
weak® Lusin measurable if for each € > 0 there exists a compact F C K
such that (K \ F) < ¢ and f |p: F — X' is weak"-continuous. If
this fact happens for every Radon measure uon K then f is said to be
universally weak® Lusin measurable.

If X is a separable Banach space and K a compact space then every
bounded weakly universally measurable function f: K — X* is univer-
sally Pettis integrable [23]. If X is a separable Banach space then every
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bounded weakly universally measurable function f : K — X* is uni-
versally weak® Lusin measurable and the above result can be extended
to arbitrary Banach spaces assuming that f is universally weak® Lusln
measurable (see [24] and {28]).

The next theorem is a result from [24] where the equivalence with
property d) was stated with special martingale techniques assuming that
K is a metrizable compact space. Applying Theorem 9 we can provide
a‘short proof without this assumption. Recall that if F is a compact
space then a set Z C C(F) is said to be weakly precompact if every
sequence in Z has a pointwise convergent subsequence.

Theorem 16 If K is a compact space and f : K — X* i3 a bounded
universally o(X*, X)-Lusin measurable function, the following are equiv-
alent:

a) f is weakly universally measurable;
b) f is universally Pettis integrable;

c) {< z,f >: x € Bx} has the Bourgain property with respect to each
Radon measure on K;

d) For each compact F C K such that flp : F — X* is o(X*, X)-
continuous the set {< z,f > |p:z € Bx} is weakly precompact in
C(F).

Proof. d) = ¢) If d) holds then by Lusin measurability and Theorem 9
we have that for each Radon measure 4 on K and each € > 0 there exists
a compact set F C K such that u(K\F) <eand {< z,f > |p: x € Bx}
has the Bourgain property with respect to the Radon measure that u
induces in F. From this fact it is easy to see that {< z, f >: = € Bx}
has the Bourgain property with respect to p.

c) = b) follows from Corollary 6, and b) = a) is immediate.

a) = d) If a) holds and F C K is a compact set such that f|g :
F — X* is o(X*, X )-continuous, we have that {< z,f > |r: z € Bx}
is Ty-relatively compact in the space of functions which are universally
measurable on F (since its 7p-closure {< z**,f > |p: 2" € Bx»} is a
Tp-compact subset of this space). Other application of Theorem 9 give
us that {< «, f > |F: 2 € Bx} is weakly precompact in C(F). [ |
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Corollary 8 If K is a compact space, X a separable Banach space and
f:K — X* a bounded function the following are equivalent:

a) f is universally Pettis integrable;

b) {< z,f >: = € Bx} has the Bourgain property with respect to each

Radon measure on K.
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