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Abstract

The contribution of rare coding sequence variants to genetic susceptibility in complex disor-

ders is an important but unresolved question. Most studies thus far have investigated a limit-

ed number of genes from regions which contain common disease associated variants. Here

we investigate this in inflammatory bowel disease by sequencing the exons and proximal

promoters of 531 genes selected from both genome-wide association studies and pathway

analysis in pooled DNA panels from 474 cases of Crohn’s disease and 480 controls. 80 var-

iants with evidence of association in the sequencing experiment or with potential functional

significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 popula-

tion controls. The top 5 disease associated variants were genotyped in an extension panel

of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of

10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene
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within the major histocompatibility complex was significantly associated with increased

risk for IBD (p = 9.65x10−10, OR = 2.3[95% CI = 1.75–3.04]), but was independent of the

known common associated CD and UC variants at this locus. Rare (<1%) and low frequen-

cy (1–5%) variants in 3 additional genes showed suggestive association (p<0.005) with

either an increased risk (ARIH2 c.338-6C>T) or decreased risk (IL12B p.V298F, and NICN

p.H191R) of IBD. These results provide additional insights into the involvement of the inhibi-

tion of T cell activation in the development of both sub-phenotypes of inflammatory bowel

disease. We suggest that although rare coding variants may make a modest overall contri-

bution to complex disease susceptibility, they can inform our understanding of the molecular

pathways that contribute to pathogenesis.

Author Summary

Crohn’s disease and ulcerative colitis are two forms of inflammatory bowel disease which

cause chronic inflammation of the gastrointestinal tract. Common genetic variants in

more than 160 regions of the human genome have been associated with an altered risk of

these disorders, but leave much of the estimated genetic contribution to disease risk unex-

plained. We sought to establish whether rare genetic variants which alter the structure or

function of the proteins encoded by genes also contribute to disease susceptibility. We

used high throughput DNA sequencing to screen over 500 genes for such variants in near-

ly 500 patients and controls, and validated interesting variants in about 10,000 patients

and 7,000 controls. We detected association of a limited number of rare variants from cod-

ing regions with disease, suggesting that they do not account for a large proportion of ge-

netic susceptibility. However, they highlight the involvement of genes of potential

importance in the development of inflammatory bowel disease, including those involved

in the activation of immune cells, the regulation of immune response genes, and the degra-

dation of proteins in cells.

Introduction

The inflammatory bowel diseases (IBD), Crohn’s disease (CD) and ulcerative colitis (UC) are

chronic inflammatory disorders of the gastrointestinal tract that can cause diarrhoea, abdomi-

nal pain, bleeding and weight loss. Collectively they affect approximately 827 per 100,000 indi-

viduals in European populations and their incidence is rising [1]. CD may affect any part of the

gut with discontinuous penetrating lesions, whereas in UC the disease is limited to the colon

and rectum and the lesions are continuous but superficial [2]. Both diseases are multi-factorial,

with a complex aetiology that involves a combination of an underlying genetic predisposition

and environmental triggers. A variety of factors have been proposed to contribute to the patho-

genesis including changes within the intestinal microbiota, a defective mucosal barrier, and / or

dysregulation of the immune response [3].

A meta-analysis of genome-wide association studies (GWAS) in CD and UC by the Interna-

tional IBD Genetics Consortium (IIBDGC), followed by extensive confirmation of association

signals in more than 75,000 individuals has increased the number of IBD-associated loci to 163

[4]. The majority of these loci are associated with both CD and UC, which suggests that there is

extensive overlap in the biological mechanisms involved in their pathogenesis. However, al-

though our understanding of the aetiology of IBD has been substantially advanced by GWAS-
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based approaches, only a modest proportion of total disease variance can be explained by cur-

rent genetic findings (<15%) [4]. It has been proposed that rare coding sequence variants may

make a substantial contribution to disease variance, and confer disease risks large enough to

warrant use in preventative screening [5]. Such variants would not be detectable by a conven-

tional GWAS approach because they are not well tagged by the common SNPs on which

GWAS panels are based [6].

New high throughput DNA sequencing technologies have made it feasible to investigate the

contribution of rare variants to complex disease. In CD, it has long been known that low fre-

quency coding variants in NOD2make a substantial contribution to disease risk [7–9], and

more recent high-throughput sequencing strategies have discovered several independent IBD

associated rare variants in NOD2 and other genes from GWAS loci including IL23R, CARD9,

IL18RAP, CUL2, C1orf106, PTPN22, RNF186 andMUC19 [10–12]. However, a recent large-

scale sequencing study of the coding regions of 25 autoimmune candidate genes in more than

40,000 individuals yielded little evidence that rare variants drive the associations observed at

susceptibility loci for common immune disorders, including CD [13]. Thus the exact contribu-

tion of rare coding variants to IBD and other immune disorders remains unknown.

Here we describe a targeted high throughput sequencing approach in pooled DNA samples

from 474 CD patients and 480 population controls to screen all exons, splice sites, and proxi-

mal promoter regions in 531 positional and functional candidate genes. We sequenced CD pa-

tients with early-onset disease and/or strong family history to enrich for functional causal

variants with stronger effects, and we looked beyond common loci using functionally-derived

bioinformatics data such as pathway and protein network analysis to identify additional candi-

date genes involved in key processes such as the immune-response and autophagy. Potential

functional variants and those with evidence of association with CD underwent validation geno-

typing in a follow up study including 6507 IBD cases and 3064 controls with replication of the

top hits in an additional 3662 IBD cases and 3639 controls giving a total of over 10,000 IBD

cases and over 7,000 controls for the final combined analysis. We discovered significant novel

association of a rare coding variant in BTNL2 and suggestive associations of additional variants

in potentially novel IBD genes.

Results

Sequencing of CD cases and controls

An overview of our strategy for the discovery of rare variants associated with CD is shown

in Fig. 1. We selected 531 candidate genes for sequencing in phase I based on 5 selection crite-

ria (Table 1 and described in Materials and Methods). A total of 6,249 exons, together with

associated splice sites and proximal promoter regions, were sequenced in 474 CD cases and

480 population controls. Samples were sequenced in case-only or control-only pools of 12,

18 or 24 individuals using the Illumina Genome Analyzer II platform. An average of 98 million

sequence reads were generated per pool, of which 87% could be aligned to the reference ge-

nome and 64% passed subsequent quality control steps (Materials and Methods). Of these, an

average of 25.7 million reads mapped to the targeted genomic regions, which corresponded to

a capture efficiency of 40.5%. We observed a mean read depth of>1000x per pool across the

1.57 million bases captured. Taking into consideration the number of individuals per pool, on

average 90% of all bases had coverage greater than 4x per haploid genome (S1 Fig.).

In order to reduce false positives calls due to sequencing errors, we applied a stringent filter-

ing procedure (Materials and Methods), after which the number of variants was approximately

constant across all pools for all types of variants (S2 Fig.).

Associated Rare Variants in Inflammatory Bowel Disease
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Figure 1. Summary of strategy for detecting rare variants associated with IBD.Overview of our rare
variant screening strategy in IBD using DNA pools. We detected 3442 high quality variants in phase I based
on stringent filtering criteria. We were able to validate 1252 of these variants using a) previously generated
genotyping data for 153 SNPs in 634 of the individuals who were sequenced; b) case-control association p
values for 1099 SNPs from CD Immunochip study [4]. We then performed validation genotyping of 80
variants in phase II in 6335 IBD cases and 2974 controls and extended the analysis of the top 5 SNVs to a
further 3662 IBD cases and 3639 controls (phase III) to allow a final combined analysis of 10,147 IBD cases
and 7,008 controls.

doi:10.1371/journal.pgen.1004955.g001
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Next, variant allele frequencies in each pool were estimated from base-call counts. We as-

sessed the accuracy of this approach by comparing these estimates to minor allele frequencies

(MAFs) derived from genotyping data generated by the Wellcome Trust Case Control Consor-

tium (WTCCC); genotypes were available for 153 SNPs located in the captured genomic re-

gions in 66.5% (388 controls, 246 cases) of the individuals sequenced in this study [14]. We

observed a very strong correlation (Spearman Rank Correlation r = 0.977) between MAFs for

the WTCCC genotypes and the pooled sequencing data (Fig. 2).

After filtering, 3,749 single nucleotide variants (SNVs, here used to refer to any single nucle-

otide variation regardless of minor allele frequency) were retained, of which over half were low

frequency (<5%, S1 Table). Just over half of the SNVs were located in exons (51.1%; 1914

SNVs), with the remainder located in introns, untranslated regions (UTRs), putative splice

sites and intergenic regions. We considered 106 of the SNVs (3%) to be novel because they

were not present in dbSNP138 (http://www.ncbi.nlm.nih.gov/SNP/). Analysis of all SNVs

yielded a transition/transversion ratio (Ti/Tv) of 2.41, which is expected given the bias toward

coding sequences in our target regions and is in agreement with previous studies [11]. In addi-

tion to SNVs we identified 183 deletions and 117 insertions. Only 14 of these insertion/dele-

tions (indels) were located in an exon (S1 Table). A high rate of true positives in our

sequencing data was corroborated by the presence of 97% of our variants in dbSNP138, and

the strong correlation between MAFs for the pooled sequencing data and the WTCCC geno-

type data. Regarding sensitivity of variant detection, the regions captured in our sequencing

contain 1,599 variants with a MAF>5% in the phase I release of the 1000 Genomes project,

1,291 of which (80.7%) were detected in our pooled sequencing data.

Analysis of bias

Our strategy relied on the necessity of sequencing individuals in case-only or control-only

DNA pools which could potentially inflate any biases that would arise due to sequencing batch

effects. We therefore used principal component analysis to control for this and identify any

outlier pools. Examination of PC axes 1 and 2 revealed pools 7 and 8 to be outliers. Both were

case pools, although each represented a single lane of flow-cell data from two different runs of

the GAII sequencer. Once these pools were removed the data showed reasonable separation of

points, but there was a clear tendency for case and control pools to be separated along PC axis

1 (S3 Fig.), which led to an overall genomic inflation of 1.3 (Fig. 3). The extent of the systematic

bias in the data meant that PC axes could not be used as covariates in a logistic regression to

correct for it, as previously noted [15], nor could we apply methods designed to correct for

Table 1. Candidate gene selection strategies.

Gene selection criteria Count

Genes in Crohn’s disease GWAS hit regions 75

Genes in GWAS hits from other auto-immune diseases 50

Genes identified by pathway analysis 74

Genes identified by literature search 214

Genes identified by network analyses 300

Total Genes on array 531

Total exons 6290

Total base pairs 1,569,003

Selection criteria are non-exclusive so that many genes were selected by more than one criterion.

doi:10.1371/journal.pgen.1004955.t001

Associated Rare Variants in Inflammatory Bowel Disease

PLOS Genetics | DOI:10.1371/journal.pgen.1004955 February 11, 2015 5 / 19

http://www.ncbi.nlm.nih.gov/SNP/


overdispersion but not bias [16]. We therefore applied a genomic control method for down-

stream association analysis plus additional QC measure for removal of SNVs with strong over

dispersion among pools (Materials and Methods). We note that it is possible that the high sys-

tematic bias reflects genuine causal influences given the candidature of all the genes sequenced,

but equally we cannot exclude the possibility of experimental sources of bias.

Association analysis

Variant level association with case-control status of pools was performed using logistic regres-

sion on 3,442 SNVs after exclusion of 307 SNVs that were too rare (had zero count in case or

controls), or only had allele counts in excluded pools (Materials and Methods) (Fig. 3). Encour-

agingly, several known common and low frequency CD susceptibility variants were detected

including variants in ATG16L1, IRGM, IL23R, CARD9 and NOD2, and rare variants in IL23R

and NOD2 [7, 8, 10, 11, 17], all of which showed the expected CD odds ratios and allele fre-

quencies in both cases and controls (S2 Table).

We noticed that 1,099 of 3,442 SNVs tested for association in our sequencing data were ei-

ther included in the IBD Immunochip project directly (803) or by a suitable tagging SNP

Figure 2. Minor allele frequencies WTCCC vs pooled NGS (24 pools combined).MAFs for 153 SNPs
were compared between allele frequency estimates based on pooled NGS and genotyping data from the
WTCCC [47] for 634 individuals. MAFs are strongly correlated between both datasets (Spearman rank
correlation coefficient R = 0.976), with only two SNPs showing substantial differences.

doi:10.1371/journal.pgen.1004955.g002
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(r2�0.8, n = 296) [4]. The IBD Immunochip dataset was therefore considered as an indepen-

dent replication study for these 1099 variants. We found that 43 of the 141 variants (30.5%)

that were at least nominally associated in our sequencing data (p<0.05) were also associated in

the CD Immunochip data (p<5x10−8), resulting in a significant correlation between the two

datasets (r = 0.446, p = 4.46x10−32).

The majority of variants identified by our study were rare, resulting in modest statistical

power for the SNV-wise tests of association. We therefore applied gene-level association tests

to investigate whether the burden of predicted functional variants non-synonymous and stop-

gain variants) was different in cases compared to controls (Materials and Methods). In our

discovery sequencing we identified 341 genes containing one or more functional variants.

Thus the gene-burden test provided>90% power to detect a gene-level association where the

cumulative MAF is 5% and the cumulative risk (OR) is 2.5 at an alpha level of 0.00015 (allow-

ing for Bonferroni correction based on 341 genes/tests). We identified significant gene-level

associations for BTNL2 (no. of variants = 18, p = 8.15x10−5) and NOD2 (no. of variants = 10,

p = 9.03x10−6) (S3 Table). Since both genes contained substantially more functional variants

than other genes that were tested we controlled for LD by permutation analysis (Materials and

Methods), which resulted in loss of significance for BTNL2 (p = 0.022), whilst NOD2 remained

significant (p<0.001). Repeating the analysis to include all intragenic variants (functional and

non-functional) gave a similar outcome, although neither gene survived permutation testing

(p>0.001).

Figure 3. Quantile-quantile plot of chi-squared statistic. Data for case-control comparison of allele
frequencies of 3442 variants, detected in pooled sequencing experiment for 42 case and 40 control pools.
Overall genomic inflation (lambda) of 1.3 was observed.A genomic control correction was therefore applied
for downstream association analysis (Materials and Methods).

doi:10.1371/journal.pgen.1004955.g003
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Validation genotyping and extension study

In Phase II we selected 85 variants for validation of disease association by Sequenom (84 SNVs)

or Taqman (1 SNV) genotyping in 6,335 IBD cases from the UK IBD Genetics Consortium

(3,715 CD and 2,619 UC) and 2,974 controls (Materials and Methods). UC cases were included

in the validation because of the extensive overlap in known associated loci for these two related

phenotypes [4]. SNVs were selected based on at least nominal evidence of association in the

pooled sequencing experiment (p< 0.05), and we prioritised those predicted to be functionally

relevant (S1 Text). SNVs already genotyped as part of the IBD Immunochip experiment [4]

were excluded. Post-genotyping quality control revealed that two SNVs failed to genotype, two

were non-polymorphic and one was not in Hardy Weinberg equilibrium (p< 1x10−6 in con-

trols) leaving a total of 80 SNVs (S4 Table). The genotyping call rate for all remaining SNVs

was>90%. To allow validation of our variant calling analysis pipeline we genotyped an addi-

tional subset of 368 individuals previously included in our sequencing experiment and were

able to show strong correlation between predicted and actual allele frequencies for all 80 SNVs

(r = 0.94, p = 2.42x10−38) and low frequency SNVs (MAF<5%, r = 0.86, p = 1.69x10−24). In addi-

tion, allele frequencies derived from the pooled sequencing experiment were compared to those

derived from all individuals in the phase II genotype data and revealed a highly significant cor-

relation (r = 0.971, p< 6.58x10−48), further supporting the validity of the pooled sequencing

approach. We followed up 3 insertion deletion polymorphisms by Taqman genotyping in

2,532 IBD cases and 3,545 controls (rs58682836/COBL frameshift delTTC, rs71297581/TYK2

upstream insC, and rs3833864/PIK3C upstream insC). The indel rs71297581 failed genotyping

quality control, producing poor genotype clusters, and neither rs58682836 nor rs3833864 were

associated with IBD (p> 0.5).

There was some evidence of association (p< 0.05) for 16 SNVs across 12 genes, CHTOP,

ARIH2, NICN1, PLSCR1, IL12B, BTNL2, QRSL1, CALML5, GLT1D1, RTEL1, ATG4B and

TBX21 (S5 Table). These were associated with either CD (11 variants), UC (5 variants) or IBD

(12 variants), with 4 of these variants located in BTNL2. BTNL2 and IL12Bmap to established

UC and IBD risk loci and have previously been implicated in UC and IBD respectively (6p21/

HLA class II/UC and 5q31/IBD respectively), whilst ARIH2 and NICN1are within the same

previously described IBD locus (3p21.3/IBD) but the genes themselves have not been implicat-

ed. Association of the other 10 genes and their respective variants with IBD has not been

reported previously.

Since BTNL2 is within the MHC region and close to the common IBD associated locus in

the HLA class 2 region we investigated the extent of LD across the 4 variants and their indepen-

dence from the known risk locus using haplotype and conditional analysis within a set of cases

and controls previously genotyped in both the Immunochip study and our follow up genotyp-

ing study (Materials and Methods). The analysis showed that the rare BTNL2 variants p.

G454C and p.D336N (rs28362675 and rs41441651) were in almost complete LD with each

other (r2 = 0.99) and remained associated with IBD even when the effect at the common SNPs

was accounted for (p< 0.049), as did BTNL2 c.-118G>T (rs28362684, p = 0.039) but not the

missense variant (p.S334L). Regarding association of the 80 variants with IBD, only the two

highly correlated variants in BTNL2 (p.454C and p.D336N) surpassed the Bonferroni threshold

for multiple testing (p< 0.0006 for 79 independent SNVs tested). However there was signifi-

cant enrichment for association signals among the 79 variants, with nearly 3 times the number

of significant results than would be expected by chance, with 14% of p-values for association

with IBD (i.e. 11/79) being less than 0.05 (p = 0.00189).

Recognising the relatively low power of the validation panel to detect significant association

of rare variants with disease, we next carried out extended genotyping (Phase III) of the 5 top

Associated Rare Variants in Inflammatory Bowel Disease
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SNVs that had a p< 0.01 (and in the case of BTNL2 were independent of each other and the

known common risk variants) in an additional panel of 3,662 IBD cases and 3,639 controls

(Materials and Methods), and then performed a combined case-control analysis of all 10,147

IBD cases and 7,008 controls that were either sequenced or genotyped (Table 2). We confirmed

a genome-wide significant association with BTNL2 p.G454C and increased risk of IBD at

(p = 9.65x10−10, OR = 2.3 [95%CI = 1.75–3.04]). We detected association for 3 other variants

of the 5 tested in phase III (p< 0.005). Notably, in the combined analysis the direction of the

effect for each of the 5 SNPs is consistent with the effect in the validation panel (p< 0.031).

However, the 3 additional associations do not meet correction for 79 independent tests

(P<0.00063) and are therefore suggestive. They include two low frequency missense variants

IL12B p.V298F and NICN1 p.H191R associated with a reduced risk for IBD and one noncoding

variant ARIH2 c.338-6C>T which was associated with an increased risk (Table 2). Two of the

3 missense variants associated with IBD (IL12B p.V298F and BTNL2 p.G454C) were predicted

to be damaging or non-tolerated by Polyphen2 [18] and/or SIFT (sorts intolerant from toler-

ant) or Provean [19]. IL1B encodes the p40 subunit common to both the interleukin-12 and in-

terleukin-23 heterodimeric cytokines. The p.V298F variant is not in LD with the common risk

variant at this locus (r2 = 0.001, D’ = 0.079), and is predicted to disrupt the structure of the

p40 protein by the mCSM structure prediction tool [20], with a predicted stability change ΔΔG

of −0.917. We also used the available structure of the IL12B (p40) and IL23A (p19) proteins to

model the effect of the V298F mutation in IL12B (S4 Fig.). This indicated an altered conforma-

tional state of a region of p40 which is important for binding to its partner proteins IL23A

(p19) and IL12A (p35) [21].

BTNL2

BTNL2 is located on chromosome 6p21.3, which contains two common and independent risk

loci for IBD. The closest (approximately 200Kb proximal to BTNL2) is within the HLA class II

region and is associated with UC (rs477515, p = 5x10−133). The other locus is much further

away (approximately 1.1Mb distal of BTNL2) within the HLA-class I region, and associated

with CD (rs9264942, p = 5x10−28) [4]. We observed that BTNL2 p.G454C was associated very

strongly with UC (p = 3.5x10−12, Table 2) and also associated with CD but to a lesser extent

(p = 3.6x10−5, Table 2). In view of the extended LD in this region, it is possible that these asso-

ciations could be due to LD with the known common risk variants in the HLA class I or class II

regions. We investigated this by further conditional logistic regression analysis using 1,638 IBD

cases and 1,243 controls genotyped in both the Immunochip study and both our genotyping

studies. We confirmed that BTNL2 p.G454C was not in LD with either of the two common

IBD risk variants (r2< 0.001, D’< 0.7). Conditional analysis showed that BTNL2 p.G454C re-

mained significantly associated with IBD when the effect at the common UC associated SNP

(rs477515) was accounted for (p = 0.0045, S6 Table), or the common CD associated SNP

(rs9264942) was accounted for (p = 4.83x10−5, S6 Table). Haplotype analysis showed that the

risk “A” allele for the rare variant occurred on haplotypes containing either the non-risk or the

risk allele for both of the common variants, further suggesting their independence. Given the

strength of the effect of p.G454C in UC individuals in particular (Table 2) we carried out spe-

cific haplotype analysis using this and the common UC GWAS SNP in the class II HLA region

and showed that haplotype A-A containing the risk allele at the rare variant (p.G454C) and the

non-risk “A” allele at the common UC GWAS SNP (rs477515) respectively, although very

rare, was increased in frequency in cases, (0.2%) compared to controls (0.07%) (S7 Table),

and the haplotype G-A containing the risk allele at both the common and the rare variant had

a much higher risk for disease (OR = 6.51 [95%CI = 1.87–22.72]) than the haplotype G-C

Associated Rare Variants in Inflammatory Bowel Disease
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that only had the risk allele at the common SNP and lacked the rare risk allele (OR = 1.38

[95%CI = 1.20–1.57]).

Discussion

In this study we investigated the contribution of rare variants to susceptibility to inflammatory

bowel disease in a large set of candidate genes. Use of targeted next generation sequencing in

combination with a DNA pooling strategy allowed us to screen over 500 genes for variants in

more than 900 individuals, which is ten-fold more than were investigated in previous studies of

IBD [10–12]. The results demonstrate that this is a cost-effective strategy for identifying low

frequency variants that may be associated with disease. We were able to validate our approach

by accurate estimation of the minor allele frequencies of 153 SNPs previously genotyped in in-

dividual case and control samples by the Affymetrix 500K SNP array, and by successfully re-

producing the effect sizes (odds ratios) and allele frequencies of multiple common and low-

frequency variants previously associated with IBD. We also demonstrated highly significant

overlap of association for 1,099 SNPs that were common to our study and the recent GWAS/

Immunochip meta-analysis for IBD [4], and showed a strong correlation between the allele fre-

quencies and odds ratios of 80 SNVs that were genotyped by both pooled DNA sequencing

and genotyping in our follow up study. Strong correlations between allele frequency estimates

from pooled sequencing and genotyping have also been reported in previous studies of Crohn’s

disease [10, 11], although read counts tended to underestimate actual frequencies for rare vari-

ants in one study [10]. However this approach could prove useful when supported by stringent

quality control and validation measures.

Sequencing of coding and potential regulatory regions of 531 genes in a discovery set of 954

individuals, followed by genotyping in 17,131 individuals has allowed us to identify a novel dis-

ease associated genetic variant within a gene that maps to a region previously associated with

IBD, and suggestive associations of other variants in a known IBD susceptibility gene and in

other genes not previously implicated in IBD. The association of the rare variant p.G454C in

BTNL2 reached genome-wide significance, and was independent of the known common risk

variants for IBD in the HLA region in both a conditional and haplotype analysis. However, this

is a complex region of the genome with extensive allelic variation and linkage disequilibrium,

and additional as yet unknown IBD risk variants at this locus may exist that are independent of

Table 2. Combined case-control association analysis of 5 sequence variants from the phase III extension study in 10,147 IBD cases and 7,008
controls from phases I–III.

Gene, variant dbSNP Chr:bp Control Crohn’s disease Ulcerative colitis Inflammatory bowel disease

MAF MAF P OR (95%CI) MAF P OR (95%CI) MAF P OR (95%CI)

ARIH2 rs200140527 3:49004552 0.09% 0.22% 0.01086 2.34 0.22% 0.01504 2.32 0.22% 0.004407 2.39

c.338-6C>T (1.19–4.61) (1.15–4.67) (1.29–4.42)

NICN1 rs61729946 3:49462458 1.30% 0.90% 0.003094 0.69 0.99% 0.03548 0.76 0.94% 0.001868 0.72

p.H191R (0.54–0.88) (0.59–0.98) (0.59–0.89)

IL12B rs3213119 5:158743788 3.24% 2.54% 0.001242 0.78 2.80% 0.06153 0.86 2.66% 0.001825 0.82

p.V298F (0.67–0.91) (0.74–1.01) (0.72–0.93)

BTNL2 rs28362675 6:32362521 0.47% 0.90% 3.63x10−05 1.91 1.31% 3.48x10−12 2.79 1.08% 9.65x10−10 2.31

p.G454C (1.40–2.61) (2.06–3.76) (1.75–3.04)

TBX21 rs41444548 17:45811354 7.70% 7.19% 0.1279 0.93 6.97% 0.03644 0.9 7.09% 0.03358 0.91

c.491+43C>G (0.84–1.02) (0.81–0.99) (0.84–0.99)

doi:10.1371/journal.pgen.1004955.t002
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the two main HLA signals previously described but correlated with our rare variant. The gly-

cine residue is highly conserved across all mammals and the cysteine substitution is predicted

to be damaging by SIFT (score = 0.01) and probably damaging by PolyPhen2 (score = 0.997).

This variant was in almost complete LD with another missense variant D336N which is not

predicted to be damaging. BTNL2 codes for the butyrophilin like protein 2, which is a member

of butyrophilin family that shares sequence homology with the B7 co-stimulatory molecules.

The butyrophilins are implicated in T cell inhibition and the modulation of epithelial cell-T

cell interactions [22]. BTNL2 negatively regulates T-cell activation independently of CD28 and

CTLA-4, is predominantly expressed in gastrointestinal tissues including human terminal

ileum (www.gtexportal.org), and is overexpressed in mouse models of colitis [23]. Recently it

has been shown that BTNL2 promotes the expression of Foxp3, which is a transcription factor

required for regulatory T cell development and function [24]. In view of its important role in

immune modulation and homeostasis and an expression pattern restricted to intestinal epithe-

lial and immune cells, mutations in BTNL2may affect its ability to regulate T cell activation in

response to mucosal inflammation. Common variants at the BTNL2 locus, have been previous-

ly shown to be associated with ulcerative colitis whilst being independent of the nearby known

HLA susceptibility alleles [25]. Additional coding and loss-of-function variants in BTNL2,

have been associated with susceptibility to other immune related disorders including adult-

onset sarcoidosis [26, 27] and rheumatoid arthritis [28].

Although no variants other than the two rare and highly correlated missense mutations in

BTNL2 surpassed the Bonferroni threshold for testing the 79 independent variants for associa-

tion with IBD, there was significant enrichment for association signals among these 79 variants,

and our extension study and combined analysis showed that the direction of the effect for all 5

SNVs tested was consistent with the initial finding. This suggests that there are likely to be ad-

ditional true positives within phase II and III of our study that have not met the stringent Bon-

ferroni threshold. This emphasises the difficulty in obtaining statistically robust evidence for

association of rare variants even with a combined sample of 17,000 tested here and a relatively

large effect size such as, for example, ARIH2 c.338-6C>T, OR = 2.39.

The association of common variants at the IL12B locus with both CD and UC is well estab-

lished [4], although no obvious causal variant has yet been found. The association of the

low frequency IL12B variant V298F with IBD which was detected in our sequencing experi-

ment was retained in the combined analysis of 10,146 IBD and 7,008 controls, (p = 0.00183,

OR = 0.82 [95%CI = 0.72–0.93]). IL12B encodes the IL12p40 subunit common to both IL12

and IL23, both of which are produced by activated dendritic cells and macrophages and lead to

activation of distinct subsets of T-cells. We found that the minor allele of V298F is associated

with a reduced risk of both CD and UC and is independent of the common risk variants at this

locus. The variant is predicted to have a damaging or destabilizing effect on protein function or

structure, and modeling of the effect of the mutation on the structure of the p40 subunit pre-

dicted an altered conformational state which could affect binding to its partner proteins. Thus

the rare (Phe) allele may reduce the risk of IBD by attenuating the activation of T cell popula-

tions by IL12 and IL23.

We found two additional suggestive associations in ARIH2 and NICN1. Ariadne homolog 2

(ARIH2) is a member of an unusual family of E3 ubiquitin-protein ligases. Loss of ARIH2 has

been shown to cause degradation of IκBβ in dendritic cells leading to dysregulated activation of

NFκB. The SNP rs200140527 is associated with IBD, and is 6bp upstream of the splice acceptor

site for exon 9 of ARIH2, although the C>T change is not predicted to affect the strength of

the splice site [29]. Nicolin 1 (NICN1) is a nuclear protein and part of the neuronal tubulin

polyglutamate complex [30] although very little else is known about its function. It is expressed

in multiple tissues including the human terminal ileum and transverse colon (www.gtexportal.
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org). The nonsynonymous SNP p.H191R is associated with a protective effect for CD and UC

in this study. NICN1 is on chromosome 3 at 49.46Mb, i.e. approximately 460kb proximal to

ARIH2 on 3p21 and within a 2Mb locus previously associated with IBD that contains multiple

independent genome-wide significant SNPs [4].

Previous sequencing studies have reported that rare coding variants make a limited contri-

bution to the genetics of immune disorders and hypertriglyceridaemia, explaining 1–2% of

their genetic variance [10–13, 31, 32]. However, these studies have generally sequenced a limit-

ed number of genes located in regions derived from the association of common variants with

the disease. Our study highlights the challenges in identifying rare variant association for a

polygenic complex trait like IBD. In sequencing more than 500 genes from both GWAS and

pathway or network analysis combined with follow up genotyping in over 17,000 individuals

we found genome-wide significant association of a rare variant in one gene and suggestive asso-

ciation of 3 SNVs in 3 other genes. However, our follow up studies were powered to detect as-

sociations of rare variants with relatively strong effects. For example, our phase II validation

panel had 57% power to detect association of a low frequency variant with an allele frequency

of 2.5% and OR = 1.3 at alpha level of 0.01 (to flag candidate associations), and 75% power to

detect a rare variant with an allele frequency of 1% and OR of 1.6. In the combined analysis of

10,147 cases and 7,008 controls, we had 69% power to confirm association of a variant with a

MAF of 0.025 and OR of 1.3 at alpha level of 0.0006 (correction for 79 SNV tests), but 89%

power to confirm association for a variant with MAF 0.01 and an OR of 1.6. It is therefore likely

that some rare variants with effect sizes of less than 1.6 remain undiscovered in these genes. It

is also possible that a proportion of variants that are recognised as being suggestive of associa-

tion in this study may turn out to be false positives, so further replication and subsequent func-

tional studies will be required to prove causality.

If our 4 newly discovered associations were added to the 26 low frequency SNVs identified

in 13 other genes from previously published studies of IBD [7, 10–12, 17, 33] this would total

30 IBD associations with low frequency SNVs in 17 of 548 sequenced genes. However, these

screens have predominantly interrogated the coding regions of less than 3% of all known

genes. Our study has targeted<25% (198) of all the known genes that map to the 163 IBD as-

sociated regions identified by the most recent mapping efforts of the International IBD Con-

sortium [4]. A comprehensive evaluation of the true extent of the contribution of rare coding

variants to IBD will have to await whole exome sequencing of very large numbers of case and

controls [34], and whole genome sequencing to capture rare regulatory variants in non-

coding regions.

The value of studies of rare variants in IBD lies not only in the discovery of additional risk

variants which may aid future genetic profiling in at risk populations, but also in their potential

to discover further genes and pathways involved in IBD. Our study provides additional evi-

dence of the importance of the regulation of T cell activation and mucosal T cell responses in-

volving BTNL2, and the potential role of proteosomal degradation in the pathogenesis of IBD.

Materials and Methods

Selection of candidate genes and design of the capture array

A total of 531 candidate genes were selected based on: (a) Crohn’s disease GWAS hits; (b)

GWAS hits from other immune disorders; (c) Pathway analysis based on Gene-set enrichment

analysis; (d) IBD related literature; and (e) Network Analysis (Table 1). Details of these selec-

tion criteria are provided in S1 Text. Exon coordinates from RefSeq [35] and Ensembl [36]

were combined to include all potentially coding regions. Proximal promoters were included

by selection of genomic regions from 200 bp upstream to 50 bp downstream of the

Associated Rare Variants in Inflammatory Bowel Disease

PLOS Genetics | DOI:10.1371/journal.pgen.1004955 February 11, 2015 12 / 19

http://www.gtexportal.org


transcription start site. Putative splice sites were included by addition of five bp each side of

coding exons. In total 6,290 genomic intervals were successfully synthesized for the Agilent

SureSelect DNA Capture Array. Capture probes (120 bp; 60bp tiling) corresponding to

1,569,003 bp of target sequence.

Study participants and sample preparation

Crohn’s disease patients for the sequencing experiment (n = 474) were recruited from specialist

IBD clinics in London and Newcastle [37] after informed consent and ethical review (REC 05/

Q0502/127). Population controls for sequencing (n = 480) were obtained from the 1958 British

Birth Cohort [38]. All individuals were of European ancestry. The chances of detecting rare

variants with large effects in the sequencing stage was increased by selection of Crohn’s disease

(CD) patients with an early age of onset<20 years (n = 204), or with a family history of IBD

(n = 174) or both early onset and family history (n = 96). Additionally, 178 (86%) of those indi-

viduals with a family history also had at least one affected first degree relative. DNA samples

were quantified in triplicate (Qubit, Life technologies) prior to pooling in equimolar amounts

to a total of 3 μg of DNA. Pools of 24 CD case DNA samples or 24 control DNA samples were

made with a total of 44 pools, 474 cases and 480 controls (including 9 pilot/test pools of 12 and

one test pool of 18 CD cases; S1 Text) and libraries were prepared following standard protocols.

The validation panel for phase II, consisted of 3,799 unrelated CD and 2,708 unrelated UC, pa-

tients recruited by the UK IBD Genetics Consortium [4] and the replication panel consisted of

an additional 1644 CD cases and 2018 UC cases recruited from London and Newcastle (as de-

scribed above). Additional population controls (n[validation] = 3,064; n[replication] = 3622)

were from the 1958 British Birth cohort and the National Blood Donor Service [14]. All cases

and controls analysed in the replication phase III were independent and unrelated to those se-

quenced in the phase I and phase II discovery cohort.

Read alignment and read quality control

Sequencing reads were aligned to the hg18 (NCBI 36) reference genome using Novoalign (ver-

sion 2.07.09, Novocraft Technologies). We performed quality control using SAM tools [39]

and removed PCR duplicates using Picard tools [40]. SNVs and indels were called using SAM-

tools and filtered based on the following criteria: i) Phred base quality score� 20, ii) any allele

to have at least two base calls on each strand, iii) minimum base call count for any allele to be

the equivalent to at least one expected chromosome count (N allele-specific base calls / N total

base calls � 2 �N individuals in pool), with at least 0.3 expected chromosome counts attribut-

able to each strand, iiii) criteria to be met in at least three different pools from at least two dif-

ferent batches. These parameters were optimized to reduce biases across all 44 pools (S2 Fig.).

After filtering, base call counts were normalised to allele frequencies for each pool based on the

total number of base calls that passed the filtering criteria. Variants were annotated using

ANNOVAR [41]. Further details of read alignment, quality control and variant calling are pro-

vided in S1 Text.

Validation genotyping and extension study

After excluding variants previously implicated with IBD and variants analysed in the IBD

Immunochip project [4], we selected 96 SNVs for follow up in phase II using the Sequenom

iplex genotyping platform. We chose variants that a) surpassed multiple testing in the pooled

sequencing based case-control comparison (p< 10−5), b) were modestly significant in the

pooled sequencing based case-control comparison (p< 0.05) and had a low allele frequency

(MAF< 5%), c) had functional consequence (within 20bp of a splice acceptor or donor site or
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non-synonymous variant), and were novel or low frequency (< 1%), d) were absent from one

group (either controls or cases) and had a functional consequence (within 20bp of a splice ac-

ceptor or donor site or non-synonymous variant). In total 84 SNVs passed design and were

genotyped via Sequenom iplex in 2,974 controls, 3,715 Crohn’s disease and 2,620 ulcerative co-

litis cases. Individuals for which more than 20% of SNVs could not be called were excluded

from further analysis. One additional SNV (rs138274580/ATG4B) and 3 indels (rs58682836/

COBL frameshift delTTC, rs71297581/TYK2 upstream insC, rs3833864/PIK3C upstream

insC), that failed iplex design, were genotyped using the TaqMan chemistry (Life Technolo-

gies); SNP since they were ranked as high priority in all categories of our variant selection crite-

ria (S1 Text). Finally we selected 5 SNVs with p<0.01 in any one phenotype (CD, UC or IBD)

and, in the case of multiple SNVs in BTNL2, were indicated by LD and conditional regression

analysis to be independent of each other and the known common risk variants, for replication

genotyping via KASPTM chemistry at LGC Genomics (Hoddesdon, Herts, UK) in 3666 addi-

tional IBD cases and 3622 additional controls. In order to validate previous phases we also in-

cluded a further 858 individuals who had been sequenced and/or undergone sequenom iplex

genotyping. To investigate LD and independence of the BTNL2 variants from the known IBD

GWAS hits within the MHC we used Immunochip data supplied by the UKIBD Genetics Con-

sortium that was available for 1,638 of our genotyped IBD cases and 1,243 of

genotyped controls.

Statistical analyses

Allele frequencies for each SNV in each pool were standardized and subjected to principal

components analysis (PCA) to identify outlier pools and investigate systematic bias between

cases and controls. PCA revealed considerable bias, such that cases and control pools could be

largely separated by PC axis 1 alone. Various statistical methods for dealing with pooled SNV

data have been proposed [16]. In light of the PCA results, we adopted a genomic control ap-

proach because it can correct for both overdispersion (additional variance that is distributed

equally among pools) and bias (a consistent tendency for allele frequencies in case pools to be

different from controls pools). For each SNV, a logistic regression across pools was performed

using expected chromosome counts for the two most common alleles to form the dependent

variable, and case-control status as the independent variable. The reversal of the conventional

functional from allows for different pool sizes to be readily accounted for, and also appropriate-

ly reflects the study design (pool status is fixed by the experimenter, not pool allele frequen-

cies). Genomic control was performed by dividing the chi-square statistic for association by the

median chi-square statistic across all SNVs. We used evidence for especially strong SNV-spe-

cific overdispersion among pools (via a test of residual deviance from the logistic regression for

association, p< 1.5x10−5) as an additional QC measure for removal of suspect SNVs.

Burden tests for significant association of a group of SNVs (e.g. all SNVs in a gene) were

also performed taking in account both the pooled design and the presence of case-control bias.

For a given set of n SNVs, genomic-control-corrected z2 values were summed and tested

against the chi-squared distribution with n degrees of freedom. Significant sum-statistics were

further tested via permutation of case-control status among pools, to correct for false positives

that could be caused from linkage disequilibrium distributing the same signal among multiple

SNVs. Note that our burden test allows SNV groups containing a mixture of both risk and pro-

tective variants to be tested appropriately.

Statistical analyses of pooled sequencing data was performed using R project for statistical

computing (http://www.r-project.org/). Cases-control analysis of validation and replication

genotyping data was performed with PLINK version 1.07 [42] using Armitage Trend Test.
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Additional conditional regression, linkage disequilibrium and haplotype analysis at known

common IBD loci was performed using UNPHASED v3.0.12 [43].

Structural analysis of IL12B

The effect of the mutation Val298Phe on IL12B (p40) protein stability was examined using the

tool mCSM, which predicts the effect of mutations in proteins using graph-based signatures

[20]. The structure of the complex of human IL12B (p40) and IL23A (p19) is available in the

RCSB Protein Data Bank [44] (PDB entry 4GRW), and was used as the template to model the

structure of mutant IL12BV298F. The modelling procedure first generated the sequence align-

ment between the target (IL12BV298F) and the template structure (4GRW chain B) by running

the tool T-Coffee [45]. The aligned sequences were then used as an input to the structure

modelling package Modeller 9v8 [46]to generate 200 structures of IL12BV298F. Among these,

only the one with the best Discrete Optimized Protein Energy score was selected for inspection

of the mutation Val298Phe. The structure representation tool PyMol (Version 1.5.0.4, Schrö-

dinger, LLC)was used for visual inspection and structural analysis. The interaction between

IL12BV298F and IL23A was modelled by superimposing the IL12BV298F structure onto the

human wild-type IL12B.

Supporting Information

S1 Text. Supplementary Materials and Methods and additional supplementary references.

(DOCX)

S1 Fig. Total number of variants and coverage across all 44 pools. The total number of vari-

ants identified is dependent on the coverage and the number of individuals per pool.

(TIF)

S2 Fig. Types of SNVs per pool after filtering. The number of different types of SNV are com-

pared across 44 pools. SNVs are only considered if they pass filtering criteria as described in

Materials and Methods. Numbers are approximately constant across pools 11–44 whilst lower

numbers are observed for earlier pools.

(TIF)

S3 Fig. A plot of the first two principal component (PC) axes derived from allele frequen-

cies estimated by the sequencing data after removing pool numbers 7 and 8.

(TIF)

S4 Fig. Structural analysis of the IL12B mutation V298F. Comparison between IL12Bwt

(blue) and IL12BV298F (green) and their interaction with IL23A (grey). The variant Val298Phe

is located in the Fibronectin III (FN3) domain of IL12B, and is shown with a stick representa-

tion, coloured in magenta for IL12BV298F and red for IL12Bwt. A close up of the FN3 domain is

given on the right of the figure. The neighbouring β-sheets (coloured in teal) were shortened in

the modelled structure of IL12B V298F compared to IL12Bwt. The loops 5 and 6 (coloured in

magenta and orange) are important for the binding of p40 to partner proteins IL23A (p19) and

IL12A (p35), thus the altered conformational state of this region of the molecule could affect

optimal binding to these partners.

(TIF)

S1 Table. A table showing all SNVs and insertion deletions that were identified in the dis-

covery sequencing (phase I) and passed filtering (Materials and Methods).
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