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Abstract
Convolutional neural networks (CNN) are widely used in computer vision and medical image analysis as the state-of-the-

art technique. In CNN, pooling layers are included mainly for downsampling the feature maps by aggregating features from

local regions. Pooling can help CNN to learn invariant features and reduce computational complexity. Although the max

and the average pooling are the widely used ones, various other pooling techniques are also proposed for different

purposes, which include techniques to reduce overfitting, to capture higher-order information such as correlation between

features, to capture spatial or structural information, etc. As not all of these pooling techniques are well-explored for

medical image analysis, this paper provides a comprehensive review of various pooling techniques proposed in the

literature of computer vision and medical image analysis. In addition, an extensive set of experiments are conducted to

compare a selected set of pooling techniques on two different medical image classification problems, namely HEp-2 cells

and diabetic retinopathy image classification. Experiments suggest that the most appropriate pooling mechanism for a

particular classification task is related to the scale of the class-specific features with respect to the image size. As this is the

first work focusing on pooling techniques for the application of medical image analysis, we believe that this review and the

comparative study will provide a guideline to the choice of pooling mechanisms for various medical image analysis tasks.

In addition, by carefully choosing the pooling operations with the standard ResNet architecture, we show new state-of-the-

art results on both HEp-2 cells and diabetic retinopathy image datasets.

Keywords Medical image analysis � Pooling � Convolutional neural networks � HEp-2 cell image classification �
Retinopathy image classification

1 Introduction

Convolutional neural networks (CNNs) are the state-of-the-

art methods for various computer vision and medical image

analysis tasks such as image classification [55, 95, 98, 109,

124, 126] and segmentation [35, 109, 118]. CNN often

consists of multiple convolutional layers followed by one

or more fully connected layers, where each convolutional

layer often includes convolution, nonlinear activation and

optionally pooling operators.

The purpose of pooling is mainly to down-sample the

feature maps and to learn larger-scale image features that

are invariant to small local transformations (e.g., transla-

tion, scaling, and rotation). It is a process of aggregating

the features from each spatial region, e.g., averaging the

values in each 3� 3 region at each feature channel.

Pooling does not only increase the size of the receptive

field of convolutional kernels (neurons) over layers, but

also reduces the computational complexity and the memory

requirements as it reduces the resolution of the feature

maps while preserving important features that are needed

for processing by the subsequent layers. In medical image

analysis, pooling can help to handle variance in lesion sizes

[3] and positions [94].

Various pooling methods have been proposed for dif-

ferent purposes. For example, soft pooling (e.g.,
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[42, 55, 90, 124, 129]) is proposed to take advantages of

both the widely used max and average pooling; stochastic

pooling (e.g., [39, 101, 132, 142, 143]) is proposed to

overcome the overfitting issue in CNN training; spatial

pyramid pooling and its variants are to capture spatial or

structural information in the images (e.g., [45, 91, 130]);

higher-order pooling (e.g., [25, 31, 34, 69–71, 141]) is to

capture higher-order statistical information of the feature

maps, etc.

However, most of these approaches were proposed for

and evaluated on computer vision image datasets (e.g.,

PASCAL VOC 2012 [29], Cityscapes [23], CIFAR-

10 [58]) and their applicability for medical image classi-

fication has not been well-investigated.

In this work, we review different pooling methods

proposed in computer vision and medical imaging litera-

ture, and report examples of medical imaging applications

where some of these pooling methods are used (refer

Table 2). In addition, we conduct an experimental study to

compare the performance of pooling methods on two dif-

ferent medical image classification tasks, i.e., classifica-

tions of HEp-2 cells and diabetic retinopathy images.

Selection of identified papers for review: An initial

selection of papers was done by the aid of Google scholar.

Different keywords related to pooling (e.g., pooling,

pooling in CNN, pooling in medical imaging, attention

weighted pooling, feature aggregation, etc.) were used to

identify relevant papers. As the majority of the identified

papers use existing pooling techniques, the papers which

propose novel pooling approaches were mainly identified,

and selected for review. This gave us around 121 papers in

total, among them 87 papers proposed different pooling

techniques and in 34 papers different pooling techniques

are applied for different tasks. Among the selected papers,

90 and 31 papers, respectively, discuss pooling methods in

computer vision and medical imaging.

The main contributions of this work include:

• To our best knowledge, this is the first work to review

various pooling methods in deep learning particularly

for medical imaging applications.

• As many of the pooling methods (e.g., higher-order

pooling [25, 31, 34, 69–71, 141]) have not been

explored for medical imaging, we perform an extensive

set of comparative experiments on selected pooling

methods to investigate their performance on two public

medical image datasets.

The rest of this paper is organized as follows. Section 2

reviews the work related to different pooling methods

proposed in computer vision and medical image analysis.

Section 3 summarizes the dataset and the experimental

settings. Results are reported and discussed in Sect. 4. A

detail discussion about our work is given in Sect. 5

and Sect. 6 concludes this paper.

2 Pooling methods

There are two groups of pooling generally used in CNNs.

The first one is local pooling, where the pooling is per-

formed from small local regions (e.g., 3� 3) to down-

sample the feature maps. The second one is global pooling,

which is performed from each of the entire feature map to

get a scalar value of a feature vector for image represen-

tation. This representation is then passed to the fully con-

nected layers for classification. For example, there are four

local pooling and one global pooling layers included in the

well-known DenseNet [51].

Table 1 Notations used throughout this paper (please refer Fig. 1 for more information)

Notation Dimension Detail

F W � H � C A set of feature maps

W 1 Width of F

H 1 Height of F

C 1 Number of feature maps (channels) in F

P W 0 � H0 A pooling region for each feature map

W 0 1 Width of P

H0 1 Height of P

x W 0 � H0 The part of a feature map (channel) within the pooling region P. The channel index is omitted for simplicity.

xi 1 The ith element or activation at the ith position in x, i ¼ 1; . . .;N

N 1 The number of elements in x, N ¼ W 0 � H0

ui C � 1 A feature vector across channels at the ith position

U C � N u1; . . .;uN½ �
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Table 2 Overview of different pooling methods used for different medical imaging tasks

Name of the pooling Example applications in computer

vision

Example applications in medical imaging

Type of application Modality

Max and average pooling

Max and/or average

pooling

Classification [46] Image classification and localization of lesions

[93, 126]

Retina

Segmentation [90] Cell image classification [77] HEp-2 cells

Image classification and detection of pneumonia

[95]

X-Ray (chest)

Weakly supervised learning [55] X-Ray (chest)

Multiple sclerosis identification [122] MRI (brain)

Object localization [111] – –

Linear combination of max and average pooling

Mixed max-average

pooling [63]

Classification [63] – –

Gated max-average pooling

[63]

Classification [63] – –

Dynamic correlation

pooling [11]

Classification [11] – –

Soft pooling

Generalized max pooling Segmentation [129], Classification

[7]

Multiple Instance Learning [135] Histopathology

Root-mean-square pooling

[53]

Classification [53] – –

Log-sum-exp pooling [90] Segmentation [90] Weakly supervised classification and localization:

thorax diseases [124]

X-Ray (chest)

Proximal femur fractures [55] X-Ray (bone)

Histopathology cancer image classification [135] Histopathology

Polynomial pooling [129] Segmentation [129] – –

Learned-norm pooling [42] Classification [42] – –

‘p pooling [7] Classification [7] – –

Rank-based pooling [101] Classification [101] Cerebral micro-bleed detection [120] MRI (brain)

Multipartite pooling [99] Classification [99]

Ordinal pooling [60] Classification [60] – –

Multi-activation pooling

[151]

Classification [151] – –

aI pooling [28] Classification [28] – –

Global feature guided local

pooling [57]

Classification [57] – –

SQUare-root (SQU)

pooling [15]

Image instance retrieval [15] – –

Dynamic pooling [84] – Chronic kidney disease detection [84] Saliva

Smooth-Maximum-Pooling

[5]

Classification [5] – –

SoftPool [107] Classification, Action recognition

[107]

– –

RunPool [54] Classification [54] – –

Maxfun pooling [26] Classification, Convolutional sparse

coding [26]

– –

Stochastic pooling to handle overfitting

Stochastic pooling [142] Classification [142] Multiple sclerosis identification [122] MRI (brain)

Alcoholism Detection [121] MRI (brain)

COVID-19 diagnosis [149] CT (chest)
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Table 2 (continued)

Name of the pooling Example applications in computer

vision

Example applications in medical imaging

Type of application Modality

Rank-based stochastic

pooling [101]

Classification [101] Abnormal breast identification [148] Breast

Mixed pooling [139] Classification [139] Brain tumor segmentation [10] MRI (brain)

Hybrid pooling [112] Classification [82, 112, 113] – –

Max pooling dropout [132] Classification [132] – –

S3 pooling [143] Classification [143] – –

Fractional max pooling

[39]

Classification [39] Retinopathy image classification [40] Retina

Sparsity-based stochastic

pooling [104]

Classification [104] – –

EasyConvPooling (ECP)

[100]

Classification [100] – –

PatchShuffle stochastic

pooling [123]

– Diagnosis of COVID-19 [123] CT (chest)

Pooling to encode spatial or structural information

Spatial pyramid pooling

[45]

Classification, Detection [45] Hand

gesture recognition [110], Image

steganalysis [146]

Brain image segmentation [118] Prostate image

segmentation [35] Tumor segmentation for rectal

cancer radiotherapy [79]

MRI (brain) MRI

(prostate) MRI,

CT (rectum)

Concentric circle pooling

[91]

Remote sensing scene classification

[91]

– –

Polycentric circle pooling

[92]

Remote sensing image recognition.

[92]

– –

Pose pooling kernels [145] Fine-grained image classification

[145]

– –

Geometric ‘p norm pooling

[30]

Classification [30] – –

Cell pyramid matching

[130] (non CNN)

– Cell image classification [77, 130] HEp-2 cells

Multi-pooling [117] – Brain tumor segmentation [117] MRI (brain)

Donut-shaped spatial

pooling [62]

– Cell image classification [62] HEp-2 cells

Structure based graph

pooling [14]

Action recognition [14] – –

Atrous Spatial Pyramid

Pooling (ASPP) [12]

Segmentation [12] Multi-scale retinal vessel segmentation [134] Retina

Higher-order pooling

Second oder pooling [9] Classification, Segmentation [9] – –

Bilinear pooling [71] Fine-grained classification [71] – –

Improved bilinear pooling

[70]

Fine-grained classification [70] – –

a-pooling [102] Fine-grained classification [102] – –

Statistically-motivated

second-order pooling

[141]

Classification, Fine-grained

classification [141]

– –

Global second order

pooling [34]

Classification [34] – –

Kernel pooling [25] Classification [25] – –

Global covariance pooling

[68]

Classification [68] – –
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Table 2 (continued)

Name of the pooling Example applications in computer

vision

Example applications in medical imaging

Type of application Modality

Global gated Mixture of

Second-Order Pooling

(GM-SOP) [119]

Classification [119] – –

Second-order temporal

pooling [18]

Action recognition [18] – –

Graph pooling [125] Graph classification [125] – –

Hierarchical adaptive

pooling [74]

Graph classification, Graph

Matching, Graph Similarity

Learning [74]

– –

Higher-order pooling [19] Action recognition [19] – –

Detachable second-order

pooling [66]

Classification [66] – –

Approaches that aim to keep important information when pooling

Detail preserving pooling

[96]

Classification [96] – –

Local importance-based

pooling [32]

Classification, Detection [32] – –

RNNPool [97] Classification, Visual wake words,

Face Detection [97]

– –

Attention weighted pooling

Double-attention network

(A2-network) [13]

Classification [13] – –

Convolutional Block

Attention Module

(CBAM) [131]

Classification [131] Diabetic retinopathy grading [44] Retina

Global learnable pooling

[147]

Classification [147] – –

Zoom-in-Net [127] – Diabetic retinopathy grading [127] Retina

Recurrent attention model

[89]

– Detection of pulmonary lesions [89] X-Ray (chest)

Attention based CNN

models

– Glaucoma detection [67] Retina

Thorax disease classification [41] X-Ray (chest)

Implicit pooling mechanisms

Generalized max pooling

[83]

Classification [83] – –

Task-driven feature

pooling [133]

Classification [133] – –

Deep generalized max

pooling [20]

Witter identification and document

classification [20]

– –

Adaptive spatial pooling

[75]

Classification [75] Retrieving brain tumors [17] CE-MRI (brain)

Deep Adaptive Temporal

Pooling (DATP) [103]

Human activity recognition [103] – –

Dynamic temporal pooling

[64]

Time series classification [64] – –

Clustering-based aggregation schemes

Learnable Pooling Module

(LPM) [86]

Full-face gaze estimation [86] Brain surface analysis [38] MRI (brain)
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Notations: Consider a set of feature maps F and a

pooling region P defined on one of these feature map, F k,

as in Fig. 1. Assume that x 2 RW 0�H0
represents the fea-

tures that are inside the pooling region P on F k. For

example, W 0 ¼ H0 ¼ 3 in the local pooling case and W 0 ¼
W and H0 ¼ H in the global pooling case, where W and H

represent the width and the height of the feature map,

respectively. In the following, we assume that x is vec-

torized to simplify the math operations, i.e., x 2 RN , where

N ¼ W 0 � H0 is the number of elements in x. Let xi be the

ith element of x, where i ¼ 1; . . .;N.

2.1 Average pooling and max pooling

The average pooling and the max pooling [6] are widely

used in CNNs [46, 49, 51, 59] because of their simplicity—

they do not have any parameters to tune. The average

pooling summarizes all the features in the pooling region

and can be defined as

favgðxÞ ¼
1

N

XN

i¼1

jxij ð1Þ

On the other hand, max pooling selects only the strongest

activation in the pooling region, i.e.,

fmaxðxÞ ¼ max fxigNi¼1 ð2Þ

The average pooling and the max pooling have their own

merits and disadvantages.

Averaging reduces the effect of noisy features. But as it

gives equal importance to all the elements in the pooling

region, background regions may dominate in the pooled

representation, and hence, may reduce the discriminative

power. In contrast, max pooling selects the largest value in

each pooling region, and hence can avoid the effect of

unwanted background features. However, as it selects only

the maximum element, the pooled representation may

capture noisy features.

The average and max pooling can be applied in different

scenarios. Consider a situation in medical image analysis

where lesion appears only in a small part of the image. In

this case, average pooling may not be a good choice as the

elements of the pooling region corresponding to back-

ground pixels will tend to dominate the pooled represen-

tation. However, average pooling may be more appropriate

for some other scenarios, e.g., classification of abnormal

images from normal ones where abnormality spread all

over the abnormal image. Unlike average pooling, max

pooling is a nonlinear operator1 which increases the non-

linearity of the network. In the training stage of a network,

all the neurons that are connected to the average pooling

layer will be updated via backpropagation as the output of

all the neurons contribute to the output of average pooling.

In contrast, as max pooling selects only the strongest

activation, only the neurons which are connected to the

neuron outputting the strongest activation will be allowed

to learn.

Note that in addition to CNNs, max and average pooling

also have been well-explored in traditional feature encod-

ing approaches such as, bag-of-words [24] and its varia-

tions such as sparse coding [53], vector of locally

aggregated descriptors [52] and Fisher vectors [88] (dis-

cussed in Sect. 2.10). Average pooling is widely used in all

of these methods except sparse coding, where max pooling

is widely used. As listed in Table 2, max and average

pooling are very well-explored in medical image analysis

for different problems, including HEp-2 cell image

Table 2 (continued)

Name of the pooling Example applications in computer

vision

Example applications in medical imaging

Type of application Modality

Video tagging [80]

Other approaches

Transformation Invariant

Pooling (TI-Pooling) [61]

Classification [61] Neuronal structures segmentation [61] Microscopy

Hierarchical mix pooling

[78]

- HEp-2 cell image classification [78] X-Ray image

classification [61]

HEp-2 cells X-Ray

Tree pooling [63] Classification [63] – –

Virtual Pooling (ViP) [16] Classification, Object Detection [16] – –

Kernelized subspace

pooling [128]

Image patch matching [128] – –

LiftPool [150] Classification, Segmentation [150] – –

1 Lets assume that y ¼ f ðxÞ, where x is the input, y is the output, and
f represents the pooling function. If f is a linear function, this pooling
is a linear pooling; otherwise, it is a nonlinear pooling. For example,

max is a nonlinear pooling as it is a nonlinear function.
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classification [77], retinopathy image classifica-

tion [93, 126], multiple sclerosis identification from MRI

images [122], etc.

Since neither max pooling nor average pooling consis-

tently performs better than the other [6], approaches have

been proposed to take advantages of both. This line of

research includes a direct combination of max and average

pooling with weights (Sect. 2.2) and soft pooling

(Sect. 2.3). However, unlike max and average poolings,

new parameters are introduced in these approaches, caus-

ing additional overhead in parameter learning or tuning.

2.2 Linear combination of max and average
pooling

To overcome the problems associated with the max and the

average pooling (discussed in Sect. 2.1), in mixed max-

average pooling [63], the max pooling and the average

pooling are simply added together with weights to take

advantage of both, i.e.,

fmixðxÞ ¼ afmaxðxÞ þ ð1� aÞfavgðxÞ ð3Þ

where a 2 0; 1½ � is a learnable parameter that determines

the mixing proportion. There are multiple options available

here when choosing this parameter. The same a could be

used for the entire network, or a set of a’s could be used,

one for each pooling layer (i.e., al; 1� l� L, where L is the

number of layers), or even different regions of different

pooling layers may use different mixing proportions.

The mixing proportion, a, in Eq. (3) is a parameter

which does not depend on the individual characteristics of

a given image, although it can be learned in the network

training process. The images from the same dataset could

have different characteristics. For example in medical

images, for some images, the lesions could be localized

(appear only in some parts), but for some other images,

lesions could be spread all over the image. In that case the

mixing proportion should depend on the characteristics of

each image than the characteristics of the dataset, and

therefore it should be determined for each image sepa-

rately. This is the motivation behind the Gated Mix-Aver-

age pooling [63].

The gated mix-average pooling can be defined as:

fgateðxÞ ¼ rðwTxÞfmaxðxÞ þ ð1� rðwTxÞÞfavgðxÞ ð4Þ

where w 2 Rn is a weight vector (called the gating mask in

[63]) to be learned when training the network, and rð�Þ is a
sigmoid function which converts the transformed input

(wTx) to a value between 0 and 1. This value is then used to

weight the contribution of the max and the average pooled

results as shown in Eq. (4). As with mixed max-average

pooling (Eq. (3)), the new parameters (w) can also be

learned in different ways, e.g., separately for each layer or

separately for each of the channels in each layer of the

network.

Both in mixed max-average and gated mix-average

pooling, each pooling region (of a particular feature map)

is considered independently from each other. Dynamic

Correlation pooling [11] also uses the same formulation as

in Eq. (3); however, the weighting proportion for each

pooling region is determined based on the correlation

between that region and its adjacent regions; average

pooling gets higher weight if the correlation is high, and

max pooling on the other hand.

To the best of our knowledge, as listed in Table 2, soft

pooling approaches are widely used in medical imaging

than using linear combination of max and average pooling

techniques.

Fig. 1 Demonstration of relevant notations. a A set of feature maps

F . b An example feature map F k from F (or the kth channel of F ),

and a pooling region P defined on F k . c The features inside the

pooling region of the selected feature map F k . d The ith feature

vector, ui, obtained across channels at the i-th position of the feature

maps F
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2.3 Soft pooling approaches

Soft pooling is used as an intermediate form between max

and average pooling. Unlike simply adding the max and

average pooling as in Sect. 2.2, in soft pooling, a smooth

differentiable function is used to approximate the max and

the average pooling for different parameter settings. For

example, in the Generalized Mean (GM) [135] function,

fGM ¼ 1

N

XN

i¼1

jxijr
 !1

r

; ð5Þ

the parameter r controls the softness, i.e., when r ¼ 1 this

function is equivalent to average pooling, and when

r ! 1 this approximates max pooling.

Various such approximations are used, including Log-

Sum-Exp pooling (LSE) [55, 90, 124], Polynomial pooling

[129], Learned-Norm pooling [42], ‘p pooling [7], a Inte-

gration (aI) pooling [28], Rank-based pooling [99, 101],

Dynamic pooling [84], Smooth-Maximum pooling [5], Soft

pooling [107], Maxfun pooling [26], Ordinal pooling [60].

As most these functions are differential approximation of

max pooling, they are widely explored in (non-CNN based)

Multiple Instance Learning approaches in computer vision

[8] and medical image analysis [76, 135] (Table 2), in

addition to CNN-based image classification

[28, 42, 124, 144] and segmentation [90, 129].

The learned-norm pooling [42] and ‘p pooling [7] use

similar formulation as in Eq. (5). The Root-Mean-Square

pooling [53] is a special case (r ¼ 2) of GM. The aI
pooling [28] introduces a formulation, where different

statistics such as arithmetic mean, harmonic mean, maxi-

mum and minimum are special cases. aI pooling is given as

faIðx; aÞ ¼ g�1
a

1

N

XN

i¼1

gaðxiÞ
 !

ð6Þ

where

gaðxiÞ ¼
log xi; if a ¼ 1

x
1�a
2

i ; otherwise

(
ð7Þ

This pooling shows marginal improvements over the max

pooling, a pooling (Sect. 2.6) and ‘p pooling on some

computer vision datasets in [28].

In the rank-based pooling [101], first the elements in

each pooling region are ordered (ranked) and then the top-k

elements (elements with highest activations) are averaged

together as the pooled representation. When k ¼ 1 and k ¼
N this pooling is equivalent to max and average pooling,

respectively. Ordinal pooling [60] and multi-activation

pooling [151] are similar to rank-based pooling, which

also use the rank of the elements when applying pooling.

The free parameter(s) in the above soft pooling func-

tions could be the same for the entire network, or could be

different for different layers and either could be fixed [90]

or learned [42, 129]. For example, in aI pooling [28], the

parameters (a’s) are learned for each layer separately via

back-propagation, and in polynomial pooling [129], a side-

branch net is used to determine the parameters of each

pooling region.

In all the above soft pooling approaches, the result of the

pooling is just based on the characteristics of the pooling

region of a particular feature map itself. But differently

from these approaches, in Global Feature Guided Local

pooling (GFGP) [57], the pooled result of a particular

region is not only based on that region itself, but also it

depends on some global statistics of the feature map. The

GFGP is formulated as

fGLGP ¼
XN

i¼1

wixi ð8Þ

where

wi ¼
expðkxiÞP
i expðkxiÞ

ð9Þ

The weights2 wi determine the type of pooling and are

learned through an optimization process, and k is channel

(particular feature map)-dependent parameter, determined

(learned) based on the statistics of the global features of

that channel. Note that average and max pooling can be

obtained when k ¼ 0 and k ! 1, respectively.

2.4 Stochastic pooling approaches to handle
overfitting

One of the main issue when training CNNs with limited

data is overfitting. Mixed-pooling [139], Hybrid pooling

[112], Stochastic pooling [142], Rank-Based Stochastic

pooling [101], Max pooling dropout [132], Stochastic

Spatial Sampling (S3 pooling) [143] and Fractional Max

pooling [39] are proposed to reduce overfitting by intro-

ducing various forms of randomness in pooling configu-

rations and/or the way the pooling is performed in the

training process. Because of this randomness in training,

the trained model can be thought as an ensemble of similar

networks, with each random pooling configuration defining

a different member of the ensemble.

As listed in Table 2, these stochastic pooling approaches

are widely used in medical imaging (e.g., COVID-19

diagnosis [149], abnormal breast identification [148], brain

tumor segmentation [10]) as usually the models in medical

imaging are trained with small amount of training data, and

2 In [57] position priors are also added to determine the value of the

weights. Here, in Eq. (9), we omit those priors to make it simple.
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these pooling approaches can help to handle the issues with

overfitting.

Mixed pooling [139] and hybrid pooling [112] introduce

randomness in training by randomly selecting either max or

average operations for pooling, i.e.,

fmix ¼ kfmax þ ð1� kÞfavg ð10Þ

where k is a random value to be either 0 or 1 that deter-

mines which pooling to be selected, i.e., when k ¼ 1 the

max pooling and when k ¼ 0 the average pooling is

selected, respectively. This randomness cannot be used in

the testing time. Therefore, in [139], the statistics about

how many times the max and the average operations are

selected for pooling for each feature map in the training

phase are recorded. Based on this statistics whatever

pooling used frequently for each layer in the training phase

is selected to use at the testing phase.

Stochastic pooling [142] introduces randomness in

training by randomly selecting an activation (instead of

selecting either maximum as in max pooling or all the

elements as in average pooling) within each pooling region

according to a multinomial distribution given by the values

within that pooling region. Here, the values in each pooling

region are first converted into probability values by

dividing each of the value by the sum of all the values in

that pooling region, i.e.,

pi ¼
xiPn
j¼1 xj

ð11Þ

Then, a location l within each pooling region is sampled

based on the corresponding probability values to get the

pooled representation of that region. The locations to

sample for each pooling region in each layer for each

training example are drawn independently to one another.

In testing time, a probabilistic weighting scheme was used,

where the pooled representation of a pooling region is

calculated as follows:

fstoc ¼
XN

i¼1

pixi ð12Þ

This can be seen as a weighted average pooling, where the

probability values are used to weight the corresponding

elements in the pooling regions.

In stochastic pooling, still over-fitting may happen par-

ticularly when the training data are limited. This is because

strong activations will always have the highest probability

to be sampled. Therefore, rank-based stochastic pooling

[101] suggests a different way to calculate the probabilities

based on the ranks of the activations inside each pooling

region.

Instead of sampling only one value from each pooling

region as stochastic pooling does, a set of values could be

randomly sampled first and then pooling could be applied

on these random sampled activations as in max pooling

dropout [132]. Max pooling dropout first applies dropout

on the feature maps to drop p% of the features and then

applies max pooling on the retaining features, and show

better performance than stochastic pooling for particular

values of p.

Unlike the above approaches where randomness is

introduced in the pooling stage, in S3 pooling [143] and

fractional max pooling [39], randomness is introduced in

the spatial sampling stage. The standard max pooling can

be viewed as a two-step procedure (Fig. 2d). In the first

step, max pooling is performed from the feature map with a

stride of 1. Then in the second step, spatial downsampling

is performed uniformly on the resultant map by extracting

the top-left corner element of each disjoint s� s window,

resulting in a feature map with s times smaller spatial

dimensions. S3 pooling differs from the traditional max

pooling in the second step. Instead of the uniform sampling

used by max pooling, S3 pooling proposes non-uniform

sampling to downsample the pooled feature maps.

Max pooling reduces the size of the feature maps by an

integer multiplicative factor s (the value of stride). Usually,

s is set to two in most architectures (e.g., ResNet [46]), and

therefore reducing the size of the feature maps by half of its

original size every time pooling is applied, and hence,

limiting the number of pooling layers used. In fractional

max pooling [39], s is allowed to take a non-integer value,

i.e., 1\s\2, to allow the use of larger number of pooling

layers.

Because of this non-uniform nature of downsampling

used in S3 pooling and fractional max pooling the down-

sampled feature maps get distorted. This distortion pro-

vides a way for data augmentation to improve the

generality of the network.

2.5 Pooling approaches to encode spatial
structure information

For some problems, encoding spatial information is nec-

essary, for example, in natural images sky is always in the

upper part of the image. Encoding such information may

lead to more informative and discriminative feature rep-

resentation. Similarly in some medical images, this kind of

information is very useful. For example, the Golgi class in

Fig. 4 has a unique ring like structure around the cells.

Encoding that structure in the feature representation may

help to easily discriminate that class from others. Various

approaches [30, 43, 45, 91, 92, 115, 117, 130, 136, 145]

have been proposed to encode local structure information

in the pooled representation.
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Spatial Pyramid pooling (SPP) [45] (Fig. 3a) is a popular

way to include spatial structure information in the pooled

representation. It divides the feature map into grids of cells

and applies the standard max or average pooling from each

cell separately. Then, these cell-based pooled representa-

tions are concatenated together as the image representation.

SPP is very useful for rigid structures, but it may not be

appropriate for images containing objects with different

poses, e.g., birds with different poses. To overcome this, in

[145] a part-based pooling strategy is proposed for fine-

grained image classification. Here, from each image, dif-

ferent parts (e.g., head, tail, body of a bird) are detected

first. Then, the features from each detected parts are pooled

and concatenated together as the final image representation

(Fig. 3b).

Both SPP and the part-based pooling strategies may not

be very useful for the images with rotated objects. To

capture rotationally invariant spatial structure, representa-

tions with CNNs Concentric Circle pooling [91] and

Polycentric Circle pooling [92] were proposed and

applied for recognizing remote sensing images, where the

pooling regions are defined as concentric circles (Fig. 3d).

A similar approach, Multi-pooling [117], was proposed to

cope with lesions (brain tumors) with different sizes, where

features extracted from different sized concentric regions

are concatenated together as representations.

(a) (b)

(c)

(d)

(e)

Fig. 2 Max pooling and

different Stochastic pooling

approaches: a the standard max

pooling, b stochastic pooling, c
max pooling dropout, d another

view of max pooling with

stride = 2, and e S3 pooling.

For all the above,

downsampling is performed

with a filter size of 2� 2 with a

step size of 2. In b, colors
corresponding to probability

values. High values of red

correspond to high probability

values and vice versa. In c, the
values in the shaded squares are

dropped. In e, ‘*’ corresponds to
the selected rows and columns

(Color figure online)
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Cell Pyramid Matching (CPM) [130] is another approach

to capture spatial structure information, specifically for cell

image classification. In CPM, the segmentation mask of

each cell is used to define the pooling regions as shown in

Fig. 3c. CPM also adopted in [77] for the same purpose.

Both in [130] and [77] CPM was used with traditional

feature representations such as bag-of-words and not with

CNNs. Note that CPM requires additional input in the form

of segmentation masks to identify the border of each cell.

All the above approaches are meant to capture large-

scale spatial structure information. On the other hand,

Geometric ‘p-Norm pooling [30] aims to capture local

structure information (e.g., from image regions of size

5� 5) for the sparse coding-based (non-CNN) representa-

tions by applying weights to different locations of the

pooling region. However, with CNN, this pooling is

equivalent to first applying a nonlinear transformation on

the feature maps and then applying a convolution for

aggregation.

2.6 Pooling approaches that capture higher-
order information

Average pooling only captures the first-order statistics (i.e.,

mean) of each pooling region, by pooling from each

channel (feature map) separately. This pooling, hence,

neither captures the interaction between different feature

maps, nor the interaction between the features from dif-

ferent regions of the same feature map. This interaction

may capture additional details such as object co-occurrence

[137]. Therefore, capturing higher-order statistical infor-

mation via covariance matrices can improve the ability of

(a) (b)

(c) (d)

Fig. 3 Different pooling

techniques to capture

information about spatial

structures. F represents feature

maps. Rij represents different

pooling regions specified by

different techniques. rij is the
pooled representation of the

region Rij. Each of the pooled

representation from an

individual pooling region will

have a dimension of RC , where

C is the number of channels in

F . The final image

representation will have a

dimension of M � C, where
M is the total number of pooling

regions specified by the pooling

algorithm (images best viewed

in color) (Color figure online)
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CNNs to learn complex nonlinear class boundaries.

Recently, incorporating higher-order statistical pooling

approaches with CNNs got attention [18, 25, 31, 34,

69–71, 141] and have achieved state-of-the-art results on a

variety of tasks including object recognition, fine-grained

visual categorization, and object detection.

Second-Order pooling was initially proposed in [9] for

aggregating SIFT descriptors (non-CNN). The max and the

average second-order pooling are defined in [9] as follows:

f savg ¼ 1

N

XN

i¼1

ui � uT
i ð13Þ

f smax ¼ max
1� i�N

ui � uT
i ð14Þ

where ui 2 Rd is the ith feature descriptor (e.g., SIFT [72])

from region R, d is the dimensionality of ui and ui � uT
i is

the outer product between descriptor si with itself, cap-

turing the pairwise correlations between the elements of ui.

The pooled representation (matrix of size d � d) was then

passed through a nonlinear transformation and a normal-

ization process before giving it to a linear classifier.

This idea is then extended with CNN features in

[25, 34, 69–71, 141]. For example, in Improved Bilinear

pooling [70] ui is a feature from the last layer of a CNN

model (Fig. 1). The pooled features were then passed

through a normalization layer before performing fine-

grained classification. Both in [70, 71], second-order

pooling is applied only at the end of the network; in con-

trast, in [34], second-order pooling is applied throughout

the network (from lower to higher layers) and shows

improved performance than applying them at the end of the

network. Extensions of this pooling include compact

[31, 141] and kernelized [25] versions. In addition, the

association between second-order pooling and Attention-

Based pooling is analyzed in [36]. The formulation of the

a-pooling [102] allows for a continuous transition between

average and bilinear pooling by the introduction of a

trainable parameter a.

2.7 Approaches that aim to keep important
information when pooling

Discriminative details could be lost due to improper

pooling mechanisms, particularly, in the early stage of the

networks. This information loss may hinder the learning

process and result in sub-optimal models [32]. Detail

Preserving pooling (DPP) [96] and Local Importance-

Based pooling (LIP) [32] aim to reduce this information

loss by preserving important features when pooling.

Because some activations are important than others,

both of these approaches weight the contribution of

activations in the pooling region as given in Eq. (8).

However, they differ from each other (and from [57] dis-

cussed in Sect. 2.3) in the way the weights are determined.

In DPP, higher weights are given to the activations which

are different from the activation at the center of the pooling

region as those activations are assumed to carry more

information, i.e.,

wi ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂c � xið Þ2

q� �k

ð15Þ

where x̂c is the activation at the center of the preprocessed

pooling region. The parameters a and k are learned toge-

ther with other parameters in network training.

But in LIP, the weights are determined using a subnet-

work attached to each pooling layer. Therefore, LIP can

also be considered as an attention-based pooling approach

(Sect. 2.8) as the subnetwork learns a saliency map to

weight each element of the feature map. LIP shows

improved recognition rate on the ImageNet dataset over

DPP in [32].

In addition, these approaches also can be considered as

soft pooling approaches; for particular parameter settings,

they approximate the standard average and the max pool-

ing. For example, when a ¼ k ¼ 0 in Eq. (15), DPP

becomes average pooling.

Larger networks cannot be deployed in resource con-

strained devices as they have large memory requirements.

One way is to handle this problem is by reducing the

number of layers of the network by rapid downsampling.

Rapid downsampling of the feature maps by a large factor

can simply lead to information loss, and hence reduced

performance. RNNPool [97] tries to alleviate this problem

by incorporating recurrent nets for downsampling, where

two recurrent nets were used, the first one summarizes the

feature maps horizontally and vertically, and the second

one summarizes the outputs of the first one as the pooled

results.

2.8 Attention-weighted pooling

In these kind of approaches, each element of the feature

map is weighted by the corresponding weight from the

attention/saliency map and then pooling is performed on

this weighted feature map as a weighted average pooling

[27]. Attention map highlights discriminative regions in the

feature maps by giving higher weights to them compared to

the non-discriminative regions. Therefore, one can expect

to get a discriminative pooled representation when pooling

from attention weighted feature maps than pooling directly

from the original feature maps.

Attention-based pooling [36, 41, 50, 67, 73, 89, 127] has

received much focus recently. Different attention models
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differ from the way the attention maps are generated. For

example, in Cross Convolutional Layer pooling [73], the

feature vectors from the feature map of a particular layer

are weighted by each of feature maps from its subsequent

layer. In [67], a separate subnetwork is used to learn the

attention maps. Double-attention network (A2-network)

[13] uses a double attention mechanism, where the first

attention step uses a second-order attention pooling to

aggregate the features from the entire feature map, and the

second attention step distributes the key features. Convo-

lutional Block Attention Module (CBAM) [131] contains

two attention mechanisms: channel attention module fol-

lowed by spatial attention module, where the channel

attention module aims to capture the inter-channel rela-

tionship of features; on the other hand, the spatial attention

module aims to capture the inter-spatial relationship of

features. Global Learnable Pooling (GLPool) [147] can

also be considered as an attention mechanism, where the

weight of each pooling location is considered as a param-

eter and learned together with other network parameters in

an end-to-end manner. [36] mathematically shows that the

attention weighted pooling is equivalent to a low-rank

approximation of second-order pooling.

Attention mechanisms also have been investigated in

medical imaging (Table 2); for example, a separate branch

of the network was used to get the attention maps for

Glaucoma detection in [67]. A reinforcement learning-

based recurrent attention model for pulmonary lesion

detection from chest X-Rays was proposed in [89]. An

attention-guided CNN was proposed for thorax disease

classification in [41], where the regions identified by the

global branch are further analyzed by the local branch, and

then the outputs from both branches are fused for the final

classification.

2.9 Implicit pooling mechanisms

The Generalized Max pooling (GMP) [83] does not

explicitly specify the pooling function, but it implicitly

learns the ‘pooled’ representation using an optimization

framework which equalizes the similarity between the local

descriptors of an image (U ¼ u1; . . .;un½ �) and their

‘pooled’ representation (û), i.e.,

fGMP ¼ argmin ûkUT û� 1k2 ð16Þ

where 1 denotes a N dimensional vector of all ones. By

doing so, the ‘pooled’ representation will capture the

properties of the max pooling for the bag-of-words-based

hard-encoded local descriptors (binary representation).

However, for other descriptors such as features from the

last layer CNN, this ‘pooled’ representation can be affected

by the frequent descriptors, and hence, may not be similar

to max pooling. It is shown in [83] that this ‘pooled’

representation of an image is equivalent to weighted

average of its local descriptors, i.e.,

fGMP ¼ Ub ð17Þ

where b is the vector of weights.

Since GMP is an unsupervised representation learning,

in Task-Driven Feature pooling [133] GMP was extended

to supervised learning, where the ‘pooled’ representations

are learned jointly with a classifier to maximize the

classification accuracy and showed improved accuracy

over the traditional max and average pooling with fixed

feature representations. Deep Generalized Max pooling

[20] integrates the idea of GMP in a deep learning

framework.

2.10 Clustering-based aggregation schemes

Bag-of-words (BoW) [24] and its variants such as Vector

of Locally Aggregated Descriptors (VLAD) [52] and

Fisher Vectors (FV) [88] are well-known (non-CNN-based)

feature encoding and aggregation techniques for order-less

representation of handcrafted local descriptors, and have

been widely used in Computer Vision [24, 52, 81, 88] and

Medical Imaging [77, 114] community. In these approa-

ches, first the local features from all the training images are

clustered into a set of clusters and then the local features

from each image falling inside each cluster are aggregated

using different statistics; BoW uses count statistics, VLAD

aggregates gradients and FV uses second-order statistical

information in addition to the statistics used by BoW and

VLAD. The aggregated statistics from each cluster are then

concatenated as the final feature representation of an

image.

Methods also proposed to integrate these approaches

with CNN as feature aggregation techniques by either

using them with features extracted from pre-trained CNN

[21, 37, 138], or learning CNNs together with the param-

eters of BoW [80, 87], VLAD [2, 80, 140] and FV [80] in

an end-to-end manner. A recent work [80] reports signifi-

cant performance improvement by the learned aggregation

schemes (BoW, VLAD and FV) over average pooling for

video classification. To the best of our knowledge, these

techniques are only used at the end of the network for

feature aggregation.

2.11 Other approaches for feature aggregation

Various other approaches based on the max, average, and

their variants also proposed for different reasons. For

example, Transformation Invariant pooling (TI-pooling)

[61] applies max pooling on the CNN features extracted
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from the transformed versions of an image to represent that

image, so that the representation will capture transforma-

tion invariant features. The Hierarchical Mix-pooling [78]

applies max pooling on the average pooled feature maps

(and vice versa) to reduce information loss and shows

improved performance than applying either max or average

pooling alone on the Sparse Coding-based representations.

Most of the pooling techniques for downsampling the

feature maps are not invertible due to information loss, i.e.,

upsampling a downsampled feature map cannot recover the

lost information in the downsampling. LiftPool [150] is a

recently proposed pooling technique, which aims to build

pooling layers that are invertible. Kernelized subspace

pooling [128] was proposed to obtain a highly invariant

description (invariant to flipping, rotation, etc.) from the

CNN for image patch matching, where, the principal

components of the feature maps from the last layer of the

CNN are considered as the pooled output, and showed that

descriptors obtained in this way are discriminative and

highly invariant for image patch matching.

Convolutions also can be viewed as weighted average

pooling, where the filters are learned in the training pro-

cess. Tree pooling [63] learns a set of filters and ways to

combine them. In [63], Tree pooling shows improved

performance over max, average, mixed max-average

(Sect. 2.2), and gated pooling (Sect. 2.2). However, Tree

pooling contains more parameters to learn than mixed max-

average and gated pooling. Strided Convolutions [105], on

the other hand, are convolutions, use larger strides ([ 1)

for downsampling the feature maps. Unlike the traditional

max and average pooling, where pooling is performed from

each input feature map (channel) independently, in strided

convolutions all the set of input feature channels are used

to generate each output feature map/channel. Therefore,

they need to learn many extra parameters. In Learning

pooling (LEAP) [108] strided convolutions are applied

independently from each channel of the feature maps to

reduce the number of parameters required with strided

convolutions. As discussed in Sect. 1, pooling makes the

features robust to local transformation invariance. In con-

trary, strided convolutions capture local structures or

positional information.

3 Experiment setup

In this section, we explain the datasets, evaluation criteria,

network architecture, experimental settings, and the con-

sidered pooling strategies.

3.1 Datasets and evaluation criteria

We use the following two public medical image datasets

for comparing different pooling strategies: (1) Human

Epithelial type 2 (HEp-2) cells dataset3 and (2) Diabetic

Retinopathy (DR) dataset.4 In the HEp-2 cells dataset, each

cell covers the entire image as shown in Fig. 4. The lesions

in the DR dataset (Fig. 5) covers only small parts of the

images. In both datasets, the task is to classify each image

into one of the predefined classes.

3.1.1 HEp-2 cells dataset

This dataset3 is from the I3A HEp-2 (Indirect Immunoflu-

orescence Image Analysis—Human Epithelial Type-II) Cell

and Specimen image classification competition organized

by the International Conference on Pattern Recognition

(ICPR), 2014. There were two tasks in this competition:

Task 1 is to classify individual cell images into one of the

six classes (Homogeneous, Speckled, Nucleolar membrane,

Centromere, and Golgi), and the Task 2 is to classify

specimen images into one of the seven classes (Homoge-

neous, Speckled, Nucleolar Membrane, Centromere, Golgi,

and Mitotic Spindle). Each specimen image contains a

large number of cell images of same type. In this work we

focus on Task 1 - cell image classification. The training set

of both tasks were released to the participants of the

competition and the test sets were kept private by the

organizers of the competition. As the training set of Task 1

dataset contains a smaller number (13, 596) of images and

its test set is inaccessible, we used the Task 2 dataset to

extract 26, 078 cell images as explained in [77]. We

sample 60% of these images from each class and use them

as our training set, and use the rest of the images as the test

set. When sampling, we make sure that the training data

and the test data contain cell images from disjoint set of

specimen images. The number of images in the training

and test sets from each class of this dataset is given in

Table 3.

Note that all of these images are in gray scale, and the

size of each image is approximately 70� 70 pixels. We

resize each image into pixels of size 112� 112. Images are

normalized (zero mean and unit variance) before giving

them to the CNN. Data augmentation, such as random

mirroring, rotations (�180�), and random cropping of size

96� 96 pixels were used at the training time. In the testing

time, images were cropped at the center and no augmen-

tation were used.

3 https://mivia.unisa.it/datasets/biomedical-image-datasets/hep2-

image-dataset/.
4 www.kaggle.com/c/diabetic-retinopathy-detection/data.
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Mean Class Accuracy (MCA) was used as the evaluation

measure, as it is the required metric by the competition. It

is defined as:

MCA ¼ 1

K

XK

i¼1

Rk ð18Þ

where Rk is the correct classification rate for class k, and

Kð¼ 6Þ is the number of classes.

3.1.2 Diabetic retinopathy dataset

This dataset is from the Kaggle Diabetic Retinopathy

Detection challenge.5 It contains five classes from the scale

of 0 to 4, which rates the presence of diabetic retinopathy

(DR) in each image, where, 0—No DR, 1—Mild, 2—

Moderate, 3—Severe, 4—Proliferative DR. The training

set of this dataset contains 35, 126 images. To reduce the

computational time required to run the experiments, we

randomly sample 3, 500 images from the classes which

contain over 3, 500 images, and fix this as the training set

for all of our experiments. The images from the public

leader–board were used as the test set. The number of

images from the training and testing set from different

Fig. 4 Example images from different classes of the HEp-2 cell image dataset

Fig. 5 Example images from different classes of the DR image dataset

Table 3 HEp-2 cells image dataset

Class Training Testing

Homogeneous 3435 2363

Speckled 3498 2403

Nucleolar 3322 2253

Centromere 3339 2419

Nuclear membrane 1169 930

Golgi 571 396

Total 15,314 10,764

Table 4 DR image dataset

Class Training Testing

No DR 3500 8130

Mild 2443 720

Moderate 3500 1579

Severe 873 237

Proliferative DR 708 240

Total 11,024 10,906

5 www.kaggle.com/c/diabetic-retinopathy-detection/data.
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classes is given in Table 4. Example images from each

class are shown in Fig. 5.

Each image is preprocessed as explained in [40] as

follows: First, the images were rescaled to have the same

radius, then the local average color is subtracted from each

channel and are mapped to 50% of gray level (intensity

value of 128).

In training, each image is first resized to 512� 512

pixels. Each channel of the image is normalized (zero mean

and unit variance) before it is used by the CNN. Data

augmentation, such as random mirroring, rotations

(�180�), and random cropping of size 448� 448 pixels,

was used at the training time. In the testing time, images

were cropped at the center, and no augmentation was used.

We used the Quadratic Weighted Kappa (QK) as the

evaluation measure as it is used by the competition. QK

measures the level of agreement between the predictions

made by the system (A), and the annotator (B), and can be

defined as

j ¼ 1�
P

i;j WijOijP
i;j WijEij

ð19Þ

where W, O and E are matrices of size K � K. O is the

confusion matrix, each element in O, i.e., Oij indicates how

many times an image received the rating i by A, and rating

j by B. The expected outcomes, E, is calculated as the outer

product between the actual histogram vector of outcomes

and the predicted histogram vector. E is normalized such

that E and O have the same sum. The element, Wij, of the

weight matrix, W, is given as

Wij ¼
ði� jÞ2

ðK � 1Þ2
ð20Þ

3.2 Network architecture, initialization
and training

For both datasets, we use a ResNet [46]-based CNN

architecture. Table 5 illustrates the components of our

selected CNN, which contains an input layer and three

residual blocks. The input layer and each of the first two

residual blocks are followed by transition layers to down-

sample the feature maps by half of its original sizes. Two

approaches were considered for the transition layers. In the

first case, a 3� 3 convolution with a stride of 2 is applied,

and in the second case this convolution is replaced by a

pooling operation. Global pooling is applied at the end of

the network to get an image representation, which is then

passed to a linear classification layer to get the classifica-

tion scores. Note that as the images from the HEp-2 cells

dataset are small in size (96� 96), a stride of one is used in

the first convolutional layer for this dataset.

The below settings were used unless otherwise specified.

3.2.1 HEp-2 cells dataset

For this dataset, the network was trained from scratch as we

have a larger number of training images and the sizes of

them are small. The initial learning rate was set to 0.01,

which was then divided by a factor of 10 at the end of the

40th and then at the end of the 70th epochs, respectively.

The total number of epochs were set to 80. We used

weighted Cross-Entropy loss to handle imbalanced classes,

where the weights are set to the inverse class frequencies.

The network is optimized using Stochastic Gradient Decent

(SGD) with the Nesterov momentum of 0.9 and a weight

decay of 10�4. The batch size was set to 64.

3.2.2 Diabetic retinopathy dataset

For this dataset, the weights of the CNN were initialized

with the weights of an ImageNet pre-trained model as

recommended in [109]. The initial learning rate was set to

0.005, and it was divided by a factor of 10 at the end of the

90th and 120th epochs, while the total number of epochs

was set to 130. Following [4], we directly use Quadratic

Weighted Kappa as the loss function. The network was

optimized using SGD with the Nesterov momentum of 0.9

and a weight decay 5� 10�4. The batch size was set to 32.

But for the bilinear pooling, we found that the above

selected initial learning was quite large, and therefore, we

set the learning rate to 0.001 and the batch size to 18 due to

memory constraints.

3.3 Considered pooling techniques
for comparison

As it is infeasible to experiment with all the pooling

techniques proposed in the literature, we selected the fol-

lowing techniques for comparison: average and max

pooling (Sect. 2.1), mixed max-average pooling [63]

(Sect. 2.2), Generalized Mean (GM) pooling [135]

(Sect. 2.3), improved bilinear pooling [70] (Sect. 2.6),

stochastic pooling [142], S3-pooling [143], and max-

pooling dropout [132] (Sect. 2.4). In addition, we consid-

ered two attention-based pooling (Sect. 2.8): Double-

Attention Block (A2-block) [13] and Convolutional Block

Attention Module (CBAM) [131]. Some of the pooling

techniques such as clustering-based pooling (Sect. 2.10)

and implicit pooling mechanisms (Sect. 2.9) need signifi-

cant changes in the CNN architecture, and therefore, make

it difficult to have a direct comparison with simple mech-

anisms such as max or average. Therefore, not considered

for comparison in this work.
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4 Results and discussion

All the reported experiments in this work are iterated ten

times and the mean and the standard deviation of the MCA

for HEp-2 cells and QK for the DR datasets over these

iterations are reported as the evaluation measures. In

addition, for each experiment, the independent samples t

test was used to calculate the p values to get the statistical

significance of the obtained results compared to the top

performing method in that experiment.

4.1 Comparison of max, average, combination
of max-average and soft pooling approaches

Table 6 compares the performance of max pooling, aver-

age pooling, mixed max-average pooling [63], and GM

pooling [7]. Here, each of these pooling was applied to all

the transition and the global pooling layers.

On the HEp-2 cells dataset, average pooling gives sig-

nificantly better performance (p\0:05) than max pooling

(87:50% vs 85:62%). The performance of mixed max-av-

erage and GM pooling are in between the performance

obtained by the average and max pooling. This result is

expected as in most of the cases each image of the HEp-2

cells dataset contains exactly one cell and it covers almost

Table 5 Network architecture

used for both HEp-2 cells and

the DR datasets

Description HEp-2 cells dataset DR dataset

Convolution layer Conv 3�3, 64, stride 1 Conv 7�7, 64, stride 2

Transition layer Pooling/convolution

Residual blocks
Conv

3� 3; 64
3� 3; 64

� �
� 2

Transition layer Pooling/convolution

Residual blocks
Conv

3� 3; 128
3� 3; 128

� �
� 2

Transition layer Pooling/convolution

Residual blocks
Conv

3� 3; 256
3� 3; 256

� �
� 2

Global pooling layer Pooling

Fully connected layer FC–6 FC–5

Conv indicates the convolutional layers, FC represents fully connected layer

Table 6 Comparison of

different pooling approaches on

the HEp-2 cells and DR datasets

Pooling method HEp-2 Cells DR

MCA p value QK p value

Max 85:62� 0:44 0.0000 0:767� 0:007 0.0004

Average 87:50� 0:74 – 0:773� 0:007 0.0199

Mixed max-average 86:12� 0:56 0.0020 0:774� 0:007 0.0258

GM pooling 86:30� 0:33 0.0019 0:782� 0:005 –

Here, pooling is applied to all the transition layers of the CNN

Table 7 Effect of the value r in GM pooling

r HEp-2 cells

(MCA)

DR (QK)

2 86:24� 0:34 0:777� 0:002

3 86:00� 0:14 0:782� 0:005

5 86:32� 0:25 0:781� 0:001

7 85:71� 0:32 0:771� 0:007

Table 8 Effect of mixing proportion a in mixed max-average pooling

a HEp-2 Cells (MCA) DR (QK)

0.2 86:22� 0:40 0:774� 0:006

0.4 85:63� 0:17 0:771� 0:004

0.6 85:73� 0:35 0:763� 0:010

0.8 85:38� 0:78 0:761� 0:006
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all the image regions. Therefore, averaging will help to

capture the property of each cell, and hence, gives better

performance than max pooling.

On the other hand, GM pooling gives significantly

improved performance (p\0:05) than the max and the

average pooling on the DR dataset. This result is also

expected, as the lesions in the DR datasets are small (do not

cover the entire image). Max pooling may capture noisy

features as it focus on the top activated elements of each

feature map, and the average pooling averaging out all the

activations, and therefore, the background features will

dominate in the image representation. Therefore, GM

pooling is a balance between max and average pooling—it

considers not only the top activated element, but also other

elements which have high activations.

Table 7 reports the effect of the value r in GM pooling.

On the HEp-2 cells dataset larger values of r (r[ 5) lead to

a significant drop (p\0:05) in performance. This aligns

with the results obtained with the average and max pooling,

as r ¼ 1 corresponding to average and r ! 1 corre-

sponding to max pooling, respectively. On the DR dataset

r ¼ 3 gives better QK values than others. Larger values of

r (r[ 5) give a significant drop in performance (p\0:05)

as they approximate max pooling, and hence, may capture

noisy features. However, although r ¼ 3 gives the best

kappa scores, we observed that smaller r values (i.e., r� 5)

give statistically similar (p[ 0:05) performance.

Table 8 reports effect of the mixing proportion, a, for

the mixed max-average pooling. Small value of a give

better performance than large values.

4.2 Convolution versus pooling
for downsampling the feature maps

As explained in Sect. 3.2, the transition layers for down-

sampling the featuremaps could be either pooling layers or

convolutional layers. In Sect. 4.1, pooling was used for

downsampling in all the transition layers. This section

investigates the effect in performance when using convo-

lutions for downsampling the feature maps instead of

pooling. Table 9 reports the results.

For the HEp-2 cells, dataset applying average pooling at

the first transition layer gives significantly better perfor-

mance (p\0:05) than applying max pooling. We believe

that this is due to the size of the images. As the image sizes

are small (96� 96), applying max pooling at the early

stage of the network easily discards many valuable infor-

mation, and leads to drop in performance. Here, applying

average pooling at the first layer generally gives signifi-

cantly better performance (p\0:05) regardless of the glo-

bal pooling operation used. Applying average pooling at

both the first transition layer and the global pooling layer

leads to significantly better performance than any other

combination (p\0:05).

For the DR dataset, applying max or average pooling at

the first transition layer gives similar performance when

fixing the global pooling operation. But applying average

pooling as the global pooling operator gives improved QK

values than applying max pooling as the global pooling

operator. Applying GM pooling on both the first transition

and global pooling layers, on the other hand, gives the best

QK values (the reason is discussed in Sect. 4.1) compared

to most of the considered combinations (p\0:05). How-

ever, this (GM pooling) gives statistically similar perfor-

mance (p[ 0:05) compared to applying max and average

pooling at the first and the global pooling layers

respectively.

When comparing Tables 6 and 9, applying convolution

at the intermediate transition layers for downsampling the

feature maps or applying pooling for downsampling give

similar performance (p[ 0:05) on both datasets.

Table 9 Comparison of max,

avg and GM pooling
Pooling method HEp-2 cells DR

First transition layer Global pooling layer MCA p value QK p value

Average Average 88:02� 0:19 – 0:777� 0:004 0.0080

Max Average 85:85� 0:36 0.0000 0:781� 0:003 0.0918

Conv Average 87:22� 0:61 0.0061 0:769� 0:005 0.0001

Max Max 84:45� 1:23 0.0000 0:772� 0:008 0.0038

Average Max 87:24� 0:23 0.0000 0:769� 0:006 0.0002

Conv Max 87:08� 0:37 0.0001 0:763� 0:008 0.0001

GM GM 86:07� 0:30 0.0000 0:785� 0:006 –

Here pooling is applied at the first transition layer and at the global pooling layer only. Convolution is

applied for downsampling at other transition layers

The top scores are highlighed in bold
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4.3 Can higher-order information help?
Improved bilinear pooling as the global
pooling operator

This section investigates whether higher-order information

give improved performance than other pooling approaches

considered in Sects. 4.1 and 4.2. Here, we used convolu-

tion as the downsampling operation in all the transition

layers except the first one. The improved bilinear pooling

[70] was used to capture higher-order statistical informa-

tion between feature channels at the global pooling layer.

Table 10 reports the results. On both datasets bilinear

pooling does not show significant improvement in perfor-

mance than applying average pooling as the global pooling

operator. We conduct another experiment to investigate

whether the higher-order information obtained by the

bilinear pooling can add complementary information to the

feature representation obtained by other pooling approa-

ches, e.g., global average pooling. The results in Table 10

does not show any considerable improvement (p[ 0:05)

when combining bilinear pooling with global average

pooling.

4.4 Experiments with stochastic pooling

The CNN trained on the HEp-2 cell images dataset may

overfit to the training data as we got a high training MCA

(	 96%). In this experiment, we investigate different

stochastic pooling approaches to reduce overfitting, such as

stochastic pooling [142], max pooling dropout [132], and

S3 pooling [143]. Here, we applied stochastic pool-

ing/dropout only at the global pooling layer.

As expected, stochastic pooling and max pooling drop-

out give lower MCA (Table 11), as they are based on max

pooling. Remember that stochastic pooling selects an (only

one) activation from each pooling region based on the

multinomial distribution given by the values inside it, and

the max-pooling dropout randomly drop s% (in our

experiments we set s ¼ 0:1%) of the elements (make them

equal to zero) and then apply max pooling on this new

pooling region. We also considered average-pooling

dropout, where we randomly drop 0:1% of the elements

(make them equal to zero) and then apply average pooling

instead of max pooling, which gives 	 1% improvement

compared to max pooling dropout.

S3 pooling gives the lowest MCA compared to all the

approaches we considered. We found that none of these

stochastic pooling approaches give significant improve-

ments compared to our baseline—average pooling without

any stochastic pooling/dropout (88:02� 0:19% from

Table 9).

4.5 Experiments with attention weighted
pooling

Here, we experiment with two different attention mecha-

nisms (explained under the Sect. 2.8): Double Attention

(A2-block) [13] and Convolutional Block Attention

Table 10 Bilinear pooling as

the global pooling operator
Pooling method HEp-2 Cells DR

First transition layer Global pooling layer MCA p value QK p value

Max Bilinear 86:28� 0:30 0.0000 0:776� 0:004 0.6932

Average Bilinear 88:17� 0:21 0.7421 0:763� 0:003 0.0000

Max Average ? bilinear 86:05� 0:42 0.0000 0:774� 0:004 0.1813

Average Average ? bilinear 88:22� 0:29 – 0:764� 0:005 0.0002

Average Average 88:02� 0:19 0.1625 0:777� 0:004 –

Convolution is applied at all the transition layers except the first one

The top scores are highlighed in bold

Table 11 Effect of stochastic

pooling: convolution is applied

for downsampling transition

layers except in the first one,

where average pooling is used

Global pooling layer HEp-2 cells

MCA p value

Stochastic pooling [142] 87:52� 0:48 0.0200

S3 pooling [143] 86:81� 0:61 0.0003

Max pooling dropout [132] 87:37� 0:28 0.0009

Average pooling dropout [132] 88:14� 0:38 –

Global average pooling with no stochasticity/dropout 88:02� 0:19 0.4585

The top scores are highlighed in bold
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Module (CBAM) [131]. These blocks were added before

the global pooling layer. Table 12 reports the results of

these attention weighted blocks with different pooling

operations applied at the first and the last pooling layers.

Results show significant performance improvement

(p\0:05) compared to the experiments which do not have

attention layers. Both attention mechanisms gives similar

performance regardless of the first and the last pooling

operations.

4.6 Comparison with the state-of-the-art

Note that the focus of this work is to compare different

pooling mechanisms to find out which one is better under

some scenarios, and we are not particularly focused on

building a state-of-the-art system. However, based on the

findings from our previous experiments reported in this

paper, in this section, we compare our results with the

state-of-the-art and show that on both datasets our

approach leads to new state-of-the-art results.

4.6.1 DR dataset

Most of the existing work [1, 40, 56, 93] for DR image

analysis focus on building custom CNN architectures. For

example, multiple filter sizes and different color spaces

were explored for fine-grained classification of DR lesions

in [116]. Attention-based mechanisms [127] were also

explored. A recent work [85] analyses different loss func-

tions for optimizing Kappa as the evaluation measure for

DR image analysis.

As explained in Sect. 3.1.2 all the experiments on the

DR dataset reported previously in this paper are based on a

subset of the entire training set. To compare with the state-

of-the-art, in this section we use all the images from the

training set (35, 126 images) to train the CNN, and test it

Table 12 Effect of attention

weighted blocks with different

pooling operations at the first

and the last transition layers

Method DR (QK) p value

First transition layer Attention Global pooling layer

Max – Average 0:781� 0:003 0.0006

Max CBAM Average 0:788� 0:008 0.4051

Max A2 Average 0:791� 0:005 –

GM – GM 0:785� 0:006 0.0219

GM CBAM GM 0:787� 0:006 0.0961

GM A2 GM 0:793� 0:006 –

The top scores are highlighed in bold

Table 13 Comparison of our

approach with the state-of-the-

art methods on the DR dataset

with different evaluation

measures (QK, accuracy, and

weighted F1 score)

Method Validation Testing

QK Accuracy F1-score QK Accuracy F1-score

Single models

MobileNet-Dense [22] – – – 0.825 – –

MobileNetV2 [22] – – – 0.822 – –

M-Net [127] 0.832 – – 0.825 – –

Ours: max-avg 0.858 84.25 0.844 0.849 83.17 0.833

Ours: GM-GM 0.852 83.60 0.841 0.850 82.63 0.831

Ours: max-A2-avg 0.854 83.83 0.841 0.851 82.77 0.831

Ours: GM-A2-GM 0.850 83.93 0.842 0.847 82.80 0.831

Ensemble

Model ensemble [22] – – – 0.852 – –

Min-pooling [40] 0.860 – – 0.849 – –

Zoom-in-Net [127] 0.865 – – 0.854 – –

o_O [1] 0.854 – – 0.844 – –

Reformed gamblers [56] 0.851 – – 0.839 – –

Ours 0:866 83.37 0.840 0:856 82.34 0.830

The top scores are highlighed in bold
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separately on the validation (10, 906 images) and the test

(42, 670 images) sets respectively. Table 13 reports the

results. Our result beats the state-of-the-art methods, and

establishes a new state-of-the-art.

In this experiment, we select four different pooling

settings from the previous experiment (Table 12) and train

four separate ResNet-18 models based on each of these

pooling settings. The pooling settings considered here are:

(1) max-avg: max and the average pooling are applied to

the first and the global pooling layers respectively, (2) GM-

GM: GM pooling is applied at the first and the global

pooling layers, (3) max-A 2-avg: max and the average

pooling are applied to the first and the global pooling

layers, respectively, and A2 attention layer is added before

the global pooling layer, (4) GM-A 2-GM: GM pooling is

applied to the first and the global pooling layers, and A2

attention layer is added before the global pooling layer. As

most of the state-of-the-art methods (e.g., [40, 127]) make

use of the features from both eyes (left and right, as they

have high correlation) for the classification of a particular

eye, we also combine the features from both eyes before

pass it to the classification layer of each model. To make it

consistent with other state-of-the-art methods, we use mean

squared error as our loss function. Adam optimizer with an

initial learning rate of 10�4 was used to optimize the net-

work parameters. The number of epochs and the batch size

was set to 60 and 16, respectively.

From Table 13, we can observe that all the different

pooling settings (our single models) give similar QK values

compared to each other, and compared to the state-of-the-

art methods. We believe that this is because the results are

almost saturated at a QK value of 	 0:855. We can also

observe that the ensemble of our four models improves the

overall QK values and leads to the state-of-the-art results

on both the validation and the test sets. Note that compared

to Zoom-in-net [127], our method is not only simple, but

also make use of a standard network architecture (ResNet-

18) with different pooling mechanisms.

4.6.2 HEp-2 cells dataset

A significant amount of work has been done for HEp-2 cell

image classification, and can be categorized into

handcrafted features-based approaches, and deep learning-

based approaches. Various handcrafted features such as

multi-resolution local patterns [77], shape index his-

tograms [62], gray-level histogram statistics [48], co-oc-

currence matrix features [48], Local Binary Patterns [47],

and SIFT [47, 77] features have been explored. Recently,

CNN [33, 65]-based approaches also became popular for

HEp-2 cell image classification.

In this literature of HEp-2 cell image classification,

different methods use different test sets for comparison as

the test set of this dataset is not publicly available (ex-

plained in Sect. 3.1.1). Some methods completely discard

the specimen information when constructing the test set. It

is observed in [77] that when the specimen information is

discarded, a very high MCA ([ 95%) can be easily

obtained even with handcrafted features. As explained in

Sect. 3.1.1, we considered specimen information when

splitting the dataset, and compare our method with the

methods which also consider specimen information when

constructing the test set.

Table 14 compares our results with the state-of-the-art

results on the HEp-2 cells image dataset, and show that our

results are the new state-of-the-art. We can observe from

Table 14 that our method beats other methods with a

ResNet architecture with carefully chosen pooling layers. It

also can be noted that we achieve the new state-of-the-art

results with a small amount of training data (15, 314

images) compared to other methods, for example, the work

of [65] uses a training set which contains over 100, 000

images.

5 Discussion

The following section summarizes the work of this paper

based on the pooling techniques reviewed and the findings

of the experiments.

As discussed, pooling can help to learn invariant fea-

tures, reduces overfitting, and reduces computational

complexity by downsampling the feature maps. There are

two types of pooling operations used in CNNs, they are:

local pooling and global pooling. Local pooling is applied

from small image regions (e.g., 3� 3) at the early stages of

Table 14 Comparison with the

state-of-the-art methods on the

HEp-2 cells dataset

Method MCA Accuracy F1 score

LeNet-based CNN [33] 71.88 – –

Deep CNN [65] 74.67 – –

Shape index histograms with donut-shaped spatial pooling [62] 78.70 – –

Multi-resolution patterns with ensemble SVMs [77] 87.10 – –

Ours 88:22 87.95 0.88

The top scores are highlighed in bold
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the CNNs to capture local features, and the global pooling

is applied at the end of the network from the entire feature

map to get a feature representation, which will be then used

by the fully connected layer for classification.

The max and the average pooling are the widely used

pooling techniques. They are used both in local and the

global pooling layers, and their applicability depends on

the application. Max pooling considers only the mostly

activated elements in each feature map, and discards all the

other activations as irrelevant. This activated element could

be a noisy one. Our experiments suggest that max pooling

is appropriate in situations where the class specific features

(e.g., abnormal regions in medical images) are smaller in

size compared to the image size. In the learning stage of the

network, the network nodes which are connected only to

this maximum activated element will be updated, which

makes the learning of the network slow. Usually maximum

pooling is applied at the early stages of the network to

capture the important local image features. This is appro-

priate when the size of the images are large enough.

However, our experiments show that when the size of the

images are small, applying max pooling at the early stages

of the network leads to information loss, and hence, drop in

classification performance compared to applying average

pooling at the early layers. The average pooling, on the

other hand, gives equal weights to all the activations,

regardless of their importance. Therefore, the class specific

information in the feature maps could be downgraded and

the features correspond to the background could dominate

in the pooled representation. Usually average pooling is

used as the global pooling operator to capture the contri-

bution of all the features (e.g., Resnet [46]). In addition, the

network may converge faster as all the network nodes are

updated in the learning stage. Our experiments also prove

that applying average pooling is a better choice than max

pooling as the the global pooling operator.

As discussed, the max or the average pooling cannot be

applicable in all the scenarios. Each of them have their own

merits and demerits. To overcome this, and to take the

advantage of both, mix max-average pooling (Sect. 2.2)

and the soft pooling techniques are proposed (Sect. 2.3).

The max and the average pooling are combined with

weights in the mix max-average pooling. In soft pooling,

the pooled representation is obtained as the weighted sum

of the local features. In this way, all the elements in a

feature map will contribute to the pooled representation,

and their contributions are determined based on their

activation values - larger weights for high activations, and

the lower weights on the other hand. There are various

ways proposed to determine these weights (refer Sect. 2.3).

Rank-based pooling (explained in Sect. 2.3) also can be

considered as softpooling techniques, but they differ in the

way how the local features are weighted in the pooled

representations. In rank-based pooling, top k activations

receive a weight of one, and the others receive zero

weights. However, unlike the max and the average pooling,

these approaches (mix max-average, soft pooling and the

rank based pooling) introduce new free parameters which

need to be selected carefully for improved classification

performance. We show by experiments that these approa-

ches are applicable in situations where the class specific

features are small in size compared to the size of the

images. In this scenarios, softpooling gives improved per-

formance compared to max and average pooling. In addi-

tion, we also show by experiments that when the class

specific features spread all over the images (e.g., each

abnormal image in the medical domain contains more

abnormal regions than the normal ones), the average

pooling is the better choice.

One of the main problem with training CNNs is over-

fitting, particularly when the CNN is trained with small

amount of data. To reduce overfitting, various pooling

techniques are investigated, which tries to apply some

stochasticity in the pooling process (These techniques are

explained in Sect. 2.4). Mainly, two types of stochasticity

are generally used. The first type is focusing on the pooling

stage itself, and the second type is focusing on the spatial

sampling stage of the pooling. For example, the Stochastic

pooling [142] introduces randomness in the pooling stage

of the network training by randomly selecting an activation

within each pooling region according to a multinomial

distribution given by the values within that pooling region.

In S3 pooling [143] and Fractional Max Pooling [39]

randomness is applied at the spatial sampling stage of the

pooling. Note that, dropout [106] is another way to reduce

overfitting by randomly dropping some network nodes at

the training stage, and it is a computationally efficient

approach than most of the above mentioned approaches for

reducing overfitting.

The global pooling operation helps to get an orderless

representation of the local features. This orderless repre-

sentation is very useful to capture discriminative features

regardless of where they appear in images. However, for

some classification problems this orderless representation

may fail to capture some very important information as it

completely discards the location information of the local

features. In natural images, the sky is always in the upper

part of the images. Similarly, for some medical image

classification problems such as, classifying cell images, the

location information may be useful. The Golgi class (refer

Fig. 4) has a ring-like structure, capturing this information

is very useful to discriminate the Golgi class from the

others. The orderless representation may fail to capture

such information. To capture this local structure informa-

tion there are various approaches such as Spatial Pyramid

Pooling [45], Cell Pyramid Pooling [130], etc. are
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proposed. These approaches are discussed in detail in

Sect. 2.5.

It has been reported in the literature that for fine-grained

image classification capturing the interaction between dif-

ferent features is very much useful to improve the classi-

fication performance [71]. The widely used average

pooling uses a first order statistics, i.e., mean, to aggregate

the features. This statistics is not designed to capture the

interaction between different local features, such as object

co-occurrence, and may not be useful for find-grained

image classification. Higher-oder statistical pooling tech-

niques such as bilinear pooling [31, 70, 71] are proposed

for this purpose, and reportedly show improved perfor-

mance over max and the average pooling for fine-grained

image classification. We discuss these techniques in detail

in Sect. 2.6. However, our experiments hardly show any

improvement by bilinear pooling compared to the tradi-

tional max and the average pooling as the global pooling

operators.

All the features in a particular feature map cannot be

considered equally. Some feature are important than others.

Attention based pooling (discussed in Sect. 2.8) recently

received much attention. These approaches weights the

importance of the local image features by the use of

attention maps generated in the training process. In the

attention maps, the ‘important’ regions receive higher

weights than the ‘unimportant’ regions. The pooled rep-

resentation is then obtained as the attention weighted

aggregation of the local features. Our experiments on the

DR dataset shows improved performance when applying

attention based pooling compared to without using them.

Most of the pooling approaches discussed above (in-

cluding, max, average, mixed max-average [63]) only

consider the statistics of the features that are inside the

considered pooling region of a particular feature map when

applying pooling. Here, pooling regions in each feature

map are considered independently from each other. How-

ever, some approaches also consider the statistics of the

entire feature map (e.g., Global Feature Guided Local

pooling [57]), or some statistics from the adjacent pooling

regions of the considered pooling region (e.g., Dynamic

Correlation pooling [11]) to calculate the output or to

determine the type of pooling to be applied on the con-

sidered pooling region. Usually, pooling is performed

separately from each feature map (or channel), and there-

fore, the number of channels in the pooled representation is

same as the number of input channels. Examples of such

approaches include, the average and max pooling, linear

combination of them, soft pooling, and stochastic pooling.

However, different channels of the same set of feature

maps are highly correlated and should be treated jointly

[83]. Second-order pooling (Sect. 2.6), implicit pooling

mechanisms (Sect. 2.9), clustering-based aggregation

schemes (Sect. 2.10), and strided convolutions (Sect. 2.11)

do not consider feature channels independently. Therefore,

the number of channels in the output is not necessarily the

same as the number of channels in the input feature

maps.For example, in strided convolution [105] the num-

ber of channels in the output feature maps is equivalent to

the number of convolutions used. To take the advantage of

different types of pooling mechanisms, their combinations

were also considered, e.g., in [96] DPP is combined with

S3 pooling to retain the important information in the fea-

ture maps and at the same time learning representations

which are less prune to overfitting.

It should be noted that there is no single pooling tech-

nique which can work in all the scenarios, and the selection

of it usually depends on the characteristics of the applica-

tion. One of the limitation of our study is only two datasets

were considered, but note that they are different from each

other in terms of their modalities and characteristics.

6 Conclusion

In this paper, we reviewed different kinds of pooling

techniques proposed in the literature of computer vision,

together with the medical imaging domains where these

techniques are used (refer Table 2). The advantages, dis-

advantages and their applicability in different scenarios are

discussed in detail. In addition, a comprehensive set of

experiments are conducted on a selected set of pooling

techniques tested on two public medical image datasets.

Our experimental results suggest that the pooling tech-

nique for a particular classification task should be selected

by considering the scale of the class specific features that

appear in the images. We found that global average pooling

generally gives better results than global max pooling. In

addition, applying max pooling at the earlier stages of the

network, particularly for the dataset with smaller sized

images may lead to drop in performance due to information

loss by max pooling. Higher-order statistics in terms of

bilinear pooling to capture the interaction between different

feature channels do not seem to provide significant

improvement compared to some simple approaches such as

max and average pooling on the two datasets we consid-

ered. Adding attention layers improve the classification

performance compared to a system where no attention

layers are used.

We believe that this review and the comparative study

will provide a guideline to the choice of pooling mecha-

nisms for various medical image analysis tasks.
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