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Abstract

Species distribution models (SDMs) are increasingly applied in conservation management

to predict suitable habitat for poorly known populations. High predictive performance of

SDMs is evident in validations performed within the model calibration area (interpolation),

but few studies have assessed SDM transferability to novel areas (extrapolation), particular-

ly across large spatial scales or pelagic ecosystems. We performed rigorous SDM valida-

tion tests on distribution data from three populations of a long-ranging marine predator, the

grey petrel Procellaria cinerea, to assess model transferability across the Southern Hemi-

sphere (25-65°S). Oceanographic data were combined with tracks of grey petrels from two

remote sub-Antarctic islands (Antipodes and Kerguelen) using boosted regression trees to

generate three SDMs: one for each island population, and a combined model. The predic-

tive performance of these models was assessed using withheld tracking data from within

the model calibration areas (interpolation), and from a third population, Marion Island (ex-

trapolation). Predictive performance was assessed using k-fold cross validation and point

biserial correlation. The two population-specific SDMs included the same predictor vari-

ables and suggested birds responded to the same broad-scale oceanographic influences.

However, all model validation tests, including of the combined model, determined strong in-

terpolation but weak extrapolation capabilities. These results indicate that habitat use re-

flects both its availability and bird preferences, such that the realized distribution patterns

differ for each population. The spatial predictions by the three SDMs were compared with

tracking data and fishing effort to demonstrate the conservation pitfalls of extrapolating

SDMs outside calibration regions. This exercise revealed that SDM predictions would have

led to an underestimate of overlap with fishing effort and potentially misinformed bycatch
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mitigation efforts. Although SDMs can elucidate potential distribution patterns relative to

large-scale climatic and oceanographic conditions, knowledge of local habitat availability

and preferences is necessary to understand and successfully predict region-specific real-

ized distribution patterns.

Introduction

There are typically two general aims of species distribution models (SDMs): (1) to describe the

ecological drivers of distribution patterns, and (2) to make predictions of species distributions.

Both aims are important in a conservation framework to anticipate how changing environ-

ments may impact a species, and to inform a potential management response [1]. When ap-

plied appropriately, SDMs can provide useful ecological insights and strong predictive

capability [2]. Therefore, SDMs generated by a variety of modelling techniques have been used

in diverse applications across multiple species, ecosystems, and scales e.g., [3–6].

Despite their increasing popularity, the usefulness of SDMs as predictive tools has been

questioned due to a tendency for model predictive capacity to be tested within the same spatial

and temporal range as the training data (interpolation), rather than an assessment of a model’s

transferability to novel regions and time periods (extrapolation) [4,7]. For SDMs to be a practi-

cal method for predicting species distributions, it is necessary to quantify their generality with

independent data to ensure that predictions accurately reflect species distribution patterns

away from the calibration region [8]. Model transferability is particularly important for species

of high conservation concern if SDMs are being used to target management interventions.

Testing model transferability is feasible and should be a basic requirement for SDMs [9,10],

particularly for models intended for conservation planning, but it is rarely assessed [4,7]. The

few studies to assess transferability have generated contrasting results, mostly attributed to var-

iation in scale [3–5,11,12]. Large-scale analyses examine whole-species distributions, whereas

fine-scale models examine the responses of individuals to local environmental variability [13].

Despite the tendency and temptation to infer a species’ fundamental or realized niche based on

SDMs, statistical models are ill-suited for these purposes because they are unable to account for

all biotic and abiotic effects on individual fitness [14,15]. Rather, SDMs are a powerful tool to

identify a species’ potential and realized distributions [15]. Potential distribution patterns de-

fine where a species could live, and realized distributions reflect where a species actually lives in

relation to the habitat that is available. From an evolutionary perspective, the large-scale physi-

cal and biological processes that drive potential distributions should be congruent across popu-

lations and regions, but at a fine-scale, realized distributions are limited by local conditions.

Therefore, fine-scale models with good fit to the training data may work well in adjacent habi-

tats with similar characteristics, but fail when extrapolated to more distant areas where envi-

ronmental conditions and local processes may be more distinct.

Although SDMs have only recently been applied to marine species, the uptake has been

swift, including distribution models for highly mobile and dynamic predators such as seabirds

[16]. Miniaturised tracking devices have revealed the distribution patterns of many seabirds

within the order Procellariiformes (shearwaters, petrels and albatrosses). This information is

critical for a group that includes many species, particularly albatrosses and large petrels, which

face major threats from fisheries and habitat change [17,18]. Therefore, SDMs have been ap-

plied recently to improve the understanding of procellariiform at-sea distribution patterns and

define areas of high risk from fishing and other activities [19–21].
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Previous studies have documented associations between the distributions of procellariiform

seabirds and oceanographic features at various scales e.g., [19,21,22]. These studies emphasize

the need to understand how dynamic oceanographic processes generate and sustain prey ag-

gregations and hence determine predator distribution patterns. SDMs have been used to pre-

dict habitat use of several albatrosses and petrels in the same region as the underlying

distribution data were collected (interpolation), with apparently high predictive capacity

[6,19–21]. Additionally, Louzao et al. [18] demonstrated successful temporal transferability of

an SDM for the wandering albatross Diomedea exulans across decades. However, to our knowl-

edge, the only previous test of spatial transferability of an SDM for a marine predator was for

parapatric penguin populations within the same ocean region [23].

Obtaining representative tracking data for species with wide distributions, particularly those

that breed on remote islands, is logistically and financially challenging. A more practical ap-

proach to assessing distribution patterns may be to extrapolate a reliable SDM based on track-

ing data from one or more populations, to other regions where there are no tracked birds. The

applicability of this approach is tested here using data from the little studied grey petrel Procel-

laria cinerea. This species breeds during winter at several remote sub-Antarctic islands, with

the largest population at Antipodes Island in the south west Pacific Ocean (49°420S, 178°470E;

ca. 53,000 breeding pairs [24]). Grey petrels also breed on the Kerguelen Islands in the south

eastern Indian Ocean (49°280S, 69°570E; ca. 3,400 breeding pairs [25]), and the Prince Edward

Islands in the south western Indian Ocean (46°380S, 37°550E; ca. 5,000 breeding pairs [26]). Al-

though little is known about grey petrel distribution or foraging patterns, cephalopods domi-

nate their diet by frequency of occurrence (86.7%) and mass (70.4%; [27]). The dominant at-

sea threat to grey petrels is incidental bycatch in longline fisheries [25,28] and their distribution

overlaps with nine different regional fisheries management organizations [29]. This study uti-

lizes tracking data from adults from three populations of grey petrels breeding in different

ocean basins to (i) document, for the first time, their distribution during the non-breeding sea-

son, (ii) develop SDMs to compare the oceanographic characteristics of the habitats used in dif-

ferent regions, and (iii) test model interpolation and extrapolation capabilities. This study

represents the first comprehensive test of SDM transferability in pelagic ecosystems, and adds

to a limited number of studies that assess transferability in any type of ecosystem at the scale of

thousands of kilometres e.g., [30].

Materials and Methods

Tracking datasets

Global Location Sensors (GLS loggers; British Antarctic Survey, Cambridge, UK) were used to

record the long-term, broad-scale movements of individual grey petrels from three colonies:

Antipodes Island, Kerguelen Island and Marion Island within the Prince Edward Islands. GLS

loggers record ambient light, allowing latitude and longitude to be estimated based on thresh-

olds in light curves and time of day [31]. GLS loggers are lightweight with a long battery-life,

but only provide two locations a day (at local midday and midnight) and have relatively low

spatial accuracy (186 ± SD 114 km; [31]). This level of accuracy is adequate to assess the large-

scale movement patterns of seabirds.

Twenty-seven GLS loggers were deployed on grey petrels at Antipodes Island in February

2009, 18 (67%) of which were retrieved in March or April 2010. Thirty GLS loggers were de-

ployed on grey petrels on Kerguelen Island in April 2007 or 2008, and 11 (37%) were retrieved

in April of the following years, but two failed to download. Three GLS loggers were deployed

on grey petrels on Marion Island in May 2009, with one recovered in May 2010. In May 2013,

a further nine GLS loggers were deployed at Marion Island, of which four were recovered in
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April 2014, but one failed to download. Therefore, five (42%) of 12 devices were recovered at

this site. The loggers were models Mk9 (n = 33), Mk13 (n = 1), and Mk7 (n = 5), all of which

weighed<2.5 g (<0.2% of mean adult body weight) and were mounted on plastic bands fitted

to the tarsus. Light data from retrieved loggers were processed according to Phillips et al. [31]

to remove unrealistic locations.

Ethics statement

All scientific procedures were approved by the relevant authorities: Tagging work at Antipodes

Island was conducted under permit issued by the New Zealand Department of Conservation

and was approved by the animal ethics committee at the National Institute of Water and At-

mospheric Research in New Zealand; work at Kerguelen Island was approved by the ethics

committee of the French Polar Institute (IPEV); On Marion Island, research was conducted

under permit issued by the South African Department of Environment Affairs, following ap-

proval by the University of Cape Town’s Animal Ethics Committee. The duration of handling

times of all grey petrels lasted< 10 minutes and great care was taken to minimize stress to the

animals during tag deployment and retrieval.

Data implemented in SDMs

Three SDMs were generated using tracking data recorded during the non-breeding period (Oc-

tober to February): an Antipodes model, a Kerguelen model, and a combined model including

data from both populations. As in previous studies that generated seabird SDMs using tracking

data e.g., [18,20,21], it was assumed that the pooled sample of tracked individual grey petrels

was representative of the distribution patterns of the respective population. Due to the small

sample of birds tracked fromMarion Island, a SDM was not created for this population.

Density contours of 50% and 90% for each population were calculated for each month dur-

ing the non-breeding phase using a 200-km search radius. Presence data implemented in the

three models were the GLS locations within the 50% density contour for each month. In sea-

bird studies, core habitat is commonly defined as the area within the 50% density contour [32].

Pseudo-absence data for each month were uniformly spaced points (every 100 km2) within the

contiguous 90% density contour of all non-breeding locations (October to February) for each

population, including throughout the 50% density polygon. These pseudo-absence data are es-

sentially background data that characterize the habitat available to the petrels. This method en-

abled a comparison between the core habitat used by petrels (monthly 50% density contour)

relative to the habitat available within the general region that the birds could have exploited

(90% density contour). No standard method has been developed for implementation of marine

megafauna tracking data, which inherently consists of presence-only data, into habitat models.

The approach used here allowed background data to overlap spatially and environmentally

with presence data, generating presence versus availability models rather than presence versus

absence models [33]. Preliminary models tested various methods of generating pseudo-

absences, including the use of absence data only from outside the 50% contour (a presence/

absence model). This initial effort determined no significant differences in model results or

conclusions. Therefore, the presence/availability model approach was applied because it pro-

vided a more rigorous test of habitat use patterns by accounting for variation in the availability

of habitat throughout the non-breeding range. For both populations, 20% of the presence data

and 100 pseudo-absences were randomly subsampled and withheld from each month for

model validation. These withheld data were also used for validating the combined model.
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Environmental data implemented in SDMs

A range of environmental datasets were included in models to characterise grey petrel habitat

use. These included five static layers: depth (m; General Bathymetric Chart of the World

(http://www.gebco.net/), sea bed slope (degrees), month (categorical), geomorphology class

(categorical; shelf, slope, rise, plain, valley, trench, trough, basin, hills(s), mountains(s), ridges

(s), plateau, seamount; [34]), and distance from seamount (m; [35]). Month was included as a

factor in the models to evaluate possible temporal shifts in habitat use. In addition, dynamic

environmental variables were derived from oceanographic climatologies and remotely-sensed

data. Mixed layer depth (m), surface currents (m.s-1), temperature (°C) at 0 m, 10 m, and 50 m,

mean temperature at 0–10 m and at 0–50 m were extracted from the CSIRO Atlas of Regional

Seas (CARS) [36]. Eddy kinetic energy ((cm.s-1)2), a measure of variability in surface currents

(derived from AVISO: http://www.aviso.oceanobs.com) and surface chlorophyll a (mg.m-3; de-

rived from SeaWifs images: http://oceandata.sci.gsfc.nasa.gov/) were also obtained. These dy-

namic oceanographic data describe averaged conditions at a location and month, based on

long-term data collection. Environmental values were extracted from each dataset at all pres-

ence and background locations, and associated month for dynamic layers (i.e., November pres-

ence/background points sampled the November climatologies). All environmental variables

included in the SDMs had a spatial resolution of 0.5 degrees, and the dynamic variables had a

monthly temporal resolution. For all SDMs, presence and background data from all months

were combined into a single model.

Modelling methods

Response and predictor variables were related in a boosted regression tree (BRT) modelling

framework, a method that is able to interpret complex relationships between species and the

environment [37]. The first of two algorithms implemented in BRT modelling partitions obser-

vations into groups with similar characteristics using regression or classification trees. Boosting

is the second algorithm and stems from machine learning where trees are fitted iteratively, em-

phasizing observations that poorly fit the existing collection of trees [38]. Boosting combines

these trees to minimize misclassification errors and improve predictive performance over a sin-

gle tree model [37]. Boosting is optimized by the learning rate (lr) that sets the weight applied

to individual trees, tree complexity (tc) that indicates the number of interactions between pre-

dictor variables, and the number of trees (nt) used. Model fit and predictive performance are

balanced to reduce overfitting by jointly optimizing nt, lr, and tc with respect to model valida-

tion metrics (see below) [39]. Models were tested with specified tc between 1 and 4, and a vari-

able lr (minimum 0.05) that allowed nt to exceed 1000, as recommended by Elith et al. [39].

The advantage of BRT modelling in ecological studies, such as the work presented here, is that

it copes with non-linear relationships, and correlated and interacting variables.

The relative importance of a predictor variable in BRTmodels is determined by its contribution

to the model as measured by the number of times it is selected for tree splitting. Predictor variables

were removed frommodels if they contributed less than 5% [40], therefore limiting the chances of

overfitting models to the data. Fitted functions are produced by the BRT that show the effect of a

focal predictor on the response while controlling for the average effect of all other variables in the

model [39]. Species distribution BRTmodels are effective for understanding the ecological drivers

of distribution patterns and are a reliable approach to predict species distributions across multiple

scales and species [34,37,41]. When ten different approaches to generating SDMs were evaluated,

those based on BRTs had generally high model transferability between regions [42].

As twice the number of grey petrels was tracked from Antipodes Island compared to Ker-

guelen Island, presence and background locations for the Antipodes population were down-
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weighted in the combined model to balance the contribution from each population. The com-

bined model of grey petrel distribution was generated using the predictor variables common to

both population models to maximize generality. The best models for each population were se-

lected based on two internal performance metrics: (1) The cross-validated area under the re-

ceiver operating curve (AUC), which measures the model’s ability to discriminate between

used and available sites. AUC ranges from 0 to 1 (1 = perfect discrimination, > 0.7 is consid-

ered a “useful model”, [43]); (2) The percent deviance explained (dev) is estimated by the

cross-validation procedure and provides a measure of the goodness-of-fit between predicted

and raw values to indicate how well the model predicts withheld data [39].

Spatial predictions and validation of SDMs

Spatial predictions based on the three BRT models were generated across the entire Southern

Hemisphere from 25 to 65°S for each non-breeding month (October to February). These maps

allowed visual assessment of predicted monthly habitat suitability for grey petrels and a com-

parison with actual distribution data (monthly 50% and 90% density contours from each popu-

lation). Additionally, to visually assess extrapolation ability, habitat suitability predicted by

each of the three models was compared with the kernel density distribution of grey petrels

tracked fromMarion Island.

The BRT models for Antipodes and Kerguelen were validated externally using withheld

data to test interpolation (within population) and extrapolation (to the other population) capa-

bility. The interpolation capability of the combined model was also tested using withheld data

from both populations. The transferability of all three models was tested using the track data

from grey petrels at Marion Island. Similar to the methods used to designate presence data for

the BRT models, all GLS locations of birds tracked from Marion Island that fell within the 50%

density contour were considered presence locations, and 435 uniformly spaced points (every

100 km2) within the 90% density contour were used as background locations. Habitat charac-

teristics at each presence and background location for the birds fromMarion Island were ex-

tracted from the same environmental layers described above, at the same spatial and

temporal resolutions.

Due to the presence/availability design of the BRT models, k-fold cross validation was ap-

plied in the external validation process to assess the predictive capacity of ‘used’ locations [33].

Traditional metrics of model performance, such as AUC, are limited to presence/absence mod-

els where predictions are scored as used or unused. With presence/availability models, valida-

tion of absence locations are uncertain [33]. The k-fold cross validation binned the predicted

habitat suitability of each presence and absence location into equal-interval groups (0 to 1) and

the proportion of presence locations in each bin was determined. A Spearman-rank correlation

(rs) was calculated between bin rank and the proportion of presence locations to assess whether

the latter increased with increasing suitability of predicted habitat, indicating good predictive

performance [33]. Additionally, we assessed model calibration for the three SDMs to determine

whether predictions were proportional to conditional probability of habitat suitability [44]. We

generated calibration plots and calculated the point biserial correlation (COR; [30]) using the

withheld data from each model to evaluate interpolation, and the presence/background data

fromMarion Island to evaluate extrapolation.

Programming and analysis environments

Geospatial processing and analyses were conducted using ArcGIS v10.0 (ESRI, CA, USA),

Geospatial Modelling Environment (http://www.spatialecology.com/gme/), Matlab v R2013a
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(MathWorks, MA, USA), and R [45] using the packages Raster, gbm (1.6–3.1; [46]), and Pre-

senceAbsence, and custom code provided by Elith et al. [39] and Phillips and Elith [44].

Results

GLS data implemented in SDMs and validation tests

After filtering, 4801 and 2003 GLS locations were available for grey petrels from the Antipodes

and Kerguelen populations, respectively. All tracked individuals went to the same general area

used by the respective breeding population (S1 Fig.), justifying the pooling of data from all in-

dividuals in models. Based on the 50% and 90% density contours from kernel analysis, tracked

birds from both populations were highly pelagic during their non-breeding period (Fig. 1). The

area used by the Antipodes population was in the central south Pacific Ocean centred at 50°S

and 115°W, and the area used by the Kerguelen population was in the south-east Indian Ocean

centred at 45°S and 105°E. A southward shift in the monthly 50% density contours from Octo-

ber through February is apparent for both populations.

A total of 2604 and 1106 GLS locations fell within monthly 50% density contours for the

Antipodes and Kerguelen populations, respectively; these were the presence locations used in

the SDMs (Table 1). A total of 867 and 452 background locations were generated for each

month for the Antipodes and Kerguelen models, respectively. In the combined model, presence

and background locations from the Antipodes population were down-weighted by 0.76. Model

validation (in terms of extrapolation) was conducted using 1180 filtered GLS locations from

the four loggers that provided data from grey petrels at Marion Island (Table 1), of which 665

points fell within the 50% density contour (presence locations) that were compared with 435

background locations generated within the 90% density contour.

SDM results and validation

Both population models performed well based on internal performance metrics (Antipodes:

AUC = 0.96, dev = 0.62; Kerguelen: AUC = 0.91, dev = 0.45). Six of seven predictor variables

were common between the Antipodes and Kerguelen models (Table 2). Month was not influ-

ential in either model and did not interact with other predictor variables, i.e., birds did not

change their habitat use patterns between months. The combined model, based on the six com-

mon variables, also performed well based on internal performance metrics (AUC = 0.93, dev =

0.50).

Interpolation of the Antipodes and Kerguelen models within the same region resulted in

high validation scores (Antipodes: rs = 0.988 (p< 0.0001), COR = 0.811; Kerguelen: rs = 0.962

(p< 0.0001), COR = 0.651). When the combined model in each region was interpolated, pre-

dictive performance was also high (to Antipodes: rs = 0.971 (p< 0.0001), COR = 0.881; to Ker-

guelen: rs = 0.955 (p< 0.0001), COR = 0.957). Furthermore, the calibration plots using

withheld data from each model (interpolation) indicated that all three models were well cali-

brated (straight line from (0,0) to (1,1); S2 Fig.).

However, when the population models were extrapolated between regions, the models dem-

onstrated poor predictive capacity and calibration (Antipodes model to Kerguelen: rs = 0.024

(p = 0.949), COR = 0.029; Kerguelen model to Antipodes: rs = -0.5711 (p = 0.085), COR =

-0.003). Moreover, the models were poorly calibrated to the grey petrel distribution dataset

fromMarion Island: Antipodes model rs = -0.186 (p = 0.607), COR = 0.062; Kerguelen model

rs = -0.361 (p = 0.306), COR = 0.106; combined model rs = -0.663 (p = 0.037), COR = 0.008.

The significant negative correlation between the combined model and the independent Marion

data further demonstrates the limited transferability of this model to a novel region. Poor

model calibration was also apparent in the calibration plots derived for all models when
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evaluated with data from another population (extrapolation; S2 Fig.). All models underesti-

mated habitat suitability when the data were dominated by presences, indicating that the true

habitat suitability was larger than the estimate given by the model. In contrast, the models

overestimated habitat suitability when the data were dominated by background locations.

Results of the model validations are reflected in the spatial predictions of habitat suitability

for grey petrels across the Southern Hemisphere by each model for each month (January dis-

played in Fig. 2; other months in S3 A-E Fig.). All three models demonstrated high interpola-

tive capability. However, when the models were transferred to novel regions to test their ability

to extrapolate spatial predictions, very low habitat suitability was incorrectly predicted for

areas of known occurrence of this species (e.g., within the 50% density contours for tracked

birds).

Ecological relationships derived by SDMs

Although the population models indicated similar ecological relationships between grey petrel

distribution data and the common predictor variables, the shape of these functions varied rela-

tive to the range of environmental variation (Fig. 3; note that portions of functional relation-

ships with little data as indicated by rug plots are disregarded during interpretation). Mixed

Fig 1. Density contours for tracked grey petrels from (a) Antipodes Island, and (b) Kerguelen Islands. The 90% density contour (thick black line) is
derived from all GLS locations during the non-breeding season (October to February) for each population. The 50% density contours were derived for each
month of the non-breeding season for each population. Maps in Mercator projection, datum wgs84.

doi:10.1371/journal.pone.0120014.g001
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layer depth (MLD) had a large contribution in all three models (21–18%; Table 2), with the re-

sults indicating that grey petrels used habitat with a similar range of MLDs (Antipodes: 50–80

m; Kerguelen: 50–130 m; Combined: 50–100 m). Yet, the distribution of presences (50% con-

tour) and available habitat (90% contour) relative to composite images of MLD in January

(Fig. 4a) indicate that tracked birds had variable selection patterns in relation to available habi-

tat: the Kerguelen birds used habitat with the deepest available MLD, whereas birds from An-

tipodes used habitat over a ridge of shallow MLD between two deeper areas, and those from

Marion used an area with moderate MLD adjacent to an area with shallow MLD. These results

illustrate how inference of species habitat preference via use-availability models is dependent

on the available habitat assessed [47].

The mean temperature between the surface and 50 m (t0–50) contributed 18–19% to all

three SDMs, and the fitted functions indicated a preference for habitat with temperatures be-

tween 7 and 13°C in the upper 50 m (Fig. 3). Comparison of grey petrel distribution in January

from all three tracked populations with a composite image of t0–50 shows that birds selected

habitat between the Subtropical and Sub-Antarctic fronts (Fig. 4b). Surface current velocity

(curr) contributed 13–14% to all models; all relationships indicated an increase in petrel pres-

ence between current velocities of 0–0.2 m.s-1, and a decrease in habitat suitability with strong

currents above 0.2 m.s-1 (Fig. 3). Indeed, grey petrels appear to select against available habitats

with the strongest currents, and concentrate in adjacent areas with moderate current velocities

Table 1. Summary of geolocator (GLS) data obtained for the non-breeding period from grey petrels at Antipodes, Kerguelen and Marion islands,
and used in distribution models and validation procedures.

Model Month Filtered GLS
points

GLS locations in 50% contour
considered presence

Presence locations withheld for
validationa

Presence/Absence ratio in
models

Antipodes

Oct 877 478 96 382/767

Nov 1058 595 119 476/767

Dec 1108 614 123 491/767

Jan 1097 611 122 489/767

Feb 661 306 61 245/767

TOTAL 4801 2604 521 2083/3835

Kerguelen

Oct 230 133 27 106/352

Nov 463 248 50 198/352

Dec 527 296 59 237/352

Jan 496 271 54 217/352

Feb 287 158 32 126/352

TOTAL 2003 1106 222 884/1760

Combined 743 2967/5595

Marion

Oct 229 128 — —

Nov 240 136 — —

Dec 243 137 — —

Jan 248 137 — —

Feb 220 127 — —

TOTAL 1180 665 — —

aOne hundred absence points were withheld from each month from both populations.

doi:10.1371/journal.pone.0120014.t001
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(Fig. 4c). Birds from Antipodes Island were distributed east of the swift Antarctic Circumpolar

Current (ACC); grey petrels from Kerguelen used habitat just to the north of the ACC; and

those fromMarion Island used an area south of the dynamic Agulhas Retroflection and north

of the ACC. This pattern is also reflected in the relationships with eddy kinetic energy (EKE).

None of the grey petrel populations selected habitats with high EKE; birds from Antipodes and

Marion Island used areas with low EKE, and those from Kerguelen used an area with moderate

EKE (Figs. 3 and 4d).

Although depth was an important contributor to all three models (Antipodes: 22%; Kergue-

len: 14%; Combined: 14%), the relationships between depth and distribution differed for grey

petrels from Antipodes and Kerguelen (Fig. 3). Petrels from Antipodes demonstrated a linear

increase in presence with decreasing depth from 5000 to 3000 m, and selected habitat along the

East Pacific Rise (Fig. 4c). In comparison, the grey petrels from Kerguelen had no clear rela-

tionship with depth, and used habitats with depths of 3500–4500 m just to the north of the

Southeast Indian Ridge. Both the East Pacific Rise and the Southeast Indian Ridge strongly in-

fluence current location and velocity in these respective regions [48]. However, the Marion Is-

land birds used deep water habitats (~5000 m) and were not spatially proximate to bathymetric

features affecting regional currents.

Discussion

At the broad scale of the Southern Hemisphere, grey petrels from Antipodes and Kerguelen is-

lands appear to use non-breeding habitat with the same general characteristics: near oceanic

Table 2. Boosted regression tree model parameters and results for the Antipodes and Kerguelen grey petrel populations, and combined model
using data from both populations.

Model Parameters (contribution) # of interactions Weight applied Learning rate Number of trees dev AUC

Antipodes Depth (22.1) 4 None 0.015 5100 0.62 0.96

MLD (21.0)

T0–50 (19.3)

Chl (15.4)

Curr (13.4)

EKE (8.8)

Kerguelen T0–50 (19.6) 4 None 0.0075 4900 0.45 0.91

MLD (18.3)

EKE (16.7)

Curr (13.9)

Depth (13.7)

Chl (9.9)

Dist_sm (7.8)

Combined MLD (20.7) 4 Down-weighted Antipodes data by 0.76 0.0375 3250 0.5 0.93

EKE (19.8)

T0–50 (17.9)

Chl (14.5)

Depth (14.2)

Curr (12.9)

dev = Cross-validation per cent deviance explained; AUC = Area under the receiver operator curve; MLD = Mixed layer depth; T0–50 = Mean temperature

between 0 and 50 m; Chl = Chlorophyll a concentration; Curr = Surface current velocity magnitude; EKE = Eddy kinetic energy; Dist_sm = Distance

from seamount

doi:10.1371/journal.pone.0120014.t002
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ridges in areas with moderate current velocities, where the mixed layer depth is 50–100 m, and

just north of the Sub-Antarctic Front with a mean temperature in the upper 50 m of 7–13°C.

However, the precise patterns of habitat use by birds from each population differed substantial-

ly. Subsequently, predictive performance of the three SDMs when interpolated within the cali-

bration regions was high, but extrapolation tests demonstrated low transferability to novel

regions. Despite aggregating data from the two populations into a theoretically more general-

ized SDM for grey petrels, the combined model also performed poorly when extrapolated to

the Marion Island dataset. We conclude that grey petrels share potential distribution patterns

relative to large-scale environmental variation, but differences in habitat availability and cli-

mate across the regions used by non-breeding grey petrels from the different colonies creates

variable realized distribution patterns for each population. This ratio of habitat use to availabil-

ity is non-linear and ultimately drives the coefficients and shape of model derived resource se-

lection functions [49,50]. Therefore, functional response in resource selection should not be

ignored when model results are applied to conservation efforts, such as predictions of realized

habitat [51].

Model parameters can cause poor performance, such as an inappropriate choice of model-

ling method or scale of analysis, and inclusion of ecologically irrelevant, or spatially or tempo-

rally inaccurate predictor variables. However, we believe it is unlikely that poor model

extrapolation in this study is due to methodological choices because (a) BRTs are an appropri-

ate SDMmethod for interpreting complex species-environment relationships [30,42], (b) grain

size is not expected to affect SDM predictions generated by BRTs [52], and (c) the models

Fig 2. Predicted habitat suitability for grey petrels in January across the Southern Hemisphere. Predictions derived from boosted regression tree
models for the (a) Antipodes, (b) Kerguelen and (c) combined populations. Location of grey petrel colonies at Antipodes Island (black star), Kerguelen Island
(white star), and Marion Island (red star) shown. The January 50% and 90% density contours for tracked grey petrels from Antipodes (black lines), Kerguelen
(white lines), and Marion (red lines) islands are displayed. Predicted habitat suitability ranges from low (0) to high (1) on a constant colour scheme between
plots. Maps in Molleweide, datum wgs84.

doi:10.1371/journal.pone.0120014.g002
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Fig 3. Fitted functions between grey petrel distribution and the five most influential predictor variables. Functional relationships determined by
boosted regression tree models for the Kerguelen (1st column), Antipodes (2nd column), and combined (3rd column) populations. Plots indicate the marginal
effect on petrel use/availability (y-axes) by each predictor variable (x-axis). Contribution of each variable to the model given below the function. Y-axes are on
a logit scale and are common across all plots. Scale of x-axes is common across each predictor variable. Rug plots show distribution of data across that
variable, in deciles, and are used as a measure of confidence in the shape of the fitted-function.

doi:10.1371/journal.pone.0120014.g003
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generated ecologically intuitive and broadly consistent relationships of habitat use by each pop-

ulation, and produced high validation scores when interpolated. However, poor model extrap-

olations can occur if all multivariate combinations of the environmental conditions assessed in

the training dataset are not represented in the novel dataset [53]. This scenario is possible in

our study where models were transferred across large ocean basins. Such overfitting of models

should be avoided to enhance predictive capacity by balancing model applicability with model

complexity [54]. If poor model extrapolation was due to overfit models in our study, we would

expect the combined model to show greater predictive capacity than the single population

models due to a more generalized description of grey petrel distribution patterns that ac-

counted for regional differences in oceanographic and habitat use patterns. Hence, more plau-

sible explanations for poor model transferability include ecological factors, such as variability

in grey petrel diet preference or another aspect of behaviour (e.g., degree of fisheries

Fig 4. Grey petrel distribution in January from three colonies overlaid on January oceanographic climatologies. The January 50% and 90% density
contours for tracked grey petrels from Antipodes (black lines), Kerguelen (white lines), and Marion (red lines) islands are displayed. (a) Mixed layer depth (m),
(b) mean temperature in upper 50m (C°), (c) surface currents (m/s) over depth (m), (d) eddy kinetic energy ((cm s-1)2). Maps in native projection of
environmental layers: geographic, datum wgs84.

doi:10.1371/journal.pone.0120014.g004
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interactions), or different combinations of oceanographic patterns that affect prey concentra-

tion and availability to the grey petrels in the different ocean regions across the Southern

Hemisphere.

Unlike previous studies that used data from multiple regions to develop generalized models

with high transferability between sites up to 53 km apart [4,55], our extrapolation of the com-

bined model failed over much greater distances due to regional species-environment relation-

ships not captured in the model. Nevertheless, assessment of the resource selection functions

derived by the three SDMs enables a comparison of realized versus potential distributions to en-

hance our understanding of large-scale habitat use by grey petrels across the Southern Hemi-

sphere. SDMs for grey petrels from the Antipodes and Kerguelen populations included a similar

suite of influential predictor variables, but realized distributions differed relative to habitat avail-

ability in each ocean basin. For instance, grey petrels were associated with a similar range of

mixed layer depths that may enhance prey availability for shallow diving seabirds like grey pe-

trels, but the distribution of birds relative to mixed layer depth availability indicates that tracked

birds had variable resource selection patterns. In contrast, according to the SDMs, the functional

relationships between petrel distribution and depth varied between populations; this was also

evident for Marion Island birds, which used deeper water than the other populations. Bathyme-

try strongly influences the Antarctic Circumpolar Current (ACC) across the range of grey pe-

trels in the Southern Hemisphere by steering the flow around ridges and through fracture zones

[48]. The ACC demonstrates unidirectional flow from top to bottom so that deep features, such

as the East Pacific Rise and Southeast Indian Ridge, determine surface flow direction and speed,

and horizontal density gradients [48], and hence prey availability to predators [16].

Linking marine predator distributions to oceanography is typically reliant on good proxy re-

lationships between available environmental data and unavailable prey distribution data e.g.,

[56,57]. Our study is no exception, yet we have progressed our understanding of the links be-

tween environment, prey and marine predators in two ways. First, the distributions of the non-

breeding grey petrels from all three islands were entirely unexpected as there was little prior

evidence that these regions were important seabird foraging grounds. Tracking data have not

been collected for the majority of procellariiforms [58], making it likely that other seabirds use

these areas during the summer months. Second, although the exact mechanism of increased

prey availability to grey petrels in their non-breeding areas remains unknown [59], we docu-

mented large-scale similarities in oceanographic patterns that likely facilitate foraging opportu-

nities. Due to the extended residency periods (4–5 months) of the grey petrels in these pelagic

areas, further research is warranted, ideally including in situ observations and prey sampling.

The conservation implications of these results are apparent when non-breeding distribu-

tions of birds from the three populations and SDM predictions are compared to fishing effort.

An analysis of the spatial distribution of reported pelagic longline fishing effort south of 30°S

between 1960 and 1998 indicates that the region used by the grey petrels from Kerguelen Island

incurs intense fishing effort, whereas little fishing effort was reported for the region used by

non-breeding grey petrels from Antipodes [60]. This contrasting level of overlap with fishing

effort may contribute to the divergent population trends, as the Antipodes population is be-

lieved to be stable [61] and the Kerguelen Island population may be in decline due to low adult

survival [25]. SDMs based on data for the Antipodes and Kerguelen populations incorrectly

predict the main non-breeding habitat of grey petrels fromMarion Island to be in an area of

low fishing effort. In contrast, the tracking data from that site indicate that grey petrels from

Marion overlap with high levels of longling fishing effort. High at-sea mortality of this popula-

tion is consistent with its failure to recover since feral cats Felis catus were removed from the is-

land in 1990 [62]. In this case, the false SDM prediction could have led to misinformed

management decisions regarding requirements for fisheries bycatch mitigation.
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Predictive SDMs are increasingly being touted as a useful conservation tool, including for

marine predators such as pinnipeds, cetaceans and seabirds [16,34], despite few tests of model

transferability to novel areas. This study used SDMs to explain and predict habitat use by grey

petrels in different ocean basins across the Southern Hemisphere. We extrapolated models be-

tween regions nearly 10,000 km apart, which is a more rigorous test of transferability than pre-

vious studies [4,5,12,23,42]. Strong interpolation and weak extrapolation indicate that our

models are able to describe the potential response of grey petrels to environmental variation,

but the realized response of each grey petrel population to oceanographic conditions is con-

text-dependent. Given the high conservation concern and wide geographic ranges of many ma-

rine predators, it is tempting to apply SDMs to prioritize protected areas and inform

conservation management. However, we recommend caution when attempting to extrapolate

model results outside the calibration region. Although SDMs can elucidate a species’ potential

distribution pattern relative to large-scale environmental conditions, data on local habitat

availability and preference is necessary to understand and successfully predict the realized dis-

tribution of a population in a different region. We advocate increased testing of SDM transfer-

ability across large and ecologically-relevant scales to improve extrapolation capability and

better inform conservation applications.
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