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Abstract. We establish completeness and the finite model property for logics featuring

the pooling modalities that were introduced in Van De Putte and Klein (Pooling modal-

ities and pointwise intersection: semantics, expressivity, and applications). The definition

of our canonical models combines standard techniques with a so-called “puzzle piece con-

struction”, which we first illustrate informally. After that, we apply it to the weakest

classical logics with pooling modalities and investigate the technique’s potential for the

axiomatization of stronger logics, obtained by imposing well-known frame conditions on

the models.
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1. Introduction

Pooling modalities are a specific type of modal operators, interpreted in
terms of neighbourhood models and the operation of pointwise intersection.
Logics featuring such modalities were introduced in [8], where their relation
to normal modal logics, their expressive power, and some potential applica-
tions of these logics are studied. The main aim of this more technical paper
is to give sound and strongly complete axiomatizations for various logics
with pooling modalities and to show that they satisfy the finite model prop-
erty (and hence are decidable). We do so using an altogether new technique
for building canonical models in combination with other, familiar techniques
from the general theory of modal logics.

In the remainder of this introduction, we briefly recapitulate the central
notions from [8] in an informal, loose way. Exact definitions are recalled in
Section 2. We refer the reader to [8] for an elaborate discussion, motivation,
and investigation of the language and semantics of pooling modalities.
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Somewhat loosely speaking, pooling modalities are classical modal oper-
ators in the sense of [3] that allow us to express that a given proposition
ϕ coincides with the intersection of various propositions that are each asso-
ciated with a given index i. According to one specific interpretation, such
modalities allow us to formalize reasoning about the aggregation of evidence
of a given agent i or of several agents i1, . . . , in. In this context, �{1,1,2}p
may be read as: “aggregating two pieces of evidence of agent 1 with one
piece of evidence of agent 2, we can obtain the evidence that p”.

This way, pooling modalities allow to express information that is implicit
among agents having various pieces of evidence, but that can be obtained by
pooling their evidence. The multiset {1, 1, 2} that is attached to the modal
operator indicates (a) the agents whose evidence we are combining, and
(b) the number of pieces of evidence that we may take from each agent.

It should however be noted that this is only one among many poten-
tial applications of pooling modalities. Alternatively, one may use them to
interpret notions of group agency and coalitional abilities, distributed (non-
normal) belief or knowledge, implicit obligations, or collective norms [8,
Section 6]. In the present paper we abstract from those various applications
of the logics and focus on their axiomatization and related issues.

Semantically, pooling modalities are interpreted over multi-index neigh-
bourhood models, i.e. possible worlds models with a domain W that have
a distinctive neighbourhood function Ni : W → ℘(℘(W )) for each index i
in a given index set I. Here, each neighbourhood function Ni records the
set of propositions that are associated with the index i at each world w in
the model. Pooling modalities are interpreted over such models in terms of
the operation of pointwise intersection of neighbourhood sets. Loosely speak-
ing, pointwise intersection is the intersections of neighbourhoods X ∈ Ni(w)
(rather than the entire neighbourhood sets or collections Ni(w)), where the
number of neighbourhoods that we may take from each neighbourhood set
is specified by the index of the pooling modality, cf. (a) and (b) above. So
for instance �{1,1,2}(p ∧ q) will be true at the world w if and only if the
proposition denoted by p ∧ q in the model coincides with the intersection of
three sets X, Y, Z, where X, Y ∈ N1(w) and Z ∈ N2(w).

The plan for this paper is as follows. In Section 2 we recapitulate the
notation and definitions from [8] that are required for present purposes. In
the three subsequent sections, we focus on the weakest modal logics that
can be interpreted in terms of pointwise intersection. While arguably, many
applications require stronger logics, focusing on the weakest modal logics
first allows us to present our results in their most general form. We present
the axiomatization of these logics in Section 3 and show our axioms to be
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logically independent. Section 4 provides an informal explanation of the
new technique for constructing canonical models that is implemented in
Section 5. In Section 6, we turn to a range of stronger logics that are suited
for various applications. These logics are obtained by imposing various well-
known frame conditions on our models. An overview of our main results is
given in Section 7, after which we conclude with a number of pointers to
open issues and future work (Section 8).

2. Preliminaries

In this section, we recall the notion of a pooling profile, and subsequently
introduce the formal languages and semantics of classical logics with pooling
modalities from [8]. We will introduce some new notation and observations
along the way, but clearly indicate this when doing so.

2.1. Pooling Profiles

Let N denote the set of natural numbers, and let N
+ = N\{0}. Let I =

{1, 2, . . .} be a countable set of indices. We start with some crucial concepts
and notation:

Definition 1. Pooling profiles are functions of the type M : I → N ∪
{∞}, where (a) for only finitely many i ∈ I, M(i) �= 0 and (b) for at least
one i ∈ I, M(i) > 0.

M∞ denotes the set of all pooling profiles, while Mf ⊂ M∞ is the set of all
finitary pooling profiles, i.e. pooling profiles of the type M : I → N. Where
M ∈ M∞, I(M) =df {i ∈ I | M(i) �= 0}.

Note that pooling profiles can be seen as finite, non-empty multisets. We
will often switch from functional to a simplified relational notation, writing
every pooling profile as a finite set of pairs (i, k) for k ∈ N

+ ∪ {∞}, thus
omitting all pairs (j, 0).

The sets M∞, resp. Mf can also be interpreted in algebraic terms. In
order to explain this, we first introduce a natural notion of adding up two
pooling profiles:

Definition 2. Let M, M ′ ∈ M∞. The union of M and M ′ is defined as
M 	 M ′:={(i, k + k′) | (i, k) ∈ M, (i, k′) ∈ M ′}, where ∞ + k = k + ∞ = ∞
for all k ∈ N ∪ {∞}.

It can then be easily verified that M∞ is the closure of the set

{{(i, 1)}, {(i,∞)} | i ∈ I}
under 	. Analogously, Mf is the closure of {{(i, 1)} | i ∈ I} under 	.
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Table 1. Languages with pooling modalities

L∞ ϕ:=p | ⊥ | ¬ϕ | ϕ ∨ ϕ | �Mϕ where p ∈ P and M ∈ M∞
L

[∀]
∞ ϕ:=p | ⊥ | ¬ϕ | ϕ ∨ ϕ | �Mϕ | [∀]ϕ where p ∈ P and M ∈ M∞

Lf ϕ:=p | ⊥ | ¬ϕ | ϕ ∨ ϕ | �Mϕ where p ∈ P and M ∈ Mf

L
[∀]
f ϕ:=p | ⊥ | ¬ϕ | ϕ ∨ ϕ | �Mϕ | [∀]ϕ where p ∈ P and M ∈ Mf

Intuitively, a pooling profile M indicates, for each i ∈ I, the number
of sets X ∈ Ni(w) that we can use in order to obtain a member Y of
the neighbourhood set NM (w). The symbol ∞ can be read as “arbitrarily
many”. Thus, X ∈ N{(1,∞)}(w) means that X is the result of intersecting
an arbitrary number of members of N1(w), whereas Y ∈ N{(1,2),(2,∞)}(w)
expresses that Y can be obtained by intersecting two members of N1(w)
with an arbitrary number of members of N2(w).1

2.2. Formal Languages

Table 1 gives the Backus Naur Forms of the four formal languages that
will be studied in this paper. All of them extend the standard classical
propositional language (based on a countable set of propositional variables
P) with unary modal operators of the type �M . The richest of these, L[∀]

∞ ,
contains pooling modalities �M for any M ∈ M∞ and a universal modal
operator [∀]. The other three languages are obtained by skipping [∀] and/or
restricting to finitary pooling modalities, i.e. operators �M for M ∈ Mf .

In examples and informal digressions, we will sometimes use more sloppy
notation, writing e.g. �1,1,2p instead of �{(1,2),(2,1)}p. We will also abbrevi-
ate a sequence of index i repeated k times by ik, and use i∞ to refer to “any
arbitrary number of i’s”. Finally we require some additional notation that
has not yet been introduced in [8]:

Definition 3. (a) For M ∈ M∞, let δ(M):={(i, k) ∈ I × N
+ | k ≤ M(i)},

where we stipulate that k < ∞ for all k ∈ N. We will refer to (i, k) ∈ δ(M)
as the kth occurrence of i in M . (b) Where M, N ∈ M∞, the weak
partial order � is defined by M � N iff for all i, M(i) ≤ N(i).

2.3. Semantics

The formal language L
[∀]
∞ is interpreted in terms of neighbourhood models,

where each index i ∈ I receives a distinct neighbourhood function Ni:

1“Arbitrary” should be interpreted here in the strongest possible sense, corresponding
to the third item of Definition 5.
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Definition 4. A model M is a triple 〈W, 〈Ni〉i∈I , V 〉, where (a) W �=
∅ is the domain of M, (b) for every i ∈ I, Ni : W → ℘(℘(W )) is a
neighbourhood function for i, and (c) V : P → ℘(W ) is a valuation
function .

Where w ∈ W and i ∈ I, we refer to the members of a given Ni(w) as
the neighbourhoods for i at w, where we call Ni(w) the neighbourhood set
for i at w. In order to spell out the semantics for the pooling modalities in
exact terms, we first define the notion of pointwise intersection, after which
we apply it to the models from Definition 4.

Definition 5. Let D be a set, let X , Y ⊆ ℘(℘(D)), and let k ∈ N
+.

1. X � Y:={X ∩ Y | X ∈ X , Y ∈ Y} is the pointwise intersection of X
and Y.

2. �kX :={X1∩. . .∩Xk | X1, . . . , Xk ∈ X} is the pointwise k-intersection
of X with itself.

3. �∞X :={⋂ Y | Y ⊆ X} is the pointwise arbitrary intersection of X
with itself.

Definition 6. Let M = 〈W, 〈Ni〉i∈I , V 〉 be a neighbourhood model and let
M ∈ M∞, with I(M) = {i1, . . . , in}. The neighbourhood function NM

in M is defined as follows: for every w ∈ W ,

NM (w) = (�M(i1)Ni1(w)) � . . . � (�M(in)Nin
(w)).

With these preliminary definitions, we can now give the semantic clauses
for the formulas in L

[∀]
∞ , and hence, by restriction, also for L∞, L[∀]

f and Lf

Definition 7. Where M = 〈W, 〈Ni〉i∈I , V 〉 is a model and w ∈ W :

0. M, w �|= ⊥
1. M, w |= ϕ iff w ∈ V (ϕ) for all ϕ ∈ P

2. M, w |= ¬ϕ iff M, w �|= ϕ

3. M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ

4. M, w |= �Mϕ iff ‖ϕ‖M ∈ NM (w)

5. M, w |= [∀]ϕ iff for all w′ ∈ W , M, w′ |= ϕ

where ‖ϕ‖M = {w ∈ W | M, w |= ϕ}.

Validity (� ϕ) and semantic consequence (Γ � ϕ) are defined in the stan-
dard way, viz. as truth, resp. truth-preservation at all worlds in all models.
Since we consider four distinct formal languages (cf. Table 1), these defini-
tions give us four distinct logics. We will henceforth refer to the latter as the
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base logics, and denote them by BL∞, BL[∀]
∞ , BLf , and BL[∀]

f respectively.
Note that up to this point, we did not impose any specific frame conditions
on the models. Such frame conditions and the associated logics are discussed
in Section 6.

New facts Before continuing, we note some properties of pointwise intersec-
tions that we will rely upon in the remainder of this paper. The verification
of these facts is safely left to the reader.

Fact 1. For all sets X of sets, each of the following hold:

1. �1X = X
2. for all k, l ∈ N

+ with k < l, �kX ⊆ �lX
3. for all k ∈ N

+, �kX ⊆ �∞X .

Fact 2. For all sets X , Y, . . . of sets, each of the following hold:

1. for all k, l ∈ N
+, (�kX ) � (�lX ) = �k+lX

2. for all k ∈ N
+, (�kX ) � (�∞X ) = �∞X

3. X � Y = Y � X
4. (X � Y) � Z = X � (Y � Z)

3. Axiomatization of the Four Base Logics

In this section, we start by noting a number of key validities of the four base
logics (Section 3.1) and showing the independence of these validities (Sec-
tion 3.2). After that, we present the axiomatization of the four base logics
(Section 3.3) and clarify an issue related to their compactness (Section 3.4).

3.1. Validities

First, as usual, [∀] behaves like a normal operator of type S5 in BL[∀]
∞ and

BL[∀]
f . Second, since the models we work with are a specific type of neigh-

bourhood models, it follows immediately that if two propositions ϕ, ψ are
equivalent in any of the logics, then �Mϕ entails �Mψ and vice versa. In
other words, pooling modalities are classical modal operators in the sense
of [3]:

if � ϕ ↔ ψ, then � �Mϕ → �Mψ (RE)

In the languages with the global modality [∀], we can moreover express
that in a given model, ϕ and ψ are co-extensive (i.e. they are true at the
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same set of worlds). This gives us the stronger property of replacement under
global equivalents:

� [∀](ϕ ↔ ψ) → (�Mϕ → �Mψ) (RGE)

Third, the base logics satisfy four central bridging principles, i.e. validities
that link distinct operators �M , �M ′ , . . . to one another. For the fourth of
these, we use the convention that M∞:=df{(i,∞) | i ∈ I(M)} ∪ {(i, 0) | i �∈
I(M)}. The four key bridging principles to be discussed can now be written
as follows:

(�Mϕ ∧ �Nψ) → �M�N (ϕ ∧ ψ) (B1)

�M�N� → �M� (B2)

(�Mϕ ∧ �M�N�N ′ϕ) → �M�Nϕ (B3)

�Mϕ → �M∞ϕ (B4)

Theorem 1. Each of (B1)–(B4) are valid in every model.

Proof. (B1) follows from a simple observation, that is itself an immediate
consequence of Fact 2:

Fact 3. Let M = 〈W, 〈Ni〉i∈I , V 〉 be a model. For all M, M ′ ∈ M∞ and all
w ∈ W , NM�M ′(w) = NM (w) � NM ′(w).

For (B2), suppose that M, w |= �M�N�. Hence, for every i ∈ I(M 	N),
there is an Xi ∈ Ni(w) such that Xi = W . Note that I(M) ⊆ I(M 	 N),
and

⋂
i∈I(M) Xi = W ∈ NM (w). Hence, W ∈ NM (w).

For (B3), suppose that M, w |= �Mϕ and M, w |= �M�N�N ′ϕ. Applying
Fact 3 twice, we obtain:

NM�N�N ′(w) = NM (w) � NN (w) � NN ′(w)

and, hence, (i) there is an X ∈ NM (w) such that X = ‖ϕ‖M and (ii) there
are X ′ ∈ NM (w), Y ′ ∈ NN (w), and Z ′ ∈ NN ′(w) such that X ′ ∩ Y ′ ∩ Z ′ =
‖ϕ‖M. It follows that Y ′ ⊇ ‖ϕ‖M, and hence X ∩ Y ′ = X = ‖ϕ‖M. Again
by Fact 3, X ∩ Y ′ ∈ NM�N (w), and hence M, w |= �M�Nϕ.

Finally, for (B4), it suffices to observe that, by Fact 1, for all M ∈ M∞,
NM (w) ⊆ NM∞(w).

Let us briefly comment on each of the bridging principles. First, (B1)
is probably the most expected among the four; it simply expresses that
whenever X ∈ NM (w) and Y ∈ NN (w), then X ∩ Y ∈ NM�N (w). When
applied to M = N = {i}, this principle gives us a more fine-grained variant
of the aggregation axiom (C), keeping track of the number of pieces of
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information one needs to combine in order to arrive at a given proposition:
(�iϕ ∧ �iψ) → �i,i(ϕ ∧ ψ).

Principle (B2) concerns the border cases where W ∈ NM�N (w); in that
case, each i ∈ I(M 	N) must contain the unit W . Note that the consequent
of this principle is vacuously true for models in which every neighbourhood
contains the unit.

(B3) is perhaps the least intuitive property of the four. Applied to the
case with M = {1}, N = {2}, and N ′ = {3}, it expresses the following: if
X is a member of N1(w) and X is a member of the pointwise intersection
of N1(w), N2(w), and N3(w), then X is also a member of the pointwise
intersection of N1(w) and N2(w).

Finally, (B4) deals explicitly with the pooling profiles M ∈ M∞\Mf . As
we show below, one can use the other axioms to derive a kind of iteration
principle (see Theorem 3.3). (B4) essentially generalizes this principle to the
case where we have infinitely many indices in the consequent.

3.2. Proof of Independence

Importantly, none of the four principles (B1), (B2), (B3), and (B4) can be
derived from any combination of the others. In order to show this, we need
to define a more general semantics that allows us to invalidate some of the
principles while validating the others.

Definition 8. A g-model is a triple G = 〈W, 〈NM 〉M∈M∞ , V 〉, where W �= ∅
is the domain of G, for every M ∈ M∞, NM : W → ℘(℘(W )) is a
neighbourhoud function , and V : P → ℘(W ) is a valuation function.

Definition 9. Where M = 〈W, 〈NM 〉M∈M∞ , V 〉 is a g-model and w ∈ W :

0. M, w �|= ⊥
1. M, w |= ϕ iff w ∈ V (ϕ) for ϕ ∈ P

2. M, w |= ¬ϕ iff M, w �|= ϕ

3. M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ

4. M, w |= �Mϕ iff ‖ϕ‖M ∈ NM (w)

5. M, w |= [∀]ϕ iff for all w′ ∈ W , M, w′ |= ϕ

where ‖ϕ‖M = {w ∈ W | M, w |= ϕ}.

The basic idea behind a g-model is that it associates a distinct neighbour-
hood function with each pooling profile, rather than taking NM to be defined
in terms of the primitive neighbourhood functions Ni. In other words, point-
wise intersection corresponds to the additional assumption on g-models that
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they be pooled, i.e., that for every M ∈ M∞, NM (w) satisfies the equation
in Definition 6. With this generalized semantics at hand we can prove the
following theorem:

Theorem 2. Each of (B1), (B2), (B3), and (B4) are logically independent.

Proof. Ad (B1). Let I = {1, 2}. Define the g-model G=〈W, 〈NM 〉M∈M∞ , V 〉
as follows. First, W = {w}. Second, whenever I(M) = {1} or I(M) = {2},
NM = {W}. For all other M , NM (w) = ∅. Finally, for all ϕ ∈ P, V (ϕ) = W .
Note that, since G, w |= �1� ∧ �2� ∧ ¬�{1,2}�, (B1) is not valid in G.
In general, G, w |= �Mϕ for some ϕ iff either I(M) = {1} or I(M) = {2}.
Using this observation, it is a matter of routine to verify that (B2), (B3),
and (B4) are all valid in G.

Ad (B2). Let I = {1}. Define the g-model G = 〈W, 〈NM 〉M∈M∞ , V 〉 as
follows. Let W = {w}, let N1(w) = ∅, and for all proper pooling profiles M of
the type {(1, k)} (k ≥ 2), NM (w) = {W}. Finally, for all ϕ ∈ P, V (ϕ) = W .
Note that �1,1� is true at w in G and �1� is false, contradicting (B2). It is
safely left to the reader to check that all instances of (B1), (B3), and (B4)
are valid in this model.

Ad (B3). Let I = {1, 2, 3} and let G = 〈W, 〈NM 〉M∈M∞ , V 〉 be defined as
follows. First, W = {w1, w2}. For all ϕ ∈ P, V (ϕ) = {w1}. The neighbour-
hood functions are defined by cases:

Case 1: I(M) = {1} or I(M) = {1, 2, 3}. Then NM (w) = {{w}} for all
w ∈ W

Case 2: I(M) �= {1} and I(M) �= {1, 2, 3}. Then NM (w) = ∅ for all w ∈ W

Note that at w1, �1p∧�1,2,3p holds, but �1,2p fails. So it remains to check
the validity of the other axioms. For (B1), suppose that G, w |= �Mϕ∧�Nψ
for a w ∈ W . This implies that, for both M and N , Case 1 of the above
definition applies. From this we can infer that Case 1 also applies to M 	N ,
and that ‖ϕ‖G = ‖ψ‖G = ‖ϕ ∧ ψ‖G = {w}, whence also G, w |= �M�N (ϕ ∧
ψ).

(B2) holds trivially, since, for any M , �M� is false at both w1 and w2.
Finally, for (B4), suppose that G, w |= �Mϕ. This again means that Case 1
of our definition applies, and hence also Case 1 applies to M∞. Consequently,
G, w |= �M∞ϕ.

Ad (B4). Let I = {1}. Let G = 〈W, 〈NM 〉M∈M∞ , V 〉, where W = {w},
V (ϕ) = W for all ϕ ∈ P, for all k ∈ N, N{(1,k)} = W , and N{(1,∞)} = ∅. We
safely leave it to the reader to check that each of (B1), (B2), and (B3) are
satisfied in G, whereas (B4) is violated for M = {1} and ϕ = �.
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Table 2. Axioms and rules and the four base logics. “�” indicates that

the axiom schema is included in the logic; “D” indicates that the axiom

schema or rule is derivable

Axiom/rule BL
[∀]
∞ BL

[∀]
f BL∞ BLf

(B1) (�Mϕ ∧ �Nψ) → �M�N (ϕ ∧ ψ) � � � �
(B2) �M�N� → �M� � � � �
(B3) (�Mϕ ∧ �M�N�N′ϕ) → �M�Nϕ � � � �
(B4) �Mϕ → �M∞ϕ � �
(RE) If 	 ϕ ↔ ψ, then �Mϕ → �Mψ D D � �
(RGE) [∀](ϕ ↔ ψ) → (�Mϕ → �Mψ) � �
(S5) All S5-axioms and rules for [∀] � �
(CL) Classical propositional logic � � � �

3.3. Axiomatization

Throughout this paper, we work with Hilbert-style axiomatizations in terms
of axiom schemata. As usual, ϕ is a theorem of a given logic (� ϕ) if and
only if ϕ can be derived from the axioms of the logic by application of the
rules that are valid in the logic. Syntactic consequence is defined as follows:
Γ � ϕ iff there are ψ1, . . . , ψn ∈ Γ such that � (ψ1 ∧ . . . ∧ ψn) → ϕ. Note
that by this very definition, the syntactic consequence relations we will be
working with are compact.

In Section 5 we show that, using (B1)–(B3) in combination with either
(RE) or (RGE), we obtain sound and strongly complete axiomatizations for
the languages Lf , resp. L[∀]

f . If we moreover add (B4), then we obtain sound

and strongly complete axiomatizations for the languages L∞ and L
[∀]
∞ . See

Table 2 for an overview of the resulting logics.
In order to illustrate their strength, we list a number of schemata that can

be derived from the above principles in combination with (RE). Theorem 3.1
gives a (weak) sufficient condition for deriving �M�Nϕ from �Mϕ: there has
to be some ψ such that �N (ϕ∨ψ) holds. Theorem 3.2 illustrates the strength
of (B3), when combined with (B1). Theorem 3.3 gives a kind of iteration
property: e.g. it allows us to derive �1,1p from �1p, and �1,1,2,2,3q from
�1,2,3q. Finally, Theorem 3.4 shows that, in the presence of necessitation,
bigger pooling profiles inherit the neighbourhoods of smaller ones.

Theorem 3. Each of the following are derivable from (B1)–(B4) :

1. (�Mϕ ∧ �N (ϕ ∨ ψ)) → �M�Nϕ

2. ((�Mϕ ∧ �N�N ′(ϕ ∨ ψ)) → �M�Nϕ
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3. �Mϕ → �Nϕ whenever I(M) = I(N) and M(i) ≤ N(i) for all i ∈ I

4. (�Mϕ ∧ �N�) → �M�Nϕ

Moreover, when the mentioned pooling profiles are finitary, we can derive
them from (B1)–(B3).

Proof. Ad 1. By (B1), (RE), and since � ϕ ↔ (ϕ ∧ (ϕ ∨ ψ)).
Ad 2. Suppose the antecedent holds. By item 1, �M�N�N ′ϕ. By (B3),
�M�Nϕ.
Ad 3. Suppose the antecedent holds. Case 1: there is a k ∈ N such that
N(i) ≤ k for all i ∈ I. Then by k applications of (B1), we can derive �εϕ,
where the ε stands for M followed by a sequence of k−1 times “	M”. Then
by (B3) and the supposition, we obtain �Nϕ. Case 2: there is no such k.
Hence, N ∈ M∞\Mf . Then we use (B4) to derive �M∞ϕ, and next apply
(B3) to derive �Nϕ.
Ad 4. By (B1), (RE), and since � ϕ ↔ (ϕ ∧ �).

3.4. Compactness

As we will show in the next sections, the above axiomatizations are strongly
complete with respect to the respective base logics. As an immediate corol-
lary, the semantic consequence relations of these logics are compact. This
may come as a surprise, in view of the seemingly infinitary character of
pointwise intersection for pooling profiles M ∈ M∞\Mf .

In order to explain this feature, we note two crucial design choices of the
logics. First, consider the case of a simple pooling profile M = {(1, ∞)}.
Note that ‖p‖M ∈ NM (w) means that there is some subset X ⊆ NM (w)
such that

⋂ X = ‖p‖M. In particular, and as pointed out in Section 2.1, the
size of X is arbitrary. As a result, the following infinite set is satisfiable:

Δ = {¬�1p, ¬�1,1p, ¬�1,1,1p, . . .} ∪ {�Mp}
All it takes to satisfy Δ is a countably infinite model, in which only the

intersection of a (countably) infinite number of neighbourhoods Xi ∈ N1(w)
gives us the truth set of p. An example in case is one where W = N, ‖p‖M = ∅
and N1(w) = {W\{0, . . . , k} | k ∈ N} for some w ∈ W .

Those familiar with Propositional Dynamic Logic (PDL) may compare
this to the fact that the set {¬〈π〉p, ¬〈π; π〉p, ¬〈π; π; π〉p, . . .}∪{〈π∗〉p} is not
satisfiable in PDL, even though all its finite subsets are. This is so because in
PDL, 〈π∗〉p expresses that a p-world can be reached by some finite sequence
of π-executions. In “Appendix”, we discuss a notion of “finitary pooling” and
the associated modal operators. There, we show that the resulting logic is
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not compact and that, in view of our main results, one can easily give a
sound and weakly complete axiomatization for it.

Second, note that we excluded pooling profiles whose range is infinite,
cf. our clause (a) in Definition 1. As a result, the formal languages can-
not express that some X ⊆ W is obtained by intersecting a countably
infinite set of neighbourhoods X1 ∈ N1(w), X2 ∈ N2(w), . . .. Suppose,
indeed, that we would allow for an “infinitary pooling profile” such as
Mω = {(1, 1), (2, 1), (3, 1), . . .}, which we interpret as follows:

M, w |= �Mωϕ iff ‖ϕ‖M ∈ N1(w) � N2(w) � . . .

With such an enrichment, compactness fails, as witnessed by the following
example:

{�1p, �2p, . . .} � �Mωp (1)

for all n ∈ {1, 2, . . .} : {�1p, . . . ,�np} �� �Mωp (2)

To see why (1) holds, it suffices to check that if we take infinitely many
intersections of ‖p‖M, we end up with ‖p‖M again. It is also fairly easy to
construct a model that serves as witness for the failure of implication in
(2), for any given n ∈ N. Let M = 〈{w}, 〈Ni〉i∈I , V 〉, where for all j ≤ n,
Nj(w) = {{w}}, and for all j > n, Nj(w) = ∅. The valuation function is
such that p is true at w. Then NMω(w) = ∅, and hence M, w |= ¬�Mωp.2

In the example we just used, the frame has the particular property that
for all j ∈ I with j > n, Nj(w) is empty. Note however that one can also
construct different examples where each of the Nj(w) for j > n are non-
empty, but there are no X ∈ Nj(w) with X ⊆ ‖p‖. One condition that
does exclude such examples, and more generally trumps cases like (2), is
the requirement that W ∈ Ni(w) for all i ∈ I, w ∈ W , corresponding to
necessitation (NEC) for the operators �i. Indeed, if that requirement is
satisfied, then we already have �1p → �Mωp.

One other obvious difficulty with logics that allow for “infinitary pooling
profiles” is that the language may not be countable, hence making it impos-
sible to set up the standard Lindenbaum construction in the completeness
proof. This is not a definitive argument against studying such languages,
but rather an invitation to consider additional conditions or new techniques
for their axiomatization. Having said this much, we leave a full study of such

2Note that there is an important difference with allowing for infinitely many oc-
currences of one or several (finitely many) indices in some M . For instance, the set
{�1p, �{12}p, �{13}p, . . .}∪{¬�{1∞}p} is not satisfiable, but neither is {�1p, ¬�{1∞}p}.
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languages for future work and focus again on the four languages introduced
in Table 1.

4. Canonical Model Construction: Puzzle Pieces

Before diving into technicalities, let us sketch the main novelty of our con-
struction, compared to existing completeness proofs for normal and classical
modal logics. This should give the reader a feel of how this construction
works, and serve as a guideline in reading the definitions and lemmata of
the actual proofs that are given in Section 5. We assume familiarity with the
technique of constructing canonical models as it is applied in the context of
normal modal logics, cf. [2].

General Outline Focusing on the richest of the four base logics, the gen-
eral outline of our proof goes as follows. Suppose we have a set Θ ⊆ L

[∀]
∞

that is consistent with respect to the base logic BL[∀]
∞ . To prove strong

completeness, we should show that this set is satisfiable in some model
M = 〈W, 〈Ni〉i∈I , V 〉 of that logic, at some state w ∈ W . Moreover—in or-
der to obtain the finite model property in one fell swoop—we should show
that W is finite whenever Θ is finite. We will focus first on completeness;
we return to the finite model property at the end of this section.

Following common practice in modal logic, one can start by taking W =
MCS, where MCS is the set of all maximal consistent subsets of L[∀]

∞ . This
way, we are guaranteed that some of the worlds in W will contain Θ as a
subset. If we can then prove the Truth Lemma (TL):

for all Λ ∈ MCS, for all ϕ ∈ L[∀]
∞ : M, Λ |= ϕ iff ϕ ∈ Λ (3)

we are done. For non-modal formulas, it is easy to obtain (TL). To do so
just put V (Λ) = {p ∈ P | p ∈ Λ} for all Λ ∈ MCS and apply the well-
known structural induction for the classical connectives. For formulas of the
type �iϕ, hence, “degenerate” pooling modalities that only speak about a
single index i, the standard way to ensure the truth lemma is by defining
the neighbourhoods for the indexes i ∈ I as follows:

Ni(Λ) = {{Δ ∈ MCS | ϕ ∈ Δ} | �iϕ ∈ Λ} (4)

Relying on (RGE), one can then show in relatively few steps that (TL) holds
for formulas of the form �iϕ as well.3

3For languages without the universal modality, one relies on (RE) here.
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Problem: Pooling Modalities Trouble arises however if we want to preserve
(TL) for proper pooling modalities. In order to sketch the problem and
our solution to it, we will use the following set of formulas as our running
example:

Θ = {�1,1,2p, ¬�1p, ¬�2p, ¬�1,2p, ¬�1,1p, �1q} (5)

The set Θ is consistent, and hence in line with the preceding, we need
to construct a model M such that, for some w in the domain of this model,
M, w |= ψ for all ψ ∈ Θ. As noted before, we do this by associating worlds
with maximal consistent sets, one of those sets including all members of Θ,
and then proving a truth lemma about the model: each formula ψ is true at
a world w in M iff ψ is a member of the maximal consistent set associated
with w.

In particular, where Θ is associated with w, we need to ensure that a
given formula �Mϕ is true at w in our constructed model, iff �Mϕ ∈ Θ. So,
moving to the object level: where M = {1, 1, 2} and ϕ = p, we should “add”
neighbourhoods X and Y to N1(w), and a neighbourhood Z to N2(w), in
such a way that X ∩ Y ∩ Z is (exactly) the set of all w′ that are associated
with an MCS Δ for which p ∈ Δ. Let us henceforth denote the latter set of
worlds by |p|. More generally, we let

|ψ| =df {w ∈ W | ψ ∈ Δ for the Δ that is associated to w}.4

Note however that, by thus making �1,1,2p true, we should make sure
we are not making other formulas like �1p, �2p, �1,2p, or �1,1p true—
otherwise we cannot end up with a model of Θ. Consequently, neither X,
Y , Z, nor X ∩ Y , X ∩ Z, Y ∩ Z should themselves already correspond to
|p| in this model. To put it differently, only by intersecting all three sets, we
should arrive at |p|.
Solution: Copying and Puzzle Pieces To solve the problem just sketched, we
take two steps. First, rather than identifying worlds with maximal consistent
sets, we make copies of those maximal consistent sets and distinguish them
by labels. For the time being, let us distinguish the copies of a given Δ ∈
MCS by one of the following three labels: (1, 1), (1, 2), and (2, 1). Note that

4We distinguish between w and Δ here, since later on we will associate various worlds of
the canonical model with the same MCS Δ. More technically, in constructing the canonical
model W , we introduce several copies of each Λ ∈ MCS, each creating a distinct member
of W .
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Figure 1. Illustration of the puzzle pieces for the formula �1,1,2p. Indexes

1 and 2 are equipped with puzzle pieces that, when intersected, give

|p|, but any combination of just two puzzle pieces contains ¬p-worlds.

Λ1, Λ2, . . . denote distinct maximal consistent subsets of L
[∀]
∞

these are the three members of δ(M) for M = {(1, 2), (2, 1)}. We use f, f ′, . . .
as a metavariables for these three labels.

Second, we refine our definition of the neighbourhoods. For all formulas of
the type �iϕ, we do just as before, following the above definition. However,
this time we ensure that we take every copy (Δ, f), for every Δ that contains
ϕ. We describe the neighborhoods in greater detail. First, note that, since
�1q ∈ Θ in our example, we also need to add the set

{(Δ, f) | f ∈ {(1, 1), (1, 2), (2, 1)}, q ∈ Δ} (6)

to N1(Θ, f ′) for each f ′ ∈ {(1, 1), (1, 2), (2, 1)}.
For formulas �Mϕ ∈ Λ where M is a non-degenerate pooling profile, we

do the following. Let i ∈ I(M). For every (i, k) ∈ δ(M), we add a distinct
“puzzle piece” XM,ϕ

i,k to the neighbourhood of i, in such a way that two key
desiderata are fulfilled:

(a) if one intersects all the puzzle pieces, then one obtains exactly |ϕ|.
(b) none of these puzzle pieces (for all i ∈ I(M) and all (i, k) ∈ δ(M)),

nor any intersection of such puzzle pieces–with the exception of the
intersection of all of them—corresponds to any set |ψ| in the newly
constructed model.

If we are able to add such puzzle pieces to the neighbourhood sets Ni(Λ, f)
whenever �Mϕ ∈ Λ, then we can again obtain the truth lemma for the entire
language. Sticking to our earlier metaphor, these puzzle pieces hence serve
as unique witnesses for the formula in question.

It is in view of desideratum (b) that we need copies of the maximal
consistent sets. The underlying idea is as follows. Let labels f and f0 be
distinct. Then, whenever ϕ is not a theorem (hence not a member of every
maximal consistent set Δ), the set of worlds X = {(Δ, f) | Δ ∈ MCS, ϕ ∈
Δ} ∪ {(Δ, f0) | Δ ∈ MCS} is not the truth set of any formula, i.e. there can
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be no ψ such that X = |ψ|. In other words, by making copies of the maximal
consistent sets, we can construct neighbourhoods that cannot be “seen” by
the formal language L

[∀]
∞ . This is illustrated by Figure 1, for the simple case

of ϕ = p.
In order to obtain (a), we need to coordinate the construction of these

neighbourhoods in such a way that (only) intersecting all of them yields |ϕ|.
For the set Θ we have been working with so far, this is relatively easy. That
is, we may define:

X = X
{1,1,2},p
(1,1) = {(Δ, f) | p ∈ Δ or f �= (1, 1)}

Y = X
{1,1,2},p
(1,2) = {(Δ, f) | p ∈ Δ or f �= (1, 2)}

Z = X
{1,1,2},p
(2,1) = {(Δ, f) | p ∈ Δ or f �= (2, 1)}

and put both X and Y in N1(Λ), and Z in N2(Λ).
The reader can easily verify that X ∩ Y ∩ Z = {(Δ, f) | p ∈ Δ}. Hence,

�1,1,2p will be true at every world (Λ, f), , while each of �1,1p, �1,2p, �1p,
�2p will be false.

So far, things were relatively easy since we focused on a single formula of
the type �Mϕ. In the general case, we need to use as labels functions f that
map every pair (M, ϕ) to some (i, k) ∈ I × N

+ ∪ {∞}, where (i, k) ∈ δ(M).
Importantly, f(M, ϕ) can be distinct from f(N, ψ), both when M = N (but
ϕ �= ψ) and when ϕ = ψ (but M �= N). This will ensure that, by intersecting
puzzle pieces that have been added as witnesses for distinct formulas, we
can again not obtain any truth set |ψ|—see Figure 2 for an illustration. Of
course, in the limiting case where we do use all the witnessing puzzle pieces
for �Mϕ and all the witnessing puzzle pieces for �Nψ, we will obtain |ϕ∧ψ|.
This is however as it should be, since the axiom (B1) ensures that whenever
�Mϕ ∈ Λ and �Nψ ∈ Λ, then �M�N (ϕ ∧ ψ) ∈ Λ.

Finite Models If we apply the above strategy in its full generality, we make
uncountably many copies of each maximal consistent set. As far as com-
pleteness is concerned, this is all fine. However, to prove the finite model
property, two additional tweaks are called for:

(i) restricting the language; and

(ii) restricting the number of copies.

We discuss each of these adaptations in turn.
Technique (i) is well-known from the study of classical modal logics, dat-

ing back at least to [4], cf. [5, 2.4.1.1]. The basic idea is that we only look at
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the single ([∀], ¬)-closure of the set of all subformulas of members of Θ. This
way we get a finite set of maximal consistent sets to start with. Moreover, we
only need to make puzzle pieces for a finite number of formulas �Mϕ, since
we need only worry about the members of the finite language when proving
the truth lemma. We refer to Section 5.1 for the exact way this technique is
implemented here.

Adaptation (ii) is more specific to the context of pooling modalities. Here,
it is instructive to consider the following set:

Θ′ = {�1,2∞p, ¬�1p, ¬�1,2p, ¬�1,2,2p, ¬�1,2,2,2p} (7)

The set Θ′ expresses that, by intersecting an arbitrary number of neigh-
bourhoods associated with index 2 with a single neighbourhood associated
with index 1, we obtain the proposition ‖p‖. In contrast, ‖p‖ is not a mem-
ber of the neighbourhood of 1, and it can also not be obtained by combining
just one, two, or three neighbourhoods of 2 with a neighbourhood of 1.

In order to arrive at the truth lemma, we need to construct the neigh-
bourhoods for our canonical model in such a way that we make �1,2∞p true,
but without thereby making �1p, �1,2p, �1,2,2p, or �1,2,2,2p true. Naively,
one may proceed by making copies (Λ, f) of every maximal consistent set (in
the finite language), for every label (i, k) ∈ δ({1, 2∞}). Unfortunately, the
latter set is infinite, which would mean our canonical model is also infinite.

Note however that Θ′ does not say anything about what would happen if
we intersect one neighbourhood of 1 with, say, four or more neighbourhoods
of 2. That is, Θ′ is compatible with �1,2,2,2,2p. So we needn’t make infinitely
many copies; it suffices to make sure that we make more copies than can be
“seen” from the viewpoint of the finitary pooling profiles that occur in Θ′.
In other words, it suffices to take as labels of our worlds all and only those
functions f that map each of the pooling profiles that occur in Θ′ to some
(i, k) ∈ δ(M) where k ∈ {1, 2, 3, ∞}.

Again, in our above example we were focusing on only a few pooling
profiles of increasing magnitude. Things get slightly more complicated if the
set Θ under consideration also refers to other, unrelated pooling profiles.
Still, as long as Θ is finite, one can always specify a natural number k such
that, beyond k, arbitrary intersection (∞) and finite intersections can be
safely identified from the viewpoint of Θ. We refer to Section 5.2 for the
exact definitions that make this idea exact.
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Figure 2. Puzzle pieces for distinct formulas, viz. �1,1,2p (top) and �3,3q

(bottom left). Unless one combines all puzzle pieces for both formulas,

there’s always a function f0 such that, for all Λ ∈ MCS, (Λ, f0) is in

the intersection of the puzzle pieces (bottom right). As a result, this

intersection is not modally expressible in the model

5. The Base Logics

In this section, we prove completeness and the finite model property for the
four base logics. In Sections 5.1–5.5 we focus on BL[∀]

∞ , as it requires various
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complications. In Section 5.6, we show how (slightly simpler) variants of our
proof work for the other three logics with pooling modalities.

5.1. Sublanguage and Maximal Consistent Sets

Throughout Sections 5.1–5.4, we hold fixed a consistent set Θ ⊆ L
[∀]
∞ . We

start by defining a sublanguage LΘ that will be used to construct maximal
consistent subsets, following the general methodology mentioned under (i)
at the end of Section 4.

Let SFΘ be the closure of Θ under subformulas. Let

L
[∀]
Θ =df {ϕ, ¬ϕ, [∀]ϕ, [∀]¬ϕ, ¬[∀]ϕ, ¬[∀]¬ϕ, �, ¬� | ϕ ∈ SFΘ} (8)

Note that L
[∀]
Θ is closed under subformulas and

Fact 4. If Θ is finite, then L
[∀]
Θ is finite.

For the border case where Θ is itself a maximal consistent subset of L[∀]
∞ ,

L
[∀]
Θ = L

[∀]
∞ . Where ϕ ∈ L

[∀]
Θ is of the form ¬ψ, let ϕ = ψ; otherwise let

ϕ = ¬ψ. Note that for all ϕ ∈ L
[∀]
Θ , ϕ ∈ L

[∀]
Θ ; i.e., L[∀]

Θ is closed under single
negation.

Fix a ⊆-maximal consistent set Γ ⊆ L
[∀]
Θ such that Θ ⊆ Γ. Define MCSΘ

Γ

as the set of all ⊆-maximal consistent subsets Δ ⊆ L
[∀]
Θ with the property

that {[∀]ϕ | [∀]ϕ ∈ Δ} = {[∀]ϕ | [∀]ϕ ∈ Γ}. Note that for all ϕ ∈ L
[∀]
Θ and

Δ ∈ MCSΘ
Γ , either ϕ ∈ Δ or ϕ ∈ Δ. Where ϕ ∈ L

[∀]
Θ , let |ϕ|ΘΓ = {Δ ∈ MCSΘ

Γ |
ϕ ∈ Δ}. Where Φ ⊆ L

[∀]
Θ , let |Φ|ΘΓ = {Δ ∈ MCSΘ

Γ | ψ ∈ Δ for every ψ ∈ Φ}.

Lemma 5. Where ϕ ∈ L
[∀]
Θ and Φ ⊆ L

[∀]
Θ : if |Φ|ΘΓ ⊆ |ϕ|ΘΓ , then there is a

finite Φ′ ⊆ Φ such that, for all Δ ∈ MCSΘ
Γ , Δ � [∀](

∧
Φ′ → ϕ).

Proof. Suppose the antecedent holds. Hence, there is no maximal consis-
tent Δ ⊆ L

[∀]
Θ such that {[∀]ϕ | [∀]ϕ ∈ Δ} = {[∀]ϕ | [∀]ϕ ∈ Γ}, Φ ⊆ Δ, and

ϕ ∈ Δ. Hence, since ϕ ∈ L
[∀]
Θ , for every maximal consistent Δ ⊆ L

[∀]
Θ such

that {[∀]ϕ | [∀]ϕ ∈ Δ} = {[∀]ϕ | [∀]ϕ ∈ Γ} and Φ ⊆ Δ, ϕ ∈ Δ. Hence,

{[∀]ϕ | [∀]ϕ ∈ Γ} ∪ {¬[∀]ϕ | ¬[∀]ϕ ∈ Γ} ∪ Φ � ϕ (9)

By compactness and the deduction theorem, there is a finite Φ′ ⊆ Φ such
that

{[∀]ϕ | [∀]ϕ ∈ Γ} ∪ {¬[∀]ϕ | ¬[∀]ϕ ∈ Γ} �
∧

Φ′ → ϕ (10)

By well-known S5-properties,

{[∀]ϕ | [∀]ϕ ∈ Γ} ∪ {¬[∀]ϕ | ¬[∀]ϕ ∈ Γ} � [∀](
∧

Φ′ → ϕ) (11)
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But that means that, for every Δ ∈ MCSΘ
Γ , Δ � [∀](

∧
Φ′ → ϕ).

Corollary 1. For every ϕ, ψ ∈ L
[∀]
Θ : |ϕ|ΘΓ ⊆ |ψ|ΘΓ iff for all Δ ∈ MCSΘ

Γ ,
Δ � [∀](ϕ → ψ).

Corollary 2. For every ϕ, ψ ∈ L
[∀]
Θ , |ϕ|ΘΓ = |ψ|ΘΓ iff for all Δ ∈ MCSΘ

Γ ,
then Δ � [∀](ϕ ↔ ψ).

Corollary 3. For every ψ ∈ L
[∀]
Θ , |ψ|ΘΓ = |�|ΘΓ = MCSΘ

Γ iff for all Δ ∈
MCSΘ

Γ , Δ � [∀]ψ.

5.2. Some More Preparatory Definitions

Just like in standard completeness proofs for classical modal logics, MCSΘ
Γ

will be used to construct a model of Γ, and hence also of Θ. However, as
explained in Section 4, we will need to make a number of copies of each such
Δ in order to handle the pooling modalities. We should moreover do so with
care, making sure that we only introduce finitely many copies whenever Θ
is finite. This requires several preparatory steps.

Let MΘ =df {M∈M∞ | �Mϕ∈L[∀]
Θ for some ϕ}. Let IΘ =df

⋃
M∈MΘ

I(M)
and, K0

Θ =df {j ∈ N
+ | for some M ∈ MΘ : M(i) �= ∞ and j ≤ M(i)}. We

define the set KΘ ⊆ N
+ ∪ {∞} by cases:

(C1) If for all M ∈ MΘ and all i ∈ I(M), M(i) = ∞, then KΘ =df {1, 2}
(C2) If MΘ ⊆ Mf , then KΘ =df K0

Θ.

(C3) Otherwise, KΘ =df K0
Θ ∪ {∞}

Intuitively, our definition of KΘ guarantees that this is a subset of N∪{∞}
that is “large enough” that we can make all the required distinctions in view
of Θ, but also small enough to ensure finiteness whenver Θ is finite. In our
example from Section 4, KΘ = {1, 2, 3, ∞}.

Fact 6. If there is some M ∈ MΘ and some i ∈ I(M) such that M(i) �= 1,
then |KΘ| ≥ 2.

Let DΘ =df {(M, ϕ) | �Mϕ ∈ L
[∀]
Θ } and for all M ∈ MΘ, define

δΘ(M) =df {(i, k) ∈ δ(M) | k ∈ KΘ}. Finally, let

FΘ =df {f : DΘ → IΘ × KΘ} | for all (M, ϕ) ∈ DΘ, f(M, ϕ) ∈ δΘ(M)}.

Note that, if Θ is finite, then so is DΘ. Also, if that is the case, then IΘ and
KΘ are both finite. As a result,

Fact 7. If Θ is finite, then FΘ is finite.
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On the other hand, if Θ is a maximal consistent subset of L[∀], then it
holds that DΘ = M × L, IΘ = I, KΘ = N

+ ∪ {∞}, and δΘ(M) = δ(M) for
all M ∈ MΘ.

5.3. The Relativized Canonical Model

With MCSΘ
Γ and FΘ in hand, we are finally ready to define the construction

that plays central stage in our completeness proofs of this paper.

Definition 10. The relativized canonical model for 〈Θ, Γ〉 is defined
as MΘ

Γ = 〈W, 〈Ni〉i∈I , V 〉, where

1. W = {(Λ, f) | Λ ∈ MCSΘ
Γ and f ∈ FΘ};

2. V (p) = {(Λ, f) ∈ W | p ∈ Λ} for all p ∈ P; and

3. for every i ∈ I, Ni(Λ, f) = {XM,ϕ
i,k | �Mϕ ∈ Λ, (i, k) ∈ δΘ(M)} where,

4. for all (M, ϕ) ∈ DΘ and (i, k) ∈ δΘ(M),

XM,ϕ
i,k = {(Λ, f) ∈ W | ϕ ∈ Λ or f(M, ϕ) �= (i, k)}

In this and the next two subsections, we hold both Θ and Γ fixed and
continue to use W , V , Ni to refer to the sets defined from them.

Note that, by the second clause of Definition 10, whenever some p is not
in L

[∀]
Θ , then V (p) = ∅. It is not hard to check that MΘ

Γ is well-defined; it
suffices to show that W is non-empty, which follows immediately from the
fact that Γ ∈ MCSΘ

Γ . Moreover, in view of Fact 4, the definition of MCSΘ
Γ ,

and Fact 7, we have:

Fact 8. If Θ is finite, then MΘ
Γ is finite.

So we have constructed a model that is finite whenever Θ is finite. It
remains to prove that this model verifies all the members of Θ at the
state (Γ, f). As usual, this is done by proving the truth lemma for MΘ

Γ (cf.
Lemma 12 in Section 5.4). In preparation for this, we state three auxiliary
lemmata.

Intuitively, Lemma 9 expresses that all puzzle pieces X that are used
in the construction are distinct, and hence one can associate a unique pair
(M, ϕ) with each of them—with the exception of the neighbourhoods that
were added for “degenerate” pooling modalities of the type �i and neigh-
bourhoods that coincide with the unit W . Lemma 10 implies that, unless
we intersect all puzzle pieces that are associated with a given pair (M, ϕ),
we will always end up with a subset of W that contains all worlds (Λ, f0) for
some f0 ∈ FΘ. Lemma 11 says that if we do intersect all those puzzle pieces
for (M, ϕ), we get exactly the set of all worlds (Λ, f) for which ϕ ∈ Λ.
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Both Lemmas 10 and 11 were illustrated in Section 4, cf. Figures 1 and 2.

Lemma 9. For all (N, ψ), (N ′, ψ′) ∈ DΘ, (j, l) ∈ δΘ(N) and (j′, l′) ∈ δΘ(N ′)
such that δΘ(N) �= {(j, 1)} and |ψ|ΘΓ �= W : if XN,ψ

j,l = XN ′,ψ′
j′,l′ , then

(N, ψ, j, l) = (N ′, ψ′, j′, l′).

Proof. Suppose that δΘ(N) �= {(j, 1)}, that |ψ|ΘΓ �= W , and that (N, ψ, j,

l) �= (N ′, ψ′, j′, l′). By the former two suppositions, there is no τ ∈ L
[∀]
∞

such that XN,ψ
j,l = {(Λ, f) ∈ W | τ ∈ Λ}. Hence if |ψ′|ΘΓ = W or

δΘ(N ′) = {(j′, 1)}, then it follows immediately that XN,ψ
j,l �= XN ′,ψ′

j′,l′ . So
suppose that δΘ(N ′) �= {(j′, 1)} and |ψ′|ΘΓ �= W . Pick an f ∈ FΘ such that
f(N, ψ) = (j, l) and f(N ′, ψ′) �= (j′, l′). (If (N, ψ) = (N ′, ψ′), then we im-
mediately have that (j, l) �= (j′, l′); if (N, ψ) �= (N ′, ψ′), then we can let
f(N ′, ψ′) be an arbitrary (i, k) ∈ δΘ(N ′)\{(j′, l′)}.) Let Λ ∈ MCSΘ

Γ be such
that ψ �∈ Λ—such Λ exists since |ψ|ΘΓ �= W and ψ ∈ L

[∀]
Θ . By construction,

(Λ, f) ∈ XN ′,ψ′
j′,l′ \XN,ψ

j,l and hence XN,ψ
j,l �= XN ′,ψ′

j′,l′ .

Lemma 10. Let Y be a set of sets XN,ψ
j,l with (j, l) ∈ δΘ(N) and (N, ψ) ∈

DΘ, such that for no (M, ϕ) ∈ DΘ, {XM,ϕ
i,k | (i, k) ∈ δΘ(M)} ⊆ Y. Then

there is an f0 ∈ FΘ such that {(Λ, f0) ∈ W} ⊆ ⋂ Y.

Proof. Suppose the antecedent holds. Let f0 ∈ FΘ be such that, for every
XN,ψ

j,l ∈ Y, f0(N, ψ) = (i, k) for some (i, k) ∈ δΘ(N) such that XN,ψ
i,k �∈ Y.

In view of the supposition, there is at least one such f0. Note that, for all
XN,ψ

j,l ∈ Y, f0(N, ψ) �= (j, l). By Definition 10.4, for all XN,ψ
j,l ∈ Y and all

Λ ∈ MCSΘ
Γ , (Λ, f0) ∈ XN,ψ

j,l . Consequently, for all Λ ∈ MCSΘ
Γ , (Λ, f0) ∈ ⋂ Y.

Lemma 11. Let Y = {XM,ϕ
i,k | (i, k) ∈ δΘ(M)} for some (M, ϕ) ∈ DΘ. Then

⋂ Y = {(Λ, f) ∈ W | ϕ ∈ Λ}.

Proof. By Definition 10.4,
⋂

(i,k)∈δΘ(M)

XM,ϕ
i,k =

⋂

(i,k)∈δΘ(M)

{(Λ, f) ∈ W | ϕ ∈ Λ or f(M, ϕ) �= (i, k)}

(12)

In view of the definition of FΘ, for every f ′ ∈ FΘ there is some
(i, k) ∈ δΘ(M) with f ′(M, ϕ) = (i, k). So if ϕ �∈ Λ, for every f ′ ∈ FΘ

there is some XM,ϕ
i,k with (i, k) ∈ δΘ(M) such that (Λ, f ′) �∈ XM,ϕ

i,k . Hence,
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⋂

(i,k)∈δΘ(M)

{(Λ, f) ∈ W | ϕ ∈ Λ or f(M, ϕ) �= (i, k)} = {(Λ, f) ∈ W | ϕ ∈ Λ}.

(13)

5.4. Nothing but the Truth Lemma

With the above lemmas in hand, we can finally state and prove the truth
lemma for BL[∀]

∞ :

Lemma 12. (Truth Lemma) For all (Λ, f) ∈ W and all ϕ ∈ L
[∀]
Θ holds:

MΘ
Γ , (Λ, f) |= ϕ iff ϕ ∈ Λ.

Proof. By an induction on the complexity of ϕ. The base case and the
induction step for the classical connectives are safely left to the reader. For
ϕ = [∀]ψ, we have that MΘ

Γ , (Λ, f) |= ϕ iff [by the semantic clause for [∀] and
the induction hypothesis] for all Δ ∈ MCSΘ

Γ , ψ ∈ Δ iff [by Corollary 3] for
all Δ ∈ MCSΘ

Γ , Δ � [∀]ψ iff [by the definition of MCSΘ
Γ and since ϕ ∈ L

[∀]
Θ ]

[∀]ψ ∈ Λ.
So it remains to prove that, for all �Mϕ ∈ L

[∀]
Θ ,

MΘ
Γ , (Λ, f) |= �Mϕ iff �Mϕ ∈ Λ (TL�)

Right to left direction of (TL�). Suppose that �Mϕ ∈ Λ. By Lemma 11,
⋂

(i,k)∈δΘ(M)

XM,ϕ
i,k = {(Λ′, f ′) ∈ W | ϕ ∈ Λ′} (14)

By the induction hypothesis and since ϕ ∈ L
[∀]
Θ ,

{(Λ′, f ′) ∈ W | ϕ ∈ Λ′} = {(Λ′, f ′) ∈ W | MΘ
Γ , (Λ′, f ′) |= ϕ} (15)

Taking everything together, we obtain:
⋂

(i,k)∈δΘ(M)

XM,ϕ
i,k = ‖ϕ‖MΘ

Γ (16)

Moreover, by Definition 10.3, for every (i, k) ∈ δΘ(M), XM,ϕ
i,k ∈ Ni(Λ, f).

Note that
⋂

(i,k)∈δΘ(M) XM,ϕ
i,k ∈ NM (Λ, f). By Definition 7, MΘ

Γ , (Λ, f) |=
�Mϕ.

Left to right direction of (TL�). Suppose that MΘ
Γ , (Λ, f) |= �Mϕ. For

every (i, k) ∈ δ(M), fix an N i
k, ψi

k, lik such that (N i
k, ψi

k) ∈ DΘ,

(i, lik) ∈ δΘ(N i
k), X

Ni
k,ψi

k

i,lik
∈ Ni(Λ, f) and
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⋂
{X

Ni
k,ψi

k

i,lik
| (i, k) ∈ δ(M)} = ‖ϕ‖MΘ

Γ (17)

Let X = {X
Ni

k,ψi
k

i,lik
| (i, k) ∈ δ(M)}. We distinguish two cases:

Case 1: Γ � [∀]ϕ and hence also Γ � [∀](� ↔ ϕ). Note that [∀]ϕ ∈ L
[∀]
Θ and

hence, for all Δ ∈ MCSΘ
Γ , [∀]ϕ ∈ Δ and ϕ ∈ Δ. By the induction hypothesis,

‖ϕ‖MΘ
Γ = W . Hence for all X ∈ X , X = W . In view of Definition 10.4,

for all (i, k) ∈ δ(M), |ψi
k|ΘΓ = W and hence, by Corollary 3, Λ � [∀]ψi

k. So
for all (i, k) ∈ δ(M), Λ � [∀](ψi

k ↔ �). By (RGE), for all (i, k) ∈ δ(M),
Λ � �Ni

k
�. By (B2), for all j ∈ I(N i

k), Λ � �j�. It follows that Λ � �i�
for all i ∈ I(M). If M is finite, then using (B1) finitely many times, we can
derive that Λ � �M� and hence by (RGE), Λ � �Mϕ. If M is infinite, then
we use (B4) to derive that Λ � �M∞�. By (RGE), Λ � �M∞ϕ. By (B3),
Λ � �Mϕ. Since �Mϕ ∈ L

[∀]
Θ , it follows in both cases that �Mϕ ∈ Λ.

Case 2: Γ �� [∀]ϕ. We first prove that Λ � �Kϕ holds for some K � M . Fix an
ε ⊆ δ(M) such that {X

Ni
k,ψi

k

i,lik
| (i, k) ∈ ε} = X but, whenever (i, k) �= (j, n)

for (i, k), (j, n) ∈ ε, then X
Ni

k,ψi
k

i,lik
�= X

Nj
n,ψj

n

j,ljn
.

Let A† = {(N i
k, ψi

k, i, lik) | (i, k) ∈ ε} and A = {(N i
k, ψi

k) | (i, k) ∈ ε}. Let

B† = {(N, ψ, j, l) ∈ A† | |ψ|ΘΓ �= W and for all (j′, l′) ∈ δΘ(N), XN,ψ
j′,l′ ∈ X}

and let

B = {(N, ψ) | (N, ψ, j, l) ∈ B† for some j, l ∈ δΘ(N)}.

We define a one-to-one map t from E = {(N, ψ, j, l) | (N, ψ) ∈ B, (j, l) ∈
δ(N)} into δ(M), such that t(N, ψ, j, l) = (j, k) for some k ∈ N

+ ∪ {∞}, for
every (N, ψ, j, l) ∈ E .

Let (N, ψ, j, l) ∈ E and let (i, k) ∈ δ(M) be such that XN,ψ
j,l = X

Ni
k,ψi

k

i,lik
.

We define t(N, ψ, j, l) by cases:

Case (i): δ(N) = {(j, 1)}. Hence, (N, ψ, j, l) = (N, ψ, j, 1) ∈ A†. Then we
put t(N, ψ, j, l) = (i, k).

Case (ii): δ(N) �= {(j, 1)} and N(j) �= ∞. By Fact 6, |KΘ| ≥ 2 and
hence δΘ(N) �= {(j, 1)}. By Lemma 9, (N i

k, ψi
k, i, lik) = (N, ψ, j, l). By the

construction, again (N, ψ, j, l) ∈ A†, so that we can put t(N, ψ, j, l) = (i, k).
Case (iii): N(j) = ∞. In this case, for all k ∈ KΘ, (j, k) ∈ δΘ(N). By

Lemma 9, there are |KΘ| distinct sets of the type XN,ψ
j,m in X . Since each of

those sets correspond to a unique (j, n) ∈ ε, it follows that for all k ∈ KΘ,
(j, k) ∈ ε and hence also (j, k) ∈ δ(M). But given our construction of KΘ,
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that implies that M(j) = ∞. Note that Ej = {(N ′, ψ′, j, l′) | (N ′, ψ′) ∈
B, (j, l′) ∈ δ(N ′)} is countable. So with every κ′ ∈ Ej , we can associate a
unique (j, kκ′) ∈ δ(M).

We rewrite the intersection of the members of X as follows:
⋂

X =
⋂

(Ni
k,ψi

k)∈A\B
X

Ni
k,ψi

k

i,lik
∩

⋂

(N,ψ)∈B,(j,l)∈δΘ(N)

XN,ψ
j,l (18)

By Lemma 10, there is an f0 ∈ FΘ such that

{(Λ′, f0) ∈ W} ⊆
⋂

(Ni
k,ψi

k)∈A\B
X

Ni
k,ψi

k

i,lik
. (19)

In view of Definition 10, Lemma 11, and the induction hypothesis,
⋂

(N,ψ)∈B
{(Λ′, f0) ∈ W | ψ ∈ Λ′} = {(Λ′, f0) ∈ W | ϕ ∈ Λ′}. (20)

So, putting Φ = {ψ | (N, ψ) ∈ B}, we have:

|Φ|ΘΓ = |ϕ|ΘΓ (21)

and hence, for all ψ ∈ Φ, |ϕ|ΘΓ ⊆ |ψ|ΘΓ . Applying Lemma 5 and Corollary 1,
we can derive that there is a finite C ⊆ B such that, for all Δ ∈ MCSΘ

Γ , holds
that Δ � [∀](

∧
(N,ψ)∈C ψ → ϕ) and Δ � [∀](ϕ → ∧

(N,ψ)∈C ψ). Consequently,

Λ � [∀]

⎛

⎝
∧

(N,ψ)∈C
ψ ↔ ϕ

⎞

⎠ . (22)

By Definition 10.3, �Nψ ∈ Λ for all (N, ψ) ∈ C. Also, since Γ �� [∀]ϕ, B
and C must be non-empty. Let K =

⊔
(N,ψ)∈C N . Note that, in view of the

mapping t and since C ⊆ B, K � M . Applying (B1) a suitable number of
times, we can derive that Λ � �K

∧
(N,ψ)∈C ψ. By (RGE) and (22),

Λ � �Kϕ. (23)

Now let i ∈ I(M). In view of the construction, there is an XNi,ψi

i,li
∈ X such

that

�Ni
ψi ∈ Λ. (24)

Since
⋂ X = ‖ϕ‖MΘ

Γ , it follows that XNi,ψi

i,li
⊇ ‖ϕ‖MΘ

Γ . Let fi ∈ FΘ be
such that fi(Ni) = (i, li). Hence, XNi,ψi

i,li
∩ {(Λ, fi) ∈ W} =

{(Λ, fi) ∈ W | ψi ∈ Λ}. This implies that {(Λ, fi) ∈ W | ψi ∈ Λ} ⊇
{(Λ, fi) ∈ W | ϕ ∈ Λ} and hence |ϕ|ΘΓ ⊆ |ψi|ΘΓ . By Corollary 1, for all
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i ∈ I(M)

Λ � [∀](ϕ → ψi). (25)

This implies that

Λ � [∀]

⎛

⎝ϕ ↔
⎛

⎝ϕ ∧
∧

i∈I(M)

ψi

⎞

⎠

⎞

⎠ . (26)

Let L = K 	 ⊔
i∈I(M) Ni. By (B1), (24) and (23),

Λ � �L

⎛

⎝ϕ ∧
∧

i∈I(M)

ψi

⎞

⎠ (27)

By (26) and (RGE),

Λ � �Lϕ.

We distinguish two cases. If M is finite, then there must be some k ∈
{1, 2, . . .} such that K � M � Lk. By the derived rule of iteration (see
Theorem 3.3), we can derive that Λ � �Lkϕ. Then, using (B3) and (23), we
derive that Λ � �Mϕ and hence �Mϕ ∈ Λ.

If M is infinite, then we first derive that Λ � �L∞ϕ ∈ Λ, using (B4).
Finally, by (B3) and (23), we derive that Λ � �Mϕ and hence �Mϕ ∈ Λ.

5.5. Completeness and Finite Model Property

From here, it is a matter of routine to derive the following two key results:

Theorem 4. (Strong Soundness and Completeness) Γ �
BL

[∀]
∞

ϕ iff
Γ �

BL
[∀]
∞

ϕ.

Proof. Soundness is safely left to the reader, relying on Theorem 1. For
completeness, suppose that Δ �

BL
[∀]
∞

ϕ. Let Θ = Δ ∪ {¬ϕ}. Let Γ be a

maximal consistent subset of L[∀]
Θ with Θ ⊆ Γ. Let MΘ

Γ be the relativized
canonical model for 〈Θ, Γ〉 (cf. Definition 10). Let f ∈ FΘ. By Lemma 12,
for all ψ ∈ Γ, MΘ

Γ , (Γ, f) |= ψ. Hence, Δ ��
BL

[∀]
∞

ϕ.

Theorem 5. (Finite Model Property for BL[∀]
∞ ) If �

BL
[∀]
∞

ϕ, then there is a
finite model M and a world w in the domain of M such that M, w �|= ϕ.

Proof. Suppose �
BL

[∀]
∞

ϕ. Let Θ = {¬ϕ} and let Γ be a maximal consistent

subset of L[∀]
Θ with Θ ⊆ Γ. Note that MΘ

Γ is finite by Fact 8. Let f ∈ FΘ. By
the same reasoning as for Theorem 4, we can show that MΘ

Γ , (Γ, f) �|= ϕ.
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As shown in [6], the finite model property does not always guarantee
decidability, if one is working with a recursively enumerable, rather than
a finite, axiomatization. Roughly, the question whether some structure is
indeed a model of the logic (hence validates all its axioms) may itself not be
decidable. One may be checking this ad infinitum for a single model, before
ever being able to turn to the next model that could falsify a given formula.

This problem does not arise for our models. More generally, both the
set of BL[∀]

∞ -proofs and the set of finite BL[∀]
∞ -models are easily seen to be

recursively enumerable, and hence we have:

Corollary 4. BL[∀]
∞ is decidable.

5.6. Adaptations for L
[∀]
f , Lf , and L∞

The above proofs can be adapted in a relatively straightforward way to
obtain similar completeness and decidability results for each of BL[∀]

f , BL∞,
and BLf . We will not state the theorems as such, but refer to Section 7 for
the overview of all our results.

Let us start with the simplest adaptation. In our completeness proof, we
only relied on the axiom schema (B4) when dealing with infinite pooling
profiles. In fact, we only applied those axiom schemas at the very end in the
two cases of Lemma 12, in order to obtain the conclusion that ϕ ∈ Λ. Hence,
leaving out those applications immediately gives us completeness and the
finite model property for BL[∀]

f .
For the languages without the universal modality, the proof also consists

in a simplification of the above proof, with some minor adjustments. We
sketch them here.

First, we define LΘ as the single negation-closure of SFΘ ∪ {�}. Rather
than MCSΘ

Γ for some maxiconsistent Γ ⊇ Θ, we just use the set MCSΘ of
all maximal consistent subsets of LΘ in our construction of the relativized
canonical model. We simplify other notation accordingly:
|ϕ|Θ = {Δ ∈ MCSΘ | ϕ ∈ Δ} and |Φ|Θ = {Δ ∈ MCSΘ | Φ ⊆ Δ}. Lemma 5
and its corollaries are rephrased as follows:
Lemma 5 (rewritten). Where ϕ ∈ LΘ and Φ ⊆ LΘ: if |Φ|Θ ⊆ |ϕ|Θ, then
there is a finite Φ′ ⊆ Φ such that � ∧

Φ′ → ϕ.
This lemma is proven by standard means, relying on the compactness of

� and the deduction theorem.
Corollary 1 (rewritten). For every ϕ, ψ ∈ LΘ: |ϕ|Θ ⊆ |ψ|Θ iff � ϕ → ψ.
Corollary 2 (rewritten). For every ϕ, ψ ∈ LΘ, |ϕ|Θ = |ψ|Θ iff � ϕ ↔ ψ.
Corollary 3 (rewritten). For every ψ ∈ LΘ, |ψ|Θ = |�|Θ = MCSΘ iff � ψ.
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The definitions in Section 5.2 remain unchanged. We define the canonical
model MΘ just like MΘ

Γ , but replacing MCSΘ
Γ with MCSΘ. The facts and

lemmas from Sections 5.2 and 5.3 remain unchanged.
In the proof of the Truth Lemma (Lemma 12), we obviously skip the case

ϕ = [∀]ψ. Further down in that proof, we replace every expression of the
type “Γ � [∀]τ” with “� τ”, and use (RE) instead of (RGE). So for instance,
in the proof of the left-to-right direction of (TL�), Case 1 becomes: � ϕ. In
Case 2, equation (22) is rewritten to

�
∧

(N,ψ)∈C
ψ ↔ ϕ. (28)

Then, using (28), we can derive �Kϕ from �
∧

(N,ψ)∈C ψ, by means of (RE)
instead of (RGE). Similar rewriting of the proof’s final steps results in the
conclusion that Λ � �Mϕ and hence �Mϕ ∈ Λ.

Finally, a completeness proof for BLf is immediately obtained from the
completeness proof for BL∞, just by skipping the parts that concern pooling
profiles in M∞\Mf . By the same token, we obtain the finite model property
and hence decidability for each of the three logics BL[∀]

f , BL∞, and BLf .
Let us insert a brief aside. Relying on Lewis’ finitary construction devel-

oped in [4], one can also establish the decidability of these logics, as they are
all axiomatized by non-iterative modal axioms.5 However, this method can-
not be used to prove completeness with respect to our intended semantics,
let alone strong completeness and the semantic compactness that follows
from it.6

6. Extensions

In this section we prove completeness and the finite model property for a
range of stronger logics that are obtained by imposing one or several stan-
dard frame conditions on the neighbourhood functions. In all cases, the
proofs are variations on the one for the base logic (Section 5), making essen-
tial use of the puzzle construction that we illustrated in Section 4. We will
also indicate simplified axiomatizations for the studied extensions whenever
possible. An overview of all completeness results is given in Section 7.

5An axiom (schema) is non-iterative if it contains no nested modal operators. An
example of an iterative axiom schema is (4): �ϕ → ��ϕ.

6Lewis’ method would allow us to prove weak completeness with respect to the quasi-
models that we refer to in Section 8. Still, one would require something along the lines of
our puzzle piece construction to turn such quasi-models into our intended models.
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Some notation will prove useful in the statement of theorems and prop-
erties. In the remainder, let BL be a metavariable for any of the four
base logics. Where (X1), (X2), . . . are axioms (axiom schemata), we write
BL + X1 + X2 + · · · to denote the logic obtained by adding (all instances
of) (X1), (X2), . . . to the axioms of BL, and closing the resulting set under
(RE) and (MP). When we state soundness and completeness results of a
given logic with respect to a certain class of frames, we always assume fixed
the underlying language of that logic, and we only require the addition of
axioms in that language.

6.1. Monotonic Models

Recall that a neighourhood model M = 〈W, 〈Ni〉i∈I , V 〉 is monotonic iff for
all i ∈ I and all w ∈ W , Ni(w) is closed under supersets. In the remainder,
we will use X ↑ to refer to the closure of X under supsersets. Monotony thus
means that Ni(w) = N ↑

i (w) for all i ∈ I.
In simple (monomodal) classical modal logics, closure of the neighbour-

hood set N (w) under supersets corresponds to the axiom7

�(ϕ ∧ ψ) → (�ϕ ∧ �ψ). (AM)

In the presence of (RE), (AM) entails the monotony rule (RM): if �ϕ and
� ϕ → ψ, then �ψ. Conversely, we may characterize monotonic modal logic
by replacing (RE) with (RM). Another equivalent formulation is in terms
of disjunction: �ϕ → �(ϕ ∨ ψ). We will focus on a multi-modal variant
of (AM) in the remainder, but all our observations readily apply to these
alternative characterizations.

Semantically, there are various characterizations of monotonic logics with
pooling modalities, besides our official characterization obtained by impos-
ing monotony on the models defined in Section 2—this is spelled out in
Section 4.3 of [8]. We briefly recall the semantics in terms of the monotonic
semantic clause, as this will turn out useful for our completeness proof:

Definition 11. Where M = 〈W, 〈Ni〉i∈I , V 〉 and w ∈ W ,

0. M, w �|=m ⊥,

1. M, w |=m ϕ iff w ∈ V (ϕ) for all ϕ ∈ P,

2. M, w |=m ¬ϕ iff M, w �|=m ϕ,

3. M, w |=m ϕ ∨ ψ iff M, w |=m ϕ or M, w |=m ψ,

7Usually, (AM) is just called (M). We preserve the latter name for its more general
counterpart involving pooling modalities.
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4. M, w |=m �Mϕ iff there is an X ∈ NM (w) such that X ⊆ ‖ϕ‖Mi
where ‖ϕ‖Mi = {w ∈ W | M, w |=m ϕ}.

As shown in [8], closing the neighbourhood sets of a model M under
supersets—resulting in the supplementation M↑—is equivalent to using the
indirect semantic clause for that model. That is:

Theorem 6. (Corollary 2 of [8]) Where M = 〈W, 〈Ni〉i∈I , V 〉 is a model,
w ∈ W , and ϕ ∈ L

[∀]
∞ : M, w |=m ϕ iff M↑, w |= ϕ.

In order to axiomatize the logics with pooling modalities over the class
of monotonic models, one needs to add all instances of the following schema
to BL:

�M (ϕ ∧ ψ) → (�Mϕ ∧ �Mψ) (M)

Before we prove completeness, we note two properties of these logics.
Theorem 7 implies that these logics allow for a slightly simpler axiomati-
zation, skipping the axiom schema (B3). Theorem 8 records a derived rule
in the logics with the universal modality, which will turn out useful for our
completeness proof.

Theorem 7. The axiom schema (B3) is derivable from (B1), (B2), (RE),
and (M).

Proof. Suppose that �Mϕ and �M�N�N ′ϕ. By the second premise, (RE),
and (M), we can derive �M�N�N ′�. By (B2), this gives us �N�. Finally,
by (B1), (RE), and the first premise, we derive �M�Nϕ.

Theorem 8. Every instance of the schema

(�Mϕ ∧ [∀](ϕ → ψ)) → �Mψ (M[∀])

is derivable in BL[∀]
∞ + M and BL[∀]

f + M.

Proof. Suppose that �Mϕ and [∀](ϕ → ψ). By the second premise and
normal modal logic properties, we get [∀](ϕ ↔ (ϕ∧ψ)). By the first premise
and (RGE), �M (ϕ ∧ ψ). Finally, by (M) and (MP), �Mψ.

Theorem 9. Where BL ∈ {BL[∀]
∞ ,BL[∀]

f ,BL∞,BLf}: BL + M is sound
and strongly complete w.r.t. the class of monotonic models. Moreover, it has
the finite model property.

Proof. Soundness is, as usual, safely left to the reader. For completeness
and the finite model property, we give the argument for BL[∀]

∞ + M. Just
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as for the base logics, the analogous results for the other three logics are
obtained by simplifications of this argument (cf. Section 5.6).

We need to prove that for every (finite) consistent set of formulas Θ,
there is a (finite) monotonic model M and a world w in its domain such
that M, w |= Θ. So let us hold fixed such a Θ. We define L

[∀]
Θ , Γ, and

the model MΘ
Γ in exactly the same way as we did in Section 5. Note that

Lemmas 5 , 9, 10, and 11 (and their corollaries) and Facts 4, 6 and 7 are all
preserved.

The crucial change occurs in the truth lemma. That is, we now prove the
truth lemma given the indirect semantic clause, cf. Definition 11:

Proposition 1. For all Λ ∈ MCSΘ
Γ , for all f ∈ FΘ, and all ϕ ∈ L

[∀]
Θ :

MΘ
Γ , (Λ, f) |=m ϕ iff ϕ ∈ Λ.

The proof is exactly the same as the one for Lemma 12, except for the
left-to-right direction of (TL�). So suppose that MΘ

Γ , (Λ, f) |= �Mϕ. We
distinguish the same two cases as in the original proof. For Case 1, note
that, since each Ni(Λ, f) for i ∈ I(M) is non-empty, we have

�i� ∈ Λ for all i ∈ I(M) (29)

and, hence, �M� ∈ Λ. Moreover, by Corollary 3 and the supposition for
this case, Λ � [∀](� ↔ ϕ). By (RGE), �Mϕ ∈ Λ.

For Case 2, we replace identity (=) with the subset-relation (⊆) in equa-
tions (17), (20), and (21). Again putting Φ = {ψ | (N, ψ) ∈ B}, this gives
us

|Φ|ΘΓ ⊆ |ϕ|ΘΓ . (30)

Applying Lemma 5, we can derive that here is a finite C ⊆ B such that,
for all Δ ∈ MCSΘ

Γ , Δ � [∀](
∧

(N,ψ)∈C ψ → ϕ). Consequently,

Λ � [∀]

⎛

⎝
∧

(N,ψ)∈C
ψ → ϕ

⎞

⎠ (31)

Let again K =
⊔

(N,ψ)∈C N . As before, we have K � M . Using Lemma 5
and (M[∀]), we derive that �Kϕ ∈ Λ. Finally, we rely on (29) to derive that
�Mϕ ∈ Λ, using (B1) for the finite case and (B4) for the infinite case. This
completes the proof of Proposition 1.

Let f ∈ FΘ be arbitrary. By Proposition 1,

MΘ
Γ , (Θ, f) |=m Θ (32)
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Once there, we rely on the equivalence of the semantics in terms of the
indirect semantic clause and the one in terms of monotonic models. Let
MΘ,↑

Γ be the supplementation of MΘ
Γ . By Theorem 6,

MΘ,↑
Γ , (Θ, f) |= Θ (33)

and, by its very definition , MΘ,↑
Γ is a monotonic model. So this model serves

as a witness to the consistency of Θ, and is moreover finite whenever Θ is
finite.8

One may wonder whether it is not sufficient to add the following single-
agent version of (M) to BL in order to axiomatize the logic of monotonic
models:

�i(ϕ ∧ ψ) → (�iϕ ∧ �iψ) (Mi)

The answer is negative: although such axioms characterize the closure of
the Ni(w) under supersets at the level of frames, they do not yield a com-
plete axiomatization.9 That is, consider a model Mex with two worlds w, w′

that verify the same propositional variables, and with the (uniform) neigh-
bourhood functions that put N1(w) = N1(w′) = {{w}, {w′}}. Note that the
neighbourhood sets of w and w′ are not closed under supersets. However,
all axioms of the base logics and (M1) are valid at both w and w′. This is
so because no formula of the form �1ϕ holds true at either w or w′, whence
the antecedent of any instance of (M1) is false. However, �1,1⊥ is true at
both w and w′, while �1,1� is false at both. Hence, we really need axiom
schemata like �1,1(ϕ ∧ ψ) → �1,1ϕ in order to obtain all validities obtained
by imposing monotony.

This lesson applies to most of the other extensions of the base logics that
we will study in this paper. That is, one often needs to add counterparts
of the standard (monomodal) axioms for all the operators �M , not just for
the operators �i. This is an immediate consequence of the fact that pooling
modalities make the languages strictly more expressive, cf. [8].

8If one would prove completeness in a more direct way, without relying on the alter-
native semantic characterization, one immediately takes the supplementation of MΘ

Γ and
proves the original truth lemma for that model. The general outline of such a proof will

be analogous to our original proof for BL
[∀]
∞ , but one has to go back and forth a number

of times between MΘ
Γ and its supplementation.

9The positive is well-known, cf. [5, Lemma 2.21].
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6.2. Closure Under Intersections

A second well-known constraint on neighbourhood sets is their being closed
under intersections. Here we distinguish two cases: closure under finite in-
tersections, and closure under arbitrary intersections. As we will show, while
these two conditions cannot be distinguished in L

[∀]
f (hence, neither in any

of its sublanguages), they yield different logics in the presence of infinitary
pooling modalities. In the remainder, we call a model (finite) intersective iff
for all worlds w in its domain and for all i, Ni(w) is closed under (finite)
intersections.

First some notation. Where M ∈ M∞, let M−
f be the set

{(i, 1) | ∃k ∈ N
+ : (i, k) ∈ M} ∪ {(i, 0) | i �∈ I(M)} ∪ {(i,∞) | (i,∞) ∈ M}.

In words, M−
f is obtained by replacing every (i, k) for a finite number k > 0

with (i, 1) in M , leaving the other indices unchanged. We use Mf to denote
the set {(i, 1) | (i, k) ∈ M for some k ∈ N

+ ∪ {∞}} ∪ {(i, 0) | i �∈ I(M)}.
Note that

Fact 13. If M ∈ Mf , then M−
f = Mf .

In line with the preceding, we need to distinguish between two axioms:

�Mϕ → �M−
f

ϕ (FI)

�Mϕ → �Mf
ϕ (I)

Intuitively, (FI) expresses that if you can obtain a certain set X ⊆ W by
intersecting any k pieces of information for the index i, then that information
is already available in itself, for i. (I) expresses that this is even the case if
you get X by intersecting an arbitrary number of pieces of information. In
view of Fact 13, (I) reduces to (FI) for languages without infinitary pooling
modalities. So we have:

Fact 14. BL[∀]
f + FI = BL[∀]

f + I and BLf + FI = BLf + I.

Let M∩ (M∩f ) denote the model obtained from M = 〈W, 〈Ni〉i∈I , V 〉 by
closing each neighbourhood set Ni(w) under (finite) intersections. Let N ∩

M

(N ∩f

M ) denote the neighbourhood function that corresponds to the pooling
profile M , in the model M∩ (M∩f ). Also, where k ∈ N

+, let

Mk = {(i, k) | i ∈ I(M), M(i) �= ∞} ∪ {(i, l) ∈ M | l = 0 or l = ∞}.

For the proof of completeness of these logics, the following two lemmas are
crucial:

Lemma 15. For all (Λ, f) ∈ W : N ∩
M (Λ, f) = NM∞(Λ, f).
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Proof. It holds that: X ∈ N ∩
M (Λ, f) iff for every i ∈ I(M), there is some

Xi ∈ N ∩
i (Λ, f) such that

⋂
i∈I(M) Xi = X iff for every i ∈ I(M), there is a

Xi ⊆ N ∩
i (Λ, f) such that

⋂
i∈I(M)

⋂ Xi = X iff X ∈ NM∞(Λ, f).

Lemma 16. For all (Λ, f) ∈ W : if X ∈ N ∩f

M (Λ, f), then there is a k ∈ N
+

such that X ∈ NMk(Λ, f).

Proof. Analogous to the proof for the previous lemma; however, in this
case the Xi can be taken to be finite, and hence, since also I(M) is finite,
there is a k ∈ N such that each Xi has at most k elements.

Theorem 10. Where BL ∈ {BL[∀]
∞ ,BL[∀]

f ,BL∞,BLf}: BL + I is sound
and strongly complete w.r.t. the class of intersective models. Moreover, it
has the finite model property.

Proof. We first focus on BL[∀]
∞ + I. Soundness is safely left to the reader.

For completeness and the finite model property, fix a consistent set Θ. Define
L

[∀]
Θ as before, and let Γ ⊆ L

[∀]
Θ be maximal such that Θ ⊆ Γ and Γ is

consistent.
Let MΘ,∩

Γ = 〈W, 〈N ∩
i 〉i∈I , V 〉. Note that, by Fact 8, MΘ,∩

Γ is finite when-
ever Θ is finite. In order to establish completeness and the finite model
property, it suffices to prove the following:

Proposition 2. For all ϕ ∈ L
[∀]
∞ , all Λ ∈ MCSΘ

Γ , and all f ∈ FΘ, the
following are equivalent:

(i) MΘ,∩
Γ , (Λ, f) |= ϕ,

(ii) MΘ
Γ , (Λ, f) |= ϕ,

(iii) ϕ ∈ Λ.

We prove this by an induction on the complexity of ϕ. The base case and
the induction step for ¬, ∨, and [∀] are safely left to the reader. For �M , the
equivalence of (ii) and (iii) follows from Lemma 12. The implication from
(ii) to (i) follows immediately from the induction hypothesis and the fact
that, for every i ∈ I and every world w ∈ W , Ni(w) ⊆ N ∩

i (w). We now
prove that (i) implies (iii).

Suppose that MΘ,∩
Γ , (Λ, f) |= �Mϕ. Hence, ‖ϕ‖MΘ,∩

Γ ∈ N ∩
M (Λ, f). By the

induction hypothesis and by Lemma 15, ‖ϕ‖MΘ
Γ ∈ NM∞(Λ, f) and hence

MΘ
Γ , (Λ, f) |= �M∞ϕ.
We now reason exactly as in the proof of Lemma 12, showing that there

is a K ∈ M∞ such that K � M∞ and Λ � �Kϕ. By (I), Λ � �Kf
ϕ. Note

moreover that, since K � M∞, Kf � M . We then reason again as in the
last part of Lemma 12 to arrive at the conclusion that �Mϕ ∈ Λ.
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This gives us completeness and the finite model property for BL[∀]
∞ + I.

For BL[∀]
f + I, note first that we are working with a set Θ ⊆ L

[∀]
f , and thus

MΘ ⊆ Mf . Since K is a finite union of pooling profiles N ∈ MΘ, it follows
that K ∈ Mf . So we can apply (I) just as before. For the two logics without
the universal modality, we have to adapt the proof in the same way as we
did for BL∞ and BLf (cf. Section 5.6).

Theorem 11. Where BL ∈ {BL[∀]
∞ ,BL[∀]

f ,BL∞,BLf}: BL + FI is sound
and strongly complete w.r.t. the class of finite intersective models. Moreover,
it has the finite model property.

Proof. The proof is analogous to that of Theorem 10, but this time relying
on Lemma 16 instead of Lemma 15 in the proof of the induction step, for
the implication from (i) to (iii). This way, we obtain a k ∈ N and a K such
that Λ � �Kϕ and K � Mk. We then apply (FI) to derive that Λ � �K−

f
ϕ.

Observe that K−
f � M . We can then again reason as in the last part of

Lemma 12 to show that �Mϕ ∈ Λ.

By Fact 14, it follows that only if we have infinitary pooling modalities at
our disposal, the two frame conditions mentioned at the outset of this section
yield a different logic. Without such modalities, this distinction remains
under the radar.

In classical modal logics with a single modal operator �, closure under
(finite or arbitrary) intersections is axiomatized by the aggregation axiom
(AC)10:

(�ϕ ∧ �ψ) → �(ϕ ∧ ψ) (AC)

In the restricted language with only regular sets—no proper pooling profiles—
as indexes, completeness with respect to the class of intersective models is
obtained by adding all group varians of (AC) to the logic (cf. [9, Theorem 7]).
In contrast, to obtain a complete axiomatization for the languages consid-
ered here, we need (FI), respectively (I). That (FI) implies (AC) can easily
be verified. Suppose that �iϕ and �iψ. By (B1), this gives us �i,i(ϕ ∧ ψ).
Then, by (FI), we obtain �i(ϕ ∧ ψ).

There is also a relatively easy way to see that the converse implica-
tion, from (AC) to (FI), fails. Let Mex be the model described at the end
of Section 6.1. Note that this model is not (finite) intersective, since e.g.
∅ �∈ N1(w). Still, any instance of (AC) is true at all worlds, since no formula

10Cf. [5, Lemma 2.20]. (AC) is often just called (C).
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�1ϕ is true. In contrast, (FI) and (I) fail on Mex, since it satisfies �1,1⊥ but
does not satisfy �1⊥.

6.3. Regular Models

In the context of classical modal logic, regular modal logics are those ob-
tained by requiring both closure under intersection and closure under su-
persets of the neighbourhood sets. These logics are standardly axiomatized
by a combination of the aforementioned axioms (M) and (C) (or variants
thereof), or by the single regularity axiom:

(�ϕ ∧ �ψ) ↔ �(ϕ ∧ ψ) (R)

Regular modal logics are very close to normal modal logics, in the sense
that, when adding necessitation to the regular modal logic, we get a normal
modal logic.

As for the case of intersection, we will distinguish between two notions
of regularity. In the remainder, let a model M = 〈W, 〈Ni〉i∈I , V 〉 be regular
iff for all i ∈ I and all w ∈ W , Ni(w) is closed under arbitrary intersections
and under supersets. M is regularf iff for all i ∈ I and all w ∈ W , Ni(w) is
closed under finite intersections and under supersets. The axiomatization of
logics with pooling modalities, over the class of regular models, is obtained
by adding (M) and (I) to our base logics. In view of Theorem 7, the axiom
schema (B3) is redundant in the resulting systems.

Theorem 12. Where BL ∈ {BL[∀]
∞ ,BL[∀]

f ,BL∞,BLf}: BL + M + I is
sound and strongly complete w.r.t. the class of regular models. Moreover,
it has the finite model property.

Proof. As before we focus on the richest logic, viz. BL[∀]
∞ + M + I. Sound-

ness is safely left to the reader. For strong completeness and the finite model
property, we combine the adaptations from the two previous sections. We
start from the model MΘ,∩

Γ constructed in the proof of Theorem 10. How-
ever, we now prove that, in the presence of (M), MΘ,∩

Γ and MΘ
Γ are also

equivalent if we apply the monotonic semantic clause to both:

Proposition 3. For all ϕ ∈ L
[∀]
∞ , all Λ ∈ MCSΘ

Γ , and all f ∈ FΘ, the
following are equivalent:

(i) MΘ,∩
Γ , (Λ, f) |=m ϕ,

(ii) MΘ
Γ , (Λ, f) |=m ϕ,

(iii) ϕ ∈ Λ.



Pooling Modalities and Pointwise Intersection. . . 83

We prove this by an induction on the complexity of ϕ. The base case
and the induction step for ¬, ∨, and [∀] are safely left to the reader. For
ϕ = �Mψ, the equivalence of (ii) and (iii) follows from Proposition 1.
The implication from (ii) to (i) follows immediately from the induction
hypothesis and the fact that, for every i ∈ I and every world w ∈ W ,
Ni(w) ⊆ N ∩

i (w). So it suffices to prove that (i) implies (iii).
Suppose that MΘ,∩

Γ , (Λ, f) |=m �Mϕ. Hence, there is an X ∈ N ∩
M (Λ, f)

such that X ⊆ ‖ϕ‖MΘ,∩
Γ . By the induction hypothesis and Lemma 15,

X ∈ NM∞(Λ, f) and X ⊆ ‖ϕ‖MΘ
Γ . Hence, MΘ

Γ , (Λ, f) |=m �M∞ϕ.
We now reason exactly as in the proof of Proposition 1, showing that

there is a K ∈ M∞ such that K � M∞ and Λ � �Kϕ. Note that in
that proof, (M) is called upon. By (I), Λ � �Kf

ϕ. As before, we have that
Kf � M . We then reason again as in the last part of Lemma 12 to arrive
at the conclusion that �Mϕ ∈ Λ.

So we have a truth lemma for MΘ,∩
Γ under the monotonic semantic clause.

Let MΘ,r
Γ be obtained by closing all the neighbourhood sets in MΘ,∩

Γ under
supersets. Hence, for every (Λ, f) ∈ W and i ∈ I, N r

i (Λ, f) = (N ∩
i (Λ, f))↑.

By Theorem 6, for all ϕ and all (Λ, f) ∈ W :

MΘ,r
Γ , (Λ, f) |= ϕ iff MΘ,∩

Γ , (Λ, f) |=m ϕ

and, hence, for every f ∈ FΘ, MΘ,r
Γ , (Γ, f) |= Θ. We now show that MΘ,r

Γ is a
regular model. In view of its construction, it suffices to prove that each of its
neighbourhood functions are closed under arbitrary intersection. So suppose
that X ⊆ (N ∩

i (Λ, f))↑ for some i ∈ I and (Λ, f) ∈ W . For every X ∈ X , let
X ′ be such that X ′ ∈ N ∩

i (Λ, f) and X ′ ⊆ X. Let X ′ =
⋂{X ′ | X ∈ X}.

Note that
⋂ X ′ ∈ N ∩

i (Λ, f) and
⋂X ′ ⊆ ⋂ X . Hence,

⋂ X ∈ (N ∩
i (Λ, f))↑.

Theorem 13. Where BL ∈ {BL[∀]
∞ ,BL[∀]

f ,BL∞,BLf}: BL + M + FI is
sound and strongly complete w.r.t. the class of regularf models. Moreover,
it has the finite model property.

Proof. Analogous to the proof of Theorem 12, combining the proofs of
Proposition 1 and of Theorem 11.

Note that, for reasons entirely analogous to those spelled out in the pre-
ceding two sections, one cannot obtain sound and complete axiomatizations
of pooling logics over regular models by just adding all instances of (R) for
each i ∈ I. That is, such axioms will not allow one to derive either (M), or
(FI), resp. (I).
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6.4. Some Other Frame Conditions

In this subsection, we discuss a number of other frame conditions, show-
ing that completeness and decidability results can be obtained for them
by minor amendments to the proofs from preceding (sub)sections. We will
gradually move from general to more restricted results. This at once illus-
trates the power and the limitations of our puzzle piece construction, for the
metatheory of pooling modalities.

6.4.1. Definable Frame Conditions Say a condition (C) on neighbourhood
sets Ni(w) is BL-definable iff there is some ϕ in the language of BL such
that, for all models M = 〈W, 〈Ni〉i∈I , V 〉 and all w ∈ W , Ni(w) satisfies
(C) if and only if M, w |= ϕ. In this case, we say that the formula ϕ defines
condition (C). One very well-known example of a frame condition that is
BL-definable is unit-containment, that W ∈ Ni(w) for all w ∈ W . This
frame condition is defined by the following well-known axiom:

�i� (N)

Note that adding (N) to BL is equivalent to adding all instances of the form
�M� to BL. That is, from the former, one can easily derive the latter by
(B1) (for finitary pooling profiles M) and (B4) (for infinitary pooling pro-
files). Moreover, adding (N) to the base logic simplifies our axiomatization.
Let us call the logic thus obtained BL + N. We have:

Theorem 14. (B2) and (B3) are derivable from the other axioms and rules
of BL + N.

Proof. Suppose that for all i ∈ I, we have �i�. By (B1), we can derive
for all M ∈ Mf , �M�. By (B1) and (B4), we can derive �M for every
M ∈ M∞. Hence, every instance of (B3) is trivially derivable. (B2) follows
from the following stronger property:

�BL+N �Mϕ → �M�Nϕ (S)

To see why (S) is derivable, suppose �Mϕ. In view of the first part of this
proof, we can derive �N� in BL + N. By (B1), �M�N (ϕ ∧ �). By (RE),
�M�Nϕ.

In the context of reasoning about possibly conflicting information (evi-
dence, beliefs, norms, etc.), another noteworthy frame condition is (individ-
ual or joint) consistency of the neighbourhoods. Here the pooling modalities
generate various non-equivalent options for defining frame conditions. First,
one may require an individual neighbourhood set Ni(w) not to generate any
n-ary conflicts: there are no X1, . . . , Xn ∈ Ni(w) such that X1∩. . .∩Xn = ∅.
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This frame condition is defined by the axiom ¬�M⊥, where M is the pool-
ing profile that puts M(i) = n and M(j) = 0 for all j �= i. Alternatively,
following Coalition Logic (cf. [8, Section 7.3]), one may require that dis-
tinct agents have jointly compatible neighbourhoods: for all i1, . . . , in ∈ G,
if X1 ∈ Ni1(w), . . ., and Xn ∈ Nin

(w), then X1 ∩ . . . ∩ Xn �= ∅. This frame
condition is defined by the formula ¬�M⊥, where M(i) = 1 for all i ∈ G
and M(j) = 0 for all j �∈ G. These variants are both covered by the general
notion of M -consistency:

∅ �∈ NM (w)

and defined by the axiom (PM ):

¬�M⊥ (PM )

Other examples of definable conditions and formulas defining them are
given in the second half of Table 3. Of course, not all combinations of defin-
able frame conditions yield an interesting or even sensible logic. For instance,
one cannot both have (N) and (NN), or (P) and (NP) on pains of trivial-
ity. Also, some (combinations of) axioms will imply others: e.g. if we have
(PM ) for some M , and (N) for all i ∈ I(M), then we can infer (Pi) for all
i ∈ I(M).

We now state a theorem that concerns any combination of such definable
frame conditions.

Theorem 15. Let BL ∈ {BL[∀]
∞ ,BL[∀]

f ,BL∞,BLf}. Let (C1), (C2), . . . be
BL-definable frame conditions and let ϕ1, ϕ2, . . . be the respective formu-
las that express them. Then a sound and strongly complete axiomatization
for the class of all (monotonic/intersective/regular) models that satisfy (C1),
(C2), . . . is obtained by adding ϕ1, ϕ2, . . . to BL (BL + M/BL + I/BL + R).

Proof. Soundness is routine, as usual. For strong completeness, we fo-
cus on the canonical models where the set Θ is a maximal consistent sub-
set of the entire language of the logic in question—so e.g. L

[∀]
Θ = L

[∀]
∞ or

LΘ = Lf . In this case, every maximal consistent set Λ used in the construc-
tion will contain all formulas ϕ1, ϕ2, . . .. By the truth lemma, we know that
at every world in these canonical models, each of ϕ1, ϕ2, . . . are true. Since
these formulas define the respective frame conditions, we know that these
canonical models satisfy (C1), (C2), . . ..

Theorem 15 is silent about the finite model property. This is slightly less
easy to obtain. Let us first explain why, before we outline some strategies to
fix this. By our construction, for infinite index sets I and finite Θ, IΘ will
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be a proper subset of I. (Recall that IΘ is the set of indexes that occur in
some pooling profile, in some member of SF(Θ).) In view of Definition 10,
this implies that for all i ∈ I\IΘ, and for all (Λ, f) ∈ W , Ni(Λ, f) = ∅. This
is so, even if our logic may e.g. have (Ni) as an axiom—simply because that
formula is not a member of L[∀]

Θ , and is hence also ignored in the construction
of MΘ

Γ .
There are various ways one may fix our construction in order to obtain

the finite model property for the mentioned extensions. First, in cases where
the frame conditions are defined by a finite number of formulas, we may just
include all those formulas in the set Θ, thus ensuring that they are “seen”
in the construction of IΘ, L

([∀])
Θ , etc. In cases with an infinite number of

frame conditions, one may run the whole construction as originally, and
tinker around with the constructed model afterwards. Note that we are
only constructing a model for Θ, whence the properties of neighbourhood
functions Ni for i ∈ I\IΘ have no impact on the truth of formulas in L

[∀]
Θ .

In other words: we can change those neighbourhood functions ad libitum,
making sure we have the right frame conditions in the thus obtained model.
This simple strategy allows us e.g. to prove the finite model property for the
logic obtained by adding all instances of (N), for all i ∈ I, to BL[∀]

∞ .

6.4.2. Reflexivity Recall the reflection schema or truth schema T, that is
familiar from normal modal logics: �ϕ → ϕ. Call a neighbourhood function
N reflexive iff, for every w ∈ W and for every X ∈ N (w), w ∈ X. A
model M = 〈W, 〈Ni〉i∈I , W 〉 is reflexive if and only if, for every i ∈ I, Ni is
reflexive.

Theorem 16. A sound and strongly complete axiomatization for the class
of all reflexive (monotonic/intersective/regular) models is obtained by adding
all instances of the following axiom schema to BL (BL + M/BL + I/
BL + R):

�Mϕ → ϕ (T)

Moreover, the resulting logics all have the finite model property.

Proof. It suffices to check that, for each of the canonical model construc-
tions given in Sections 5, 6.1, 6.2 and 6.3, the constructed neighbourhood
functions are reflexive if the maximal consistent sets are closed under (T).
We give the argument for MΘ

Γ first. Let XM,ϕ
i,k ∈ Ni(Λ, f). This implies that

�Mϕ ∈ Λ. Note that by the construction, XM,ϕ
i,k ⊇ {(Λ′, f ′) | ϕ ∈ Λ′}. By

(TM ) and since �Mϕ ∈ Λ, ϕ ∈ Λ. Hence, (Λ, f) ∈ {(Λ′, f ′) | ϕ ∈ Λ′} and
hence (Λ, f) ∈ XM,ϕ

i,k .
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Note that for monotonic, intersective, and regular models, our proofs ba-
sically consisted in showing that if we close the neighbourhood sets of the
canonical model under supersets, intersections, resp. supersets and intersec-
tions, truth is preserved. Since each of those operations (and their combina-
tion) also preserve reflexivity of the neighbourhood functions, it can easily
be inferred that all the canonical models constructed in Sections 6.1–6.3 are
reflexive when the underlying logic contains (T).

Importantly, one cannot get a complete axiomatization of reflexivity by
just adding the axioms (Ti), i.e. �iϕ → ϕ to the base logic. To see this, note
that all axioms �Mφ → φ are sound with respect to reflexive frames. The
following example of a non-reflexive frame shows that these axioms do not
logically follow from �iϕ → ϕ. We consider a simple case with I = {1}. Take
a model M with two worlds, w and v, where all propositional formulas are
true at both worlds. Suppose now that N1(w) = {{w}, {v}}. Since neither
{w} nor {v} correspond to the truth set of any formula ϕ in this model,
�1ϕ is false for every ϕ at both w and v, and hence (T1) is trivially valid in
this model. However, this model does not validate (T{1,1}), since �{1,1}⊥ is
true at w and at v. So the model satisfies all formulas of the form �iφ → φ
together with (B1)–(B2), but not �Mφ → φ.

It is not easy to generalize the above theorem to classes of models where
some, but not all i ∈ I are such that Ni is reflexive. For instance, if we
only require reflexivity of N1 but not of N2, then �{1,2}ϕ → ϕ is not valid.
This implies that the reasoning in the first paragraph of our proof does not
go through. The investigation of such “mixed” classes of models is left for
future work.

6.4.3. Uniformity A model M is uniform iff for all i ∈ I, for all w, w′ ∈ W ,
Ni(w) = Ni(w′). Uniform models are e.g. used in the study of evidence-based
belief, cf. [1,7].

Theorem 17. Where BL ∈ {BL[∀]
∞ ,BL[∀]

f }, a sound and strongly complete
axiomatization for the class of all uniform (monotonic/intersective/regular)
models is obtained by adding all instances of the following axiom schema to
BL (BL + M/BL + I/BL + R):

�Mϕ → [∀]�Mϕ (U)

Moreover, the resulting logics all have the finite model property.

Proof. We only consider uniformity over the base logic; the argument for
the monotonic, intersective, or regular models is analogous. It suffices to
inspect our construction of MΘ

Γ and check that in the presence of (U), this
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model will be uniform. Let XM,ϕ
i,k ∈ Ni(Λ, f). Then �Mϕ ∈ Λ. In view of

the definition of L[∀]
Θ , [∀]�Mϕ ∈ L

[∀]
Θ . By the uniformity axiom, [∀]�Mϕ ∈ Λ

and, hence, for all Δ ∈ MCSΘ
Γ , [∀]�Mϕ ∈ Δ and so �Mϕ ∈ Δ. Consequently,

for all Δ ∈ MCSΘ
Γ and all f ′ ∈ FΘ, XM,ϕ

i,k ∈ Ni(Δ, f ′).

Again, we need to add the uniformity axiom (U) for all pooling profiles
M ; one can again easily make examples showing that just adding this axiom
schema for individual indexes will yield an incomplete logic. For instance, let
M′ be just like the model M from Section 6.1, except that now N1(w′) = ∅.
We have: M, w |= �1,1⊥ but M, w �|= [∀]�1,1⊥.

Note that we make essential use of the universal modality in order to
axiomatize uniformity. In the absence of this modality, the frame condition
of uniformity does have an impact. For instance, it makes all instances of
the two following schemas valid:

(�Mϕ ∧ �Nψ) → �M (ϕ ∧ �Nψ)

(�Mϕ ∧ ¬�Nψ) → �M (ϕ ∧ ¬�Nψ)

It is an open problem whether any such validities suffice to obtain a complete
axiomatization of uniform models in L∞ or Lf .

7. Overview of the Results

Table 3 provides an overview of the completeness results mentioned in this
paper. As noted, the frame conditions in the second half of the table can
be axiomatized for each of the agents independently; those of the first half
are required to be valid for all the agents at once. For those first five frame
conditions we also established the finite model property.

Taken together, these results show that on the one hand, our method for
proving completeness is fairly powerful, allowing us to axiomatize a large
class of systems. On the other hand our observations already pointed towards
some of its limitations. For instance, upon inspection, it seems one cannot
easily apply the canonical model in its present form to prove completeness of
logics that satisfy the well-known (iterative) axioms of positive and negative
introspection11:

�ϕ → ��ϕ (4)

¬�ϕ → �¬�¬ϕ (5)

11For the (4)-axiom, at least another round of copying seems to be required before one
can obtain a truth lemma.
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Table 3. Overview of the main completeness results from this paper.

Any combination of the given frame conditions is axiomatized by adding

all associated axioms to BL

Class Frame condition Axiomatization: BL+

Monotonic Ni = N ↑
i �M (ϕ ∧ ψ) → (�Mϕ ∧ �Mψ) (M)

Finite intersective Ni = �fNi �M → �
M

f
−

ϕ (FI)

Intersective Ni = �∞Ni �M → �Mf ϕ (I)

Reflexive ∀X ∈ Ni(w) : w ∈ X �Mϕ → ϕ (T)

Uniform ∀w, v : Ni(w) = Ni(v) �Mϕ → [∀]�Mϕ (U)

Unit-contained W ∈ Ni(w) �i� (N)

i-consistent ∅ ∈ Ni(w) ¬�i⊥ (Pi)

M -consistent ∅ ∈ NM (w) ¬�M⊥ (PM )

Unit-less W ∈ Ni(w) ¬�i� (NN)

Null-contained ∅ ∈ Ni(w) �i⊥ (NP)

Likewise, the axiomatization of pooling modalities where only some, but
not all the neighbourhood functions satisfy one of the conditions from the
first half of Table 3 is an open problem. Note for instance that if we require
N1(w) to be closed under supersets, this does not entail that also N{1,2}(w)
satisfies these properties.

Taking a more high-level perspective, the situation is essentially not much
different from that in relational semantics. There is a standard method for
proving completeness—i.e. via canonical models—, and there are more or
less broadly applicable ways to adapt this method to specific cases, our
puzzle construction being one among them. However, completeness is not to
be expected in general, and with each new logic, new technical difficulties
may arise.

8. Summary and Open Issues

The main contribution of this paper was threefold. First, we proved com-
pleteness for a class of logics that feature pooling modalities, considering
four different formal languages. Second, we showed that a number of those
logics also satisfy the finite model property. Third and perhaps most impor-
tantly, we introduced a novel method in proving our results, viz. the puzzle
piece construction.

As pointed out in the last section, it remains to be seen how broadly
applicable this method is, and thus what other frame conditions can be
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axiomatized using similar tools. Orthogonally, one may investigate alterna-
tive languages with (finitary or infinitary) pooling modalities, as noted in
Section 3.4.

A final, more fundamental question is whether one can rephrase our
method in terms of a two-step procedure, following common practice in
modal logic: (i) show the logic to be complete with respect to a class of
quasi-models; (ii) develop a general method for turning every quasi-model
into a standard model of the logic. A natural notion of quasi-model would
be obtained by combining our notion of a g-model (cf. Definition 8) with
the following four constraints that reflect the axioms of the base logics:

(C1) NM (w) � NM ′(w) ⊆ NM�M (w),

(C2) If W ∈ NM�N (w), then W ∈ NM (w),

(C3) If X ∈ NM (w) and X ∈ NM�M ′�N (w), then X ∈ NM�M ′(w),

(C4) NM (w) ⊆ NM∞(w).

Step (ii) would then consist in showing that every g-model that satisfies
axioms (C1)–(C4) is equivalent to a pooled g-model, i.e. one that satisfies
the identity in Definition 6.
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Appendix: Finitary Pooling

As explained in Section 3.4, our interpretation of ∞ as “arbitrary pointwise
intersection” is crucial for the compactness of the logics that were studied
in this paper. At the suggestion of a referee we now briefly discuss a non-
compact but natural alternative.

Let M∗ be the set of all multisets of the type M : I → N ∪ {∗}, such
that (i) for at most finitely many i ∈ I, M(i) > 0 and (ii) for at least
one i ∈ I, M(i) �= 0. Intuitively, M(i) = ∗ means that in the construction
of neighbourhoods for M , we can use any finite number of neighbourhoods
that belong to index i. Analogously, L[∀]

∗ is defined just as L[∀]
∞ , but replacing

M∞ with M∗.
The following definition should not be surprising in view of our informal

reading of the ∗ notation:

Definition 12. Let X be a set of sets. Then �∗X :={X1 ∩ . . . ∩ Xn |
X1, . . . , Xn ∈ X , n ∈ N

+}.

Once there, we can simply re-use Definitions 6 and 7 (cf. Section 2.3)
to obtain a full-blown semantics for L

[∀]
∗ . As before, validity and semantic

consequence are defined in the standard way. Let us call the resulting logic
BL[∀]

∗ .12

We first show that this logic is not compact, by an argument that is en-
tirely analogous to the one that illustrates the failure of compactness for
PDL, cf. Section 3.4. Consider the set Θ = {�1∗p, ¬�1p, ¬�1,1p, ¬�1,1,1p,
. . .}. Note that Θ is inconsistent. Indeed, if a model M verifies �1∗p at a
world w, then there must be some n ∈ N such that, for some
X1, . . . , Xn ∈ N1(w), X1 ∩ . . . ∩ Xn = ‖p‖M. However, this means that
for some n ∈ N, M, w |= �1np. But that means at least one of the other
members of Θ must be false.

12What follows applies, mutatis mutandis, also to the variant without the universal
modality.

http://creativecommons.org/licenses/by/4.0/
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However, every finite subset of this Θ is consistent. To see this, con-
sider the set Θn = {�1∗p, ¬�1p, ¬�1,1p, . . . ,¬�1np}. In order to satisfy all
members of Θn, it suffices to construct a model M with n+1 distinct neigh-
bourhoods, such that (only) the intersection of all these neighbourhoods
yields ‖p‖M.

On the positive side, relying on the other results in this paper, one can
easily give a sound and weakly complete axiomatization of BL[∀]

∗ . All one
has to do is replace ∞ with ∗ everywhere in the axiomatization of BL[∀]

∞ . To
show that the resulting axiomatization is sound, it suffices to observe that
the ∗-variant of (B4),

�Mϕ → �M∗ϕ

is valid given the above semantics.
The argument for weak completeness goes as follows. Where ϕ ∈ L

[∀]
∗ ,

let ϕ∞ be the result of replacing each ∗ in ϕ with ∞. Note that over finite
models, the operations �∗ and �∞ are equivalent. Consequently, over such
models, ϕ and ϕ∞ are equivalent for any ϕ ∈ L

[∀]
∗ . Let now ϕ ∈ L

[∀]
∗ and

suppose that � ϕ. Then ϕ is true in every model and hence a fortiori in
every finite model. Consequently, ϕ∞ is valid in every finite model. By the
finite model property, � ϕ∞. By completeness, � ϕ∞. But then, in view of
our definition of the axiomatization for BL[∀]

∗ , it follows that ϕ is a theorem
in BL[∀]

∗ .
The above argument can be re-run for various extensions of BL[∀]

∗ . For
instance, adding (M) to the logic, we get a weakly complete axiomatization
for the language L[∀]

∗ over monotonic neighbourhood models. Similar remarks
apply to the other extensions, with one important exception, viz. closure
under intersections. Note that the ∗-variant of our axiom (I) is already sound
if we close under finite intersections. For instance, �1∗p → �1p is valid
whenever the neighbourhoods are closed under finite intersections. In sum,
the language L[∀]

∗ cannot distinguish between closure under finite intersection
and closure under infinite intersection.
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