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Abstract

Our understanding is limited concerning the tumor
immune microenvironment of inflammatory breast cancer
(IBC), an aggressive form of primary cancer with low rates of
pathologic complete response to current neoadjuvant chemo-
therapy (NAC) regimens. We retrospectively identified pre-
treatment (N ¼ 86) and matched posttreatment tissue
(N ¼ 27) from patients with stage III or de novo stage IV IBC
who received NAC followed by a mastectomy. Immune pro-
filing was performed including quantification of lymphoid
and myeloid infiltrates by IHC and T-cell repertoire analysis.
Thirty-four of 86 cases in this cohort (39.5%) achieved a
pathologic complete response. Characterization of the tumor
microenvironment revealed that having a lower pretreatment
mast cell density was significantly associated with achieving a

pathologic complete response to NAC (P ¼ 0.004), with
responders also having more stromal tumor-infiltrating lym-
phocytes (P¼ 0.035), CD8þ T cells (P¼ 0.047), and CD20þ B
cells (P ¼ 0.054). Spatial analysis showed close proximity of
mast cells to CD8þ T cells, CD163þ monocytes/macrophages,
and tumor cells when pathologic complete response was not
achieved. PD-L1 positivity on tumor cells was found in fewer
than 2% of cases and on immune cells in 27% of cases, but
with no correlation to response. Our results highlight the
strong association of mast cell infiltration with poor response
to NAC, suggesting a mechanism of treatment resistance and
a potential therapeutic target in IBC. Proximity of mast cells to
immune and tumor cells may suggest immunosuppressive
or tumor-promoting interactions of these mast cells.

Introduction
Inflammatory breast cancer (IBC) is an aggressive form of the

disease characterized by dermal lymphatic blockage by the tumor
mass or tumor emboli, leading to the clinical appearance of

inflammation on initial presentation (1). Locally advanced IBC
is routinely treated with neoadjuvant chemotherapy (NAC) fol-
lowed by surgery and radiotherapy; however, these patients
experience low pathologic complete response (pCR) rates
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(�15%) (2) and poor survival outcomes compared with stage
matched non-IBC cases (3, 4). De novo stage IV patients may also
receive NAC followed by aggressive local therapy for palliative
purposes given the significant breast discomfort associated with
IBC; investigations are ongoing into therapeutic benefit of this
strategy that emphasizes local disease control (5, 6). Unfortu-
nately, targeted genomic profiling has provided limited insight
into what distinguishes IBC from non-IBC, and molecularly
targeted trials have shown limited success.

Immunotherapeutic agents such as monoclonal antibodies
targeting immune checkpoints have revolutionized treatment
of many types of solid tumors; however, they have shown
modest efficacy thus far in breast cancer (7). There remains
significant interest in evaluating the role of immune-checkpoint
blockade in breast cancer, including IBC. Available data have
shown that IBC is associated with upregulated inflammatory
pathways (e.g., NF-B, JAK/STAT, IL6, COX-2; ref. 8) and that
defects in antitumor immunity may contribute to the tumor-
igenesis and evolution of IBC (9, 10). In contrast, cytotoxic
T-cell responses and associated exhaustion markers such as PD-
L1 have been correlated with favorable outcomes in IBC (11,
12). Unfortunately, the majority of published data are based on
gene-expression profiling. Therefore, there is a critical need for
comprehensive morphologic characterization of immunologic
aspects of the IBC tumor microenvironment (TME) and the
relation to clinical outcomes.

To address this gap in understanding, this study was under-
taken to morphologically characterize immunologic aspects of
the IBCTME in aprospectively collected cohort of treatment-na€�ve
locally advanced and de novo stage IV IBCpatients, and to correlate
these features with pathologic response to NAC. In addition to
confirming biomarkers of response previously reported in non-
IBC patients (tumor-infiltrating lymphocytes, CD8þ T cells), we
identified mast cells, a critical regulator of several inflammatory
conditions, as strongly associated with poor treatment outcomes.
Mast cells represent a potential therapeutic target against which
pharmacologic agents already exist, making translation readily
accessible for future clinical studies. In addition, these findings
provide additional evidence for the "inflammatory" underpin-
nings of IBC and its poor prognosis.

Materials and Methods
Study oversight

This study was approved by the MD Anderson Cancer Center
Institutional Review Board. The study was conducted in accor-
dance with the ethical principles of the Declaration of Helsinki,
and the protocol was conducted in compliance with all relevant
ethical regulations. Written informed consent was obtained from
all participants.

Cohort and tissue selection
Patients with an available hematoxylin and eosin (H&E) slide

from pretreatment breast core biopsy tissue were identified in the
MD Anderson IBC Tissue Bank. The MD Anderson IBC Tissue
Registry was searched to identify which of these patients had stage
III or de novo stage IV disease and received NAC followed by a
mastectomy. The immune analyses of de novo stage IV disease
were performed on core biopsy tissue from the primary lesion in
the breast as opposed to metastatic tissue, facilitating compar-
isons with stage III disease. Clinicopathologic data were recorded,

including age, race, stage, grade, histology, and receptor subtype.
Treatment information (including use of chemotherapy, anti-
HER2 targeted therapy, and endocrine therapy) and outcome
data [including pathologic responses, progression-free survival
(PFS), and overall survival (OS)] were also recorded. PFS
was computed from the time of surgery to the time of relapse if
stage III disease or clinical progression as deemed by the treating
physician if stage IV disease or death, and OS from the time
of surgery to time of death. Patients were categorized into
responder and nonresponder groups for immune profiling (Sup-
plementary Fig. S1). The use of the tissue and clinical data for
these studies was covered under a protocol approved by the MD
Anderson Institutional Review Board.

Immune profiling
Tumor-infiltrating lymphocyte assessment. From each case, an
H&E slide was assessed for tumor-infiltrating lymphocytes
(TIL). TILs were enumerated on H&E slides from pretreatment
core biopsies according to the International TIL Working Group
consensus guidelines (13). TILs were quantified by a breast
cancer pathologist as a percentage of stromal area occupied by
mononuclear inflammatory cells based on H&E slides.

Singlet IHC staining and quantification
IHC was performed using an automated stainer (Leica Bond

Max, Leica Biosystems) staining for CD8 (Thermo, clone
C8/144B, catalog no. MS-457-S, 1:20 dilution) and PD-L1
(pharmDx, clone 22C3, 1:40 dilution). Slides were stained using
previously optimized conditions with appropriate positive and
negative controls. Leica Bond Polymer Refine detection kit and
DAB chromagenwere used and counterstainedwith hematoxylin.
Slides were scanned into an Aperio slide scanner (Aperio AT
Turbo, Leica Biosystems) and analyzed with Aperio Image
Toolbox software for CD8þ cell staining. Regions of invasive
tumor and associated stroma were chosen for digital analysis,
and quantification of cell density (cells/mm2) was performed.
PD-L1 expression was scored as the percentage of positive cells
with membranous or cytoplasmic staining pattern (0–100).

Multiplex IHC staining and singlet quantification
Sequential multiplex IHC was performed as previously

described (14) using a myeloid panel and a lymphoid panel.
Briefly, FFPE tissue sections were deparaffinized, counterstained
in hematoxylin, and then the whole slide scanned into an Aperio
slide scanner. After blocking with endogenous peroxidase and
heat-based antigen retrieval, the slides underwent sequential iter-
ative cycles of blocking with 5% normal goat serum/2.5% BSA/1�
PBS, primary antibody incubation, secondary horseradish conju-
gated antibody incubation with HistoFine (mouse or rabbit)
Simple Stain MAX PO (Nichirei Bioscience Inc.) for 30 minutes,
and then visualization with 3-amino-9-ethylcarbazole (AEC)
detection. The slides were subsequently scanned by Aperio slide
scanner after which they were destained with an alcohol gradient,
followed by heat-based antibody stripping and antigen retrieval.
This cycle was repeated for sequential staining on a single FFPE
slide.

The myeloid panel was modified from the original published
protocol (14) with the following cycle order, primary antibodies,
and incubation times: hematoxylin (Dako S3301, 1 minute),
tryptase (AA1, Abcam, 1:20000, blocking 10 minutes, primary
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30 minutes, AEC 10 minutes), CD68 (PG-M1, Abcam, 1:50,
blocking 10 minutes, primary 30 minutes, AEC 10 minutes),
CD8 (C8/144B, Thermo Scientific, 1:25, blocking 20 minutes,
primary 30 minutes, AEC 25 minutes), CD163 (10D6, Thermo
Scientific, 1:100, blocking 10 minutes, primary 30 minutes, AEC
10 minutes), HLA-DR (SPM288, Novus Biological, 1:100, block-
ing 10minutes, primary 30minutes, AEC 10minutes), CD3 (SP7,
Thermo Scientific, 1:150, blocking 20 minutes, primary 60 min-
utes, AEC 15 minutes), and cytokeratin (AE1/AE3 1:50, MNF116
1:50, 8 and 18 1:25, blocking 10 minutes, primary 30 minutes,
AEC 5 minutes). The lymphoid panel was modified with the
following cycle order, primary antibodies, and incubation times:
hematoxylin (Dako S3301, 1 minute), CD3 (SP7, Thermo
Scientific, 1:150, blocking 20 minutes, primary 60 minutes, AEC
15 minutes), FoxP3 (236A/E7, eBioscience, 1:40, blocking 10
minutes, primary 60 minutes, AEC 20 minutes), CD8 (C8/144B,
Thermo Scientific, 1:25, blocking 20 minutes, primary 30 min-
utes, AEC 25 minutes), CD20 (L26, Agilent DAKO, 1:300, block-
ing 20 minutes, primary 30 minutes, AEC 10 minutes), CD56
(123C3,DAKO, 1:100, blocking 10minutes, primary 60minutes,
AEC 15minutes), and cytokeratin (AE1/AE3 1:50, MNF116 1:50,
8 and 18 1:25, blocking 10 minutes, primary 30 minutes, AEC
5 minutes). Singlet quantification of stains was performed as
described above.

DNA extraction
Sections from paraffin-embedded tissue were reviewed for

pathologic diagnosis and dissected if necessary to ensure that
�90% of the sample represented tumor. Total cellular DNA was
isolated from tissue sections using the QIAmp FFPE DNA isola-
tion kit according to the manufacturer's protocol (Qiagen Inc.)
following deparaffinization and proteinase K treatment.

T-cell receptor (TCR) sequencing and analysis
TCR beta chain CDR3 regions were sequenced by

immunoSEQ (Adaptive Biotechnologies), with primers anneal-
ing to V and J segments, resulting in amplification of rearranged
VDJ segments from each cell. Clonality and richness values were
obtained through the Analyzer website. Clonality was measured
as 1 � (entropy)/log2(# of productive unique sequences), with
entropy taking into account clone frequency.

Cell localization and spatial analysis
Spatial localization. As previously described (14), the images
acquired from the multiplex IHC staining were aligned by calcu-
lation of xy coordinates of fixed structures within each image and
then adjustment was made through CellProfiler. Using ImageJ,
these images were converted to gray scale and contrast adjusted to
discriminate positive staining from background staining. To
quantify the spatial proximities of cells exhibiting the queried
markers, candidate nuclei in the hematoxylin IHC-stained slides
were identified using the connected component analysis algo-
rithm (15) with the MATLAB function "bwconncomp" (16).
Candidates whose diameters were too small or too large to be
a cell (<4 mm and >16 mm, respectively) were rejected, and IHC
stains of markers were overlaid over the nuclei candidates to
determine which cells were positive for each marker.

Spatial G-function. The spatial G-function was used to quantify
infiltration of cells of one type into another (17). This technique
was used in non–small cell lung cancer and intraductal papillary

mucinous neoplasms to quantify the proximities of immune
cell types to cancer cells, and shown to have a significant asso-
ciation with OS and risk of tumor progression (18, 19). Used
previously in modeling spatial statistics in ecology (20), the
G-function GðrÞ is a nearest-neighbor distribution function that
indicates the probability of a cell of type "i" having at least one
cell of type "j" within a distance "r" mm. If we denote all cells of
type i as Xi and all cells of type j as Xj, then the following equation
describes the G-function mathematically:

G rð Þ ¼ Probðr xi;Xj
� � � rÞ

where rðxi;XjÞ ¼ minðjjxi � xjjj2 : xj 2 XjÞ is the minimum dis-
tance between a cell xi and cells xj, and Probð:Þ indicates the
probability distribution function of the quantity within the
bracket.

Consequently, this function rises sharply when cells of types "j"
and "i" are clustered together, and sluggishly when the two groups
of cells are further away from each other. Thus, the shape of the
G-function provides a signature of the infiltration pattern. The
G-function can be efficiently and compactly represented by com-
puting (18), the area under the G-function curve (¼G-function
AUC). The G-function AUC is computed between a distance
r ¼ 0 and r ¼ rmax, as a quantitative surrogate of the amount of
infiltration of one cell type into another. Various values of
rmax between 5 and 50 mm were experimented with. The spatial
analysis was performed using R's spatstat package (21).

Statistical design
Associations between categorical measures were evaluated

using the c2 or Fisher exact test as appropriate, whereas differences
in continuous measures between groups were tested using the
Mann–WhitneyU test (if only two groups) or Kruskal–Wallis test
(if more than two groups). Correlations between continuous
variables were calculated using Spearman rho. Fold change in
immune markers with treatment were assessed within each
response group using one sample Student t test if sample had
normal distribution by Shapiro–Wilk test or Wilcoxon signed-
rank test if sample was not normally distributed, with a null
hypothesis of 1. PFS and OS were estimated using the Kaplan–
Meier method, and differences between groups were assessed
using the log-rank test. Comparison of PFS by immune cell
infiltration in posttreatment tissue wasmade between the highest
and lowest quartiles of immune cell infiltration. All analyses were
performed using GraphPad Prism 7. All statistical tests used an
alpha value of 0.05 and were two-sided.

Results
Cohort characteristics

A total of 86 IBC patients with available pretreatment
H&E-stained slides and who underwent mastectomy after NAC
were identified in the IBC tumor registry and tissue bank. Baseline
demographics, tumor characteristics, treatment regimens, and
pathologic outcome data are shown in Table 1. Approximately
70% of cases had stage III disease with the rest having de novo
stage IV disease; 90% had pure ductal histology with the
remainder largely having mixed histology, and 70% of cases had
grade III disease. HER2/neu-amplified (HER2þ) and hormone
receptor–positive, HER2/neu nonamplified (HRþ/HER2–) breast
cancer receptor subtypes each represented 40% of the cohort
population, and treatment regimens largely reflected this, with
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40% receiving anti-HER2–targeted regimens in combination
with chemotherapy. During the time period over which this
cohort was assembled, a clinical trial of carboplatin and panitu-
mumab in combinationwith standard anthracycline- and taxane-
based therapy (NCT01036087) was ongoing for patients with
triple-negative breast cancer (TNBC) or HRþ/HER2– disease (22),
and 25% of patients in this cohort received this treatment.
Approximately 40% of patients experienced a pCR, and com-
parison of responders and nonresponders showed that the
responder cohort was enriched with stage III patients and HER2þ

disease (Table 1). PFS was improved in patients experiencing a
pCR in both the full cohort and when analyses were limited to
patients with stage III disease (Supplementary Fig. S2A–S2B).

Characterization of immunologic aspects of the TME
The IBC TME was first interrogated by presenting stage and

breast cancer receptor status (Fig. 1A–J; Supplementary Figs. S3A–
S3Q, S4A–S4L, S5A–S5D, and S6A–S6J). Representative H&Es
and stains are shown in Supplementary Fig. S3A–S3Q. Greater
TIL frequencies were found in stage III disease compared with
de novo stage IV disease (P ¼ 0.016), and this was largely driven
by the HER2þ and TNBC subtypes (Fig. 1A; Supplementary
Fig. S4H). Singlet IHC staining and multiplex IHC were per-
formed to further characterize lymphoid and myeloid subsets
(Fig. 1B–H; Supplementary Fig. S4A–S4E). Tumors from patients

with stage III disease demonstrated higher lymphoid infiltrates
(CD8þ, CD56þ, and CD20þ cells) as well as HLA-DR, which is
often seen on antigen-presenting cells as well as on activated
lymphoid cells comparedwith de novo stage IV disease (P¼ 0.010,
0.062, 0.158, and 0.006, respectively). Differences in numbers of
CD8þ and HLA-DRþ cells between IBC stages were largely seen
in HER2þ and TNBC subtypes; differences in CD56þ cells were
predominantly seen in HRþ/HER2– disease, and differences in
CD20þ cells primarily in TNBC (Supplementary Fig. S4I–S4L).
Density of cells staining double positive for HLA-DR and CD68,
CD163, or CD8 did not reveal any particular immune cell subset
accounting for HLA-DRþ cells being overrepresented in stage III
disease (Supplementary Fig. S5A–S5D). Comparisons of receptor
subtypes within stage III disease showed that HER2þ disease
had significantly higher numbers of CD8þ cells compared with
HRþ/HER2– disease (P ¼ 0.003), and that TNBC had higher
CD20þ cells compared with HRþ/HER2– disease (P ¼ 0.027;
Fig. 1G–H; Supplementary Fig. S6A–S6H).

PD-L1 expression at �1% tumor cell positivity was demon-
strated in only 1 of 43 cases (Supplementary Fig. 3E), and this case
displayed only 1% staining. In contrast, approximately 30% of
immune cells were positive for PD-L1 staining in this cohort but
with no differences by stage or receptor subtype (Fig. 1I; Supple-
mentary Fig. S4F).

To further characterize the specificity of the T-cell infiltrate,
T-cell repertoire analysis was performed. No differences in
T-cell clonality (reactivity) or T-cell richness (diversity) were
seen by IBC stage or receptor subtype (Fig. 1J; Supplementary
Figs. S4G and S6I–S6J).

TILs andmast cells are associatedwith response to neoadjuvant
chemotherapy

We next asked if immune cell subsets were different between
responders, defined as those experiencing pCR, and nonrespon-
ders (Fig. 2A–G; Supplementary Figs. S7A–S7J and S8A–S8M).
Consistent with prior reports in non-IBC breast cancer, the
presence of TILs was increased in the tumors of patients experi-
encing pCR (P¼ 0.035) with higher subsets of CD8þ (P¼ 0.047)
and CD20þ cells (P ¼ 0.054; Fig. 2A–C).

The immune marker most significantly associated with
response was tryptase, a mast cell marker. Numbers of tryptaseþ

cells were significantly higher in nonresponders than in respon-
ders (P ¼ 0.004; Fig. 2D). Representative tryptase staining in
nonresponder and responder cases is shown in Supplementary
Fig. S3N and S3O, respectively. This association was seen in the
full cohort, in stage III cases only, and also within each receptor
subtype among the stage III cohort (Supplementary Fig. S8G). All
other lymphoid andmyeloid markers tested as well as PD-L1 and
T-cell clonality and diversity metrics were not associated with
response.

To further understand what immune interactions may account
for this inverse relationship between mast cells and response,
spatial assessmentwas performedon themultiplexmyeloid panel
(Fig. 2E–G). Focusing on 5 mm, 10 mm, and 20 mm distances
between cells, within presumed range of interaction, we found
that mast cells were within close proximity to CD8þ T cells,
CD163þ macrophages, and tumor cells (as assessed by cytoker-
atin) in nonresponders compared with responders (Fig. 2H–J;
Supplementary Fig. S7I–S7J), suggesting mast cells may be exert-
ing immunosuppressive effects by interactionwith these cell types
in particular.

Table 1. Cohort characteristics

Full cohort
(n ¼ 86)

pCR
(n ¼ 34)

Non-pCR
(n ¼ 52)

P
value

Age at diagnosis, mean
years (range)

50 (23–75) 48 (23–64) 51 (27–75) 0.092

Race/ethnicity, n (%) 0.020
White 72 (83.7) 26 (76.5) 46 (88.5)
Black 6 (7.0) 1 (2.9) 5 (9.6)
Hispanic 7 (8.1) 6 (17.6) 1 (1.9)
Asian 1 (0.1) 1 (2.9) 0 (0.0)

Stage, n (%) <0.001
Stage IIIB 32 (37.2) 12 (35.3) 20 (38.5)
Stage IIIC 30 (34.9) 19 (55.9) 11 (21.2)
Stage IV 24 (27.9) 3 (8.8) 21 (40.4)

Receptor subtype, n (%) 0.019
TNBC 20 (23.2) 8 (23.5) 12 (23.1)
HER2þ 34 (39.5) 19 (55.9) 15 (28.8)
HRþ/HER2� 32 (37.2) 7 (20.6) 25 (48.1)

Histology, n (%) 1
Ductal 76 (88.4) 30 (88.2) 46 (88.5)
Lobular 0 (0.0) 0 (0.0) 0 (0.0)
Mixed 9 (10.5) 4 (11.8) 5 (9.6)
Poorly differentiated 1 (0.1) 0 (0.0) 1 (1.9)

Grade, n (%) 0.358
I 0 (0) 0 (0.0) 0 (0.0)
II 28 (32.6) 9 (26.5) 19 (36.5)
III 58 (67.4) 25 (73.5) 33 (63.5)

Neoadjuvant treatment
received

0.004

Anthracycline þ taxane 29 (33.7) 4 (11.8) 24 (46.2)
Taxane þ anti-HER2 �
anthracycline or
carboplatin

34 (39.5) 19 (55.9) 16 (30.8)

Anthracycline þ carboplatin
þ taxane þ panitumumab

21 (24.4) 10 (29.4) 11 (21.2)

Other (T-DM1, taxolþavastin) 2 (2.3) 1 (2.9) 1 (1.9)

Abbreviations: pCR, pathologic complete response; TNBC, triple-negative
breast cancer; HER2þ, HER2/neu-amplified breast cancer; HRþ/HER2�, hor-
mone receptor (estrogen receptor or progesterone receptor) positive,
HER2/neu nonamplified breast cancer.
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Figure 1.

Stage III IBC has a higher infiltrate of lymphoid cells and MHC class II presentation, whereas hormone receptor–positive disease has a lower lymphoid infiltrate.
A,Quantification by TIL percentage of stromal area of primary breast tissue from stage III or de novo stage IV disease (n¼ 62 stage III and 24 stage IV patients).
Receptor subtypes are denoted with triangle indicating hormone receptor positive, HER2/neu nonamplified (HRþ/HER2–) disease, closed circle indicating
HER2/neu-amplified (HER2þ) disease, and open circle indicating TNBC. B, Supervised clustering by stage, then receptor status and chemotherapy response of
cases that received additional IHC immune assessment (n¼ 37 stage III and 13 stage IV patients). TIL percentage, CD3, CD8, FoxP3, CD20, CD56, CD68, CD163,
tryptase, HLA-DR, and PD-L1 expression on tumor and immune cells are shown, with red indicating higher infiltration and blue lower infiltration. C–F,
Quantification of CD8þ, CD56þ, CD20þ, and HLA-DRþ cells by stage (n¼ 36 stage III and 13 stage IV, 18 stage III and 13 stage IV, 19 stage III and 13 stage IV,
35 stage III and 13 stage IV, respectively). G and H,Quantification of CD8þ and CD20þ cells by tumor receptor status (n¼ 8 TNBC, 14 HER2þ, 14 HRþ/HER2þ for
CD8þ, 4 TNBC, 6 HER2þ, 9 HRþ/HER2– for CD20þ cells). I, Bar graph representing percentage of cases with PD-L1þ tumors and immune cells (n¼ 43). J, TCR
clonality by stage (n¼ 23 stage III and 9 stage IV). A, C–H, J, Bar heights indicate median values, and interquartile ranges are presented in addition to
individual data points. All comparisons were made using two-sided Mann–Whitney U test (if two groups) or Kruskal–Wallis test with adjustment for multiple
testing (if more than two groups).
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Figure 2.

Mast cells are the strongest immune predictor of poor response to chemotherapy, with higher TILs seen in responders than in nonresponders. A–D,
TIL percentage and densities of CD8þ, CD20þ, and tryptaseþ cells by response, with response defined as achieving a pathologic complete response
(pCR) or not (non-pCR; n ¼ 52 non-pCR and 34 pCR, 33 non-pCR and 16 pCR, 24 non-pCR and 7 pCR, 32 non-pCR and 17 pCR, respectively). Closed
circle indicates stage III cases, and open circle stage IV cases. E, Representative multiplex IHC image of a non-pCR and pCR case with nuclei (blue),
CD68 (purple), CD163 (turquoise), tryptase (yellow), HLA-DR (green), CD8 (red), and cytokeratin (orange) stains depicted. F and G, Depiction of
methodology for spatial analyses performed. Probabilities of a cell of interest being within a certain radius to another cell of interest were computed
and area under the curve (AUC) calculated, with higher AUC indicating closer proximity. H, Non-pCR cases (n ¼ 15) demonstrated higher AUC of
mast cells to CD8þ T cells than pCR cases (n ¼ 12). I, Representative non-pCR and pCR cases showing distance between CD8þ T-cell (red) and
tryptaseþ mast cell (yellow). J, Comparisons by response of AUC between mast cells and CD8þ, CD163þ, and cytokeratinþ (tumor) cells (n ¼ 15
non-pCR and 12 pCR, 18 non-pCR and 14 pCR, 21 non-pCR and 14 pCR, respectively). A–D, J, Bar heights indicate median values, and interquartile
ranges are presented in addition to individual data points. Comparisons were made using two-sided Mann–Whitney U test.
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Macrophages and MHC class II molecules are associated with
improved PFS

On a subset of cases with available posttreatment tissue from
their surgical specimen (n ¼ 27), immune profiling was per-
formed to characterize immune infiltrates in residual tumor as
well as areas of treatment effect and to study the change in
immune cells with therapy (Fig. 3A–F; Supplementary Figs.
S9A–S9O and S10A–S10I). Pathologic response, stage, receptor

subtype, and treatment characteristics of this cohort are provided
in Supplementary Table S1. The cohort included tissue retrieved
from the previous tumor bed in 6 patients who experienced a
pCR and residual tumor in 21 patients who did not experience
a pCR. Analysis of posttreatment tissue showed that myeloid
infiltrates includingmacrophages, assessed byCD163 (P¼0.004)
and CD68 (P ¼ 0.004), as well as HLA-DR (P ¼ 0.011), were
present in significantly higher densities in the prior tumor bed
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Figure 3.

Higher posttreatment myeloid cells are associated with improved outcomes. A–C, Densities of CD163þ, CD68þ, and HLA-DRþ cells in the tumor bed at
the time of mastectomy by response, with response defined as achieving a pathologic complete response (pCR) or not (non-pCR; n ¼ 20 non-pCR
and 6 pCR). D–F, Kaplan–Meier estimates of PFS from the time of surgery using two-sided log-rank test by residual densities of CD163þ, CD68þ, and
HLA-DRþ cells in residual tumor of non-pCR cases (n ¼ 20). G, Immune marker fold change from baseline to mastectomy tumor bed of non-pCR
(red) and pCR (green) cases for density of CD3þ (n ¼ 19 non-pCR and 4 pCR), CD8þ (n ¼ 20 non-pCR and 5 pCR), FoxP3þ (n ¼ 19 non-pCR and
4 pCR), CD20þ (n ¼ 15 non-pCR and 2 pCR), CD56þ (n ¼ 14 non-pCR and 2 pCR), tryptaseþ (n ¼ 18 non-pCR and 5 pCR), CD68þ (n ¼ 19 non-pCR
and 5 pCR), CD163þ (n ¼ 19 non-pCR and 5 pCR), and HLA-DRþ (n ¼ 19 non-pCR and 5 pCR) cells. Individual data points are depicted on the top,
and median fold change on the bottom. Star indicates significant fold change from baseline, determined by one sample t test if variable normally
distributed or Wilcoxon signed-rank test if not normally distributed by Shapiro–Wilk normality test. H and I, T-cell repertoire clonality and diversity
fold changes from baseline to mastectomy tumor bed by response (n ¼ 14 non-pCR and 3 pCR). A–C, H and I, Closed circle indicates stage III cases,
and open circle indicates stage IV cases. Bar heights indicate median values, and interquartile ranges are presented in addition to individual data
points. All comparisons were made using two-sided Mann–Whitney U test except where indicated.
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of cases that achieved a pCR compared with in the residual
tumor of non-pCR cases (Fig. 3A–C). In addition, higher infiltra-
tion of these cell types was associated with improved PFS
(P ¼ 0.062, 0.156, and 0.012 for CD163, CD68, and HLA-DR,
respectively) and a trend in improved OS among the non-pCR
cases (Fig. 3D–F; Supplementary Fig. S10A–S10C). FoxP3þ and
CD56þ cells were also elevated in pCRmastectomy tissue, where-
as lower numbers of FoxP3þ cells were associated with trend in
improved OS among non-pCR cases (Supplementary Figs. S9C,
S9E, and S10G).

When looking at fold change from pretreatment biopsy speci-
mens to mastectomy specimens (Fig. 3G), there was a significant
decrease in CD8þ cells (P < 0.001) as well as tryptaseþ cell
density (P ¼ 0.012) with treatment in patients who experienced
a pCR. Non-pCR cases also demonstrated a significant decrease
in tryptaseþ cell density as well as in CD56, HLA-DR, and
CD163 expression (P ¼ 0.021, 0.049, 0.020, and 0.020, respec-
tively). Fold change by treatment type is shown in Supple-
mentary Fig. S11A, though it is difficult to draw conclusions
on differential changes by therapy given the limited size of the
cohort and that the pCR cases consisted of 5 patients who
received anti-HER2–targeted therapy and 1 who received an
EGFR inhibitor along with chemotherapy.

Treatment induces higher clonality as well as higher T-cell
diversity in responders

T-cell repertoire analysis using TCR sequencing overall
showed a significant change in repertoire with very lowMorisita
overlap values in both pCR and non-pCR cases (Supplementary
Fig. S11B). Responders showed an increase in both clonality
and diversity (richness) compared with nonresponder cases
(P ¼ 0.003 and 0.032, respectively; Fig. 3H and I).

Discussion
This study provides a large and comprehensive characteriza-

tion of the IBC tumor immune microenvironment that has
been performed using reliable methodology such as IHC to
quantify immune cell subsets and determine their relationship
to response. Mast cell infiltration, as identified by tryptase
staining, was significantly associated with poor response to
neoadjuvant chemotherapy in all stage and receptor subtypes
of IBC and presents a possible therapeutic target.

Mast cells, which are known regulators of allergic and nonal-
lergic inflammatory responses (23), are known to infiltrate breast
cancer, but the literature has been inconsistent as to whether
they are a favorable (24, 25) or poor prognostic indicator (26),
with some data suggesting they may play different roles by breast
cancer receptor subtype and grade (27, 28). This functional
heterogeneity of mast cells may be a result of their ability to
secrete a wide range of chemokines, growth factors, and other
soluble mediators in a context-dependent fashion (29). Down-
streameffects therefore range from tumor promoting (stimulating
angiogenesis/lymphangiogenesis, refs. 30, 31; extracellularmatrix
degradation, direct immunosuppression via secretion of TGFb
and IL10, and immune cell recruitment and activation of inhib-
itory cells such as myeloid derived suppressor cells and T regu-
latory cells) to tumor inhibiting (direct cytotoxic activity and
immune cell recruitment and activation of cytotoxic T lympho-
cytes and other antitumor immune cells, ref. 32). In this cohort, in
which mast cells were inversely associated with pCR across

IBC subtypes, we explored potential immune interactions con-
tributing to treatment resistance by analysis of spatial relation-
ships with a multiplex IHC platform. By focusing on distances
up to 20 mm (33), we found that mast cells were within range for
direct or paracrine interactions with CD8þ T cells, the primary
effectors of antitumor responses, as well as CD163þmacrophages
and tumor cells. Mast cells may therefore at least partially be
exerting their inhibitory effect in IBC through suppressing CD8þ

T cells, enhancing immunosuppressive CD163þ macrophages,
and directly promoting tumor cell growth. Prior studies support
such interactions (34–39). Though this work will need to be
validated with mechanistic studies, these data suggest mast cells
may be a therapeutic target to enhance responses to NAC, and
already existent agents such as mast cell stabilizers and c-Kit
inhibitors make this readily translatable. In addition, these find-
ings give further support that inflammation in "inflammatory"
breast cancer extends beyond clinical appearance to underlying
pathophysiology.

This study also demonstrated known lymphoid biomarkers
of response to NAC as seen in non-IBC, including TILs (40),
CD8þ T-cell infiltrate (41), and CD20þ B-cell infiltrate (42, 43),
though notably these lymphoid infiltrates were less significant-
ly associated with response compared with mast cell infiltra-
tion. Differences were noted in density of these lymphoid
infiltrates by stage and by receptor status, with stage IV disease
and hormone receptor–positive disease having a "colder" TME,
therefore perhaps less immunogenic tumors than other subsets,
potentially accounting for differential responses to therapy in
these IBC subsets. Although lower TIL and specific lymphocyte
subsets have previously been seen in matched primary metas-
tases compared with primary breast cancer sites, this current
study is unique in comprehensively characterizing primary
breast tissue of de novo metastatic disease and showed that a
less inflamed TME is seen at the site of the primary tumor and
likely precedes development of distant metastases. PD-L1 pos-
itivity (�1%) was seen on tumor cells in only 1 of 43 pretreat-
ment cases assessed and on immune cells in �30% of cases.
Low PD-L1 positivity, in particular tumor cell positivity, is
lower than seen in non-IBC even with the same antibody clone,
suggesting this is not a primary mechanism for immune eva-
sion in IBC (7, 44–49). Consistent with this, neither tumor nor
immune cell PD-L1 positivity was correlated to response in
this cohort. This rate of PD-L1 expression is consistent with
prior RNA expression–based studies in IBC (11), and our
IHC methodology additionally provides an accurate quantifi-
cation of the number of cells with positive PD-L1 expression
and further subdivides into tumor versus immune cell positiv-
ity. Unlike the prior report, our finding that PD-L1 is not
predictive of pCR may reflect a more accurate characterization
of PD-L1 expression though limited sample size may also be
contributing.

Posttreatment tissue assessment revealed greater macrophage
infiltration and HLA-DR staining in the prior tumor bed of
patients experiencing a complete response to NAC as well as in
residual tissue of non-pCR cases that had improved PFS. Inter-
pretation of these findings is confounded by the overrepresenta-
tion of anti-HER2– and anti-EGFR–targeted treatments combined
with NAC in the responders for the posttreatment cases available.
Therefore, this may reflect that monoclonal antibody–treated
patients demonstrate evidence of antibody-dependent phagocy-
tosis, in which macrophages are critical effectors, and highlight
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the importance of this mechanism in addition to NK cells in
mediating improved outcomes (50, 51). As expected, higher NK
cell infiltration was also seen with therapy in responders. In this
limited cohort, no significant relationship was seen between
lymphoid infiltration in residual tumor andPFS outcome, though
greater numbers of FoxP3þ cells were seen in pCR compared with
non-pCR cases, perhaps again reflective of a trastuzumab treat-
ment effect, as has been previously demonstrated (52); among the
non-pCR cases, lower FoxP3þ cell infiltration was associated with
improved OS as previously reported in non-IBC (53). Analysis of
change in T-cell repertoire dynamics showed that response was
associated with an increase in clonality but also an increase in
diversity metrics. This suggests that NAC (and again in this case
monoclonal antibody and specifically HER2 targeted therapy)
led to an increase in overall tumor reactive T cells as well as an
increase in specific expanded T-cell clones accounting for increase
in clonality. Similar to what was seen in pretreatment tissue, our
cases were largely PD-L1–negative on tumor cells and positive in
approximately one third of cases on immune cells, neither with
correlation to survival outcome. Another study using tissuemicro-
arrays of 68 mastectomy IBC cases diagnosed prior to 2004
found that 37% of non-pCR cases were positive for PD-L1 on
tumor cells and that this predictedworse survival (54); differences
in the patient population (earlier stage patients and unknown
neoadjuvant treatment characteristics in the other cohort), PD-L1
antibody clone used, and a limited sample size in our posttreat-
ment cohort limit meaningful comparisons between these two
studies. When comparing pCR and non-pCR cases, differences
between cases in the area occupied by tumor cells in the residual
tumor bed of non-pCR cases (vs. pCR cases for which there are
no tumor cells present)may have added bias to our posttreatment
results. However, the interspersed nature of IBC infiltration into
the tissue made this difficult to account for. Nevertheless, the
presence of consistent findings in our study between the pCR
versus non-pCR tumor bed analysis and the survival analysis
among non-pCR cases lends support for the accuracy and clinical
relevance of our findings regarding higher macrophage infiltra-
tion and HLA-DRþ cells in posttreatment tissue of responders.
Our results will need to be validated in larger data sets with more
homogenouspopulations by stage, receptor status, and associated
therapies.

The primary limitation of this study is the relatively small size
of the cohort and heterogeneity with respect to stage, receptor
status, and associated differences in neoadjuvant treatments
given. These mixed classes and treatment statuses therefore limit
reliability of pooling data for pre- and posttreatment analyses.
However, given the relative rarity of IBC and the comprehensive
assessment of primary breast tissue from de novo IBC, the work
presented here provides thorough immune characterization of
IBC. To ensure accurate and robust conclusions from these data,
all analyses were performed for the full cohort as well as within
stage and receptor subsets when possible to determine both
generalizable and subset-specific findings. These will need to be
validated in additional IBC cohorts as well as compared with
matched non-IBC to better understand the unique pathophys-
iology of IBC. In addition, with respect to our findings on mast
cell infiltration predicting poor response to chemotherapy,
mechanistic studies in addition to functional and activation
profiling of the immune subsets (such as mast cells and CD8þ T
cells) are needed to further validate our findings and identify
optimal modalities of therapeutically targeting IBC tumors.

In summary, this study provides a comprehensive immune
profiling of IBC from which future studies can build. We
showed expected biomarkers of response to NAC such as TILs
and CD8þ T-cell infiltrate, which have a known role across solid
tumors in shaping response to therapy. We additionally iden-
tified mast cells as significantly associated with poor responses
to therapy and a potential therapeutic target, highlighting the
role of nonlymphoid subsets in IBC and perhaps even more
generally the breast cancer TME. Together, these analyses pro-
vide an integrated profile of IBC to inform future design of
IBC-specific clinical trials.
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