
Pooled versus Individual Genotyping in a Breast Cancer

Genome-wide Association Study

Ying Huang1, David A. Hinds2, Lihong Qi3, and Ross L. Prentice1,†

1Fred Hutchinson Cancer Research Center Public Health Sciences, 1100 Fairview Avenue N.,

M2-B500, Seattle, WA 98109-1024

2Perlegen Sciences Inc., Mountain View, CA

3University of California Davis, School of Medicine, Department of Public Health Sciences,

Division of Biostatistics, Davis, CA, 95616

SUMMARY

We examine the measurement properties of pooled DNA odds ratio estimates for 7357 single

nucleotide polymorphisms (SNPs) genotyped in a genome-wide association study of

postmenopausal breast cancer. This study involved DNA pools formed from 125 cases or 125

matched controls. Individual genotyping for these SNPs subsequently came available for a

substantial majority of women included in seven pool pairs, providing the opportunity for a

comparison of pooled DNA and individual odds ratio estimates and their variances. We find that

the ‘per minor allele’ odds ratio estimates from the pooled DNA comparisons agree fairly well

with those from individual genotyping. Furthermore, the log-odds ratio variance estimates support

a pooled DNA measurement model that we previously described, though with somewhat greater

extra-binomial variation than was hypothesized in project design. Implications for the role of

pooled DNA comparisons in the future genetic epidemiology research agenda are discussed.
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1. Introduction

Modern microarray technology has allowed genome-wide association studies (GWAS)

among correlated individuals to emerge as a powerful tool for the detection of common

disease susceptibility loci, even when the associations are weak. The early single nucleotide

polymorphisms (SNP) platforms, however, entailed considerable cost. For example, a study

of 500,000 SNPs for 1000 cases of a disease and 1000 controls, at a genotyping cost of

$0.01 per SNP, projects a genotyping cost of $10 million. Hence, there was considerable

interest in applying microarray technologies to pools formed from equimolar amounts of

DNA from a possibly large number of cases or controls, and assessing evidence for

association in a cost-efficient manner by comparison of SNP allele frequencies in case

versus control pools (e.g., Bansal et al., 2002; Sham et al., 2002; Hinds et al., 2004).

Compared to genotyping individual samples, pooled DNA comparisons may involve

additional sources of variation due to pool construction (i.e., variation in DNA amounts

among individuals contributing to the pool) or due to microarray measurement error (i.e.,
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variation in estimation of luminescence intensities for the SNP alleles following

hybridization of the target specimen with corresponding labeled probes). The magnitude of

the additional variation may depend on various factors, including measurement platform and

pool size (e.g., Barrett et al., 2002; Downes et al., 2004). Moreover, when pooled DNA

allele frequencies are assessed, the minor and major alleles for a SNP may not be amplified

to the same extent, resulting in a SNP-specific distortion that can bias allele frequency

estimates and case versus control comparisons (e.g., Hoogendoorn et al., 2000; LeHellard et

al., 2002; Moskvina et al., 2005). A common approach to tackling this issue was the separate

estimation of SNP-specific distortion factors, with subsequent adjustment of allele frequency

estimates (Hoogendoorn et al., 2000: Vissher and LeHellard, 2003; Moskvina et al., 2005).

Within the past few years SNP genotyping costs have dropped dramatically, to the point that

individual genotyping costs for the study design mentioned above may now be in the

vicinity of $500,000. In spite of these decreasing costs, the research community has retained

interest in pooled DNA research strategies. For example, Abraham et al. (2008) report the

ability to replicate known associations and to identify novel SNP associations for late-onset

Alzheimers disease from pooled DNA comparisons. These authors write that individual

‘GWA studies are expensive, generally restricting this type of work to groups or consortia

with substantial funding for that purpose’. Similarly, Shifman et al. (2008) report a sex-

specific SNP association with schizophrenia, based on a GWAS with DNA pooling at the

first stage. Bossé et al. (2009) note the success of GWAS for complex diseases, and

comment that the ‘one persistent major hurdle is the cost of those studies’. These authors go

on to confirm the ability of pooled DNA comparisons to replicate established SNP

associations for type 2 diabetes, and to yield a suitably enriched set of SNPs for further

evaluation in subsequent study stages.

Our Women’s Health Initiative (WHI Study Group, 1998) carried out a GWAS of invasive

breast cancer that involved about 360,000 SNPs and 8 pool pairs, with pools formed from

equal amounts of DNA from 125 women who developed breast cancer during WHI

Observational Study follow-up and from a corresponding 125 pair matched controls

(Prentice and Qi, 2006). About 4000 highly ranked SNPs for breast cancer association, and

about 6000 SNPs from other sources, primarily from the individual-level breast cancer

GWAS in the National Cancer Institute’s Cancer Genetic Markers of Susceptibility

(CGEMS) program (e.g., Hunter et al., 2007), were subsequently genotyped for nearly 2000

breast cancer cases arising in the follow-up the WHI Clinical Trial cohort and for pair-

matched controls. This study demonstrated associations between SNPs in intron 2 of the

fibroblast growth factor receptor two (FGFR2) gene with breast cancer risk, including

associations for SNPs selected from the pooled GWAS. It also yielded evidence of

interaction of FGFR2 SNPs with the effect of hormonal and dietary interventions on breast

cancer risk (Prentice et al., 2009; Prentice et al., 2010).

In designing the WHI GWAS, it was noted (Prentice and Qi, 2006) that the odds ratio was

invariant to differential allelic amplification for a SNP, provided the distortion was common

to cases and controls. Hence, planned association analyses were based on odds ratio

estimates. The specification of equal sized pools led to a simple log-odds ratio estimator for

each SNP, with a corresponding empirical variance estimator that incorporated allele

frequency variation among study subjects, as well as measurement error related to both pool

formation and array error. A statistical model was specified for the log-odds ratio variance

estimate, and a model parameter was identified that controlled the measurement error

variance and hence the comparative efficiency properties of the pooled estimator.

A substantial majority of the 1000 breast cancer cases and 1000 controls included in the

WHI pooled GWAS were subsequently included in the first replication stage of the CGEMS
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breast cancer GWAS, which included individual genotyping for a large number of

overlapping SNPs.

Here we compare odds ratio estimates from pooled genotyping with those from individual

genotyping, among subjects genotyped in the first stage of WHI GWAS and in CGEMS.

Our objectives are to: (i) study the correlation of estimates between pooled DNA and

individual genotyping; (ii) assess the validity of the log-odds ratio variance framework

specified in Prentice and Qi (2006) and evaluate the magnitude of additional measurement

error due to pooling, and (iii) compare the pooling method and individual genotyping

methods for the identification of associations with established breast cancer susceptibility

SNPs, based on data from these WHI studies.

2. Method

2.1 Study Cohort and Genotyping

In the first stage of the WHI GWAS, 1000 breast cancer cases from the WHI Observational

Study (WHI,1998) (OS) were matched one-to-one to OS controls on baseline age,

enrollment date, race/ethnicity, and hysterectomy status. Genotyping was then conducted in

eight case pools and eight matched control pools, each of size 125, using Perlegen’s 360,000

tag-SNP set. In the CGEMS first replication stage, 24,909 SNPs were individually

genotyped in 4,547 cases and 4,434 controls, among which 2395 cases and 2410 controls

were selected from WHI Observational Study cohort. Overall there were 7357 SNPs

genotyped in both cohorts for 1493 subjects. Table 1 provides the number of individuals

genotyped in CGEMS among each case or control pool from WHI GWAS stage 1. The

analysis in this paper is based on the first 7 case pools and their matching control pools

where a substantial majority of the 125 subjects (who contribute to pooled DNA) were

individually genotyped. Comparisons will be carried out for 7235 SNPs for which at least

one pool pair has allele frequency estimates passing Perlegens pooled DNA quality control

criteria. The numbers of individually genotyped study subjects range from 94 to115 across

the 14 pools. The eighth pool pair in the WHI GWAS was comprised primarily of minority

women, while CGEMS restricted their genotyping to white women.

Individual DNA in CGEMS was genotyped using the Human Hap500 Infinium Assay

(Illumina) array. The details were reported in Hunter et al. (2007). Pooled DNA in WHI

GWAS was genotyped using high-density oligonucleotide arrays. Details about genotyping

and algorithms for determining pooled allele frequency estimates were reported in Hinds et

al. (2004). Two quality control metrics: conformance and signal to background ratio, were

used for SNPs in pooled data. Conformance is defined as the fraction that perfect-match

feature was brighter compared to mismatch feature, and signal to background ratio is

calculated from intensity measurement. Only SNPs with conformance greater than 0.9 and

signal to background ratio greater than 1.5 were included.

2.2 Hypothesis Testing

We consider the setting where cases and their matching controls are each divided into m

pools of size n. Let i indicate case-control status, i = 1 for cases and i = 2 for controls. Let j

be the pool indicator, j = 1, …,m. For a particular SNP of interest, let

• pi be the minor allele frequency among cases (i=1) or controls (i=2);

• p̂ij be the minor allele frequency estimates obtained from the jth case (i = 1) or

control (i = 2) pool;

• p̃ij be the empirical minor allele frequency estimate based on individual level data

for those subjects involved in the jth case (i = 1) or control (i = 2) pool;
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• Yij = log{p̃ij/(1 − p ̂ij)} be the logit (log odds) estimated from the pooled DNA;

•
 be the logit estimate based on individual level data.

Note that p ̂ij and Yij may be biased by differential allelic amplification, but not the

corresponding pooled data log odds ratio estimator. Following Prentice and Qi (2006), let β̂j

= Y1j − Y2j be the log-odds ratio estimate for the jth case-control pool pair, and let

 be the average log-odds ratio. The empirical variance estimate of β̂ can be

calculated as . The test statistic β̂/s is then compared to a tm−1

distribution for testing of the null hypothesis of no association between the SNP and the

breast cancer risk. To obtain the odds ratio for a SNP based on individual level data, a

logistic regression model was applied, adjusting for breast cancer risk factors including (log

transformed) Gail 5-yr breast cancer risk score, previous hormone use (indicators for < 5, 5

− 10, and > 10 years for both estrogen and estrogen plus progestin), and (log transformed)

body mass index. Variables used for matching controls to cases in control selection are also

included in the regression model. In addition, eigenvectors from the first four principal

components from correlation analysis of the CGEMS replication study genotype data are

included to account for any effect of population stratification. We compare pooled versus

individual genotyping with respect to log odds within each case or control pool, log odds

ratio for each case and matching control pool pair, mean log odds ratio averaged overall all

pools, and test statistics for testing equal minor allele frequencies between cases and

controls.

2.3 Assessing Pooling Error

Following Prentice and Qi (2006), we assume log odds based on pooled data can be written

as the log odds based on individual level data plus an independent pooling error, i.e.,

. This leads to , where

(1)

from binomial sampling theory under an additive logit model. Moreover, we assume that

, the additional variance that arises from the use of pooled DNA, takes the form

Δ2{pi(1 − pi)}
−1.

We estimate Δ2 by estimating variance of  empirically based on the 7 case or control

pools, and then multiplying the result by  is a consistent

estimate of pi.

We test equality of Δ2 between cases and controls using a permutation test. For each SNP,

the ratio of Δ2 estimate for cases relative to that for controls is calculated and compared with

its null distribution, which is generated by permuting the case and control labels of the 7

case-control pool pairs.

2.4 Comparing Pooling vs Individual Genotyping for Established Breast Susceptibility
SNPs

We compare results of pooled and individual odds ratio estimates for established breast

cancer SNPs from the literature. Based on Akaike information criterion (AIC) from logistic

regression, we classify established SNPs according to genetic model (additive, dominant,
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recessive) using individual-level data, and examine the correspondence between per allele

odds ratio estimates from individual and pooled genotyping, for SNPs classified under each

of the three genetic models.

3. Results

For the 7357 SNPs measured in both the WHI GWAS and CGEMS replication study, Table

2 presents the mean and standard deviation of their minor allele frequency ‘estimates’, for

each case or control pool. The pool-specific allele frequency for individual level data was

estimated by the mean allele frequency of subjects included in a particular pool. The minor

allele frequency estimates presented based on pooled data are those that ignore the unequal

amplification issue, leading to SNP-specific bias that is evident in the mean allele frequency

estimate across SNPs. On average, the minor allele frequency estimates and their variability

for the set of SNPs considered appear to be larger based on pooled data compared to

individual level data. This pattern is consistent between cases and controls and across

different study pools.

Also shown in Table 2 are mean and standard deviation of the log odds ratio estimates based

on the pooled and individual genotyped data. It appears that the overall bias in allele

frequency estimates has little impact on log odds ratio estimation. Also, as expected,

estimates based on pooled data tend to have somewhat greater spread than do those based on

individual level data.

Within each matched case-control pool, we investigated the relationship between log odds

ratio estimates from the two genotyping methods using a scatterplot (Figure 1). Overall the

two types of estimates seem to agree fairly well with each other. The added noise due to

pooling, nevertheless, is also apparent from the elliptical shape evident in the plot. The

Pearson correlation between the two estimates based on the 7357 SNPs ranges from 0.51 to

0.63 across the 7 matched case-control pools.

Figure 2(a) displays a scatterplot of pooled versus individual estimate for log odds ratio

averaged across all pools. The log odds ratio on the horizontal coordinate was obtained by

fitting an ordinary logistic regression model to the individual level data adjusting for other

risk factors as explained in Section 2.2. The log odds ratio on the vertical coordinate was the

average of logit(p̃1) − logit(p̃2) over the 7 matched case-control pools. Again, the estimate

from pooling method seems to be a noisy but approximately unbiased version of the

corresponding estimates from individual genotyping. Similar association between the two

methods can be observed regarding the test statistics (Z-value) for the hypothesis of equal

minor allele frequencies between cases and controls (Figure 2(b)).

Estimation of the additional pooling error was based on 6601 SNPs with complete values of

Yi and  in all 7 case or control pools. The empirical variance estimate for  is plotted

against the estimate of {pi(1−pi)}
−1 for cases and controls separately in Figures 3(a)(b). The

relationship between {pi(1−pi)}
−1 and  does not appear to deviate substantially

from linear as can be viewed by the loess smooth curves. Figures 3(c) and (d) show the

scatterplot of Δ2 estimate, the coefficient related to extra noise due to pooling, versus minor

allele frequency estimate for cases and controls separately. The corresponding loess curves

are fairly flat, supporting the invariance of Δ2 to minor allele frequency as hypothesized in

Prentice and Qi (2006). Figures 4(a) and(b) display histograms of Δ estimates in cases and

controls. The average of Δ are 0.057 and 0.062 based on cases and controls respectively,

after removing extreme outliers (outside of inter-quartile range by three times the length of

inter-quantile range). The first three quartiles of Δ estimate are 0.041, 0.054, and are 0.070

for cases, and 0.046, 0.058, and 0.074 for controls. Equality of Δ2 between cases and
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controls was tested based on 50,000 permutations. The pooling error does not seem to differ

between cases and controls, as suggested by the uniformly distributed p-values between 0

and 1 (Figure 4(c)).

The imperfect match of study subjects between the pooled data and the individual level data

could potentially reduce the correlation between the (pool-specific) individual and pooled

logodds estimates. We conducted simulation studies to assess the subsequent impact on Δ
estimate, for minor allele frequency p varying from 0.05 to 0.5 and Δ varying from 0.001 to

0.07, and for cases and controls separately. Specifically, for each case or control pool, we

generate independent binary allele data of size 2 × 125 with probability p, assuming 2 × ni

alleles are randomly selected from this pool for individual genotyping, where ni is the actual

number of subjects in the CGEMS data. Figure 5 presents plots of average Δ estimate based

on 5,000 Monte-Carlo simulations versus true Δ. Having fewer subjects for individual

genotyping appears to result in some inflation of Δ estimate, especially for small Δ. For

relatively large Δ estimate as observed in our analysis, the inflation is relatively small. The

magnitude of the minor allele frequency has minimal impact on this trend. Corresponding to

average Δ estimate of 0.04–0.07, the actual Δ value falls into the range of 0.03–0.068 for

cases and 0.02–0.064 for controls. Corresponding to an average Δ estimate of 0.06, the

actual Δ value is around 0.055–0.057 for cases and 0.050–0.052 for controls.

Figure 6 shows relative efficiency of pooled genotyping vs individual genotyping for Δ
ranging from 0 to 0.06 and various pool sizes, calculated as the variance of log odds

estimate based on individual level data divided by the variance of log odds estimate based

on the pooled data, i.e.,

where n is the pool size. One can observe a loss of efficiency with increasing Δ, particularly

for large pools. For example, with n = 125, the loss of efficiency is 2.4% for Δ = 0.01 and

9.1% for Δ = 0.02, but a substantial 47.4% for Δ = 0.06.

For the 12 established breast cancer susceptibility SNPs (Easton et al., 2007; Hunter et al.,

2007; Ahmed et al., 2009; Thomas et al., 2009) included in the study set, we compared the

results based on pooled and individual genotyping. For each SNP, logistic regression models

assuming additive, dominant, or recessive genetic effect are applied to the individual level

data, and the SNP is classified into the one of the three genetic models with minimum AIC.

For each of the 12 SNPs, Table 3 presents the per allele odds ratio estimate, and the p-value

for testing SNP association with breast cancer, assuming an additive allele effects on the log

odds. Results are presented for pooled data, individual level data, as well as based on

literature. In general, regardless of the underlying genetic model into which the SNP is

classified, the two genotyping methods lead to fairly comparable per-allele odds ratio

estimates, which are similar to those reported in the literature. Genotyping individual level

DNA is more efficient in identifying those established SNPs, demonstrated by the smaller p-

value for 10 out the 12 SNPs. Using 0.05 as a significance cut-off for p-value, the individual

genotyping selects three of the establish SNPs while the pooling method identifies two. P-

values of the likelihood ratio test with 2df based on individual level data are also presented.

The test is significant at 0.05 level for one SNP classified as dominant (rs981782), which

was not significant by either the individual or pooled data test under the assumption of an

additive allele effect.
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An advantage of the WHI GWAS pooling study is the construction of multiple pools from

different subjects, which allows estimation of the empirical variance of log odds ratio for

each SNP separately. While this provides robustness that is highly desirable in GWAS,

variance estimate based on 7 case-control pools might be unstable. To address this issue we

explored an alternative variance estimate using additional pooled data from WHI-perlegen

GWAS. Specifically, WHI GWAS collected data on 1000 cases and their matching controls

for two other diseases as well in addition to breast cancer: coronary heart disease (CHD) and

stroke. For each disease type, 8 case pool and 8 control pool were constructed with size 125

each. CHD and stroke studies each has 6 matched case-control pooled comprised mostly of

Caucasian Women. Restricting analysis to those pools, we derived variance estimate for the

log-odds ratio by adding the three empirical variance estimates from the three diseases in the

WHI GWAS, thereby yielding a variance estimate with up to 16 df. The corresponding

pooling Z-value is highly correlated with the pooling Z-value using variance estimate from

breast cancer case-control pools alone, with a correlation of 0.97. Figure 7 shows scatterplot

of the modified Z-values with Z-values from individual data. The correspondence between

Z-values based on pooled data and Z-values based on individual data appears similar

whether the variance of log-odds ratio is estimated solely from breast cancer pools (Figure

2(b)) or from all three diseases (Figure 7). The correlation between Z-values varies from

0.65 in Figure 2(b) to 0.66 in Figure 7. Furthermore, to assess the impact of the increase in

degree of freedom on identifying an “true” association, in Table 3, for the 12 established

breast cancer susceptibility SNPs we added their p-values using pooled data with variance

estimated from all three diseases together. Compared with the analysis based on breast

cancer pools alone, significance of p-values for those established SNPs appears in general to

be more compatible with that using individual data. All three SNPs identified by individual

genotyping at significance level 0.05 are picked up by the pooling method, suggesting a

power gain with the increase in pool numbers.

4. Discussion

In this manuscript we compared a pooled with an individual genotyping method for the

identification of disease susceptible SNPs based on case-control studies among highly

overlapping set of study subjects between two breast cancer studies. Particularly, we

evaluated the log odds ratio estimators proposed by Prentice and Qi (2006) by comparison

with corresponding estimators based on a traditional logistic regression analysis of highly

reliable individual genotype data. Unlike other estimators based on absolute allele frequency

differences, this pooled DNA odds ratio estimator does not require estimation of a SNP-

specific distortion factor, which can only be obtained from individual level data. Thus this

method is easier to implement than are other available pooled genotyping estimation

procedures. The close correspondence between the pooled and individual odds ratio

estimators and test statistics supports the pooling technique as a cost efficient approach for

the initial phase of GWAS. It is also clear that a considerably larger sample size may be

needed, depending in part on pool sizes, to overcome the additional noise in these odds ratio

estimators due to pooling.

In the framework of Prentice and Qi (2006), we investigated a pooling measurement error

coefficient Δ, the magnitude of which reflects the additional noise due to pooling. Earlier

simulations entertained Δ value of 0.01 and 0.02, obtained based on a small set of 16 SNPs

(Mohlke et al., 2002). In this study we were able to obtain a better view of the distribution of

Δ based on a much larger sets of SNPs. Our estimate of Δ appears to be robust to minor

allele frequency estimate, supporting the framework in Prentice and Qi (2006). However, the

estimate of Δ from the actual dataset appears to be larger than was hypothesized at the

design stage. Knowledge regarding pooling error is important to study design and to an

assessment of the cost efficiency gained through pooling. For example, Zhao and Wang
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(2009) argue that to achieve optimal cost-efficiency, smaller pool size should be used with

larger pooling error. On the other hand, the genotyping costs for a study will be

approximately inversely proportional to pool size, so there is incentive to retain a pool size

as large as practical without incurring undue efficiency loss, relative to a study with

individual genotyping. MacGregor et al (2007, 2008) argues that most variation that arises

from pooling is due to array measurement error, rather than pool formation. Abraham et al.

(2008) follow this perspective in using single pools of Alzheimer’s disease cases and

controls, which they hybridize multiple times. Shifman et al. (2008) and Bossé et al. (2009)

followed a similar strategy. If pool construction errors are negligible, then q independent

hybridizations from a pool should lead to a reduction in the additional variance due to

pooling by a factor of q, resulting in an efficient study design.

Note that our estimate of Δ is a combination of array measurement error and pool

construction error at the log-odds scale. If one ignores the unequal allelic amplification

issue, then the allele frequency estimate from pooled data has asymptotic variance given by

p(1 − p)(1/(2n) + Δ2) based on the delta method. Consider a Δ value of 0.06, for allele

frequency p varying from 0.1 to 0.5, the pooling error variance for allele frequency estimates

using the Perlegen high-density oligonucleotide array falls into the range of 0.00068–

0.0019, similar in magnitude to the pooling error reported in Macgregor (2007) using

Affymatrix HindIII array.

Craig et al. (2009) note that ‘many groups researching diseases in developing nations, or

traits of perceived lesser clinical significance, have been unable to pursue GWAS

methodology due to the high budgets required’. They go on to write that even pooled DNA

strategies typically involve laborious DNA extraction for individual cases and controls, and

sophisticated DNA quantitation procedures for pool construction. Hence, they proposed a

research strategy involving pooling equal volumes of whole blood prior to DNA extraction,

with ‘potential to reduce GWAS costs by several orders of magnitude’. Since this strategy

may entail considerable variation in the amount of DNA contributed by pool members, it

may then be desirable to include smaller or intermediate sized pools to control pool

construction measurement error influences, even if there are multiple hybridizations per

pool.

Pooled DNA comparisons can partially control for confounding factors by matching cases

and controls on race/ethnicity and other factors. Moreover, leads from pooled DNA GWAS,

as with individually genotyped GWAS, will nearly always require individual-level

replication in independent cases and controls where issues of population stratification and

confounding can be addressed in a customary fashion.

When estimating allele odds ratio using logistic regression anlaysis of individual level data,

we presented results from models adjusting for common risk factors besides factors used to

match controls to cases, which is common practice in GWAS studies. Considering the fact

that these risk factors cannot be accounted for in pooled data, we also examined logistic

regression models with adjustment for matching factors only. The impact of adjusting for

additional risk factors turned out to be minimal in the comparison between pooled and

individual level data.

A limitation of this analysis arises from the imperfect match of study subjects between the

pooled data and the individual level data, which likely somewhat reduces the correlation

between the pool-specific individual and pooled log-odds ratio estimates, and leads to

somewhat inflated estimates of Δ. The inclusion rate ranges from 79% to 92% in case pools

and 75% to 81% in control pools. There is no apparent reason, nevertheless, to believe that

there is a systematic difference between subjects included and not included in the subsets of
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each pool for which individual genotyping data is available. Also, based on simulations

mimicking the study setting, we were able to entertain the impact of having somewhat fewer

subjects individually genotyped on the estimation of Δ and found it to be modest.

In summary, our analyses indicate a good correspondence between odds ratio estimates from

individual genotyping, and those from genotyping pools formed from equal amounts of

DNA from 125 individuals. The role of pooled DNA comparisons in the translation of

modern genotyping capabilities to the assessment of genetic aspects for a wide variety of

diseases and traits has yet to be established. The notion that reliable GWAS comparisons

may be able to be conducted at such a modest cost that such studies become practical for

single investigators drawing on cohort study resources is sufficiently intriguing and

important to encourage the further development of pooling strategies and related study

designs.
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Figure 1.

Scatterplot of logit(p̃1)−logit(p̃2) estimated from individual genotyping and

logit(p ̂1)−logit(p̂2) from pooled data within each matched case-control pool.
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Figure 2.

Scatterplots of average log odds ratio estimate (a) and Z-value (b) based on pooled data

versus those based on individual level data.
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Figure 3.

Estimated variance of  versus estimates of pi(1 − pi) for cases (a) and controls (b).

Estimates of Δ2 versus estimates of pi for cases (c) and controls (d). Here .
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Figure 4.

Histogram of Δ value for cases (a) and controls (b), and histogram of the p-value for testing

equal Δ2 between cases and controls (c).
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Figure 5.

Average Δ estimate versus ‘true’ Δ based on simulation studies for cases (a) and controls

(b).
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Figure 6.

Relative efficiency of pooled genotyping versus individual genotyping.
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Figure 7.

Scatterplot of Z-value based on pooled data versus those based on individual level data.

Here variance for log-odds ratio estimate from pooled data is based on case-control pools

from all three diseases (breast cancer, CHD, and stroke).
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