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Abstract17

Next-generation sequencing of pooled samples (Pool-seq) is an important tool18

in population genomics and molecular ecology. In Pool-seq, the relative number19

of reads with an allele reflects the allele frequencies in the sample. However,20

unequal individual contributions to the pool and sequencing errors can lead21

to inaccurate allele frequency estimates. When designing Pool-seq studies, re-22

searchers need to decide the pool size (number of individuals) and average depth23

of coverage (sequencing effort). An efficient sampling design should maximize24

the accuracy of allele frequency estimates while minimizing the sequencing ef-25

fort. We introduce an R package, poolHelper, enabling users to simulate Pool-seq26

data under different combinations of average depth of coverage, pool sizes and27

number of pools, accounting for unequal individual contribution and sequencing28

errors, modelled by parameters that users can modify. poolHelper can be used29

to assess how different combinations of those parameters influence the error30

of sample allele frequencies and expected heterozygosity. The mean absolute31

error is computed by comparing the sample allele frequencies obtained based32

on individual genotypes with the frequency estimates obtained with Pool-seq.33

Using simulations under a single population model, we illustrate that increas-34

ing the depth of coverage does not necessarily lead to more accurate estimates,35

reinforcing that finding the best Pool-seq study design is not straightforward.36

Moreover, we show that simulations can be used to identify different combina-37

tions of parameters with similarly low mean absolute errors. The poolHelper38

package provides tools for performing simulations with different combinations39

of parameters before sampling and generating data, allowing users to define40

sampling schemes that minimize the sequencing effort.41

Keywords: experimental design, open access, Pool-seq, R package, simulations42
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Introduction43

Next Generation Sequencing is an important tool for many biologists, provid-44

ing access to polymorphism data across a wide range of model and non-model45

species (Ellegren, 2014). Although the cost of sequencing is continuously de-46

creasing, high coverage sequencing of multiple individuals is still expensive. Fur-47

thermore, it is challenging to obtain individual genomic data for certain species48

(e.g., small organisms) or in certain research areas (e.g., Evolve-and-Resequence49

experiments). In those instances, next-generation sequencing of pooled samples50

(Pool-seq) might be the only viable alternative, as it requires less DNA per51

individual. Additionally, Pool-seq does not require individual tagging of se-52

quences, reducing the laboratory work required for library preparation, while53

still generating population-level genomic data (Schlötterer, Tobler, Kofler, &54

Nolte, 2014).55

However, Pool-seq introduces new sources of uncertainty in the analysis of ge-56

nomic data. One common concern is that stochastic variation in amplification57

efficiency and non-equimolar quantities of DNA in a pool might lead to a loss58

of accuracy in allele frequency estimations (Anderson, Skaug, & Barshis, 2014;59

Ellegren, 2014). These differences in DNA concentration, library preparation60

and amplification efficiency might propagate to cause differences in contribution61

between pools of individuals when DNA was extracted from multiple batches62

of individuals and combined into larger pools for library preparation and se-63

quencing (Morales et al., 2019; Ross, Endersby-Harshman, & Hoffmann, 2019).64

Nevertheless, Pool-seq has been extensively used in a variety of settings (Begun65

et al., 2007; Ferretti, Ramos-Onsins, & Pérez-Enciso, 2013; Prescott et al., 2015;66

Zhou et al., 2011). However, there is a lack of tools to simulate and analyse this67

type of data (but see Kofler, Pandey, and Schlötterer 2011). Two key parame-68

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.20.524733doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.20.524733
http://creativecommons.org/licenses/by-nc-nd/4.0/


ters in the design of a Pool-seq study are the number of individuals in each pool,69

and the average depth of coverage. These two parameters determine how much70

the sample allele frequencies are affected by Pool-seq associated errors. On one71

hand, increasing the number of individuals allows estimating more accurate al-72

lele frequencies, but more individuals in the pool might increase the probability73

of errors associated with unequal individual contribution. On the other hand,74

increasing the depth of coverage should lead to more reliable estimates, but it75

can amplify Pool-seq errors and the depth of coverage is usually the limiting76

resource due to its costs. Simulations of single nucleotide polymorphism (SNP)77

data accounting for sources of uncertainty with Pool-seq data (e.g., unequal78

individual contribution) under different sampling schemes can thus provide a79

tool to help researchers design Pool-seq experiments and to minimize the error80

associated with the sample allele frequencies.81

Here, we introduce an R package (Team, 2020), poolHelper, to simulate Pool-seq82

data according to different sampling designs. Our approach relies on coales-83

cent simulations under neutrality using scrm (Staab, Zhu, Metzler, & Lunter,84

2015). The poolHelper package provide tools and functions to simulate Pool-85

seq datasets accounting for potential sources of error, modelled by parameters86

that users can adjust. This allows comparing the allele frequencies obtained87

directly from the simulated individual genotypes with the frequencies obtained88

from Pool-seq data. Since R is a free and collaborative project, users can use89

available tools to handle, analyse and visualise genomic datasets. Our goal is90

to provide a flexible method of simulating Pool-seq data, allowing researchers91

to design their experiments with a better a priori knowledge of possible errors92

associated with Pool-seq, thus contributing to the recognition of Pool-seq as a93

valuable source of data to reconstruct the evolutionary history of populations.94
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Implementation95

The main steps of our pipeline follow a relatively simple scheme: coalescent96

simulations of individual genotypes under a single population model with a con-97

stant size, computation of minor-allele frequencies directly from the genotypes,98

simulation of Pool-seq given the genotypes, and computation of minor-allele fre-99

quencies from the Pool-seq data, assuming that it corresponds to the proportion100

of reads with a given allele. To measure the error associated with Pool-seq we101

computed the average absolute difference between the actual allele frequencies102

based on individual genotypes in the sample and the allele frequencies obtained103

with Pool-seq. Thus, note that we measure the difference between two estimates104

of the population frequency, one based on the sampled individual genotypes and105

the other obtained with Pool-seq of the same sample. The poolHelper package106

provides functions to simulate Pool-seq data, under a variety of user-defined107

conditions. More specifically, users can vary the average coverage, the pool size108

and the Pool-seq error (see below). Additionally, they can also vary the number109

of pools used to sequence the population and the sequencing error. By varying110

all of these conditions, it is possible to assess how they influence the accuracy111

of allele frequency estimations. No external R objects are needed to use the112

package. Users can define the mean and variance of the depth of coverage, the113

number of pools and individuals and the pooling and sequencing errors.114

Coalescent simulations of individual genotypes115

To obtain individual genotypes, we used scrm to simulate coalescent gene trees116

under a model of a single population with constant effective size Ne. To model117

different effective population sizes and mutation rates, users can vary θ = 4Neµ,118

where µ is the neutral mutation rate per locus per generation. This allows to119

investigate Pool-seq errors in populations with varying levels of expected genetic120
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diversity, which is proportional to θ. We assumed that the sample size was the121

same for each locus, corresponding to the total number of individuals in the122

Pool-seq experiment. Additionally, we assumed that the actual haplotypes of123

all individuals in the pool were known. The effect of pooling is simulated in124

posterior steps (see next section). To obtain individual genotypes, we assumed125

random mating in the population and paired haplotypes at each locus at random126

for each biallelic single nucleotide polymorphic (SNP) site.127

Simulation of Pool-seq data128

The steps required to simulate Pool-seq allele frequencies at biallelic SNPs are129

detailed in Carvalho, Morales, Faria, Butlin, and Sousa (2022). Briefly, we130

model the depth of coverage at each SNP (i.e., number of reads per site) with131

a negative binomial distribution (Sampson, Jacobs, Yeager, Chanock, & Chat-132

terjee, 2011), which is defined based on the mean and variance of the depth of133

coverage across all sites. When simulating the depth of coverage for each site,134

it is possible to apply a coverage-based filter, removing all sites with coverage135

below and above two user-defined thresholds. At each retained SNP, we mod-136

elled heterogeneity in the contribution of each individual to the DNA pool, by137

assuming that the number of reads from each individual follows a multinomial138

distribution, with the expected proportion of reads from each individual follow-139

ing a Dirichlet distribution. To account for situations where DNA extraction140

was performed for several batches of individuals and the extracted DNA from141

each batch merged into a single pool, we also model the possibility of uneven142

contributions between pools. This was also assumed to follow a multinomial143

distribution, with the expected proportion of reads from each pool (i.e., batch)144

following a Dirichlet distribution. In both instances, the dispersion of the Dirich-145

let distribution is controlled by a Pool-seq error parameter, following Gautier et146
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al. (2013). This parameter affects the variance of the proportion of reads from147

each individual, which captures the random unequal individual contribution to148

the pool (Gautier et al., 2013). Larger Pool-seq errors lead to larger variance,149

resulting in more unequal contributions from individuals and pools. Although150

the selection of an appropriate Pool-seq error might be potentially hard, given151

its unknown nature, we previously estimated values ranging from 24 to 236,152

with posterior means for two different models of 182 and 102 (Carvalho et al.,153

2022). Thus, the Pool-seq errors used here are within the reasonable ranges154

for this parameter (see Figure 1 for an example of how different Pool-seq errors155

impact individual contribution). Note that this model assumes that all indi-156

viduals are expected to contribute the same number of reads, with errors due157

to unequal contribution modelled through dispersion parameters that affect the158

variance. Finally, to model the effect of putative sequencing and mapping errors,159

we considered that the allele in the reads of the pool could differ from the actual160

genotype. Thus, for each individual, the number of reads with the alternative161

allele follows a binomial distribution, assuming that with a given error rate, a162

reference allele will incorrectly be called an alternative allele or vice-versa. A163

commonly used filter can also be applied, discarding SNPs with less than the164

required number of minor-allele reads. The allele frequencies estimated for the165

Pool-seq data correspond to the proportion of reads with the alternative allele.166

Measuring error of estimates167

To measure the error of Pool-seq estimates of allele frequencies or expected het-168

erozygosity, we compared the estimates obtained from the individual genotypes169

in the sample with the estimates obtained from Pool-seq. We calculate the mean170

absolute error as:171

ϵ =
1

n
×
∑

|yi − xi| (1)
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where n indicates the total number of SNPs. When calculating the error of172

Pool-seq estimates of allele frequencies, xi and yi correspond to the frequencies173

of the alternative allele at the ith SNP in the sample, obtained with individual174

genotypes (xi) or with Pool-seq (yi). When measuring the error of expected175

heterozygosity, xi and yi represent the expected heterozygosity obtained based176

on the sample of either individual genotypes (xi) or Pool-seq (yi).177

Main functionality178

The poolHelper package allows users to compute the mean absolute error of allele179

frequencies and expected heterozygosity under a variety of conditions. Users180

can vary the mean depth of coverage and the associated variance, the value181

of the Pool-seq error and the number of sampled individuals. Additionally, it182

is possible to evaluate the effect of combinations of parameters, for instance,183

various mean depths of coverage combined with several Pool-seq error values.184

Thus, the poolHelper package provides users with a tool to aid in the design185

of pooled sequencing experiments, by allowing researchers to evaluate the best186

strategy, in terms of pool sizes or depth of coverage, to obtain accurate estimates187

of allelic frequencies, while minimizing the sampling effort and costs.188

Effect of sequencing a single or multiple pools189

One critical consideration is whether DNA extraction should be performed on190

multiple batches of individuals, combining several of them into larger pools for191

library preparation and sequencing, or on a single batch of individuals. Users192

can test the effect of using multiple or a single batch of individuals by using193

the ”maePool” function. This function computes the mean absolute error for194

a given sample size sequenced using a single or multiple pools (Figure 2). By195

varying the mean coverage and the Pool-seq error, it is possible to evaluate the196
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effect of using a single or multiple pools under different conditions.197

Impact of mean depth of coverage198

Another critical decision is defining the mean depth of coverage used to sequence199

a pool of individuals. The ”maeFreqs” function implements the calculation of200

the mean absolute error between allele frequencies computed from genotypes201

and Pool-seq allele frequencies simulated under different mean depth of coverage.202

By varying the mean depth of coverage and the associated variance, users can203

determine which coverage produces more accurate allele frequency estimates for204

a given sample size and Pool-seq error (Figure 3).205

Impact of pool sizes206

When designing a Pool-seq experiment, it is essential to define the number of207

individuals to include in the pool, i.e., the pool size. The calculation of the208

mean absolute error between allele frequencies for different pools sizes can be209

carried out using the ”maeFreqs” function. This allows users to evaluate what210

is the optimal pool size for a fixed coverage and/or Pool-seq error (Figure 3).211

Thus, the ”maeFreqs” function allows users to decide how many individuals to212

pool to obtain the most accurate allele frequencies estimates for a given mean213

depth of coverage.214

Example of an effective Pool-seq design using simulations215

By performing simulations in a single panmitic population, assuming that Pool-216

seq error is intermediate to high (150 or 300) and after applying a commonly217

used filter (removing sites with less than two minor-allele reads), it is not obvi-218

ous that one should always increase the average depth of coverage per individual219

in the pool (Figure 3). For instance, when Pool-seq error is 150, we observe the220

same mean absolute error with a pool of 50 individuals sequenced at 10x than221
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with a pool of 10 individuals sequenced at 50x. This suggests that it may be222

more cost-effective to use a pool of 50 individuals at 10x (expected individual223

contribution of 10/50) than using fewer individuals with a higher expected cov-224

erage per individual. This holds true for larger pool sizes and depths of coverage,225

given that we also get the same mean absolute error when comparing a pool of226

200 individuals sequenced at 50x with a pool of 50 individuals sequenced at 100x227

(Figure 3). If Pool-seq error is even higher (i.e., 300) a pool of 100 individuals228

sequenced at 100x leads to a slightly lower mean absolute error than a pool of 50229

individuals sequenced at double the coverage (200x) (Figure 3). Thus, similar230

errors of allele frequencies in the sample can be obtained with different combi-231

nations of pool sizes and average depth of coverage. Therefore, the design of an232

effective Pool-seq study is not straightforward and an a priori simulation study233

can help assess an efficient sampling scheme to obtain accurate allele frequencies234

while minimizing the sequencing effort (mean depth of coverage).235

Conclusions236

We present an R package, poolHelper, to simulate pooled sequencing data un-237

der a model of a single panmitic population, and compute the error in sample238

allele frequencies and expected heterozygosity obtained with Pool-seq for dif-239

ferent study designs and commonly used filters (e.g., filters on minimum and240

maximum depth of coverage and on minimum number of minor-allele reads).241

The package relies on coalescent simulations performed with scrm (Staab et al.,242

2015). Currently, data is simulated under a single population with a constant243

effective population size. However, users can modify poolHelper functions to244

simulate data under more complex demographic history models. This package245

is implemented in the R environment, providing tools for data visualisation,246

allowing users to produce graphics and quickly visualize the effect of multiple247

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.20.524733doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.20.524733
http://creativecommons.org/licenses/by-nc-nd/4.0/


combinations of Pool-seq related parameters. The poolHelper package’s vignette248

contains a comprehensive explanation of the functions included in this package,249

as well as examples detailing its usage.250
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Figure 1: Impact of Pool-seq errors in individual contribution. We simulated a
situation where a single pool of 10 individuals was sequenced at 200x coverage.
The number of reads contributed by each individual was simulated under three
different Pool-seq errors: 5, 150 and 300. The dashed line indicates the expected
contribution if all individuals contributed equally. Note that increasing Pool-seq
errors lead to deviations from the expected value and a marked increase in the
number of individuals contributing zero (or close to zero) reads. Note also that
with a high Pool-seq error (300) there are some individuals contributing ∼200
reads.
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Figure 2: Mean absolute error between the allele frequencies obtained from
the individual genotypes in the sample and those obtained from Pool-seq data
using a single or multiple pools. Pool-seq data was simulated for 50 individuals,
sequenced with average coverage of 50x using a single pool or 10 pools, each
with 5 individuals and assuming a low Pool-seq error (5) and a high Pool-seq
error (300). The same Pool-seq error value was used to model the dispersion
among pools and individuals. The y-axis represents the mean absolute error
between the allele frequencies estimates and the x-axis indicates the number of
pools used to sequence the sample.
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Figure 3: Mean absolute error between the allele frequencies obtained from
the individual genotypes in the sample and those obtained from Pool-seq data
under a variety of conditions. For all conditions, sites with less than two minor-
allele reads were removed. In all plots, the y-axis represents the mean absolute
error between the allele frequencies estimates. The top panel shows the mean
absolute error for three different Pool-seq error values (x-axis). For each plot,
either the pool size or the coverage were fixed (the fixed value is indicated on
the top of each plot). Thus, when pool size was fixed, the average coverage
varied and vice-versa. In the bottom panel, we highlight comparisons that lead
to similar mean absolute errors for intermediate values of Pool-seq error (150 in
the bottom left panel) and high Pool-seq error (300 in the bottom right panel).
In all plots, the pool size, defined by the nDip parameter, is represented in
shades of blue, with darker shades indicating a bigger pool and the average
coverage, defined by the mean parameter, is represented in shades of red, with
darker shades indicating higher coverage.
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