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Pooled CRISPR interference screening enables
genome-scale functional genomics study in
bacteria with superior performance
Tianmin Wang1, Changge Guan1, Jiahui Guo1, Bing Liu2, Yinan Wu1, Zhen Xie3,4,

Chong Zhang 1,4 & Xin-Hui Xing1,4

To fully exploit the microbial genome resources, a high-throughput experimental platform is

needed to associate genes with phenotypes at the genome level. We present here a novel

method that enables investigation of the cellular consequences of repressing individual

transcripts based on the CRISPR interference (CRISPRi) pooled screening in bacteria. We

identify rules for guide RNA library design to handle the unique structure of prokaryotic

genomes by tiling screening and construct an E. coli genome-scale guide RNA library

(~60,000 members) accordingly. We show that CRISPRi outperforms transposon sequen-

cing, the benchmark method in the microbial functional genomics field, when similar library

sizes are used or gene length is short. This tool is also effective for mapping phenotypes to

non-coding RNAs (ncRNAs), as elucidated by a comprehensive tRNA-fitness map con-

structed here. Our results establish CRISPRi pooled screening as a powerful tool for mapping

complex prokaryotic genetic networks in a precise and high-throughput manner.
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T
o fully exploit the boosting accumulation of bacterial
genomes to provide valuable insights in microbiology and
engineering of microbial cells, it is important to develop

experimental approaches for gene-phenotype mapping at the
genome level. Considering the thousands of genes in
diverse microbes, such experimental methods need to be cost-
effective and high-throughput, enabling profiling of genome-wide
gene sets under multiple conditions in parallel.

Three categories of methods have been established for such
purposes. The first makes use of the arrayed collection of single-
gene deletion strains, which has been constructed for several
model microorganisms, such as Escherichia coli1 and Bacillus
subtilis2. This approach provides a gold standard for under-
standing the genomics of these microorganisms. However, their
applicability to a wide range of species is problematic, because
arrayed collections of single-gene knockouts are available for only
a handful of species and the manipulation of such libraries
requires expensive automation system. An alternative approach
depends on recombination and subsequent pooled screening,
such as trackable multiplex recombineering (TRMR)3 or
CRISPR-enabled trackable genome engineering (CREATE)4. Such
strategies also face similar problems when applied to a wider
range of microorganisms, as the recombineering system has been
established in only a limited number of strains. The most widely
applied approach in this field depends on random transposon
insertion-derived gene knockout libraries (Tn-seq)5. Tn-seq
achieves quantitative gene-phenotype mapping by mixing a
large number of transposon mutants and monitoring their
abundance within a competitive growth culture with next-
generation sequencing (NGS). Despite many successful exam-
ples6–8, Tn-seq suffers from the random insertion of transposons
into the chromosome, resulting in a bias toward genes with long
coding regions and hence poor statistical robustness when
assigning functions to short genes, such as genes encoding small
but functionally important ncRNAs9,10. In addition, Tn-seq is
only applicable to genome-wide rather than a more specific
library, giving rise to the increased labor and cost when only a
subset of genes is of interest.

To address the limitations of established methods in microbial
functional genomics, we turned to recently developed CRISPR-
Cas9 technology, which can be used for versatile genome editing
or expression modulation guided via a programmed single guide
RNA (sgRNA) in many organisms11–13. This system provides
several advantages. First, CRISPR-Cas9 activity has been con-
firmed in diverse bacterial species14–17, as well as archaea18 in
only 5 years since its first introduction as a genome editing tool in
prokaryotes13, thereby providing a broadly adoptable platform for
theoretically any prokaryote. Second, the target-coding region in
sgRNAs consists of only ~20 nucleotides, compatible with mas-
sively parallel microarray oligonucleotide synthesis (MOS) and
NGS, which simplifies the procedure for constructing either an
sgRNA library using MOS or preparing the NGS library using
PCR reactions. Finally, compared with Tn-seq, the sgRNA library
can be designed uniformly across the bacterial chromosome with
minimal bias towards longer genes.

Previously, CRISPR-Cas9-based functional genomics screening
in a pooled format has only been demonstrated in mammalian cell
lines19. To the best of our knowledge, whether a similar approach
works as well in prokaryotic organisms has not been determined.
In addition, considering the fundamental differences of prokar-
yotic and eukaryotic genomes20, it is difficult to directly apply the
rules for sgRNA library design and pooled screening learned from
previous studies performed in eukaryotic cells to microorganisms.
Here we describe a pooled functional genomics study platform in
E. coli as a proof-of-concept for prokaryotic organisms based on
the CRISPR interference (CRISPRi) system, a CRISPR-Cas9

derivative using a nuclease-activity-free Cas9 mutant protein
(dCas9) to repress transcription. We first perform a tiling
screening where we test the activity of 2,281 sgRNAs targeting 44
genes with known phenotypes. Based on this experiment, we
indirectly (at the functional level) learn the activity positioning of
sgRNAs in coding regions where CRISPRi maximally changes the
expression of endogenous genes, as well as rules for a minimal
sgRNA number per gene to maintain reliable hit gene calling. This
results in an algorithm to further design a genome-scale sgRNA
library targeting each protein-coding or RNA-coding gene in the
E. coli genome. To make use of this library (~60,000 sgRNAs), we
screen for essential, auxotrophic, as well as chemical tolerance-
related genes. Notably, we find the CRISPRi functional genomics
method to be superior to Tn-seq in terms of essential gene
identification, especially when the length of genes is short or the
library size is similar. We also elucidate the power of this method
to generate hypotheses regarding the functions of ncRNAs. These
experiments demonstrate that CRISPRi screening platform
represents a transformative tool for defining gene function in a
cost-effective and high-throughput manner for potentially any
prokaryotic organism.

Results
Tiling library screening defines rules for sgRNA design. The
fundamental differences between eukaryotic and prokaryotic
genomes, as well as their transcriptional regulation21, hampers
the direct application of the rules drawn from previous eukaryotic
library design to prokaryotes. For example, chromatin accessi-
bility and nucleosome occupancy, which are unique structures in
eukaryotic genomes20, have a substantial impact on sgRNA
activity22,23. Moreover, with current CRISPRi sgRNA library
design guidelines in eukaryotic cells, a target site is selected
around the transcription start site (TSS)23. However, many genes
in prokaryotic genomes are organized in operons co-transcribed
as polycistronic mRNA, where a common promoter drives the
transcription of all genes. In these cases, directing the CRISPRi
complex to the promoter region is expected to repress the tran-
scription of the whole operon, rendering the method unable to
identify individual genes responsible for the investigated
phenotype.

Considering the abovementioned factors, to establish rules for
sgRNA design in prokaryotic (E. coli here) functional genomics
pooled screening, in the first step, we sought to construct an
sgRNA library targeting genes for which a knockout produces a
known and easily selectable phenotype to perform a tiling
screening. To this end, we checked the Keio library1 for
auxotrophic genes in minimal medium. All genes thus identified
were cross-checked to verify normal growth in Luria-Bertani (LB)
broth1, and their operon structures were determined. We selected
genes transcribed as monocistronic mRNAs with impaired growth
in MOPS medium to generate Library I, which consisted of 22
candidates. We also selected a series of genes residing in operons
transcribed as polycistronic mRNAs that confer auxotrophy in
MOPS medium, as well as all their co-transcribed genes without
relevant phenotypes, to generate Library II, which consisted of 22
genes from nine operons with one auxotrophic gene each. Genes
in these libraries are listed in Supplementary Table 1. Up to
50 sgRNAs targeting the non-template strand of the open reading
frame (ORF) were designed for each gene. We also included 400
negative control sgRNAs without any off-target hit in E. coli
genome as Library NC. All designed sgRNAs are listed in
Supplementary Data 1. We subsequently prepared this library with
2281 members by MOS and incorporated the PCR-amplified
library into an optimized sgRNA expression vector that has
sustainable gene repression activity (see Methods).
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We transformed the sgRNA library by electroporation into
E. coli strain MCm (a K12 MG1655 derivative with an integrated
chloramphenicol-resistance cassette) carrying pdCas9-J23111.
We performed screening with MOPS medium as the selective
condition and LB broth as the control condition throughout a
period of ten cell doublings. The change (selective vs. control
conditions) in the relative abundance of each sgRNA (sgRNA
fitness) in the final culture was profiled via NGS. Based on the
fitness of sgRNAs for each individual gene, the quantitative
estimation of genotype-phenotype association (median sgRNA
fitness) was calculated and the statistical significance was
determined by comparison with negative control sgRNAs
(Fig. 1a). An ~80% mapping ratio and good biological replicate
agreement (Supplementary Fig. 1) suggested that the screening
procedure was sufficiently reliable. We found that the majority
(21/31) of genes known to be auxotrophic could be recovered
(Supplementary Fig. 2). Meanwhile, only one gene unrelated to
auxotrophy was identified as a false positive (Supplementary
Fig. 2). These results indicate that our approach is not only highly
sensitive but also highly specific for high-throughput genotype-
phenotype association. The specificity issue is especially impor-
tant considering the potential polar effect on neighboring genes of
CRISPRi17 when targeting genes transcribed as polycistronic
mRNA. The gene fitness profile of each operon in Library II is
shown in Supplementary Fig. 3.

With the dataset produced from the screening, we looked for
an effect of sgRNA location within an ORF on their activities. We
combined sgRNAs from Library I whose corresponding genes
were shown to be true positives, thus constructing a “functional”
sgRNA set (16/22 genes, 468 sgRNAs). The absolute values of
sgRNA Z scores (see Methods) are a reasonable metric to evaluate
their activities. We categorized these sgRNAs into subgroups
according to their relative position along the ORF and observed
that only the subgroup of sgRNAs located within the first 5% of
the ORF proximal to the start codon exhibited enhanced activity
(Fig. 1b). This was consistent with previous reports24 but
provided better resolution.

To define the minimal number of sgRNAs needed per gene for
reliable hit-gene calling, we used a computational sampling
approach. Considering the position-dependent sgRNA activity
observed above, for each gene, we included X sgRNAs most
proximal to the start codon, giving rise to 6 sgRNA subsets (X=
3, 5, 10, 15, 20, 30). We then recalculated the fitness for each gene
based on the sampled sgRNA subset. This sampling strategy is
termed as “position”, in contrast to “random” method to select
sgRNA subset. Applying these two methods to 16 true positive
genes in Library I, we determined that 10 sgRNAs/gene is
sufficient to pick out auxotrophic genes in competitive growth
over 10 doublings (Fig. 1c). In this process, we also observed that
the “position” method generally outperformed random sgRNA
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Fig. 1 Overview of this work. a Proof-of-concept demonstration of the CRISPRi pooled screening for high-throughput functional genomics in E. coli. An

sgRNA library targeting genes of interest is synthesized on a DNA microarray. Oligonucleotides are amplified and cloned into expression plasmids,

transformed into E. coli expressing dCas9 protein, resulting in cell libraries. The cell libraries are grown under selective and control conditions. NGS libraries

are constructed based on the extracted plasmids to determine the log2 change of each sgRNA between the selective and control conditions (sgRNA

fitness). The sgRNA fitness distribution (red histogram) of each gene is compared with that of control sgRNAs (no target site in the E. coli genome; gray

histogram) to evaluate the extent to which this gene is associated with relevant phenotypes (selective conditions). In the first part of this work, we

designed a tiling sgRNA library composed of 2281 members targeting 44 genes with known phenotypes to evaluate the activities of these sgRNAs. b The

absolute values of the Z scores for each sgRNA targeting the true positive genes were extracted, and the distribution of each group (categorized via

position in the ORFs) against all 468 sgRNAs was quantified by a two-tailed MWU test. Triple asterisks indicate P < 0.01. For clarity, only sgRNAs with

absolute Z scores of 0–4 were plotted. c The minimal number of sgRNAs per gene for reliable hit-gene calling. Results are shown for sampling of 3, 5, 10,

15, 20, and 30 sgRNAs for each gene (16 true positive genes in Library I). Two algorithms (position (Supplementary Fig. 4, see Methods) and random)

were applied to determine the priority of sgRNA selection during sampling. Results are presented as box plots of the −Log10(P value) (MWU test) for the

genes recalculated with the sampled sgRNA subset. Dashed line refers to P= 0.01. d In the second part of this work, we designed a genome-scale sgRNA

library for E. coli based on the rules learned from the tiling experiment and performed screening experiments to test our methods
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selection (Fig. 1c) when the available sgRNA subset was small.
Therefore, we further optimized our hit-gene calling algorithm by
searching for the sgRNA subset with the best statistical
significance based on position priority (Supplementary Fig. 4).

Design and preparation of the genome-wide sgRNA library.
The tiling CRISPRi screening provided a set of rules enabling us
to design a high-quality genome-scale sgRNA library (Fig. 1d).
Based on the result that 10 sgRNAs/gene were sufficient for
reliable hit-gene calling and there was an increase in statistical
significance if more sgRNAs were available, we chose a library
size of 15 sgRNAs/gene to ensure robust performance for genes
with moderate phenotypes. Moreover, the result of active sgRNA
positioning resulted in our selection of as many sgRNAs as
possible from within the first 5% of the ORF. In addition, for
genes with multiple copies in the genome, we used the BLASTN
program to categorize genes with highly similar sequences into
clusters (Supplementary Data 2) and designed sgRNAs to targe-
t all members of a cluster. Hence, genes in one cluster are
regarded as functionally identical. We designated this approach as
the “cluster” strategy. Following these rules, we designed a
genome-scale CRISPRi sgRNA library consisting of
55,671 sgRNAs (Supplementary Data 3 and 4), as well as 400
negative control sgRNAs. Based on a strict off-target quality
control threshold, we successfully designed at least one sgRNA for
98.6% of 4140 protein-coding genes and 79.8% of 178 RNA-
coding genes. For genes with at least three sgRNAs, these per-
centages were 96.8% and 48.9%, respectively (Table 1). A histo-
gram of the number of sgRNAs per gene is shown in
Supplementary Fig. 5. The coverage of genes at the genome level
in our CRISPRi method significantly exceeds those reported for
Tn-seq with similar library size, which is generally around 80%
for protein-coding genes25,26. This comparison is still true if we
assume that there are ~300 essential protein-coding genes (~7%
of all protein-coding genes) that cannot be covered by transposon
insertion. This difference is mainly derived from the random and
even biased insertion of transposons into the chromosome in Tn-
seq, in contrast to the uniform distribution of a synthetic sgRNA

library across the chromosome (Fig. 2, using the Tn-seq dataset
from25). As reported previously25, the transposon insertions are
more densely distributed near the origin of replication but are
sparse near the terminus (Fig. 2). Moreover, we noted the absence
of transposon insertions within several chromosomal regions of
up to 10 kb, whereas CRISPRi libraries can be designed to cover
such regions that Tn-mutagenesis hits at low frequency (Fig. 2).

It is important to minimize the overrepresented or over-diluted
members during library preparation, because the former might
skew the population, wasting the sequencing capacity, and the
latter might lead to an increase in statistical noise. To this end, we
profiled the synthetic plasmid sgRNA library after transformation
into the host cell (two biological replicates) via NGS. The results
indicated that transformation of plasmids into the host cell with
roughly 20-fold coverage was sufficient, as the library profile
differed minimally before and after transformation (Table 1,
Supplementary Fig. 6). Moreover, the relative abundance of the
majority of sgRNAs (>80%) and genes (median sgRNA read
count, >93%) is kept within 10-fold range (Supplementary Fig. 6),
supporting the distribution uniformity of the synthetic library.

Screening experiments using the genome-wide sgRNA library.
We used the genome-wide sgRNA library to perform screening
experiments to test the reliability of our method (Table 2). The
experimental set-up is schematically demonstrated in Supple-
mentary Fig. 7. Briefly, we transformed the library into E. coli cells
with (selective) and without (control) dCas9 expression to
ascertain the essential gene set, using this as a benchmark to
compare method performance with Tn-seq. The dCas9 expres-
sion group was then cultivated to OD600 ~ 1 and used as the seed
to carry out additional screenings in minimal medium and under
several stress conditions. All experiments were carried out with
two biological replicates. The mapping ratio of sequencing reads
to the in silico library (Supplementary Table 2), as well as the
good agreement between replicates (Supplementary Fig. 8) con-
firmed the reliability of these experiments. The comparison of
auxotrophic gene fitness between this experiment and the tiling
library screening showed that our method is highly reproducible

Table 1 Summary of genome-wide sgRNA library metrics

4140 protein-coding genes In silico Plasmid NC1a NC2a

Genes with at least 1 sgRNA ≥20 reads (ratio vs. all genes %) 4084 (98.6) 4079 (98.5) 4080 (98.6) 4081 (98.6)

Genes with at least 3 sgRNAs ≥20 reads (ratio vs. all genes %) 4006 (96.8) 3999 (96.6) 3994 (96.5) 3996 (96.5)

178 RNA-coding genes In silico Plasmid NC1 NC2

Genes with at least 1 sgRNA ≥20 reads (ratio vs. all genes %) 142 (79.8) 142 (79.8) 139 (78.1) 139 (78.1)

Genes with at least 3 sgRNAs ≥20 reads (ratio vs. all genes %) 87 (48.9) 86 (48.3) 86 (48.3) 85 (47.8)

a Transformation with 20-fold coverage results in two biological replicates (NC1 and NC2)
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(Supplementary Fig. 9). The gene and sgRNA fitness datasets for
each phenotype are shown in Supplementary Data 5–10. The
sgRNA activity analysis based on the essential gene dataset sup-
ported the conclusion that only the sgRNA subgroup located within
the first 5% of the coding region exhibited enhanced activity
(Supplementary Fig. 10). Moreover, 91.1% of sgRNAs showed sig-
nificant activity (using Z score= 2 as the threshold), indicating that
the majority of sgRNAs in the library are highly active.

CRISPRi screening to assign gene essentiality. We first inves-
tigated the protein-coding genes that, when repressed, caused a
reduction in the number of E. coli cells over the course of
CRISPRi screening in LB broth and compared the result with the
essential gene set of the Keio collection1,27 (Fig. 3a). Among 313
genes determined to be essential gene candidates during the
construction of the Keio collection (Supplementary Data 11,
derived from the EcoCyc database), 62.0% have a fitness value

below –6 (the threshold at which cells show no doubling in our
experiment, see Methods; these genes are tagged in Supplemen-
tary Data 11), and 93.0% represent hit genes that impair cell
growth significantly when their expression is knocked down
(FDR= 5%), indicating the method is highly sensitive. The
observed weaker phenotype found in our CRISPRi experiments in
contrast to the lethal phenotype after knockout may be derived
from the non-uniform distribution of sgRNA activities (Fig. 1b,
Supplementary Fig. 10). The sgRNAs with poor activities give rise
to residual expression of target gene, thereafter resulting in overall
weaker phenotype in contrast to gene knockout method. GO
analysis suggested that the hit genes identified by CRISPRi
screening are mainly related to fundamental biological processes,
such as translation, transcription, cell membrane or wall bio-
synthesis (Supplementary Fig. 11), further indicating the relia-
bility of this method.

To assess the false positive issue that may occur because of
polycistronic operons (Supplementary Fig. 12 presents the

Table 2 The phenotypes studied in this work

Phenotype Selective condition Control condition

Essentiality dCas9, LB Empty plasmid, LB

Auxotrophy MOPS LB

L-Trp biosynthesis 0.5 g/L casamino acid, MOPS LB

Furfural tolerance 0.4 g/L furfural, MOPS initial, see Supplementary Fig. 7

Isobutanol tolerance 4 g/L isobutanol, MOPS initial, see Supplementary Fig. 7
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rationale for the forward polarity), we checked the operon
structure of all growth-impairing genes identified via CRISPRi
and tagged those with a downstream Keio essential gene(s) in one
polycistronic operon as a false positive (Fig. 3a), which was the
case for 8.0% of all hits. This result suggests that polycistronic
operons result in moderate interference with our method at the
genome level, at least in the essential gene case. Even though,
cautions are still needed to cope with polycistronic operons via
CRISPRi method. Orthogonal methods are important to provide
additional information. Another interesting observation is that,
the forward polar effect of CRISPRi in polycistronic operons does
not always hold true. Using all essential genes suggested by Keio
collection with significant growth defect phenotype in CRISPRi
screening (FDR<0.05 and fitness<0) as probes, we collected 47
polycistronic operons. The non-essential counterparts upstream
of these probing essential genes in the same operon were expected
to exhibit growth defect phenotype due to the forward polar effect
(Supplementary Fig. 12). However, 35% of them presented no
phenotype in CRISPRi screening (Supplementary Fig. 13, Sup-
plementary Table 3). This result is consistent with some cases
observed in our initial tiling library screening (Supplementary
Fig. 3, aroF-tyrA; nirBDC-cysG). We suggested that unknown
promoters in these operons might contribute to this phenom-
enon. Our results indicate the poor understanding about the
transcription and regulation in these operons, and further
experiments at molecular level are needed to dissect them.

We also checked the more moderate reverse polarity of
CRISPRi using our data, which was first described by Peters
et al.17 that repressing the downstream gene by CRISPRi perturbs
the expression of its upstream counterpart in one operon.
Consistent with previous reports, our result (Supplementary
Fig. 14) suggests a position-dependent reverse polarity effect,
which is within the window of the first 50 bp of downstream
genes. This observation cannot be simply explained by the
current model of CRISPRi to shutdown RNAP transcription,
indicating more works are needed to understand the mechanism
of CRISPRi better at the molecular level.

Performance comparison of different methods. To compare the
performance of our approach with the state-of-the-art method in
the microbial high-throughput functional genomics field. We
adopted our method, a dataset from a benchmark Tn-seq study
representing the largest application of this method so far25 and a
widely used E. coli essential gene set constructed by the trans-
poson insertion footprinting method28 as three binary classifiers
(see Methods). During the peer review process of this paper, an
elegant work was reported by Goodall et al.29 using Tn-seq to
dissect essential genes in E. coli based on a transposon library
with an unprecedented size (901,383 unique transposon inser-
tions, 16-fold of our sgRNA library and 6-fold of the transposon
library reported by Wetmore et al. used above). We also trained
their dataset as another binary classifier similarly. Taking
advantage of the essential gene set of the Keio collection as the
gold standard, we studied the performances of these four classi-
fiers based on the receiver operating characteristic curve (ROC)
approach (Fig. 3b). The results indicated that the CRISPRi
screening achieved performance generally comparable to that of
Tn-seq method with a 16-fold larger library size (area under the
curve (AUC)-ROC value: CRISPRi, 0.952; Goodall et al., 0.950),
despite moderately but significantly poorer performance in the
low false positive rate range. The performance of Tn-seq
decreased significantly as the decrease of library size (Wetmore
et al. AUC-ROC, 0.878), followed by genetic footprinting strategy
(AUC-ROC, 0.821). We hypothesize that CRISPRi should per-
form better coping with shorter genes as compared with the

transposon insertion-based methods, as transposon insertion
suffers from more severe bias problem. To test this, we recruited
702 protein-coding genes shorter than 400 bp, including 45 Keio
essential genes, and retested the method performances (Fig. 3c).
Indeed, the AUC of CRISPRi was maintained better (0.919)
whereas those for Tn-seq decreased to 0.898 (Goodall et al.29)
and 0.773 (Wetmore et al.25). Note that the strain used by Keio
collection1 and all Tn-seq studies referred here25,29 is E. coli
K12 BW25113, while K12 MG1655 strain is used in this
work. The genetic differences between these two strains are
minimal1, which should does not influence the comparison per-
formed here.

CRISPRi screening also identified some “essential genes”
missed by the gene knockout method. For example, there are
two genes coding for translation elongation factors Tu 1 and Tu 2
(tufA and tufB, respectively, which share 99% nucleotide
identity), the most abundant proteins in E. coli, and the knockout
of either does not lead to lethality30. In contrast, a recent paper
suggested that tufA cannot be replaced by foreign homologs in
the context of tufB deletion31, showing that the translation
elongation factor is “essential” to the survival of E. coli. This
phenotype was also observed in our screening results (gene
fitness=−7.50), because we designed sgRNAs targeting both
these two genes based on the cluster strategy in library design. We
assume that by applying a more relaxed cutoff (>95% nucleotide
identity in this work), it is possible to use cluster-level gene
repression via CRISPRi screening to explore prokaryotic genetic
interactions. Moreover, although loss of information by using
clustering strategy is inevitable facing gene duplicates with
identical sequences, considering the fact that two mismatches
between DNA target and sgRNA are enough to abolish CRISPRi
activity32, it is still possible to study genes with highly similar (not
completely identical) sequences individually. Hence, in practice,
the threshold of clustering can be regarded as a customized
parameter in CRISPRi screening to fulfill the requirements of
research. More generally, CRISPRi screening should enable
comprehensive analyses of prokaryotic genetic interactions based
on the established multiplex sgRNA cloning technology33.

We are also very interested in 22 essential genes from the Keio
collection that showed no significant phenotypes in this
experiment. We firstly checked the number of sgRNAs belonging
to these 22 genes and found that most of them have >10 sgRNAs
(Supplementary Table 4). The distributions of sgRNA number
and gene length both exhibit no significant difference compared
with that of all protein-coding genes (P= 0.649 and 0.142 by two-
tailed Mann–Whitney U-test (MWU test)), suggesting no bias
derived from sgRNA design is introduced when performing hit
gene calling. None of them are duplicated in the E. coli
chromosome. Moreover, functional analysis indicates that most
of them are not related to paramount biological processes
(Supplementary Table 4). For instance, entD encodes a
phosphopantetheinyl transferase that is responsible for enter-
obactin biosynthesis and is annotated as essential in the Keio
collection, in contrast to other nonessential genes in this pathway
(entABCEFH). Indeed, 13 of these 22 genes were reported to be
non-essential by an independent work using complementation
assisted gene deletion in K12 MG1655 strain34 (Supplementary
Table 4). This analysis indicates that there may be some
misannotations among these genes because of the recombineering
efficiency or polar effect problems when trying to knock them
out. To test this, we used CRISPR-Cas9 facilitated recombination
(see Methods) to introduce 2 bp indel frameshift mutations to five
(chpS, folk, gpsA, grpE, and yhhQ) of these genes. Sanger
sequencing confirmed that we obtained mutant strains success-
fully for three of them (chpS, gpsA, and yhhQ) (Supplementary
Fig. 15) and their viabilities were confirmed in liquid culture.
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During the peer review process of this paper, Rousset et al.35

posted a nice preprint paper, reporting a very similar strategy as
our work. They constructed a random sgRNA library of roughly
90,000 members and used pooled CRISPRi screening to identify
essential or phage-resistance-related genes. Interestingly, our
results (essential gene identification) are highly consistent with
theirs. They mentioned that there existed totally 53 genes
previously regarded as essential but exhibited no growth
phenotype in CRISPRi screening. Among seven potentially false
negative essential genes they mentioned in the main text (alsK,
bcsB, chpS, entD, mazE, yafN and yefM; alsK, bcsB, and entD were
confirmed by knockout; no supplementary data was provided,
disabling systematic comparison), six of them are also identified
by our work (Supplementary Table 4) except for yafN, while this
gene is not annotated as essential by Keio collection data. These
results suggest that CRISPRi screening is highly reproducible.

CRISPRi screening maps phenotypes to ncRNA-coding genes.
ncRNAs tend to be considerably shorter than their protein-
coding counterparts, which may cause a statistical noise problem
when mapping phenotypes to these genes using Tn-seq. It is also
worth noting that some ncRNAs have multiple copies in the
prokaryotic genome (such as tRNAs), thereby increasing the
difficulty in applying Tn-seq or simple gene knockout methods to
investigate their functions. Hence, despite growing knowledge
about their importance in microbial physiology9,10, a high-
throughput method is lacking studying ncRNA functions. To test
whether CRISPRi could be an alternative for this purpose, we
checked the performance of our method assigning essentiality to
ncRNAs. Our cluster strategy enabled handling ncRNAs with
multiple copies. For example, there are seven, seven and eight
copies of 23S, 16S, and 5S ribosomal RNA-coding genes,
respectively, in the genome of E. coli K12 MG1655 (organized in
seven operons). The knockdown of each cluster by CRISPRi
screening leads to lethal effects (Fig. 4), as expected.

As another common class of ncRNAs, the tRNA pool within a
microorganism consists of various tRNA isoacceptor families
(Supplementary Fig. 16). Each family has a unique anticodon that

decodes the corresponding codon by Watson–Crick base pairing
or via non-perfect base pairing at the third nucleotide with the
wobble interaction36. Each tRNA family has a single or multiple
gene copies. The E. coli K12 genome contains 86 tRNA genes,
corresponding to 43 families, including 23 singleton families with
only one gene copy (Table 3). We notice that tRNAs belonging to
one family have very similar (usually identical) sequences, more
conserved than tRNAs from other families. Hence, in spite of
overall sequence similarity (Supplementary Fig. 16), it is possible
to design sgRNAs to discriminate tRNA-coding genes at
isoacceptor family level. The cluster strategy in sgRNA library
design thus enables us to study the phenotype of totally 32
isoacceptor families and 61 tRNA-coding genes (Table 3). We
found that most tRNA families are essential to cellular survival,
except for six singleton families (Fig. 4), suggesting that the E. coli
genome tends to have redundancy (multiple copies) for tRNA
families with more important functions related to cellular
survival. Among these non-essential families, selC encodes a
special tRNA that inserts selenocysteine, an unnatural amino acid
at certain in-frame TGA codons. The non-essentiality of other
five tRNAs are proposed to be related to wobble interactions. For
example, we hypothesize that tRNA-Arg(TCT) can also recognize
codon AGG based on the non-essentiality of tRNA-Arg(CCT).
Similar reasoning applies to the required tRNA-Leu(CAA) and its
counterpart tRNA-Leu(TAA) (Table 3). For tRNA-Pro(GGG), it
is reported that tRNA-Pro(TGG) can read all other proline
codons in Salmonella strains37. For tRNA-Gly(CCC) and tRNA-
Ser(CGA), the tRNA responsible for the wobble interaction could
not be ascertained because of the availability of multiple
candidates. It is also interesting to find that repression of
tRNA-Cys(GCA), the only tRNA responsible for decoding the
codon to incorporate cysteine, impaired cell growth only
moderately. Although tRNA utilization governs the efficiency
and accuracy of translation, the multiple-copy and sequence
homology issues make it very hard to systematically study their
functions by conventional mutagenesis. As the first comprehen-
sive study of this topic in E. coli as we know, our experiment
shows that CRISPRi screening could act as a powerful tool to
better understand the biological roles played by different tRNAs
(families).

Finally, we turned to other ncRNAs, seven of which showed
impaired growth in our screening (Fig. 4), including the well-
known RNA component (ffs) of the signal recognition particle
and a subunit (rnpB) of RNase P involved in RNA processing.
Previous studies are consistent, in that the known lethality or
growth defect phenotypes of these seven ncRNAs upon knockout
correlate well with the fitness values we obtained (Supplementary
Table 5). These results suggest that CRISPRi pooled screening
should be a better, or at least complementary method relative to
hypersaturated transposon mutagenesis-based Tn-seq6,7,38 for
assigning phenotypes to ncRNAs in a high-throughput manner.

Dissecting metabolic network via CRISPRi screening. We next
used this method to profile the auxotrophic genes in MOPS
medium (10 g/L glucose). Our results correlated well with dataset
suggested by the Keio collection1 (Fig. 5a). GO analysis revealed
that the screening results were enriched for auxotrophic genes
involved in many fundamental biosynthetic processes (Fig. 5b).
To cope with the inconsistency of auxotrophic genes among
different reports, we also compared our results with an experi-
mentally identified auxotrophic gene dataset in E. coli on agar
plates39. By using this dataset as a reference, we found that the
binary classifier to assign auxotrophic genes trained based on our
results had very good performance (AUC-ROC= 0.897, Supple-
mentary Fig. 17), comparable to that of essential gene
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identification (Fig. 3b). To better understand this method, we
studied the reason for false negative hits in this experiment
(Supplementary Note 1). Briefly, we suggest that pooled format of
screening, rather than sgRNA activity issue, should be responsible
to these false negatives.

Microbial genomes contain redundant isoenzymes in the
metabolic network to react to dynamic environmental changes.
We explored whether our method can quantitatively measure the
contribution of each isoenzyme. We first focused on the
chorismate pathway, the upstream module for aromatic amino
acid biosynthesis. There are three genes (aroF, aroG, and aroH)
coding isoenzymes carrying out the first step of this pathway.
Despite the knowledge that the aroG is responsible to most of the
enzymatic activity in this reaction40, our results showed that
knockdown of each individual gene had no growth phenotype
(Supplementary Fig. 18). In contrast, knockdown of aroK resulted
in a sustainable growth defect as compared with aroL, both of
which encode isoenzyme of shikimate kinase, catalyzing the fifth
reaction in this pathway (Supplementary Fig. 18). We also
identified auxotrophic metE, which encodes the vitamin B12-
independent (E. coli has no de novo vitamin B12 biosynthesis
pathway) homocysteine transmethylase as the major activity
contributor to the first step in methionine biosynthesis, as
compared with the vitamin B12-dependent isoenzyme encoded by
metH without fitness defect upon repression (Supplementary
Fig. 19). Similar results can be found for cystathionine β-lyase and
cysteine synthase (Supplementary Fig. 19).

Chemical genomics screening is a powerful method for
dissecting metabolic network organization. As a simple proof-
of-concept, we performed another screening with MOPS medium
supplemented with 0.5 g/L casamino acid, which is composed of
all amino acids except for tryptophan. According to the amino
acid biosynthetic network of E. coli (Fig. 5d), we expected that
most of the auxotrophic genes involved in amino acid biosynth-
esis should be rescued by casamino acid addition with the
exception of the five genes on the network branch that leads
toward tryptophan biosynthesis (trpABCDE). The result was
consistent with our hypothesis (Fig. 5c). These results suggested
that our method is a reliable quantification tool to decipher the
structure of the metabolic network.

Identification of genes carrying toxic chemical tolerance. We
performed screening in MOPS medium with 0.4 g/L furfural or 4 g/L
isobutanol to profile the chemical-tolerance profile in E. coli at the
genome level (Fig. 6a, b). Tolerance to both chemicals is of industrial
interest, as furfural is a common toxic byproduct formed during the
pretreatment of lignocellulose and isobutanol is regarded as a pro-
mising biofuel molecule. Among hit genes, we observed previously
reported candidates whose disruptions lead to tolerance (Supple-
mentary Table 6), suggesting the reliability of the experiment.
Moreover, we also identified several ncRNAs involved in the
responses to these two chemicals (Fig. 6c; for all significant genes,
Supplementary Fig. 20). Among them, the knockdown of rdlD and
eyeA enhanced tolerance under both of these conditions. rdlD
encodes an antitoxin and its knockdown may result in decreased
metabolic activity, a general mechanism for microorganisms to cope
with stress41. We also found that knockdown of non-essential
tRNA-Arg(CCT) (argW) resulted in a growth defect either in MOPS
medium or under furfural stress. A similar observation was pre-
viously made that the deletion of some non-essential tRNAs results
in growth phenotypes under stressed conditions42. In addition, we
identified by GO analysis the important role of indole molecule for
these two stresses. Indole is known to modulate persistence towards
aminoglycoside antibiotics43,44. It is converted from tryptophan
(reversible reaction) via lysase encoded by tnaA, whose knockdown

Table 3 Summary of the fitness scores of E. coli tRNA family

Cluster Anticodon Fitness

alaV, alaT, alaU TGC -7.93

alaX, alaW GGC UD

argQ, argV, argY, argZ ACG -6.49

argX CCG -5.44

argW CCT 0.29

argU TCT -8.99

asnT, asnV, asnU, asnW GTT -8.14

aspU, aspT, aspV GTC -7.83

cysT GCA -3.78

glnW, glnU TTG -8.94

glnX, glnV CTG -9.00

gltW, gltV, gltT, gltU TTC -7.33

glyT TCC -7.80

glyU CCC -0.03

glyW, glyY, glyX, glyV GCC -8.23

hisR GTG -7.97

ileV, ileT, ileU GAT UD

ileY, ileX CAT* UD

leuT, leuQ, leuV, leuP CAG UD

leuU GAG -4.99

leuW TAG -6.64

leuX CAA -0.08

leuZ TAA -7.26

lysT, lysV, lysQ, lysZ, lysY, lysW TTT UD

metU, metT# CAT UD

metZ, metV, metW, metY# CAT -8.49

pheV, pheU GAA -8.75

proK CGG UD

proL GGG 0.29

proM TGG -6.26

selC TCA -0.51

serT TGA -5.61

serU CGA -0.06

serW, serX GGA -7.69

serV GCT -8.36

thrT GGT UD

thrU TGT UD

thrV GGT -2.01

thrW CGT UD

trpT CCA -6.85

tyrV, tyrT, tyrU GTA -8.58

valT, valY, valX, valU, valZ TAC -7.95

valW, valV GAC UD

Highlighted are tRNAs not essential to E. coli in rich medium (light green for common tRNAs,

deep green for a special tRNA encoded by selC to incorporate an unnatural amino acid) and

tRNAs that we failed to design any sgRNAs for (gray). In addition, * the CAT anticodon is

modified with a lysidine at C34 to recognize ATA codon of isoleucine, rather than methionine,
# these two clusters of tRNA genes belongs to one tRNA isotype with CAT anticodon, UD

undetermined (failure to design sgRNA)
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here results in change of tolerance facing either furfural or iso-
butanol. Such effect is also observed for indole transporter, TnaB
and upstream tryptophan biosynthesis genes. Based on previous
reports and the results here, we anticipate that indole is a general
signaling molecule for bacteria to cope with diverse environmental
stresses, whose molecular mechanism needs further study. Another
interesting target is pcnB, which encodes a Poly(A) polymerase I
responsible for the polyadenylation of 3′ ends of RNA molecules,
thus reshaping the stability (lifetime) of bacterial transcriptome. We
observed strong tolerance towards these two chemicals upon the
knockdown of pcnB. This is consistent with our recent work45 that
the mutations in this gene contribute to the Trp production of
engineered strain at the stressed conditions. We suggest that this
gene is a potential global regulator for bacterial stress response and
may serve as a novel target for engineering effort.

Software package. To facilitate the use of this method by
experimental biologists, we developed an integrated Python soft-
ware package including sgRNA library design and post-NGS data
processing functions (Supplementary Fig. 21). The users only need
to edit a configure file and provide other standard files to complete
the whole pipeline on a laptop. Extensive schematic illustration is
included for procedure quality control. The package is available at
https://github.com/zhangchonglab/CRISPRi-functional-genomics-

in-prokaryotes with a detailed user manual. We used this package
to design genome-level sgRNA libraries for several model
microbes (Supplementary Data 12, 13) as a demonstration.

Discussion
Here we established CRISPRi as a robust tool to rapidly screen for
loss-of-function phenotypes in a pooled format in E. coli at the
genome level. Considering that the CRISPR-Cas system is broadly
applicable in many prokaryotic organisms13–18, we thus expect
that our method will open up the possibility to screen for gene-
phenotype associations or genetic interactions across many dif-
ferent environments and species based on either genome-wide or
focused sgRNA libraries, especially for relatively rarely explored
ncRNAs. The lessons we learned here about sgRNA library design
in the context of prokaryotic hosts and software package should
fuel the utilization of this method by more microbiologists.

As a convenient and high-throughput method, CRISPRi method
can either capture a big fraction of known essential genes or suggest
the potent false positive (negative) targets in other arrayed gene
knockout library for further investigation. Different methods such as
CRISPRi, Tn-seq and arrayed knockout probably capture different
aspects of biology regarding gene essentiality or other functionalities.
In this line, a combinatorial approach of different methods may
further increase the reliability of prokaryotic functional genomics

10

a b

c d

Carboxylic acid biosynthetic process

Cellular amino acid biosynthetic process

Cellular amino acid metabolic process

Alpha-amino acid metabolic process

Branched-chain amino acid metabolic process

Aromatic amino acid family metabolic process

Dicarboxylic acid biosynthetic process

Dicarboxylic acid metabolic process

Nucleotide metabolic process

Nucleoside phosphate metabolic process

Nucleoside phosphate biosynthetic process

Indolalkylamine metabolic process

Nucleoside triphosphate metabolic process

ATP hydrolysis coupled ion transmembrane transport

Cellular biogenic amine biosynthetic process

Ribose phosphate biosynthetic process

Nucleoside monophosphate metabolic process

Tetrahydrofolate metabolic process

Diaminopimelate metabolic process

0 20

–Log10P

40

Nucleobase biosynthetic process

8

6

4

2

0

–4 –3 –2 –1

Gene fitness

MOPS medium

10

8

6

4

2

0

10

8

6

4

2

0

–4 –3 –2 –1

Gene fitness

0 1 2 –4 –3 –2 –1

Gene fitness

0 1 2

Other genes

Amino acid biosynthetic genes

Tryptophan biosynthetic genes

Other genes

Erythrose-4-phosphate

Glucose

Glucose 6-phosphate

3-Phosphoglycerate

Phosphoenolpyruvate

Pyruvate

Citrate

Chorismate

Oxaloacetate α-KetoglutarateTryptophan
Tyrosine

Phenylalanine
Aspartate

Histidine

Serine

Alanine

Valine

Leucine

Glutamate

Glutamate

Proline

Arginine

Cysteine

Glycine

Asparagine

Methionine

Threonine

Lysine

Isoleucine

Amino acid biosynthetic genes

Tryptophan biosynthetic genes

MWU test

amino acid biosynthetic

vs. other genes:

–Log10P = 59.7

MWU test

amino acid biosynthetic

vs. other genes:

–Log10P = 10.0

+ Casamino acid (tryptophan free)

0 1

–
L

o
g

1
0
P

 M
W

U
 t
e

s
t

–
L
o
g

1
0
P

 M
W

U
 t

e
s
t

–
L
o
g

1
0
P

 M
W

U
 t

e
s
t

Fig. 5 CRISPRi screening dissects the E. coli metabolic network. a Volcano plot of gene fitness in MOPS medium relative to −Log10P value from the two-

tailed MWU test. Dashed lines represent the threshold (FDR= 0.05) for calling hits based on the screening score (see Methods). The size of the scatter is

proportional to the 1/OD600 value of the relevant gene knockout reported with the Keio collection1. b GO enrichment analysis of auxotrophic genes

identified by CRISPRi screening in MOPS medium. P values are derived from two-tailed Fisher exact test. c Comparison of gene fitness in MOPS medium

with casamino acids (right) or a single carbon source (left) for E. coli. 78 genes responsible for amino acid biosynthesis are highlighted in green, whereas

the five genes (trpABCDE) forming a branched pathway leading to tryptophan biosynthesis are in purple. The differences between fitness of amino acid

biosynthesis genes and all other genes were quantified via the two-tailed MWU test (P, 10−10.0 with vs. 10−59.7 without casamino acid addition). d

Schematic of E. coli amino acid biosynthetic network. Green and purple elements denote amino acid biosynthetic genes and tryptophan biosynthetic genes

(trpABCDE), respectively, corresponding to those highlighted in (c)
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study, akin to a recent demonstration46 where CRISPR-Cas9 and
RNAi screenings were integrated in a human cell line. Besides trans-
acting genetic elements like coding genes, random sgRNA library
akin to the design of Rousset et al.35, or customized library targeting
intergenic regions of interest, may contribute to investigation of
functional cis-acting genetic elements in bacteria, which were only
addressed by tedious arrayed deletion approach previously34.

The potential limitations of this method (which are shared with
Tn-seq to a certain extent) include, first, possible false positives
occurring for genes transcribed as polycistronic mRNAs because of
the polar effect of CRISPRi and, second, failure to design enough
sgRNAs for some genes with short coding length or microbial
genomes with an extreme GC content because of the protospacer-
adjacent motif (PAM) requirement. The second problem is espe-
cially of concern to cause potential biases when assigning moderate
phenotypes such as tolerance to shorter genes, where only several
sgRNAs are available. We suggest here to solve the first problem by
adopting the recently described RNA-targeting CRISPR-Cas sys-
tem47 to modulate gene expression at the RNA level. A reengi-
neered CRISPR-Cas948 or other CRISPR-Cas system49 with
divergent PAM preferences is a potential solution for the second
problem. Developing a CRISPR-Cas-based gene activation system
to facilitate gain-of-function screening is also important, which has
been extensively demonstrated in mammalian cell lines50 but only
preliminarily in prokaryotic organisms51.

Methods
DNA manipulations and reagents. DNA purification and isolation of high-
quality plasmids were performed using reagents from Omega Bio-Tek (U.S.). DNA
restriction and amplification enzymes were from New England Biolabs. During
plasmid construction, E. coli DH10B (BioMed) served as the host and was cultured
in LB broth or on LB agar plates at 37 °C. Plasmids were constructed by Gibson
assembly52. Antibiotic concentrations for kanamycin and ampicillin were 50 and

100 mg/L, respectively. MOPS medium was prepared according to standard
laboratory techniques53 (10 g/L glucose). All cultures were carried out at 37 °C.

Strain and plasmid construction. All strains, plasmids and primers are listed in
Supplementary Tables 7 and 8. E. coli MG1655 (wild type) was obtained from the
ATCC (700926). E. coli s17-1 sfGFP (super fold GFP) was a kind gift of the George
Guoqiang Chen laboratory at Tsinghua University54. E. coli strain MCm, which
was used in the screening experiments, was constructed by inserting a chlor-
amphenicol expression cassette cloned from pKM15455 (Addgene plasmid #13036)
into the smf locus of wild-type E. coli K12 MG1655 by λ/RED recombineering56. E.
coli Msac was constructed by inserting a sacB expression cassette (in which the
J23105 promoter drives expression of sacB cloned from pKM15455; Addgene
plasmid #13036) by CRISPR-Cas9 recombineering57. E. coli lyc001 is a lycopene-
overproducing strain created by integrating a heterologously overexpressing crtEIB
cluster (cloned from pTrc99a-crt-M58) into the chromosome. The dCas9 expres-
sion plasmid was constructed by replacing the promoter and resistance marker
region of Addgene plasmid #4424924 with a constitutive promoter (wild-type
promoter for Cas9 from Streptococcus pyogenes) and the kanamycin marker cloned
from pCas (Addgene plasmid # 62225)57, resulting in pdCas9-cons. The promoter
was replaced by well-characterized iGEM Anderson promoters, giving rise to
plasmids pdCas9-J23109, 111, 112, 113, and 116. The empty plasmid (pKanaNC)
without dCas9 that was used as the negative control in the essential gene identi-
fication experiment was constructed by amplifying pdCas9-J23111 by PCR to
remove the dCas9 expression cassette followed by self-ligation via Gibson assembly.
The vector for sgRNA expression was derived from pTargetF (Addgene plasmid
#62226)57 by replacing the spectinomycin marker with an ampicillin expression
cassette (pTrc99a59) lacking the BsaI restriction site. The promoter region was
substituted with a synthetic inducible promoter (PLlacO-160) together with the
corresponding repressor expression cassette lacI (pTrc99a59), leading to pTarget-
F_lac. To facilitate library insertion (which was amplified from oligonucleotides
synthesized on a DNA microarray) into pTargetF_lac, pTargetF_lac_preLib was
constructed by introducing two BsaI sites in opposite orientations between the
promoter and Cas9-binding site region of pTargetF_lac. All the constructed plas-
mids were confirmed by Sanger sequencing.

Assay of the CRISPRi system at bulk-population level. To reduce the noise
introduced during selection, we aimed to develop a constitutive dCas9 expression
plasmid and inducible sgRNA expression system (Supplementary Fig. 22a). To this
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end, we constructed a series of dCas9 expression plasmids under the control of
constitutive iGEM Anderson promoters with a series of expression strengths as
described above. We used strongly inducible PLlacO-1 promoters with a well-defined
TSS and tight regulation to drive sgRNA expression. However, we failed to observe
any inducible profile in a test repressing sfGFP expression in E. coli owing to
expression leakage and instead found that repression activity was generally deter-
mined by the strength of dCas9 expression (Supplementary Fig. 22b; the repression
level is proportional to the strength of the Anderson promoter, such that
J23111>J23116>J23109>J23113>J23112), in accordance with the assumption that in
this system dCas9 is limited and sgRNAs are present in abundance. These results
suggested that a moderate level of sgRNA expression was sufficient to drive sus-
tainable CRISPRi activity, which is consistent with the fact that inducible CRISPR
systems developed thus far in prokaryotes have been based on the regulation of
dCas9 expression17,24,54,61, and the vector backbone we used here for sgRNA
expression has a relatively high copy number (pMB1 origin, ~15–20 copies/cell).
Based on the results from dCas9 constructs with diverse expression strengths
(Supplementary Fig. 22b), we used the pdCas9-J23111 (the strongest promoter
among the five constructs) and pTargetF_lac plasmids for the following work,
exploiting the leaky expression of sgRNA from the PLlacO-1 promoter, as this pro-
vides sustained repression activity, enabling further tuning, if required. The plasmid
map of pdCas9-J23111 as well as pTargetF_lac are deposited at following link:

https://benchling.com/s/seq-UtUqPXinL0XxdjVCAPHG
https://benchling.com/s/seq-ht6aO2giauphixQSGbP8
For fluorescence characterization mentioned above, overnight LB cultures (with

ampicillin and kanamycin) from a single colony of E. coli s17-1 sfGFP containing
the relevant dCas9 and sgRNA (or control sgRNA without a potential target in the
E. coli genome) expression plasmids were individually incubated in 10 mL fresh LB
medium in 50-mL flasks (initial OD600= 0.02) with or without 1 mM isopropyl
β-D-1-thiogalactopyranoside. Subsequently, cells were cultivated for 12 and 26 h,
and fluorescence was measured with an F-2500 Hitachi Fluorescence Reader
(excitation, 488 nm; emission, 510 nm). Fluorescence was normalized to the culture
OD600 value measured on an Amersham Bioscience spectrophotometer. The
repression ratio was calculated by comparing the relative fluorescence with respect
to the control strain expressing the non-targeting sgRNA.

We further tested the reliability of our optimized system (pdCas9-J23111,
pTargetF_lac) by targeting the CRISPRi machinery to crtE (integrated at the ldhA
locus) in the lycopene biosynthesis pathway (Supplementary Fig. 22c) and sacB
(integrated at the smf locus) conferring cellular toxicity in the presence of sucrose
(Supplementary Fig. 22d). Our results confirmed that this system could be applied
to repress gene expression from diverse loci in the E. coli chromosome.

To characterize lycopene accumulation, overnight LB cultures (with ampicillin
and kanamycin) from a single colony of E. coli lyc001 containing dCas9-J23111
and pTargetF_lac_crtE1/2 (or control sgRNA without a potential target in the E.
coli genome) were individually incubated in 10 mL fresh LB medium in 50-mL
flasks (initial OD600= 0.02). Subsequently, fermentation was carried out for 24 h
and lycopene was measured as reported58 (Supplementary Fig. 22c). The titer was
normalized to the culture OD600 value.

For growth testing of E. coli Msac (E. coli K12 MG1655 derivate with a sacB
integration), selective agar plates were prepared by adding 500 g/L filter-sterilized
sucrose stock solution to autoclaved sodium chloride—free LB broth (1.8% agar) to
a final concentration of 100 g/L. A single colony of E. coli Msac containing dCas9-
J23111, pTargetF_lac_sacB1/2 (or control sgRNA without a potential target in the
E. coli genome) was streaked and cultivated at 30 °C for 24 h, and the growth
phenotype was measured (Supplementary Fig. 22d).

Characterization of the CRISPRi system at single cell level. To demonstrate the
gene repression ability of CRISPRi system more clearly, it is important to inves-
tigate gene expression profile at the single-cell level. To this end, we used the s17-1
(Supplementary Fig. 22b) strain as the host and the relevant sfGFP as our target.
We randomly selected 6 sgRNAs targeting the non-template strand of sfGFP ORF
region (sgRNA_36, 83, 166, 257, 414, 631; sgRNA_36 was used in Supplementary
Fig. 22b; the number in the name of each sgRNA represents the position of the first
guanine within the PAM region (NGG) in the coding region). These plasmids as
well as the negative control sgRNA were transformed into s17-1 strain carrying
pdCas9-J23111. MCm/pdCas9+ sgRNA_control strain was used as a non-
fluorescent reference. Overnight LB cultures (with ampicillin and kanamycin) from
a single colony of these strains were individually incubated in 10 mL fresh LB
medium (with ampicillin and kanamycin) in 50-mL flasks (initial OD600= 0.02).
Subsequently, cells were cultivated for 3.5 h and OD600 reached around 0.6. The
culture was diluted by 500-fold into autoclaved PBS buffer and subjected to flow
cytometry analysis (BD LSRFortessa). In total 10,000 events within the gate for live
cells defined by FSC and SSC were collected for each sample.

The result (Supplementary Fig. 23) shows that the cell population with
repressed sfGFP expression exhibits log normal distribution of sfGFP fluorescence.
Weak skewness is observed for all sgRNAs tested here, suggesting a sustainable
gene knockdown efficacy across the cell population at the single-cell level.
Moreover, the noise of sfGFP expression after CRISPRi treatment at single-cell level
is comparable or even smaller than that of positive control group with a non-
targeting sgRNA. Hence, we deduce that CRISPRi machinery does not lead to
increased expression noise at the single-cell level, which is important for reliable

CRISPRi-based screening in a pooled format. It is also worthy noting that the
diversity of sgRNA repression efficiency is observed here (as much as 10-fold,
sgRNA_166 vs. sgRNA_414), which is consistent with our conclusions at the
functional level (Fig. 1b, Supplementary Fig. 10).

Indel mutation introduction by CRISPR-Cas9 recombineering. We used
CRISPR-Cas9 recombineering reported by Jiang et al57 to introduce indel muta-
tions. The relevant sgRNAs (Supplementary Table 7) were designed to target the
first 200 bp of the coding region belong to target genes. Oligonucleotides as
recombination DNA donor were designed as the lagging strand (Supplementary
Table 8) to delete the guanine dimer (“GG”) in DNA PAM region targeted by the
corresponding sgRNA. Thus the introduced 2 bp indel is enriched by eliminating
the lethal DNA cleavage via Cas9 nuclease and leads to the frameshift mutation of
relevant gene. Primers within the ORF flanking the indel were designed (Supple-
mentary Table 8) to amplify the target region from survival colonies and the PCR
products were subjected for Sanger sequencing. Usually tens of colonies were
obtained on selective agar plates for the three successfully disrupted genes (chpS,
gpsA, and yhhQ) after overnight cultivation following electroporation. PCR and
Sanger sequencing suggested that most of these colonies contained designed fra-
meshift mutations. E. coli K12 MG1655 was used in this assay and the obtained
mutants were cultivated in liquid LB culture to confirm their growth.

Design and preparation of the sgRNA library. The design and preparation for
the tiling and for the genome-wide sgRNA libraries were generally the same, and
thus we mainly introduce below the protocol and parameters used to prepare the
genome-wide library and highlight the main differences between these two. The E.
coli K12 MG1655 genome sequence and relevant protein- or RNA-coding gene
annotation of NC_000913.3 was used for the sgRNA library (20-mer) design. The
SeqMap package62 was used to check potential off-target sites of the designed
sgRNAs by searching for N20NG(A)G 23-mers in NC_000913.3 with a tolerance
setting of five mismatches. Customized scoring metrics inferred from previous
reports32,63 and illustrated in Supplementary Fig. 24 are designed to evaluate off-
target sites identified by SeqMap. Briefly, the protospacer region of potential off-
target sites is divided into three parts (8, 5, and 7 nt, from the 5′ end to the 3′ end as
Region III, II and I, respectively) according to the distance to the PAM site. We used
this scoring metric because mismatches are generally better tolerated at the 5′ end of
the 20-nt targeting region of the sgRNA than at the 3′ end (proximal to PAM)64. If
the PAM site of the off-target 23-mer is “NGG”, the mismatch penalty in the
abovementioned three regions was set as 2.5, 4.5, and 8, respectively, and the penalty
set for “NAG” was 3, 7, and 10, respectively. The penalty was automatically set to be
100 otherwise. The off-target site was considered significant when Σ(penalty ×
mismatch)<threshold, where relevant sgRNAs were eliminated from further pro-
cessing. We use a threshold of 11 for the tiling library design to maximize the
number of sgRNAs designed for each gene and of 21 for the genome-scale library
design to minimize the potential off-target effect leading to false positives in the
screening experiments. According to a recent report comprehensively assessing off-
target effects of the CRISPRi system via a partially degenerate library of variants32

and from which we adopted the off-target threshold settings described above, one
mismatch in Region I and another in Region III completely abolish CRISPRi
activity32. Based on our much more strict off-target cutoff setting (21), even sgRNAs
identified to have potential off-target effects with two mismatches in Region I and
one in Region II are still removed from the library (4.5+ 8 × 2 < 21). In this manner,
we applied an off-target threshold comparable to the benchmark32 in the tiling
library design and a more stringent one in the genome-wide library design, thereby
minimizing the potential off-target effect. We also used a GC-content threshold
(≥30% and ≤85%) to maximize the sgRNA activities32. Based on these principles, for
the tiling library, every potential sgRNA—from 5′ to 3′ in the coding region and
with the format 20 nucleotides—NGG (N20NGG, with NGG representing the PAM
region)—targeting the non-template strand of the coding region24 was checked
accordingly until 50 sgRNAs passing this quality control step were extracted or until
the stop codon was reached. For the genome-scale library, sgRNAs were designed
first to target the ‘active’ region (the 5% of the coding region nearest to the start
codon); as many were designed as possible according to the optimized rules learned
from our tiling library screening (Fig. 1b). For a given gene, once 15 sgRNAs were
designed, the design process stopped. If 15 sgRNAs could not be designed within
that particular region, sgRNA design continued to uniformly select (15−x) sgRNAs
from the remaining part of the coding region, where x denotes the sgRNA number
designed in the ‘active’ region. The sgRNAs were named “gene_p” according to the
position (p) of the first guanine within the PAM region (NGG) in the coding region
(e.g., rsmE_9, N20=GTTCAGGATGATAAATGCGG). In addition, we designed
negative control sgRNAs by searching random 23-mers (with the format N20NGG)
with the proper GC content to select those without any potential off-target candi-
dates as identified by SeqMap (≤5 mismatches).

In the design of the genome-scale sgRNA library, to cope with genes with
multiple copies in the genome, we used BLASTN with default parameters and a
strict threshold (>95% identity, >95% hit coverage and >95% query coverage) to
categorize genes with highly similar sequences into clusters and then designed
sgRNAs to target every member of a cluster. Hence, genes in one cluster were
regarded as functionally identical. We designated this approach as the cluster
strategy (files for E. coli genome-wide gene clustering are available in Supplementary
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Data 2). Moreover, we divided the genome-scale sgRNA library into ten sublibraries
according to the functions of the corresponding gene products (Supplementary
Data 14). Customized barcode sequences were accordingly incorporated within the
region flanking the N20 variable part of the library, enabling PCR amplification of
these libraries separately from pooled DNA oligomers based on customized primers.
For the in silico design of tiling and genome-scale sgRNA libraries, see
Supplementary Data 1 and 3. The operon structures of genes during the tiling
library design were determined by RegulonDB database65.

The designed sgRNAs were synthesized as oligomers on a microarray, PCR
amplified and used to generate a plasmid library by Golden Gate Assembly66 with
BsaI-digested pTargetF_lac_preLib as the backbone vector. We confirmed the
quality of the library by Sanger sequencing of 47 colonies picked from the agar
plate after transformation, 42 of which could be perfectly mapped back to the in
silico design and 5 of which exhibited mismatch or indel mutations in contrast to
the corresponding member in the library, which is consistent with the reported
error rate of the current massively parallel DNA oligomer synthesis technology3. In
addition, NGS was performed as described above to profile the genome-scale
library, further validating its high quality (Table 1, Supplementary Fig. 6).

Screening experiments. For a schematic illustration of the experimental design for
the genome-scale library screening, see Supplementary Fig. 7. The library plasmids were
transformed by electroporation into E. coli MCm carrying the pdCas9-J23111 or
pKanaNC (negative control) plasmid. Briefly, E. coli MCm cells containing pdCas9-
J23111 or pKanaNC were grown in 100mL LB broth at 37 °C until an OD600 of 0.8 was
reached. The flask was then placed on ice and all subsequent steps were performed on
ice. The cells were collected by centrifugation, washed five times in ice-cold deionized
water and resuspended in 6mL 15% glycerol. The prepared competent cells were mixed
with 500 ng library plasmid/mL competent cells, divided into 100-μL aliquots and
loaded into 25-well electroporation plates. The electroporation was performed via a
BTX Harvard apparatus ECM 630 High Throughput Electroporation System using an
optimized parameter setting (2.1 kV, 1 kΩ, 25 μF). The library was independently
transformed twice into either MCm/pdCas9-J23111 or MCm/pKanaNC, providing two
biological replicates for each. Typically, with this protocol, we obtained around 105

colonies per well. To achieve a proper coverage for the library (~60,000 members), we
electroporated 32 wells of cells for each biological replicate. In addition, we tested the
ratio that multiple plasmids were transformed into one cell, which might mislead the
result analysis. To this end, we replaced the ampicillin resistance cassette of pTarget-
F_lac with a chloramphenicol marker. These two plasmids were mixed (1:1) and the
electroporation experiment was performed as described above. The resulting recovered
culture was streaked onto three kinds of agar plates containing different antibiotics
(kanamycin+ ampicillin; kanamycin+ chloramphenicol; kanamycin+ ampicillin+
chloramphenicol). The result suggested a ratio of multiple-plasmid-cotransformation
less than 1/104, which might be even smaller due to the detection limit of this method
used here. Hence, we concluded that the majority of the cell population contained only
one sgRNA plasmid, which rendered the following analysis reliable.

The transformed cells were incubated in LB broth (1:4, v/v) for 1 h at 37 °C to
recover and washed with fresh LB broth (1:1, v/v) once. We then took 50 μL of the
resulting culture to test the real transformation efficiency by dilution, streaking the
diluted culture onto LB agar plates with kanamycin and ampicillin and counting the
colonies after overnight incubation at 37 °C. The results confirmed that the coverage
for each replicate was at least 20-fold. The remaining part of each sample was
incubated with 100mL LB broth (with kanamycin and ampicillin) in a 500-mL flask
with shaking at 37 °C until OD600 ~ 1.0 was reached (~9 h), allowing for around
fifteen doublings (105 colonies per well × 30 wells= 3 × 106 cells of initial
incubation. Cultivation to OD600 ~1 results in around 109 cells/mL × 100mL= 1011

cells. log2(1011/(3 × 106))= 15). For each of the four samples (two biological
replicates of MCm/pdCas9-J23111 and pKanaNC (control) with the sgRNA
library), we took 5 mL of culture to extract the plasmids. The cultures representing
the two replicates of MCm/pdCas9-J23111 with the sgRNA library were further
washed with fresh MOPS medium (1:1, v/v) once and used to seed cultures in 100
mL fresh medium in a 500-mL flask with shaking (LB, MOPS, MOPS+ 0.5 g/L
casamino acid, MOPS+ 4 g/L isobutanol, MOPS+ 0.4 g/L furfural) with an initial
OD600 of ~0.03, thereby constructing two biological replicates for each tested
phenotype. The cultures representing the two replicates of MCm/pdCas9-J23111
with the sgRNA library were also mixed together, serving as the initial library for the
following phenotypes to be tested (Supplementary Fig. 7). Akin to the essential gene
identification experiment, we cultivated these cultures to OD600 of ~1.0, thus
allowing the cells to reproduce for around five doubling times for each experiment,
Log2(1/0.03)= ~5, and extracted plasmid from 5mL of each culture. Five doublings
during screening experiments were designed to reduce the risk of undetected de
novo mutation in the bacterial genome, which might influence growth and lead to
noise in final data. Meanwhile, five doublings is reliable for hit calling of
auxoptrophic genes (Supplementary Fig. 17, AUC-ROC= 0.9). In principle, five
doublings can amplify the fitness advantage of 15% by 2-fold (1.155–2), which is
sufficient for NGS to detect. Actually, pre-experiments suggested no significant
differences between five and ten doublings screening in our case.

The resolution limit of our method is dependent on the ability to detect a cell
exhibiting no division during the process after screening experiment. Here, we
assume that the bulk population has the same doubling rate with that of the wild
type cell. Hence, the growth of the bulk population leads to the dilution of cell with
impaired growth or lethality. The factor limiting experiment resolution can be

expressed as the following equation:

Resolution limit ¼ min log2 sequencing depthð Þ; cell doublings during screening
� �

Generally, the median read count of one sgRNA in the genome-scale sgRNA
library was ~100 (Supplementary Fig. 6a). Considering the number of doublings
was ~15 for essential gene identification, we reasoned that the resolution of our
method for gene dropout screenings is ~6 to 7 in essential gene search (26 < 100
< 27). For example, in the essential gene screening experiment, we used a fitness
threshold (≤−6) to infer gene essentiality, whose knockdown led to no cell
division. We can improve this resolution by increasing the sequencing capacity
applied to each NGS library (currently 10 million reads per library). In the
following experiments (auxotrophy, casamino acid addition and chemical
tolerance), because we only allowed the cells to grow for about five doubling
times, the limiting factor controlling the resolution—in these cases, a fitness level
of about −5 is expected for cells carrying a gene knockdown without any growth
—is the doubling number rather than the sequencing depth of the NGS libraries.
This issue should be carefully considered when designing experiments for this
method. We note that when NGS depth is not the limiting issue for method
resolution, normalization by generation in experiment, as suggested
previously67, is helpful to make the final data (gene fitness) comparable across
different experiments with varieties of doublings. We also suggest that strictly
inducible CRISPRi system is probably better for essential gene screening than
protocol used in this work. By restricting the screening procedure into 5–6
doublings, 100 × NGS can reliably dissect essential genes and discriminate from
those with only growth impairment. For the tiling library experiment, a similar
protocol was followed except for the initial OD600= 0.001 and thus the cells
underwent ten doublings during the selection.

NGS library preparation and sequencing. We first confirmed the robust main-
tenance of both dCas9 and sgRNA expression plasmids by gel electrophoresis after
plasmid extraction. The purified plasmids were used as templates for PCR to
amplify the N20 region of library sgRNAs (for the tiling library: 50-μL × 4 reactions
for each library, 50 ng template per reaction, PF/R_pTargetLacNGS_SE75, Q5
polymerase (NEB), 98 °C 30 s, 20 cycles (98 °C, 10 s; 52.4 °C, 30 s; 72 °C 10 s), 72 °C
for 1 min; for the genome-scale library with an optimized condition set-up:
50-μL × 4 reactions per library, 50 ng template per reaction, PF/R_pTarge-
tLacNGS_PE150, KAPA HiFi HotStart polymerase (KAPA Biosystems), 95 °C 3
min, 20 cycles (98 °C, 20 s; 67.5 °C, 15 s; 72 °C, 30 s), 72 °C for 1 min). The
sequencing library of the genome-scale sgRNA library was prepared following the
manufacturer’s protocol (TruSeq DNA Nano Library Prep Kit for Illumina).
Briefly, the fragments were treated with End Prep Mix for end repairing, 5′

phosphorylation and purification using Sample Purification Beads (SPBs). Then
fragments were treated with A-tailing Mix for adenylated 3′ ends, followed by
ligation to adaptors indexed with a “T” overhang. Subsequently, the products were
purified using the SPBs and amplified by PCR for eight cycles using P5 and P7
primers, cleaned up using SPBs, validated by an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA) and quantified with a Qubit 2.0 Fluorometer
(Invitrogen, Carlsbad, CA, USA). Then libraries with different indexes were mul-
tiplexed and loaded on an Illumina HiSeq instrument according to the manu-
facturer’s instructions (Illumina, San Diego, CA, USA). Sequencing was carried out
using a 2 × 150 paired-end configuration; image analysis and base calling were
conducted with the HiSeq Control Software (HCS)+OLB+GAPipeline-1.6
(Illumina) on the HiSeq instrument. Approximately 10 million reads were collected
for each library (Supplementary Table 2). For the tiling library experiment, a
similar approach was applied and NGS was performed on an Illumina HiSeq 2500
with the single-end 75-bp (SE75) technique.

NGS data processing. Generally, the data processing consists of three steps: read
count mapping, sgRNA fitness calculation and gene fitness calculation. The raw
NGS data were first de-multiplexed and the adaptor region was removed to pro-
duce clean data for each sequencing library. For pair-end data, we merged each of
the two pairs by FLASH script68, and those reads without detected pairs were
removed. Subsequently, we removed the read longer than 194 nucleotides and from
each end of read trimmed those nucleotides with the base quality below 25. Lastly,
we performed a filter step based on a customized cutoff (Q10 < 1, Q20% > 85%, and
Q30% > 60%) to enrich the high-quality reads. Customized python scripts were
then used to extract the 20-mer variable sequences from the raw NGS data via
searching for the “GCACN20GTTT” 28_mer in the sequencing reads (and the
reverse complementary sequence). Any of the 28-mers carrying mutations within
upstream (GCAC) or downstream (GTTT) flanking regions (4 bp each) were
removed (these 28 nucleotides are derived from the more error-prone MOS while
other parts of the library plasmid are from BsaI-digested pTargetF_lac). We then
mapped the extracted N20 sequences back to the designed sgRNA library, through
which the read number count of each sgRNA in each library was determined. As
the sequencing depths differed between experiments (Supplementary Table 2), we
adjusted read counts by applying the normalization step shown as equation (1) to
all experiments supposing n sequencing libraries. Finally, sgRNAs with <20 read
counts in the initial library for each experiment were removed to increase statistical
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robustness (for the definition of the initial library for each experiment, see Sup-
plementary Fig. 7). Subsequently, the read counts for each sgRNA in two biological
replicates were averaged as the geometric mean.

Normalization factori ¼ Read counti=
X

n

i¼1

Read counti=n

 !

ð1Þ

For each phenotype to be studied (Table 2), we defined a selective condition and
a control condition for it (Supplementary Fig. 7). For example, for the phenotype of
auxotrophy, growth in MOPS medium was regarded as the selective condition and
growth in LB broth was treated as the control. For each phenotype, the fitness of
each sgRNA was calculated via equations (2) and (3). Briefly, we firstly calculated
the fitness of each sgRNA for a phenotype (see Supplementary Fig. 7) by dividing
the number of reads for this sgRNA in the corresponding selective condition by the
number of reads in the relevant control condition and subsequently took the log2
value (equation 2). Then, the median of fitness for all negative control sgRNAs was
determined and was used to normalize the fitness data for all sgRNAs, giving rise to
the final sgRNA fitness data for this phenotype (equation 3). We annotated the
quality of the sgRNA fitness by checking the read counts for each sgRNA in the
control condition. Those sgRNAs with <20 reads were eliminated from the
following analysis to calculate the gene fitness.

Fitness′sgRNA ¼ Log2
Read countð Þselective
Read countð Þcontrol

� �

ð2Þ

FitnesssgRNA ¼ Fitness′sgRNA �median Fitness′NC sgRNA

� �

ð3Þ

To calculate the Z score of each individual sgRNA to evaluate its activity
(Fig. 1b, Supplementary Fig. 10), we first fit the fitness for all negative control
sgRNAs to a normal distribution, giving rise to the standard deviation (σ). The Z
score for each sgRNA was then calculated by dividing the sgRNA fitness by the σ
value (equation 4).

ZsgRNA ¼ FitnesssgRNA=σnormalized distribution of NC sgRNA ð4Þ

In the next step, we determined the fitness for each gene of the tested phenotype
and calculated the statistical significance based on the fitness of all sgRNAs
belonging to this gene. We applied a framework similar to that described recently69

with an improved version of the algorithm via a sgRNA sampling approach. We
first used a simulation method to evaluate the false positive rate (FPR) of a gene to
be identified as positive for a particular phenotype given the fitness profiles of its
sgRNAs. To accurately define the FPR for genes with diverse numbers of sgRNAs
(1–15 sgRNAs per gene in the genome-scale sgRNA library), we explored 400
negative control sgRNAs to construct 15 quasi gene sets, each consisting of 10,000
members with 1–15 sgRNAs per member, which were referred to as QGi (i= 1–15)
(QG1 has only 400 members). For each quasi gene in QGi, a −Log10P value was
calculated based on the two-tailed MWU test of sgRNA fitness belonging to this
quasi gene against fitness of all negative control sgRNAs. We then defined a score
for this quasi gene incorporating both the effect size and the P values as equation
(5) (‘Abs’ denotes the absolute value). The scores for all quasi genes in QGi were
sorted in descending order, and the FPR value for each score was calculated via
equation (6). By this definition, those quasi genes identified as positive by a
particular threshold were regarded as false positives. We then used a linear
interpolation method to convert the discrete data calculated in equation (6) to a
function of FPR(score) (equation 7). In this manner, we obtained 15 functions, and
each one defined the relationship between FPR and gene score given genes with N
sgRNAs (N= 1, 2,…15). The procedure for this treatment is schematically shown
in Supplementary Fig. 25. The results show that the profile of FPR(score) for genes
with 10 sgRNAs is similar to those with more sgRNAs (Supplementary Fig. 25),
consistent with our argument that 10 sgRNAs per gene is generally sufficient for

robust hit-gene calling (Fig. 1b).

Score ¼ Abs median FitnesssgRNA

� �� �

´ �Log10P
� �

ð5Þ

FPR λð Þi i ¼ 1; 2; ¼ ; 15ð Þ ¼ scorej>λ; j ¼ 1; 2; ¼ ;Ni

n o

=Ni

N1 ¼ 400 andN2∼15 ¼ 10000ð Þ

ð6Þ

FPR scoreð Þi i ¼ 1; 2; ¼ ; 15ð Þ ¼ linear interpolation

data by equation 6ð Þ

ð7Þ

With the functions relating the FPR with gene score for genes with a different
number of sgRNAs, we calculated the fitness for each gene based on an sgRNA
sampling method (schematically demonstrated as Supplementary Fig. 4), because
we found that sgRNAs located within the 5′ region of the coding sequence
exhibited better activities (Fig. 1b). Suppose N sgRNAs belong to one particular
gene. We sorted these sgRNAs based on their relative locations within the coding
region (from the one most proximal to the 5′ end to that most proximal to the 3′

end). We then extracted the firstM sgRNAs, calculated the fitness based on median
sgRNA fitness, P value by two-tailed MWU test against all negative control
sgRNAs, subsequently used equation (5) and equation (7) to get score as well as the
FPR for this gene based on the current sgRNA subset with M members (M= 1,
2,…, N). The sgRNA subset with the smallest FPR value was selected as the sgRNA
set to determine all metrics for this gene. The fitness of this gene for the studied
phenotype was then the median of fitness of all sgRNAs belonging to the selected
subset. We then took the classical Storey-Tibshirani approach70 to convert the FPR
values (a particular type of P value) to Q values, which were used as the threshold
for hit-gene calling (FDR < 0.05). For other screening experiments of genome-wide
sgRNA library except for gene essentiality, essential genes of E. coli identified by
CRISPRi (fitness ≤−4, FDR ≤ 0.01) were excluded.

It should be noted that we also tried alternative methods to calculate the FPR
values and performed comparisons with the current one. For example, we tested
the performance by using a simple two-tailed Student’s t-test between sgRNA
fitness belonging to the extracted subset and negative control sgRNA fitness to
directly calculate the FPR value. The current algorithm outperformed the t-test
method slightly in terms of essential gene identification ability (Supplementary
Fig. 26). We assume this result might be due to the diverse activities of sgRNA
(Fig. 1b, Supplementary Fig. 10), leading to the divergence from the hypothesized
normal distribution of variables in a t-test.

ROC-AUC to compare the performances of different methods. To compare the
performance of different methods to identify the essential genes of E. coli, we
trained these methods as binary classifiers as described below. For the CRISPRi
screening method, we used a naive approach to convert the screening results into
prediction scores for the essentiality of each gene (equation 8).

predictiongene ¼ 1� FPRgene; if fitnessgene<0
� �

or 0; if fitnessgene � 0
� �

ð8Þ

For the Tn-seq dataset of all unique transposon insertion sites (152,018) by
Wetmore et al.25 (http://genomics.lbl.gov/supplemental/rbarseq/html/Keio/all.
poolcount), we applied an optimized strategy similar to that which was recently
reported6 to give each gene a prediction score to indicate its essentiality. Briefly, for
each gene annotated in the genome of E. coli NC000913.2, upon which the
annotation of this dataset is based, we calculated the insertion index as a unique
insertion number in the coding region of this gene divided by gene length. As
suggested6, the distribution of insertion indices was bimodal, corresponding to the
required (mode at 0) and non-required models (Supplementary Fig. 27). We
thereby used a cutoff of insertion index < 0.00125 to call a gene as required. Then
the following equation was used to assign a prediction score for each required gene
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to indicate its essentiality quantitatively.

predictiongene ¼ 1� e� local insertion index ´ gene lengthð Þ
�

;

if insertion indexgene<0:00125
�

or

0; if insertion indexgene � 0:00125
� �

ð9Þ

In this equation, we replaced the global insertion index (number of all unique
insertion sites/genome length) reported in ref. 6 with an optimized local insertion
index suggested by28, because the biased insertion density at different
chromosomal regions might lead to noise when calling hit genes. The local
insertion index was calculated by counting the number of unique transposon
insertion sites (N) within the 10-kb chromosomal region flanking the gene, and
hence the local insertion index was equal to N/10000. This adjustment improved
the performance of the trained Tn-seq classifier slightly (ROC-AUC: 0.878 vs.
0.876 for all genes, see Fig. 3b; 0.773 vs. 0.766 for genes of <400 bp, see Fig. 3c).

For the Tn-seq method based on an unprecedented library size by Goodall
et al.29, we adopted the insertion index data of every protein-coding gene in their
paper (Table S1) to essential gene classifier similar as described in equation 9. The
scores of assigned non-essential genes in Table S1 of their paper29 were directly set
to 0. This treatment is similar to insertion index threshold (0.00125 in dataset of
Wetmore et al.25) used above.

For the dataset reported for the transposon-based genetic footprinting
method28 (https://www.genome.wisc.edu/Gerdes2003/table_s1.txt), the authors
have annotated each gene with a tag of “essential” or “non-essential” and also
assigned each essential gene with a P value. Hence, we simply used the following
equation to produce the prediction score.

predictiongene ¼ 1� Pgene; if essentialgene ¼ yes
� �

or 0; if essentialgene ¼ no
� �

ð10Þ

Thus, we trained three binary classifiers and the ROC-AUC analysis was
performed based on the scikit-learn (0.19.0) Python package with the Keio
collection essential genes as the gold standard (Supplementary Data 11).

Overview of sgRNA activity landscape across ORF. We combined sgRNAs from
Library I in tiling library whose corresponding genes are located in monocistronic
operons and shown to be true positives, thus constructing a “functional” sgRNA set
(16 genes, 468 sgRNAs). The absolute values of sgRNA Z scores are a reasonable
metric to evaluate their activities. We categorized sgRNAs in this set into sub-
groups according to their relative position along the ORF. We then examined the
difference in activity between each subgroup and the whole population using two-
tailed MWU test (Fig. 1b). Similar approach was deployed to verify the sgRNA
activity positioning based on dataset from genome-scale library screening experi-
ments performed to identify the essential gene in rich media (Supplementary
Fig. 10, 337 essential genes, 4173 corresponding sgRNAs).

Code availability. The integrated software used for library design and NGS data
processing can be found at https://github.com/zhangchonglab/CRISPRi-functional-
genomics-in-prokaryotes.

Data availability. NGS raw data of CRISPR screening results for the tiling library
and genome-scale library can be accessed from the NCBI Short Read Archive with
BioProject ID PRJNA450392. The tiling and genome-scale sgRNA library (in a
sublibrary format; Supplementary Data 14) are deposited in Addgene. Any other
data or materials related to this work are available upon request from the corre-
sponding author.
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