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Abstract. In the search for genetic factors that are associated with complex

heritable human traits, considerable attention is now being focused on rare

variants that individually have small effects. In response, numerous recent

papers have proposed testing strategies to assess association between a group

of rare variants and a trait, with competing claims about the performance

of various tests. The power of a given test in fact depends on the nature of

any association and on the rareness of the variants in question. We review

such tests within a general framework that covers a wide range of genetic

models and types of data. We study the performance of specific tests through

exact or asymptotic power formulas and through novel simulation studies of

over 10,000 different models. The tests considered are also applied to real

sequence data from the 1000 Genomes project and provided by the GAW17.

We recommend a testing strategy, but our results show that power to detect

association in plausible genetic scenarios is low for studies of medium size

unless a high proportion of the chosen variants are causal. Consequently,

considerable attention must be given to relevant biological information that

can guide the selection of variants for testing.

Key words and phrases: Linear statistics, quadratic statistics, score tests,

weighting, power, next generation sequencing, complex traits.

1. INTRODUCTION

Genome-wide association studies (GWAS) have

identified numerous genetic variants (single nucleotide

polymorphisms, or SNPs) that are associated with

complex human traits [e.g., Manolio, Brooks and

Collins (2008), Hindorff et al. (2009)]. However, be-
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cause of their limited sample sizes, such studies are

effective only at identifying common variants, that is,

for which the minor allele frequency (MAF) is not

too small (e.g., MAF ≥5% for sample size ∼2000).

In addition, variants that have been identified through

GWAS explain only small fractions of the estimated

trait heritabilities. There is now much interest in un-

derstanding the role of rare variants (as represented by

SNPs with small MAFs), but because they are rare it is

difficult to detect associations with specific traits [e.g.,

Bansal et al. (2010); Asimit and Zeggini (2010)]. Next

generation sequencing (NGS) can produce detailed in-

formation on rare variants but studies involving large

numbers of individuals are not yet practical due to cost,

heterogeneity and other concerns. Attention has conse-

quently focused on methods that combine information

across multiple rare SNPs in a genomic region (see

Section 6 for discussion on the practical choice of a

genomic region and SNPs within the region for anal-

ysis and its impact on the statistical inference). This

area is the focus of our article. Our purpose is to re-

view methods of testing for association between rare
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variants and a trait, unify the different methods, and

give some new results.

To motivate our discussion, we refer to data from

the Genetic Analysis Workshop 17 (GAW 17) [Almasy

et al. (2011), 1000 Genomes Project Consortium

(2010)]. These data include real sequence data (SNP

genotypes) obtained from the 1000 Genomes Project,

and simulated phenotype data (trait values) simulated

by the GAW 17 committee. We focus here on a single

quantitative trait, Q2. The values of Q2 and other traits

were simulated for each person using normal linear

regression models that included the SNP effects and,

in some cases, additional covariates. Details concern-

ing the simulation of trait values are given by Almasy

et al. (2011). For Q2 the regression model involved ef-

fects for 72 SNPs within 13 genes, with MAFs ranging

from 0.07% to 17.07%. Our objective is to look for

evidence of associations between rare variants and Q2.

Papers that propose pooled association testing strate-

gies for rare variants include Morgenthaler and Thilly

(2007), Li and Leal (2008), Madsen and Browning

(2009), Bansal et al. (2010), Han and Pan (2010),

Hoffmann, Marini and Witte (2010), Morris and Zeg-

gini (2010), Price et al. (2010), Yi and Zhi (2011),

Neale et al. (2011), Wu et al. (2011), Sul, Buhm and

Eleazar (2011) and Lee, Wu and Lin (2012). This pre-

vious work has provided many tests but insight into

settings when a method will perform well, indiffer-

ently or poorly is still limited. Recently, Basu and

Pan (2011) and Ladouceur et al. (2012) conducted ex-

tensive empirical evaluation (simulation) studies and

reached a similar conclusion that “the power of re-

cently proposed statistical methods depend strongly on

the underlying hypotheses concerning the relationship

of phenotypes with each of these three factors”: pro-

portions of causal variants, directions of the associa-

tions (deleterious, protective or both), and the relation-

ship between variant frequencies and genetic effects

[Ladouceur et al. (2012)]. However, the joint effects

of these factors have not been quantified analytically.

Moreover, the test procedures assume that SNPs have

been placed in groups, with pooling and testing carried

out for SNPs within a given group. There are various

ways SNPs might be grouped and this will affect the

three factors mentioned. Ways of grouping SNPs are

currently being studied in connection with the recent

Genetic Analysis Workshop 18 (GAW 18) and else-

where.

In this paper we consider tests for genotype–

phenotype association within a unified framework.

Most existing test statistics are either linear statistics

that are powerful against specific association alterna-

tives [e.g., Morgenthaler and Thilly (2007), Li and

Leal (2008), Morris and Zeggini (2010), Madsen and

Browning (2009) and Price et al. (2010)] or quadratic

statistics that have reasonable power across a wide

range of alternatives [e.g., Neale et al. (2011), Wu

et al. (2011), Lee, Wu and Lin (2012)]. We study both

classes of statistics theoretically and empirically and

provide several new insights. In particular, we exam-

ine the (asymptotic or exact) powers of various tests

as a function of the three factors above. We deal with

both categorical and quantitative traits, and allow trait-

dependent selection of individuals in a study as well as

nonindependent SNPs. We conduct novel simulation

studies that complement other recent empirical inves-

tigations and shed new light on methods’ comparison.

We also discuss so-called optimality of tests and indi-

cate what this means in practical settings.

A feature of many of the linear statistics and of

the quadratic statistics of Wu et al. (2011) and Lee,

Wu and Lin (2012) is the use of weights associated

with individual SNPs, because of the suggestion that

rarer variants tend to have larger genetic effects. We

demonstrate that even if this assumption is true, using

weights inversely proportional to MAFs can in some

cases have an adverse effect. We also show that for lin-

ear statistics, methods of weight selection based on es-

timated effects [e.g., Han and Pan (2010), Yi and Zhi

(2011), Hoffmann, Marini and Witte (2010), Lin and

Tang (2011)] are similar to using quadratic statistics.

A referee has stressed the importance of several

caveats concerning the type of data considered in the

paper, and hence the “success” of testing procedures

such as discussed here. First, errors in sequencing data

commonly occur. Methods for addressing this have not

yet been well studied in the present context, and we

assume that genotypes are as given. Methods used in

other contexts [Daye, Li and Wei (2012), Skotte, Kor-

neliussen and Albrechtsen (2012)] are typically based

on estimated sequencing error probabilities, but we

note that their accuracy is not well established in spe-

cific settings. A second caveat is that the identifica-

tion of rare variants is difficult because of their low

frequency, and because sequencing errors can substan-

tially affect the estimation of small MAFs. They can

also lead to a SNP that is actually monomorphic be-

ing identified as a rare polymorphic SNP in some in-

stances. Finally, the nature and level of heritability ex-

plained by rare variants is at this point speculative and

it is unclear whether major successes will occur from

the approaches considered here. We take pains in the
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paper to consider a broad range of genetic models but

we cannot of course answer questions about the scien-

tific fundamentals.

The remainder of the paper is organized as follows.

Section 2 introduces the framework for testing the as-

sociation between a group of rare variants and a gen-

eral trait, reviews tests that have been proposed along

with analytical results relating the power of linear and

quadratic statistics to the various factors, and considers

adjustment for covariates. Section 3 presents theoret-

ical power calculations for normally distributed traits

that clarify when various methods will do well and the

effects of using weights. Section 4 gives numerical re-

sults based on large-scale simulation studies of over

10,000 different models for both quantitative and bi-

nary traits. Section 5 examines the GAW17 quantita-

tive trait Q2 and sequence data from the 1000 Genomes

Project. Section 6 concludes with some recommenda-

tions for pooled testing. Online supplementary materi-

als [Derkach, Lawless and Sun (2013a)] include details

specific about test statistics and additional tables and

figures for the power comparison studies.

2. SCORE TESTS FOR ASSOCIATION

2.1 No Covariate Adjustment

We assume that a group of J SNPs and a trait Y are

under consideration. The objective is to test whether

there is association between Y and one or more of

the SNPs. For a set of n unrelated individuals, let

Yi be the measured trait value for individual i and

Y = (Y1, . . . , Yn)
′. Let Xij denote the SNP genotype

for individual i, i = 1, . . . , n and j = 1, . . . , J ; for sim-

plicity we assume that Xij denotes whether the rare al-

lele is present (Xij = 1) or absent (Xij = 0) and let

Xi = (Xi1, . . . ,XiJ )′. It is straightforward to consider

the case where Xij is the number of copies (0, 1 or 2)

of the rare allele for SNP j , but there will be no or very

few individuals with two rare alleles in a study of cur-

rent typical size. We assume for now that there is no

adjustment for covariates, since many papers address

only this case. However, covariate adjustment is often

important and we consider it in Section 2.4.

Our interoest is in testing the null hypothesis

H0 : Y and X are independent.(2.1)

Most proposed methods for testing H0 are based on

statistics that are (weighted) linear or quadratic combi-

nations of statistics Sj which measure association be-

tween Y and SNP j , j = 1, . . . , J . Without loss of gen-

erality, we assume that Sj is such that under the null

E[Sj ] = 0 and Var(Sj ) = σ 2
0j , and under alternatives

E[Sj ] = μj and Var(Sj ) = σ 2
j . To facilitate further dis-

cussion, we assume that Y is defined so that a SNP with

μj > 0 is termed deleterious, with μj < 0 is protective,

and with μj = 0 is neutral; both deleterious and pro-

tective SNPs are causal variants. Let S = (S1, . . . , SJ )′

and E[S] = µ = (μ1, . . . ,μJ )′, and assume for sim-

plicity that the hypothesis of no association (2.1) is

equivalent to the null hypothesis

H0 :µ = 0.(2.2)

There are various options for Sj , but the approaches

referred to in Section 1 can almost all be expressed in

terms of statistics of the form

Sj =
n∑

i=1

(Yi − Y)Xij , j = 1, . . . , J,(2.3)

where Y = ∑n
i=1 Yi/n [e.g., see Lin and Tang (2011);

Basu and Pan (2011)]. The Sj arise as score statis-

tics in regression models for the two important cases

where Yi is normally distributed and binary, respec-

tively. They also arise from Poisson models for counts

and for other models in the linear exponential family

[e.g., Lee, Wu and Lin (2012)]. For completeness, we

outline this for the binary case in the supplementary

materials [Derkach, Lawless and Sun (2013a)]. Other

statistics, for example, Wald or likelihood ratio statis-

tics, could be used (see Section 2.4), but score statistics

are almost universally used in this area, and we focus

on them. We note that the score statistics have the ad-

vantage of requiring only estimates obtained under the

null hypothesis. In some contexts it is also useful to re-

place Yi −Y in (2.3) with some other function αi of ei-

ther Yi or its rank, with
∑n

i=1 αi = 0. It should be noted

that genotypes Xij , j = 1, . . . , J , are not assumed to be

mutually independent in the subsequent development.

Many authors have considered linear test statistics

for H0 (2.2) of the form

WL =
J∑

j=1

wjSj = w′S,(2.4)

where the weights wj s are specified nonnegative val-

ues and w = (w1, . . . ,wJ )′. Basu and Pan (2011) pro-

vided a review, and we note two important cases:

Morgenthaler and Thilly (2007) considered the “co-

hort allelic sums test” (CAST) where each wj = 1,

and Madsen and Browning (2009) based wj on the

(estimated) MAF, with larger weights for SNPs with

smaller MAF. The rationale for the latter weights is
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that causative SNPs would be subject to “purifying se-

lection” and so be rarer in the population than neutral

SNPs, but evidence for this so far seems slight. We

also note that because the MAFs have to be estimated,

sequencing errors as discussed in Section 1 can have

an effect; we assume (idealistically) that such errors

have not occurred. Price et al. (2010) also considered

“threshold” versions in which wj > 0 only if the es-

timated MAF is below a specified threshold (e.g., 1%

or 5%). Such linear composite statistics can have good

power against association alternatives where μj ≥ 0,

with μj > 0 for some subset of {j = 1, . . . , J }. How-

ever, their power may be poor for alternatives where

both positive and negative values of μj are possible,

and when only a small proportion of the J SNPs are

causal and have μj > 0 [Neale et al. (2011), Basu and

Pan (2011)]. The effects of association direction on dif-

ferent statistics are studied in Sections 3 and 4.

Many authors have also considered quadratic statis-

tics,

WQ = S′AS,(2.5)

where A is a positive definite (or semi-definite) sym-

metric matrix. One common choice is A = �−1
0 , where

�0 is a known or estimated covariance matrix for S un-

der H0; this gives a Hotelling statistic,

WH = S′�−1
0 S.(2.6)

Other quadratic statistics include the “SSU” statistic of

Pan (2009) and the “C-alpha” statistic of Neale et al.

(2011) which are based on A = I , the J × J identity

matrix; the “SKAT” statistic of Wu et al. (2011) uses

A = diag{a1, . . . , aJ }, where the aj s are weights that

depend on the MAFs via a Beta function. The linear

statistic WL in (2.4) can also be expressed in quadratic

form, since W 2
L is equivalent to (2.5) with A = ww′.

However, note that A is no longer positive definite in

this case. Quadratic statistics arise naturally from re-

gression models relating Y and Xj as we discus below.

Finally, we remark that recent work has considered

combining evidence from linear and quadratic statis-

tics [e.g., Lee, Wu and Lin (2012) and Derkach, Law-

less and Sun (2013b)]. We discuss this in Section 6, but

focus on individual linear and quadratic statistics here

(Table 1).

2.2 Distributions of Linear and Quadratic Statistics

Under Normality

It is instructive to consider the case where S is

normally distributed. For both binary and quantita-

tive traits, the vectors S are all at least asymptotically

normal, and analytical derivations of power and dis-

cussions of optimality rely on this assumption [e.g.,

Lin and Tang (2011); Lee, Wu and Lin (2012)]. The

TABLE 1

Summary of different association tests for analyzing rare variants. This is not an exhaustive list of all existing tests (see Sections 2 and 6 for

additional examples). Tests derived from random effect models and adaptive linear models are operationally similar to quadratic tests (see

Section 2.3 for discussion). Details of the notation: see Section 2.1. Briefly, S = (S1, . . . , SJ )′ is a vector of test statistics for a group of J

rare variants, w = (w1, . . . ,wJ )′ is a vector of weights, A is a positive definite (or semi-definite) symmetric matrix, �0 is a known or

estimated covariance matrix for S, pj is the minor allele frequency (MAF) of SNP j , f (pj ) = 1/
√

pj (1 − pj ) in Weighted-sum of Madsen

and Browning (2009), f (pj ) depends on the MAF via a Beta distribution in SKAT of Wu et al. (2011), and pL and pQ are the p-values

from chosen Linear and Quadratic tests

Class of tests

Linear Quadratic Combined/Hybrid

WL = w′S WQ = S′AS H(WL,WQ)

Example of specific tests

w = 1 (CAST, WL1) A = I (SSU and C-alpha, WC ) maxw{WL} (EREC)

Morgenthaler and Thilly (2007) Pan (2009), Neale et al. (2011) Lin and Tang (2011)

wj = f (pj ) (Weighted-sum, WLp) A = diag{aj }, aj = f (pj ) (SKAT) maxρ∈[0,1](ρWL + (1 − ρ)WQ) (SKAT-O)

Madsen and Browning (2009) Wu et al. (2011) Lee, Wu and Lin (2012)

wj = 0 if pj > threshold (Threshold) A = �−1
0 (Hotelling, WH ) −2 log(pL) − 2 log(pQ) (Fisher’s method),

min(pL,pQ) (minimum-p)

Price et al. (2010) Basu and Pan (2011) Derkach, Lawless and Sun (2013b)



306 A. DERKACH, J. F. LAWLESS AND L. SUN

case where S is normal in finite samples also is well

known in connection with tests for a multivariate nor-

mal mean µ; see, for example, Mardia, Kent and Bibby

(1979), Chapter 5.

Suppose that under H1 for which µ �= 0 the distri-

bution of S is (exactly or asymptotically) multivariate

normal with mean µ and covariance matrix �, S ∼
N(µ,�). For simplicity we assume that � is known;

this is allowable for asymptotic results which we focus

on here. In finite samples where Y given X is normal,

the effect of estimating � is to replace normal and chi-

square distributions below with t and F distributions,

respectively. With J fixed and n going to infinity, these

converge to the normal and chi-square distributions we

consider.

Let λ1, . . . , λJ be the eigenvalues of �1/2A�1/2 and

P be the J × J orthogonal matrix whose columns

are the corresponding eigenvectors. Then the follow-

ing distributional results hold [e.g., Rao (1973), Sec-

tion 3b.4]:

(i) WQ is distributed as a linear combination of in-

dependent noncentral χ2
1 random variables,

WQ ∼
J∑

j=1

λjχ
2
1,ncj

,(2.7)

where χ2
k,r denotes a noncentral χ2 random variable

with k degrees of freedom and noncentrality parameter

r , and ncj = ({P ′�−1/2µ}j )2.

(ii) If A = �−1, then WQ ∼ χ2
J,nc with nc =

µ′�−1µ. If � = �0, then WQ is the Hotelling statis-

tic (2.6).

(iii) Z2
L = W 2

L/(w′�w) = (w′S)2/(w′�w) ∼ χ2
1,nc

with nc = (w′µ)2/(w′�w) when � = �0. When this

is not true, then the distribution of Z2 is a multiple of

the noncentral χ2
1 random variable.

(iv) Under the null hypothesis H0: µ = 0, W 2
L/

(w′�0w) is a χ2
1 random variable; WQ is a linear com-

bination of independent χ2
1 random variables with each

ncj = 0 in (2.7).

It should be noted that no adjustment is needed to

reflect the fact that w may involve estimated MAFs.

This is because the distributional results are based on

the sampling distribution of Y given Xij , where esti-

mates of MAFs are functions of X alone and so are

treated as fixed in this section. We return to this point

in Section 4.1, and we also note in Section 4.2 that

complications arise when retrospective (case–control)

studies are used with binary responses. These results

allow the power against a simple alternative hypoth-

esis H1 with a specified µ �= 0 to be calculated for

any linear test statistic (2.4) or quadratic test statistic

(2.5). Critical values for a test of H0: µ = 0 are ob-

tained according to (iv). Software exists for the compu-

tation of probabilities associated with linear combina-

tions of central or noncentral χ2
1 random variables, for

example, the CompQuadForm package in R [Duchesne

and Lafaye de Micheaux (2010)]. In particular, we note

that:

(a) For a size α test using the linear statistic WL in

(2.4) or, equivalently, Z2
L in (iii) above, the α critical

value is χ2
1 (1 − α), the 1 − α quantile for the χ2

1 dis-

tribution. (The test is two-sided to allow for either pos-

itive or negative WL under H1.) The power against H1

when � = �0 is

P
(
χ2

1,ncL
> χ2

1 (1 − α)
)

(2.8)
where ncL =

(
w′µ

)2
/
(
w′�w

)
.

(b) For a size α test using the Hotelling statistic WH

in (2.6), the α critical value is χ2
J (1 − α). The power

against H1 in the case where � = �0 is

P
(
χ2

J,ncH
> χ2

J (1 − α)
)

(2.9)
where ncH = µ′�−1µ.

The specific power of both statistics depends on µ

and on the distribution of S under H1, however, some

general features can be seen. For simplicity, suppose

� = �0 and that � is diagonal (SNPs are indepen-

dent). The quadratic statistic WH (2.6) is a reasonable

choice when both deleterious (μj > 0) and protective

(μj < 0) SNPs are plausible, because ncH is a func-

tion of the μ2
j . The statistic WH can be decomposed

as WH = Z2
L + R, where ZL and R are independent

under H1, and R ∼ χ2
J−1,ncR

with ncR = ncH − ncL =
µ′�−1µ − (w′µ)2/(w′�w). The linear statistic WL is

optimal when ncR = 0, but the advantage of WL over

the quadratic statistic WH disappears as ncR increases.

We will discuss this in Sections 3 and 4.

2.3 Additional Considerations: Optimality,

Random Effect Models, Adaptive Linear

Models, p-Values and Permutation Distribution

A number of authors [e.g., Lee, Wu and Lin (2012),

Neale et al. (2011), Lin and Tang (2011)] have claimed

to obtain “optimal” tests. This is theoretically possible

if we specify a suitable family of test statistics, but for

this to be of practical use we must have strong prior

knowledge about the alternative hypothesis. For exam-

ple, among the class of linear statistics (2.4), maximal
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power is obtained when w = �−1µ. When the Sj s are

independent so that � = diag{σ 2
1 , . . . , σ 2

J }, this gives

wj = μj/σ
2
j . This linear statistic is (asymptotically)

optimal among all tests of fixed size based on S, assum-

ing µ is known. Quadratic statistics (2.5) for which A

has rank 2 or more can never be optimal against a spe-

cific alternative (µ,�). However, quadratic tests can

maintain reasonable power over wide ranges of alter-

natives, whereas a linear statistic’s power can be poor

except near a specific alternative. Goeman, van de Geer

and van Houwelingen (2006) and other authors have

discussed optimality of score statistics coming from

random effects models, but these results are also based

on averaging over a family of alternatives, which may

or may not be plausible in a given setting. For exam-

ple, quadratic statistics (2.5) can be obtained from ran-

dom effect regression models in which Y is related to

X through a linear function β ′X and the J × 1 regres-

sion coefficient β is a random vector with mean 0 and

covariance matrix τA. The hypothesis τ = 0 then cor-

responds to H0 in (2.1) and a score statistic for testing it

is [Goeman, van de Geer and van Houwelingen (2006),

Basu and Pan (2011)]

W ′
Q = 1

2
S′AS − 1

2
trace(A�0).(2.10)

Using W ′
Q is equivalent to using WQ in (2.5) when �0

is known. The first term in (2.10) also arises from other

score tests in generalized linear models [Lee, Wu and

Lin (2012)]. In general, �0 (and A) involve estimates

and asymptotic distributions for WQ are used to get

p-values. The asymptotic distributions are typically of

the form (2.7), but with the λj involving estimates. We

comment further on the calculation of p-values at the

end of this section.

Some authors [e.g., Han and Pan (2010), Hoffmann,

Marini and Witte (2010), Lin and Tang (2011)] have

proposed two-stage or other adaptive approaches in

which the weighting vector w for WL in (2.4) is cho-

sen after preliminary examination of the direction of Sj

or an estimate of its effect based on the observed data,

in a hope of choosing an “optimal” weight. However,

such an approach cannot on its own (i.e., without the

use of additional information from other sources) im-

prove globally the linear statistics. In fact, if we choose

the w that maximizes the standardized linear test statis-

tic (2.4), then we end up with the quadratic statis-

tic (2.6). In particular [e.g., Mardia, Kent and Bibby

(1979), page 127, or Li and Lagakos (2006), Section 3],

sup
w

{
W 2

L

Var(WL)

}
= sup

w

{
(w′S)2

w′�w

}
= S′�−1S = WH ,

where the maximizing vector is w = �−1S. This helps

explain why Basu and Pan (2011) found that adaptive

procedures did not perform as well as one might have

hoped.

Lin and Tang (2011) have proposed a test statis-

tic Tmax based on the maximum of a specified set of

K linear statistics, each with different weights, T 2
k =

(w′
kS)2/(w′

k�wk). We do not consider such statistics

here, but it is clear that their performance will depend

on the choice of “appropriate” weighting vectors wk .

When there is little prior information and the wks are

selected to cover a wide range of alternatives, it seems

likely that max(T 2
k ) would be similar to WH . A simi-

lar suggestion involving quadratic statistics is made by

Lee, Wu and Lin (2012). In practice, there is often very

limited prior information about the nature of µ, espe-

cially concerning which SNPs might be causal, so one

cannot be confident that a linear test statistic will be

effective, nor which quadratic statistics might be the

best. Sections 3 and 4 investigate situations in which

specific statistics will be more powerful.

To achieve reasonable power, sample sizes have to

be rather large, as we discuss in Section 4. The calcula-

tion of p-values, critical values or power is often based

on large sample approximations given by normal and

chi-square distributions in Section 2.2. In general, this

requires estimation of matrices �0 and A (as do test

statistics themselves) but with consistent estimators the

limiting distributions provide adequate approximation

for sufficiently large samples. In general, a consistent

estimator of �0 for S given by (2.3) is

�̂0 =
∑n

i=1(Yi − Y )2

n − 1
X′

cXc,(2.11)

where X′
c has (i, j) entry Xij − Xj (where Xj =∑n

i=1 Xij/n). However, because events with Xij = 1

are rare, the distribution of S can be quite nonnormal

even in rather large samples, and more accurate ways to

calculate p-values and critical values are needed, espe-

cially for quadratic statistics. Some authors [e.g., Lee,

Wu and Lin (2012)] have given skewness or kurtosis

adjustments that seem to improve accuracy in certain

settings. More generally, however, we can obtain p-

values (and study power) by simulation. When there

is no adjustment for covariates, the permutation distri-

bution of S = (S1, . . . , SJ )′ is typically used [e.g., Basu

and Pan (2011)]; this is the distribution that arises from

randomly permuting the Yis and assigning them to the

Xis. This also applies when Y is a discrete variable,

when Xij s are correlated within individuals (e.g., due

to linkage disequilibrium, LD) and when sampling of
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the individuals is Y -dependent. More generally, when

there are covariates present, we may need to rely on

bootstrap simulations. We comment on this in the fol-

lowing section.

2.4 Adjustment for Covariates

Lin and Tang (2011) and Wu et al. (2011) have

stressed that adjustment for covariates and population

stratification will be important in many contexts in-

volving rare variants. In this case we use regression

models; for illustration, we consider the case of a bi-

nary trait. Suppose that in addition to the genotype vec-

tor Xi there is a vector vi of covariates that may be

related to a binary trait Yi . Then a logistic regression

model

Pr(Yi = 1|Xi,vi)
(2.12)

= exp(β0 + β ′Xi + γ ′vi)

1 + exp(β0 + β ′Xi + γ ′vi)
= μi

might be considered, and a test of H0 :β = 0 can

be carried out. For testing rare variants some authors

have replaced the term β ′Xi in (2.12) with βri , where

ri = ∑J
j=1 Xij is the total number of rare variants per

individual [e.g., Morris and Zeggini (2010); Yilmaz

and Bull (2011)], but this corresponds to using a linear

statistic in previous sections and can be ineffective. We

consider the case where β = (β1, . . . , βJ )′ in order to

examine settings for which causal SNPs may be either

deleterious or beneficial. Consideration of the power

of alternative tests in large samples parallels the dis-

cussion in Section 2.2, as follows.

Let β̂ be the estimator of β based on the model in

question and assume that under H0 :β = 0, the asymp-

totic distribution of
√

nβ̂ is multivariate normal with

mean 0 and covariance matrix �. Following Li and

Lagakos (2006), we consider a sequence of contiguous

alternatives

H
(n)
1 :β = b/

√
n,(2.13)

where b = (b1, . . . , bJ )′ is a specified vector. Under

this sequence as n → ∞ the distribution of
√

nβ̂ ap-

proaches a multivariate normal distribution with mean

b and covariance matrix �. Thus, asymptotic power

for a test statistic can be computed in the same way

as in Section 2.3. Li and Lagakos (2006) compare the

quadratic Wald test statistic W = β̂ ′�̂−1β̂ , where �̂ is

a consistent estimate of � under H0, with linear statis-

tics Z = a′β̂ . These are analogous to (2.6) and (2.4),

respectively. The likelihood score statistic for testing

β = 0 is an alternative to the Wald statistic; it is easily

found as [e.g., Lin and Tang (2011)]

U =
n∑

i=1

(Yi − μ̂i)Xi,(2.14)

where μ̂i = eβ̂0+γ̂ ′vi/(1 + eβ̂0+γ̂ ′vi ) and β̂0, γ̂ are es-

timated from (2.12) when β = 0. It also follows from

standard maximum likelihood large sample theory that

the covariance matrix of U under H0 is estimated con-

sistently by

�̂U = V̂ar(U) =
(

n∑

i=1

σ̂ 2
i XiX

′
i

)

−
(

n∑

i=1

σ̂ 2
i Xi ṽ

′
i

)(
n∑

i=1

σ̂ 2
i ṽi ṽ

′
i

)−1

(2.15)

·
(

n∑

i=1

σ̂ 2
i ṽiX

′
i

)
,

where σ̂ 2
i = μ̂i(1 − μ̂i) and ṽi = (1,v′

i)
′. These cor-

respond to results given by Lin and Tang (2011), who

consider linear statistics based on linear combinations

of the elements U1, . . . ,UJ of U. The statistic (2.14)

and variance estimate (2.15) are given here for prospec-

tive sampling but can be shown to apply under case–

control sampling. As in Sections 2.1–2.3, test statistics

such as W ∗
H = U′�̂−1

U U and W ∗
L = (w′U)/(w′�̂−1

U w),

which correspond to WH and WL in preceding sec-

tions, can be used. When there are no covariates vi ,

it is readily seen that (2.14) reduces to (2.3) and that

(2.15) equals (n−1)/n times (2.11). It should be noted

that when covariates vi are present, the normal approx-

imations considered earlier apply, but the permutation

distribution p-values do not unless the Xis are indepen-

dent of the vi . Lin and Tang (2011) suggest a paramet-

ric bootstrap as an alternative, based on randomly gen-

erating response Yis from the fitted null model based

on β̂0, γ̂ .

Normal linear regression models for quantitative

variables Y also produce score statistics of the form

(2.14) with μ̂i = β̂0 + γ̂ ′vi , as do certain other gen-

eralized linear models [Lee, Wu and Lin (2012)]. It

should be mentioned that in the case of quantitative Y -

dependent sampling and models with supplementary

covariates vi as in (2.12), adjustments to estimating

functions [e.g., Huang and Lin (2007); Yilmaz and Bull

(2011)] are needed; this is beyond our present scope,

but we note that statistics like (2.14) arise once again

[Barnett, Lee and Lin (2013)].
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3. NORMALLY DISTRIBUTED TRAITS

3.1 Distributions of the Linear and Quadratic

Statistics

To provide more insights on the effects of the choice

of linear vs. quadratic statistics and the use of weights

on power, it is helpful to consider genetic scenarios de-

scribed by a normal linear model,

Yi = β0 + β1Xi1 + · · · + β1XiJ + ei
(3.1)

for i = 1, . . . , n,

with ei ∼ N(0, σ 2) and the Xij s mutually independent

Bernoulli variables with P(Xij = 1) = pj , approxi-

mately twice the MAF of SNP j , j = 1, . . . , J . The

score statistic S = (S1, . . . , SJ )′ with

Sj =
n∑

i=1

(Yi − Y)Xij =
n∑

i=1

(Xij − Xj )Yi(3.2)

arises from maximum likelihood theory for testing

H0 :β = (β1, . . . , βJ )′ = 0, as noted in Section 2.4.

Normal models are widely used for quantitative traits

such as blood pressure or lipid levels. Due to the nor-

mality of Y , the distribution of Sj given the geno-

types is Sj ∼ N(mj (1 − mj/n)βj ,mj (1 − mj/n)σ 2),

where mj = ∑n
i=1 Xij . For any given sample the mj

are treated as fixed values, and for simplicity we con-

sider the case where mj is equal to its expected value

npj so that

S ∼ N(µ,�),(3.3)

where µ = (np1(1 − p1)β1, . . . , npJ (1 − pJ )βJ )′ and

� = diag{np1(1−p1)σ
2, . . . , npJ (1−pJ )σ 2}. As ear-

lier, we ignore the small effects due to the need to esti-

mate σ 2 in large samples.

Here and in simulations below, we consider settings

according to the variation of Y explained by the set of

SNPs. Under model (3.1), the total phenotypic varia-

tion explained by the J SNPs is

EV = Var(E[Y |X])
Var(Y )

=
∑J

j=1 pj (1 − pj )β
2
j∑J

j=1 pj (1 − pj )β
2
j + σ 2

≈
J∑

j=1

pj (1 − pj )β
2
j /σ 2(3.4)

=
J∑

j=1

EVj ,

where EVj = pj (1−pj )β
2
j /σ 2 is the “Explained Vari-

ation” by SNP j . The approximation assumes that the

phenotypic variation explained by genetic factors is

small, which is in agreement with current data. The dis-

tribution of WL = w′S is N(n
∑J

j=1 wjpj (1 − pj )βj ,

n
∑J

j=1 w2
jpj (1 − pj )σ

2), and

W 2
L

/(
J∑

j=1

w2
jpj (1 − pj )σ

2

)
∼ χ2

1,ncL
,(3.5)

where

ncL = n
(
∑J

j=1 wjpj (1 − pj )βj/σ)2

∑J
j=1 w2

jpj (1 − pj )
(3.6)

= n
(
∑J

j=1 wj sign(βj )
√

pj (1 − pj )
√

EVj )
2

∑J
j=1 w2

jpj (1 − pj )
.

Similarly, assuming A = diag{a1, . . . , aJ } where the

aj s can also be interpreted as weights for quadratic

statistics WQ = S′AS, we have

WQ ∼
J∑

j=1

λjχ
2
1,ncj

,(3.7)

where

λj = ajnpj (1 − pj )σ
2 and

(3.8)
ncj = npj (1 − pj )β

2
j /σ 2 = nEVj .

3.2 Effects of Weights and Genetic Factors on

Power

We consider for discussion two linear statistics

WL = w′S: WL1 with wj ≡ 1 [Morgenthaler and Thilly

(2007)] and WLp with wj = 1/
√

pj (1 − pj ) [Madsen

and Browning (2009)]. We also consider two quadratic

statistics WQ = S′AS: WC with A = I (aj ≡ 1) (C-

alpha) and the Hotelling WH with A = �−1 (aj =
1/(npj (1 − pj )σ

2)). We note that the pj are actually

the values p̂j = mj/n, but p̂j = pj here since we are

considering the situation where the values of mj are

equal to their expected values npj . From (3.5)–(3.8)

we then have

W 2
L1

/(
J∑

j=1

pj (1 − pj )σ
2

)
∼ χ2

1,ncL1
,

where

ncL1 = n
(
∑J

j=1 pj (1 − pj )βj/σ)2

∑J
j=1 pj (1 − pj )

(3.9)

= n
(
∑J

j=1 sign(βj )
√

pj (1 − pj )
√

EVj )
2

∑J
j=1 pj (1 − pj )

,
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W 2
Lp/

(
Jσ 2)

∼ χ2
1,ncLp

,

where

ncLp = n
(
∑J

j=1

√
pj (1 − pj )βj/σ)2

J
(3.10)

= n
(
∑J

j=1 sign(βj )
√

EVj )
2

J
,

WC ∼
J∑

j=1

(
npj (1 − pj )σ

2)
χ2

1,ncj
,

where ncj = npj (1 − pj )β
2
j /σ 2 = nEVj as in equa-

tion (3.8), and

WH ∼ χ2
J,nc,

where nc = ∑J
j=1 ncj = n

∑J
j=1 EVj ≈ nEV .

The above results show that the power of WH de-

pends (approximately) just on the total explained vari-

ation EV and sample size n, and it is not sensitive to the

direction of the SNP effects [sign(βj )] nor the MAF

pj . Although the C-alpha statistic WC uses “equal”

weights for all SNPs, its power depends not only on

the EVj s and n but also on the pj s, because the cor-

responding coefficients for the linear combination of

independent χ2
1,ncj

are proportional to pj (1 − pj ), es-

sentially giving smaller weight to rarer variants. The

test statistic WC has been found powerful in a wide

range of settings for binary phenotypes [e.g., Neale

et al. (2011), Basu and Pan (2011)]. For the most part,

the settings investigated were ones where the regres-

sion coefficients βj s in a model for Y given X were

unrelated to the pj s. In that case EVj and ncj tend to

be smaller for rarer variants and a smaller weight is

preferred. However, if larger |βj |s are more likely to

be found among rarer variants, then WH could be more

powerful than WC . Simulations in Section 4 confirm

this.

Powers of the linear statistics depend on the ef-

fect directions and on the weights. The effect of using

weights inversely proportional to pj [e.g., WLp = w′S

with wj = 1/
√

pj (1 − pj )] is unclear, because ncLp

in (3.10) is not necessarily bigger than ncL1 in (3.10)

for WL1 with equal weights, even if rarer variants tend

to have bigger genetic effects in terms of larger |β|
values. We provide numerical results on the power of

WL1, WLp , WC and WH under various conditions in

Section 4 for studies of both quantitative and binary

traits.

3.3 Additional Theoretical Results with More

General Settings

Here we investigate the effects of dependency be-

tween genotypes. Due to genetic linkage, rate of re-

combination, genetic selection and other factors, geno-

types of SNPs from the same chromosomal region may

not be independent of each other at the population

level, that is, P(XijXij ′) �= P(Xij )P (Xij ′). This phe-

nomenon is also known as linkage disequilibrium [e.g.,

Reich et al. (2001)]. Similar to the previous section, we

discuss results based on linear normal model (3.1) and

score statistic S = (S1, . . . , SJ )′ in (3.2). This statistic

can be rewritten in vector form as

S = X′
cY,(3.11)

where Xc has (i, j) entry Xij − Xj (where Xj =∑n
i=1 Xij/n). Due to normality of Y , the distribution

of S given genotypes X is multivariate normal,

S ∼ N(µ,�),(3.12)

where µ = E(S) = X′Xcβ = X′
cXcβ and Var(S) =

� = σ 2X′
cXc. We denote n�̂X = X′

cXc, an estimate

of the covariance matrix of genotypes X and so µ =
n�̂Xβ and � = σ 2n�̂X . Under mutually indepen-

dent genotypes, matrix �X is approximately diagonal,

n�̂X = diag{m1(1 − m1/n), . . . ,mJ (1 − mJ /n)}, and

we provided insights on the effect of the choice of lin-

ear and quadratic statistics for this covariance struc-

ture in Section 3.2. Here we give additional results for

the general covariance structure. Similar to the previ-

ous sections, mj and mlj = ∑n
i=1 XilXij are treated as

fixed values, and for simplicity we consider the case

where mj is equal to its expected value npj and mlj is

equal to its expected value nplj , where plj = P(Xil =
1,Xij = 1).

Similar to the previous section, we consider settings

according to the variation of Y explained by the set of

SNPs. Under model (3.1) and covariance structure �X ,

the total phenotypic variation explained by the J SNPs

is

EV = Var(E[Y |X])
Var(Y )

= β ′�Xβ

β ′�Xβ + σ 2

(3.13)

≈ β ′�Xβ

σ 2

when explained variation is small. One should note that

when genotypes are not mutually independent, the total

explained variation by J SNPs is not approximately

equal to the sum of the individual explained variations

as in (3.4).
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Again we consider the two linear statistics WL1 =
w′S with wj = 1, WLp with wj = 1/

√
pj (1 − pj ) and

two quadratic statistic WQ = S′AS: WC with A = I

(C-alpha) and Hotelling WH with A = �. We note

again that we are considering the situation where the

values of mj and mlj are equal to their expected values

npj and nplj , respectively, thus, p̂j = pj and �̂X =
�X . Let U�U′ be the eigendecomposition of matrix

�X , where � = diag{λ1, . . . , λJ } consists of the eigen-

values of �X and U = {u1, . . . ,uJ } is an orthogonal

matrix constructed from corresponding eigenvectors

u1, . . . ,uJ . Based on the derivations in Section 2.2, the

following distributional results hold:

(i) W 2
L1/(σ

21′�X1) ∼ χ2
1,nc, with noncentrality

parameter nc = n
(1′�Xβ)2

σ 21′�X1
.

(ii) W 2
Lp/(σ 2w′�Xw) ∼ χ2

1,nc, with noncentrality

parameter nc = n
(w′�Xβ)2

σ 2w′�Xw
and w = (1/

√
p1(1 − p1),

. . . ,1/
√

pJ (1 − pJ ))′.
(iii) WC ∼ ∑J

j=1 λjχ
2
1,ncj

, with ncj = nλj (u
′
jβ)2/

σ 2.

(iv) WH ∼ χ2
rank(�X),nc = ∑J

j=1 I (λj > 0)χ2
1,ncj

,

with ncj = nλj (u
′
jβ)2 and nc = ∑J

j=1 nλj (u
′
jβ)2/

σ 2 = nβ ′�Xβ/σ 2 ≈ nEV .

The power of the Hotelling statistic WH again de-

pends solely on (approximate) explained variation by

the J SNPs and rank(�X) = ∑J
j=1 I (λj > 0). If two

different sets of J SNPs explain the same total phe-

notypic variation, then the power for WH is the same

for those two sets regardless of the correlation structure

between SNPs, provided the corresponding �Xs have

the same rank. This also implies that when two sets of

J SNPs explain the same total phenotypic variation,

the Hotelling statistic is more powerful for the set of

SNPs where �X has lower rank. A second conclusion

is that power of the other three statistics depends on

the covariance structure of the SNPs, �̂X , and their ef-

fects β . In fact, when two sets of J SNPs explain the

same total phenotypic variation and one of the sets con-

sists of mutually independent SNPs, the power of these

three tests for the set of independent SNPs is not neces-

sary larger than the power for another set of SNPs with

a different covariance structure. This is confirmed by

our empirical evaluations presented in supplementary

materials [Derkach, Lawless and Sun (2013a)].

4. NUMERICAL POWER COMPARISONS

We conducted extensive and novel simulation stud-

ies to examine the finite sample performance of lin-

ear and quadratic statistics. Since there is little back-

ground information suggesting what genetic scenar-

ios are most plausible, we generated data from over

10,000 different genetic models that involve varying

proportions of protective, deleterious and neutral vari-

ants, variant frequencies, effect sizes, and relationships

between variant frequencies and effect sizes. Careful

analysis of the results provides considerable insight

into the performance of different statistics. The statis-

tics considered here are the two linear statistics, WL1 =
1′S, WLp = w′S, where wj = 1/

√
pj (1 − pj ), and two

quadratic statistics WC = S′IS and WH = S′�−1S, as

discussed in Section 3.2 and Table 1. Estimation of the

pj is discussed in Sections 4.1 and 4.2 below.

We studied both quantitative and binary traits. Ta-

ble 2 describes the simulation models considered.

For each type of trait, we considered two types of

scenarios, S1 (“MAF-effect independent”) assumes

that |βj | (the size of the genetic effect) of a causal

SNP j is unrelated to pj (approximately twice the

MAF), and S2 (“MAF-effect dependent”) assumes

that |βj | is inversely related to pj . For normally

distributed quantitative traits, the MAF-effect depen-

dent models were simulated by directly specifying

the phenotypic variance explained by SNP j , EVj =
(βj

√
pj (1 − pj ))

2/σ 2, and without loss of generality

we take σ 2 = 1. We did not restrict all causal variants

to have the same direction of effect, but assumed that

the majority of the causal variants have the same di-

rection with pD = JD/JC ranging from 75% to 100%,

a reasonable assumption based on what has been re-

ported in the literature. (We also simulated models

where pC ranges from 50% to 75%; the linear statistics

performed poorly and were dominated by the quadratic

statistics, as one would expect.) Here we assume that

the genotypes of different SNPs are mutually indepen-

dent, but Section 5 considers possibly nonindependent

genotypes obtained from sequence data of the 1000

Genomes Project [1000 Genomes Project Consortium

(2010)]. We also conducted additional simulation stud-

ies examining the effect of dependency between SNPs

on power, supporting conclusions made in Section 3.3

above.

4.1 Quantitative Traits

We first considered the normal linear model in (3.1)

for which results in Section 3.2 give the power of the

different statistics. Results presentation and discussion

focus on n = 1000 and type 1 error α = 10−4. (Other

n and α values were also considered, but results are
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TABLE 2

Parameters and parameter values of simulated models for studies of quantitative or binary traits. Scenario S1 (MAF-effect independent)

assumes MAFs and effect sizes are mutually independent. Scenario S2 (MAF-effect dependent) assumes that variants with smaller MAFs

tend to have bigger effect sizes

Parameters Parameter values

n Sample size (ncase = ncontrol = n/2 for binary traits) 500, 1000 or 2000

J Total number of SNPs Unif{10,20,30,40,50}
pC Proportion of the causal SNPs Unif(0.1,1)

JC Number of the causal SNPs, an integer closest to J · pC

pD Proportion of the deleterious SNPs among the causal ones Unif(0.75,1)

JD Number of the deleterious SNPs, an integer closest to JC · pD

pP Proportion of the protective SNPs among the casual ones, 1 − pD

JP Number of the protective SNPs, JC − JD

pN Proportion of the neutral SNPs, 1 − pC

JN Number of the neutral SNPs, J − JD − JP

Quantitative traits under scenario S1 (MAF-effect independent); 10,000 independently simulated models

pj Approximately twice the MAF of SNP j Unif(0.005,0.02)

βj Regression coefficient in (3.1) of SNP j

for neutral SNPs 0

for causal SNPs Unif(0.45,0.5) or Unif(−0.5,−0.45)

(The resulting EVj s in the range 0.001 to 0.0049)

Quantitative traits under scenario S2 (MAF-effect dependent); 10,000 independently simulated models

EVj The variance explained by SNP j (EVj = β2
j pj (1 − pj ))

for neutral SNPs 0

for causal SNPs Unif(0.001,0.0025)

Binary traits under scenario S1 (MAF-effect independent); 500 independently simulated models

pj Approximately twice the MAF of SNP j Unif(0.005,0.02)

e
β
j OR of SNP j

for neutral SNPs 1

for causal SNPs Unif(2,4) or Unif(1/2,1/4)

Binary traits under scenario S2 (MAF-effect dependent); 500 independently simulated models

pj Approximately twice the MAF of SNP j Unif(0.005,0.02)

e
β
j OR of SNP j

for neutral SNPs 1

for causal SNPs C/
√

pj (1 − pj ),C = 4
√

0.005(1 − 0.005)

(The resulting ORs in the range 2 (or 1/2) to 4 (or 1/4)

qualitatively similar across tests.) The choice of α =
10−4 is to reflect the fact that testing would typically be

conducted for multiple genetic regions. Table 2 shows

the combination of factors and indicates how data from

10,000 different models were generated.

For each of the 10,000 randomly generated genetic

models we used critical values according to the exact

distributions in Section 3.1 to compute power. Specif-

ically, for each model we considered a sample of size

n = 1000 for which the mj equaled their expected val-

ues npj . Thus, p̂j = pj for each SNP and the J by

J covariance matrix � in (3.3) equals diag{npj (1 −
pj )σ

2} under both the null (β = 0) and alternative hy-

pothesis represented by the genetic model. Since n is

large, we ignored the effect of estimating σ 2 (as in

Section 3.1) and used the true value σ 2 = 1; this has

a negligible effect on power. The use of p̂j = pj de-

serves discussion, since in practice the value p̂j will

vary from sample to sample. However, they are func-

tions only of the covariates Xij and so no adjustments

to the distribution in Section 3.1 are needed. However,

the power provided by using (3.5) or (3.7) with the

pj estimated with p̂j are conditional, that is, they ap-

ply to samples with the described set of values mj .

Unconditional power is also of interest; this reflects

sampling variation in the mj (and p̂j ). Unconditional

power is calculated (or estimated) by averaging condi-

tional powers for the case where mj = npj in this sec-
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tion. In the supplementary materials [Derkach, Law-

less and Sun (2013a)] we provide some unconditional

power values. We find that differences with the condi-

tional powers are small (see Figures S6 and S7).

For visual display, Figure 1 shows the within-class

power comparisons (linear WLp vs. linear WL1, and

quadratic WH vs. quadratic WC ) of the four tests for

1000 models randomly selected from the 10,000 inde-

pendently generated models. In view of the wide vari-

ations in model parameters, powers of the tests vary

widely across the 1000 models. For each model, pow-

ers of the two linear statistics are similar and like-

wise for powers of the two quadratic statistics. More-

over, under scenario S1 [Figure 1(a)] neither statistic

within each class dominates the other across the 1000

models. However, under scenario S2 [Figure 1(b)], the

Hotelling statistic performs better than the C-alpha

statistic for almost all models, as our earlier comments

in Section 3.2 suggest. In this case, we also see that

the linear statistic using weights inversely proportional

to MAFs does not always lead to a better power even

when the assumption that rarer variants have bigger ef-

fects is in fact true here [Figure 1(b)].

We also considered simulations with sample sizes

n = 500 and 2000, to see the effect on the linear ver-

sus quadratic statistic comparison. For simplicity we

show plots for WL1 and WH ; plots for WLp and WC

are very similar. Figure 2 and Table 3 show that which

type of statistic is better depends on the sample size

and the model parameters. When n = 500, both the

FIG. 1. Within-class power comparison of the four statistics for 1000 independently generated models for studies of QUANTITATIVE

traits under (a) scenario S1 (MAF-effect independent) and (b) scenario S2 (MAF-effect dependent) as described in Table 2. The four statis-

tics are the two linear statistics WL = (w1, . . . ,wJ )′S in (2.4): “without weights” WL1 where wj ≡ 1 and “with weights” WLp where

wj = 1/
√

pj (1 − pj ), and two quadratic statistics WQ = S′AS in (2.5): the C-alpha statistic WC where A = I and the Hotelling statistic

WH where A = �−1
S . Sample size n = 1000 and type 1 error α = 10−4. The set of 1000 models presented here is a random subset of all the

10,000 models independently generated.
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FIG. 2. Between-class power comparison of the linear statistic WL1 vs. the quadratic Hotelling statistic WH for studies of QUANTITATIVE

traits under scenario S1 (MAF-effect independent). Other details see Figure 1.

linear and quadratic statistics have low power (more

than 65% of the 1000 models have power <20%; Ta-

ble 3). In that case, good power (80%) is achieved only

for those models with high proportions of causal SNPs

(among which the proportion of deleterious SNPs is

at least 75% by study design); the linear statistic is bet-

ter than the quadratic statistic. However, as n increases,

the quadratic statistic displays good power across many

models and by n = 2000 dominates the linear statis-

tic for most of the models. Similar conclusions can be

made based on results from the models simulated un-

der scenario S2 (see supplementary materials Figure

S1 [Derkach, Lawless and Sun (2013a)]).

To better understand the impact of the various model

parameters on different statistics, Figure 3 presents

power from a different perspective showing the indi-

vidual power of the linear statistic WL1 [Figure 3(a)]

and the quadratic statistic WH [Figure 3(b)] as a func-

tion of the number of causal variants JC (large scale

of the X-axis) and the number of deleterious variants

JD (small scale of the X-axis), when the total num-

ber of rare variants is J = 30 under the scenario S1.

Results for scenario S2 are in supplementary materi-

als Figure S2; results for J = 10, 20, 40 and 50 are

qualitatively similar and not shown. It is clear that the

power of both tests depends highly on the percentage of

causal SNPs in the group of SNPs investigated. For ex-

ample, among the 10,000 models giving power of 50%

or greater, the average proportion of causal SNPs (pC)

is 81% (SE = 13% and min = 42%) for the linear test

and 81% (SE = 12% and min = 50%) for the quadratic

test. The powers for the quadratic statistics vary much

less than those for the linear statistics; this is due to

the latter’s need for both pC and pD (the proportion of

TABLE 3

Breakdown of the power of the linear statistic WL1 and the quadratic Hotelling statistic WH under scenario S1 (MAF-effect independent).

Proportions of the 1000 models in Figure 2 that have power in the specified ranges. For other details see Figures 1 and 2 legends

Power range

Sample size 0–20% 20–40% 40–60% 60–80% 80–100%

Proportion of the models in power range; WL1

n = 500 0.66 0.11 0.06 0.06 0.11

n = 1000 0.46 0.11 0.08 0.07 0.28

n = 2000 0.30 0.08 0.06 0.07 0.49

Proportion of the models in power range; WH

n = 500 0.68 0.14 0.09 0.07 0.02

n = 1000 0.32 0.13 0.10 0.10 0.35

n = 2000 0.10 0.07 0.06 0.07 0.70
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FIG. 3. Individual power of (a) the linear statistic WL1 and (b) the quadratic Hotelling statistic WH for studies of QUANTITATIVE traits

under scenario S1 (MAF-effect independent) for models with J = 30 total number of rare variants. The large scale of the X-axis shows the

number of causal variants in the range of JC = J · pc = 30 · 10% = 3 to JC = 30 · 100% = 30. The small scale of the X-axis shows the

number of deleterious variants in the range of JD = JC · pD = JC · 75% to JD = JC · 100%, depending on the actual number of causal

variants in a model. The 2005 models shown here are the models with J = 30 among the 10,000 models generated as described in Table 2.

Sample size n = 1000 and type 1 error α = 10−4.

deleterious SNPs among the causal ones) being close

to 1 in order to achieve high power.

To examine the effect of correlation between SNPs

on power, we conducted additional simulation studies.

Briefly, we considered two types of correlation scenar-

ios (D1: correlation among casual variants and D2: cor-

relation between causal and neutral variants) and com-

pared power of the four tests (WL1
,WLp ,WC,WH ) to

the independence case, under two different assump-

tions of the corresponding genetic effects (E1: total

explained variation by all causal variants is fixed and

E2: the regression coefficient βj s are fixed). Under

E1, neither correlation structure affects power of WH ;

however, D1 increases power of the other three tests

while D2 can increase or decrease power. Under E2,

D1 increases power of all four tests; D2 once again

can increase or decrease power. Details of the simu-

lation study design and results (Figures S8–S11) are in

the supplementary material [Derkach, Lawless and Sun

(2013a)].

4.2 Binary Traits

Here, we provide detailed numerical results for case–

control studies involving a binary trait Y , where a nor-

mal approximation for S might not be adequate. As

in Section 4.1, we examine the performance of WL1,
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WLp , WC and WH . We assume that the distribution of

Yi given Xi = (Xi1, . . . ,XiJ )′ is Bernoulli with

Prob(Yi = 1|Xi) = exp(β0 + ∑
βjXij )

1 + exp(β0 + ∑
βjXij )

,(4.1)

and that the Xij s in the population are mutually in-

dependent Bernoulli variables with P(Xij = 1) = pj

for j = 1, . . . , J . We first used asymptotic distributions

for the linear and quadratic statistics provided in Sec-

tion 2.3 to obtain p-values, and we evaluated type I er-

ror rate and obtained empirical critical values for each

of the four tests (supplementary materials Table S1). In

this case the test statistics are based on (2.3) with the

covariance matrix given by (A.3) in the supplementary

materials [Derkach, Lawless and Sun (2013a)]. Un-

like the quantitative traits above, the SNP genotypes

Xij here vary from sample to sample and thus so do

the values p̂j (j = 1, . . . , J ). Supplementary Table S1

shows that normal approximations are satisfactory for

the linear statistics but chi-square approximations for

the quadratic statistic produce p-values (and thus crit-

ical values) that are much too conservative. We con-

ducted simulations to assess power under different sce-

narios, using empirical critical values for the quadratic

statistics. The simulation of case–control data is dis-

cussed in the supplemetary materials [Derkach, Law-

less and Sun (2013a)]. Given the amount of compu-

tation required, we considered 500 models randomly

generated under each of the two MAF-effect scenarios

described in Table 2.

Results in Figure 4 are slightly different from those

in Figure 1 for quantitative traits. Under scenario S1

FIG. 4. Within-class power comparison of the four statistics for 500 independently generated models for studies of BINARY traits under (a)

scenario S1 (MAF-effect independent) and (b) scenario S2 (MAF-effect dependent) as described in Table 2. The four statistics are the two lin-

ear statistics WL = (w1, . . . ,wJ )′S in (2.4): “without weights” WL1 where wj ≡ 1 and “with weights” WLp where wj = 1/
√

pj (1 − pj ),

and two quadratic statistics WQ = S′AS in (2.5): the C-alpha statistic WC where A = I and the Hotelling statistic WH where A = �−1
S .

Sample size n = 1000 and type 1 error α = 10−4.
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FIG. 5. Between-class power comparison of the two statistics for 500 independently generated models for studies of BINARY traits under

(a) scenario S1 (MAF-effect independent) and (b) scenario S2 (MAF-effect dependent) as described in Table 2. The linear statistic is WL1

and the quadratic statistic is C-alpha statistic WC . For other details see Figure 4 legends.

[Figure 4(a), left panel], neither of the two linear statis-

tics dominates the other, which is similar to the case

for quantitative traits [Figure 1(a), left panel]. Between

the two quadratic statistics [Figure 4(a), right panel],

WC is more powerful than WH ; this is consistent with

the findings of Basu and Pan (2011) discussed in Sec-

tion 3.2. However, the systematic power difference be-

tween WC and WH is absent under scenario S2 [Fig-

ure 4(b), right panel]. This supplements the picture pro-

vided by Basu and Pan (2011), who did not consider

cases where genetic effects are inversely proportional

to MAFs, and it supports our earlier comment that the

relative performance of WC and WH depends on the

relationship between SNP effects and MAFs.

Under the MAF-effect dependent assumption, the

linear statistic WLp appears to be consistently better

than WL1 across the 500 models [Figure 4(b), left

panel]. However, we emphasize that the apparent bet-

ter power for WLp is mainly driven by the use of true

variant frequency pj values in the weight specification,

wj = 1/
√

pj (1 − pj ). These would be unavailable to

us in a real situation. In practice, how to estimate pj

can have major impacts on the validity of the test as

well as on power. Some authors have suggested using

the control sample only [e.g., Madsen and Browning

(2009)], but it is not clear if the standard permutation-

based approach for p-value estimation as used here

is still valid. An additional concern for this approach

is the possibility of a deleterious effect. In that case,

which subsample is the proper “control” sample is not

clear. If both cases and controls were used to estimate

pj , p̂j would tend to be bigger than pj for a causal

SNP j because of the oversampling of cases, while

p̂j ′ is expected to be pj ′ for a neutral SNP j ′. Con-

sequently, using wj = 1/
√

p̂j (1 − p̂j ) downweights a

causal SNP compared to a neutral one with the same

frequency, resulting in loss of power. This is clear from

the results shown in supplementary materials Figure S3

for both the MAF-effect independent and dependent

scenarios. The practical use of weights, particularly for

linear statistics, therefore, must be carefully considered

in the case–control setting.

Figure 5 compares the power of WL1 and WC across

the 500 models. Under scenario S1 [Figure 5(a)], the

quadratic statistic has better power than the linear

statistic for the majority of the models. Under scenario

S2 [Figure 5(b)], among the models with power less

than 50%, the quadratic statistic has better power, but

among the models with higher power, the linear statis-

tic is more often better.

5. APPLICATION TO THE GAW17 DATA

The numerical studies in the previous section fo-

cused on mutually independent SNPs, although the

tests themselves do not require this [see supplemen-

tary materials (Derkach, Lawless and Sun (2013a)] for

additional simulation studies on dependent SNPs). To

consider settings where this might not be so along with

real sequence data, we examined real human sequence

data [1000 Genomes Project Consortium (2010)] that

were used to generate the GAW17 phenotype data

[Almasy et al. (2011)] introduced in Section 1.

We consider here quantitative trait Q2 which is influ-

enced by 72 SNPs in 13 genes but not by other covari-

ates; recall from Section 1 that traits were simulated,

so it is known which SNPs are causal. To assess the

performance of association statistics, we carried out
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“pseudo power” comparisons by determining the p-

values for each of four test statistics, across each of

the 13 genes, using the 200 replicate samples avail-

able (same genotype data but different phenotype data,

independently simulated, based on the true genotype–

phenotype association model).

We used data from the n = 321 unrelated Asian sub-

jects (Han Chinese, Denver Chinese and Japanese) and

excluded SNPs that had MAF >5% or were monomor-

phic within the Asian sample. Gene VNN1 had no

causal rare variant but it was kept in the analysis to

serve as a negative control. The threshold MAF ≤5%

does not reduce the number of causal SNPs much (70

of the 72 causal SNPs have MAF ≤5%), but it reduces

the number of neutral SNPs in a gene and therefore in-

creases power.

For each of the 200 replicates, we calculated

permutation-based p-values for the four statistics,

WL1, WLp , WC and WH (see Table 1). We estimated

power for α = 0.05 by the proportion of the 200 repli-

cates for which the empirical p-values were ≤ 0.05 for

each test. For each sample, gene and statistic combi-

nation, the p-value for the null hypothesis of no asso-

ciation was obtained from the permutation distribution

by randomly generating 10,000 permutations of each

replicate sample.

The choice of the liberal type 1 error α = 0.05 was

based on the low power of detecting genetic effects

of sizes represented by the simulation models, with

a sample of 321 people. Table 4 summarizes the rare

variants for the 13 genes and gives the empirical power

for each statistic. Only the first group of 9 genes have

maximum power above 10%.

Results in Table 4 are consistent with our previous

conclusions: (i) linear tests with and without weights

based on MAF vary in relative power but not substan-

tially; (ii) quadratic statistics WC and WH also have

slightly variable relative power; (iii) between-class per-

formance is highly variable. As expected, linear statis-

tics outperform quadratic statistics if the proportion of

causal variants is not too low (e.g., genes SIRT1 and

SREBF1), but the pattern can be reversed if this is not

the case, even when the effects in this data are all in the

same direction (e.g., BCHE and RARB).

6. DISCUSSION AND RECOMMENDATIONS

We have reviewed and studied tests of association

between rare variants and phenotypes within a unified

TABLE 4

Power of the four test statistics applied to the GAW17 sequence data provided by the 1000 Genomes Project. The 13 genes presented here

are all the causal genes for simulated quantitative trait Q2. VNN1 does not have causal variants because one of the two causal variants has

MAF 26% and the other is not polymorphic within the Asian sample (n = 321). VNN1 is kept in the analysis to serve as a negative control.

All causal variants were designed by GAW17 to have the same direction of effects (minor alleles were associated with higher Q2 values). The

average genetic effect is the average of regression coefficient β values of the causal variants used to simulate Q2 (effects are independent of

populations by the GAW17 design). Genes are ordered according to the maximum power of the four tests which is bolded. Powers shown

vary considerably due to inherent factors and estimation based only on 200 replicates, and the 13 genes are separated into different groups

SNP distribution Ave. MAF of Avg. effect of Power

Gene JC,JN JC,JN JC Linear WLp Linear WL1 Quadratic WC Quadratic WH

9 genes for which the maximum power is 10% or more

SIRT1 4, 7 0.27%, 0.22% 0.71 0.44 0.40 0.25 0.39

BCHE 5, 10 0.22%, 0.19% 0.72 0.29 0.35 0.43 0.39

PDGFD 3, 6 0.78%, 0.65% 0.74 0.29 0.43 0.45 0.35

SREBF1 4, 5 0.39%, 0.40% 0.52 0.49 0.47 0.18 0.28

GCKR 1, 0 1.21%, NA 0.38 0.25 0.25 0.25 0.25

RARB 1, 5 0.78%, 0.90% 0.64 0.06 0.03 0.07 0.14

PLAT 4, 7 0.39%, 0.49% 0.68 0.13 0.13 0.06 0.13

VLDLR 4, 6 0.19%, 1.64% 0.75 0.12 0.08 0.06 0.09

VNN3 2, 2 0.16%, 2.57% 0.37 0.03 0.10 0.06 0.04

3 genes for which the maximum power is 10% or less

INSIG1 3, 1 0.16%, 3.42% 0.20 0.06 0.06 0.04 0.03

LPL 1, 4 0.16%, 0.23% 0.73 0.02 0.03 0.06 0.05

VWF 1, 3 0.16%, 1.90% 0.34 0.02 0.01 0.03 0.01

1 gene for which there is no polymorphic rare causal variants in the Asian sample

VNN1 0, 3 NA, 0.31% NA 0.02 0.02 0.04 0.05
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framework which gives theoretical insights about the

performance of the methods (Table 1). Tests can have

greatly varying power depending on the total number

of rare variants, the numbers of deleterious, protec-

tive and neutral variants, the effect directions and the

relationship between the effect sizes and the MAFs

of causal variants. When substantial numbers of both

deleterious and protective SNPs are present, quadratic

test statistics are much better. They can also outper-

form linear statistics in settings where causal SNPs are

all deleterious (or all protective), but a substantial frac-

tion of the SNPs are not associated with the pheno-

type. However, our results also indicate that power to

detect moderate levels of association is not high un-

less sample sizes are very large or a high proportion

of the chosen SNPs are causal. Sequencing errors and

other caveats concerning the data will further decrease

power. Cases where power is substantial for smaller

studies are predominantly ones where SNPs are almost

all deleterious or all beneficial, and it is the linear test

statistics that achieve highest power. Consequently, the

definition of a chromosomal region and selection of

SNPs within the region are critical to statistical infer-

ence regardless of the specific test used. In practice, a

chromosomal region can be a gene, coding region of

a gene or other types of genetic unit (e.g., a group of

SNPs that are in moderate or strong linkage disequilib-

rium of each other); selection of SNPs within a region

can be also based on relevant biological information

since not all SNPs are equal a priori (e.g., some SNPs

are believed to be more important than others based

on functional genomic annotation). Different choices

could lead to different statistical power [e.g., King,

Rathouz and Nicolae (2010), Derkach et al. (2014)].

Our work complements that of Basu and Pan (2011),

and a brief comparison is useful. They found similar

results to ours in simulation studies for case–control

scenarios, concerning the performance of linear statis-

tics. Among the quadratic statistics, they found that

the C-alpha/SSU type statistic WC = S′IS was gen-

erally the best and superior to the Hotelling statistics

S′�−1S. However, their simulation scenarios did not

include cases where larger causal effects are associated

with SNPs having smaller MAFs. Our numerical stud-

ies [scenario S2 under the MAF-effect dependent as-

sumption in Table 2; Figure 1(b) for quantitative traits

and Figure 4(b) for binary traits] and investigation of

GAW17 data (Table 4) indicate the importance of the

MAF-effect independent or nonindependent assump-

tion on the choice of a good test statistic.

As an approach to rare variant testing in the ab-

sence of strong prior information, we support the rec-

ommendation of Basu and Pan (2011) to perform tests

using both linear and quadratic statistics. In Derkach,

Lawless and Sun (2013b) we investigated tests based

on Fisher’s method and the minimum-p method [e.g.,

Owen (2009)] for combing p-values from linear and

quadratic statistics. Such tests were shown to be robust

across the wide range of models considered here, in the

sense of achieving power that is close to that of the bet-

ter of a linear and quadratic statistic in a given setting.

Comparisons were also made with the recent SKAT-O

statistic of Lee, Wu and Lin (2012), which considers

the minimum p-value across a class of statistics. The

overall conclusion is that the Fisher’s method outper-

forms the individual linear and quadratic tests as well

as the minimum p-value approach, when the majority

of the causal variants has the same direction of effect;

however, the minimum p-value is better if (approxi-

mately) half of the causal variants are deleterious and

the other half are protective.

It is beyond our scope here, but an empirical assess-

ment of test statistics that involve covariate adjustment

would be valuable. In addition, accurate and compu-

tationally efficient methods of obtaining p-values de-

serve attention. Parametric bootstrap simulation [e.g.,

Lin and Tang (2011)] can be used when sampling of

individuals is random, but when it is trait-dependent

matters are more complicated. In the case–control sim-

ulation for binary traits, for example, the sampling is

effectively for Xi and other covariates vi given Yi .

Methods that avoid detailed modeling of the distribu-

tion of (Xi, vi ) are desired. Empirical assessment is

also difficult for family based association studies when

samples are correlated. We hope to report on this in a

future communication.

Finally, we reiterate our remarks made in Section 1

concerning the potential effects of sequencing errors.

A realistic assessment of their scope and impact is

called for.

ACKNOWLEDGMENTS

The authors would like to thank the Genetic Anal-

ysis Workshop 17 (GAW17) committee and the 1000

Genomes Project for providing the GAW17 applica-

tion data, and Dr. Andrew Paterson for insightful dis-

cussions. This work was supported by the Natural Sci-

ences and Engineering Research Council of Canada

(NSERC) and the Canadian Institutes of Health Re-

search (CIHR) grants to LS, NSERC to JFL, the



320 A. DERKACH, J. F. LAWLESS AND L. SUN

Ontario Graduate Scholarship (OGS) and the CIHR

Strategic Training for Advanced Genetic Epidemiol-

ogy (STAGE) fellowship to AD, University of Toronto.

Conflict of Interest: None declared.

SUPPLEMENTARY MATERIAL

Pooled Association Tests for Rare Genetic Vari-

ants: A Review and Some New Results (DOI: 10.

1214/13-STS456SUPP; .pdf). The supplementary ma-

terials include derivation of the permutation distribu-

tion of S for general traits, analytical results and simu-

lation details for study of binary traits, simulation de-

tails for study of the effect of correlation between SNPs

on power, and an additional 1 table and 11 figures for

the studies of type 1 error rates and power for both

quantitative and binary traits, for both MAF-effect in-

dependent and dependent scenarios, and for both inde-

pendent and dependent rare variants.
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