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Poorly controlled type 2 diabetes is accompanied
by significant morphological and ultrastructural
changes in both erythrocytes and in thrombin-
generated fibrin: implications for diagnostics
Etheresia Pretorius1*, Janette Bester1, Natasha Vermeulen1, Sajee Alummoottil1, Prashilla Soma1,

Antoinette V Buys2 and Douglas B Kell3*

Abstract

We have noted in previous work, in a variety of inflammatory diseases, where iron dysregulation occurs, a strong

tendency for erythrocytes to lose their normal discoid shape and to adopt a skewed morphology (as judged by

their axial ratios in the light microscope and by their ultrastructure in the SEM). Similarly, the polymerization of

fibrinogen, as induced in vitro by added thrombin, leads not to the common ‘spaghetti-like’ structures but to dense

matted deposits. Type 2 diabetes is a known inflammatory disease. In the present work, we found that the axial

ratio of the erythrocytes of poorly controlled (as suggested by increased HbA1c levels) type 2 diabetics was

significantly increased, and that their fibrin morphologies were again highly aberrant. As judged by scanning

electron microscopy and in the atomic force microscope, these could be reversed, to some degree, by the addition

of the iron chelators deferoxamine (DFO) or deferasirox (DFX). As well as their demonstrated diagnostic significance,

these morphological indicators may have prognostic value.
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Introduction
Type II diabetes mellitus causes an ever-increasing bur-

den on health care [1-4]. The prevalence for all age-

groups worldwide was estimated to be 2.8% in 2000 and

predicted to increase to 4.4% in 2030 [5]. Among adults

in the US, the prevalence of undiagnosed diabetes is cur-

rently 4.1% and prediabetes a staggering 35.6% [6]. Type

II diabetes is associated with three main glycaemic dis-

orders: chronic hyperglycaemia; glycaemic variability;

and iatrogenic hypoglycaemia [7], and also (frequently)

comorbidities including dyslipidemia (high cholesterol

levels) [8-11] and hypertension [12,13]. It has also been

suggested that with disturbed lipid metabolism, lipid

dysregulation precedes the hyperglycemia and increased

insulin resistance is found in type II diabetes [14-17].

All of the comorbidities are potentially responsible for

the cardiovascular and other complications [18,19].

Compared with individuals without diabetes, patients

with type II diabetes have a considerably higher risk of

cardiovascular morbidity and mortality [12,20-26]. The

following paragraphs will briefly discuss systemic in-

flammation, RBC structure and fibrin clot structure in

type II diabetes.

Diabetes is associated with (low-grade) systemic in-

flammation [27-29]. Table 1 inflammatory markers and

their respective levels, that increased or decreased in

diabetes. Suggested chronological events leading to vas-

cular dysfunction in type II diabetes are summarized in

Figure 1. We know that there are important links be-

tween oxidative stress, a changed inflammatory marker

profile (inflammation), the development of diabetes type

II as well as, ultimately, vascular dysfunction:
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� Inflammatory markers are associated with systemic

oxidative stress.

� Dysregulated iron levels are known to cause

oxidative stress [30-34].

� Type II diabetes and oxidative stress is closely

associated with chronic inflammation [35].

� Individuals with diabetes (and cardiovascular

disease) demonstrate hypercoagulability [36,37] and

hypercoagulability is key to inflammation [38].

� Ultimately, changed inflammatory marker levels,

hypercoagulability and chronic inflammation, serve

as early indicators of vascular dysfunction [39-41]

see Table 1.

Erythrocytes (RBCs) and atypical fibrin fiber formation

or an altered fibrin structure are particularly common in

inflammation [93-98]. Also, abnormalities of high blood

glucose in the context of insulin resistance, and relative

insulin deficiency, may disturb the architecture and

functions of RBCs at molecular scale [99]. Membrane

cholesterol has also been shown to alter the fluidity and

bending stiffness of RBCs [100,101]. Previous studies

suggest that RBC rheology is also altered in type II dia-

betes [102,103] and that hyperglycaemia has multiple

effects on RBCs, including glycation of haemoglobin,

reduced deformability and reduced lifespan [104]. It was

also shown that an improvement in erythrocyte deform-

ability from type II diabetes correlates with an improved

glycaemic control [105]. Recently, we have also shown

that RBCs in type II diabetes have a changed shape, as

well as a decreased membrane roughness [93,94,106]

and that RBCs can rapidly adapt in a changed environ-

ment, including during an addition of glucose to healthy

RBCs [107].

Similar to changes in RBC, fibrin levels and thrombin

generation are also changed, and it was indicated that

Table 1 Selected references showing a changed

inflammatory marker profile in diabetes type II

individuals

Inflammatory marker Selected references

Low Protein C [36,42]

High levels of coagulation factors
(II, V, VIII, X and von Willebrandt factor)

[36,37,43-45]

Increased NOS [46-50]

Increased TNFα [25,51-53]

Increased NFκB [28,54-57]

Increased COX-2 [57-61]

Increased PGE2 [62,63]

Iron (increased serum ferritin levels) [64-89].

Increased interleukin-6 [44,45,53,62,90]

Increased thromboxane A2 [91,92]

Figure 1 Suggested chronological events in type II diabetes. Inflammatory markers that are known to be dysregulated in diabetes (1); and to cause

oxidative stress (2); resulting in chronic (systemic) inflammation (3); that have been associated with hypercoagulability (4). Dysregulations, as indicated by 1

to 4 have all been found in diabetes type II (5); 1 to 5 are early indicators of vascular dysfunction (6). Literature references are given in Table 1.
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Table 2 Medication typically administered to diabetes type II patients and possible effects on erythrocytes (RBCs) and fibrin clots

Medication Selected references

Dyslipidemia (cholesterol) medication (statins)

Simvastatin (Zocor®) and Atorvastatin (Lipitor®) Improve clot permeability and clot structure and enhanced fibrin clot lysis [109-113].

An increase in glycolysis metabolite concentrations and glucose-6-phosphate
dehydrogenase activity in rat RBCs [114].

Increased erythrocyte fluidity [115,116] and deformability [100,117].

Reversed alteration in RBC plasma membrane properties, including lipid peroxidation [101,118].

Blood sugar control

Antihyperglycemic drug dimethylbiguanide (Metformin®/Glucophage®) Improves clot structure and hypercoagulability [119,120],

Improves clot lyses [121,122].

Actraphane® (mixture of fast-acting insulin and long-acting insulin) No evidence of any influence on RBCs or fibrin clot structure/fibrinolysis.

Actrapid® (human soluble insulin)

Humulin® (70% human insulin isophane suspension and 30% human insulin injection
[rDNA origin])

Protophane® (intermediate-acting insulin)

Hypertension control

Coversyl® (active ingredient is perindopril arginine which is a angiotensin converting
enzyme (ACE) inhibitor)

No evidence of any influence on RBCs or fibrin clot structure/fibrinolysis.

Amlodopine® (calcium channel blockers)

Carvedilol® (beta and alpha adrenoceptor blocker with antioxidant activity) Improves the endothelial fibrinolytic activity [123].

Scavenger effect on free radical generator-induced RBC membrane damage [124] and
enhances antioxidant defense mechanisms in RBCs [125].

Adalat® ((nifedipine) calcium channel blocker) Antithrombotic activity exhibitor [126] and improves fibrinolytic activity [127,128].

Anti-clotting medication

Aspirin® (acetylsalicylic acid) Aspirin increases fibrin clot porosity and susceptibility to lysis [111]; antiplatelet effect [129-131];

Disprin® (brand name for Aspirin) increase the level of sphingosine-1-phosphate and ceramide in erythrocytes [129]
perturbing RBC bilayer structures [132].

Reduce risk of thrombosis [133-137].

Irreversible inhibitor of both cyclooxygenase COX-1 and COX-2 [138].
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there is enhanced thrombin generation and formation of

denser fibrin clots of reduced lysability in type II dia-

betes [108]. A denser clot structure therefore results

both from this changed fibrin concentration and throm-

bin generation [95,96].

Because type II diabetes is associated with dyslipidemia

and hypertension, and most patients use medication to

treat these co-morbidities; the medications typically pre-

scribed are shown in Table 2. Here we also note evi-

dence that suggests changes that the medication might

have on RBC or fibrin structure.

We have previously shown that there are profound

changes in the hematological, and in particular, the

erythrocyte and coagulation system in various inflamma-

tory conditions where iron levels are increased (particu-

larly serum ferritin levels) (see [139-144]). In view of this,

in the current work, we studied the clot structure and

erythrocyte structure of patients with type II diabetes. In

addition, we also investigated whether two iron chelators,

deferoxamine mesylate (DFO) and deferasirox (DFX) have

an effect on the RBC and fibrin clot structure.

Materials and methods
Type II diabetes and healthy individual profiles

Ethical clearance was obtained from the Health Sciences

Ethical Committee of the University of Pretoria. Healthy

individuals were screened and chosen to participate in the

study if they did not have any chronic condition, did not

smoke or if female, use any hormone replacement or

contraception. Diabetic individuals were chosen randomly

from the diabetic clinic at the Steve Biko Academic Hos-

pital. The patients were diagnosed according to the

SEMSDA guidelines (http://www.semdsa.org.za/images/

2012_SEMDSA_Guideline_July_FINAL.pdf). These guide-

lines follow the American Diabetes Association (ADA) cri-

teria (classification and diagnostic criteria for diabetes

Table 3 Demographic data from healthy individuals

Sample
number

Gender Age Iron (μmol.L−1)
11.6-31.3

T Transferrin
(g.L−1) 2.2-3.7

% saturation
20 -50%

Serum ferritin (ng.mL-1)

M = 20-250 F = 10-120
Average axial
ratio

± SD for
axial ratio

1 F 45 16.8 3 22 13 1.15 0.08

2 M 61 32.5 2.6 50 48 1.07 0.05

3 F 55 20 2.4 33 64 1.12 0.09

4 F 56 19.5 3.1 25 101 1.16 0.10

5 F 40 10 2.8 14 21 1.09 0.06

6 F 56 12.8 2.6 20 65 1.07 0.06

7 M 58 10.2 2.7 15 208 1.09 0.06

8 F 48 17.2 2.8 25 37 1.11 0.06

9 F 55 25.1 2.5 40 121 1.13 0.14

10 F 52 14.8 2.2 27 83 1.08 0.05

11 F 45 31.6 2.7 47 111 1.20 0.16

12 F 40 9.6 2.9 13 45 1.11 0.09

13 F 80 7.6 2.7 11 21 1.09 0.07

14 M 61 24.9 2.5 40 44 1.19 0.25

15 M 51 10.8 2.8 15 140 1.10 0.08

16 M 70 17 2.9 23 198 1.32 0.24

17 M 66 29.5 2.8 42 72 1.10 0.10

18 M 61 7 2.2 13 233 1.16 0.19

19 M 56 16.2 1.7 38 138 1.14 0.12

20 F 58 13.6 2.4 23 95 1.11 0.09

21 F 51 24.2 3.3 29 26 1.13 0.12

22 F 58 15.9 2.4 27 65 1.12 0.09

23 F 27 21.2 2.6 33 28 1.14 0.09

24 M 75 14.9 2.3 26 393 1.19 0.19

25 F 56 20.2 2.9 28 159 1.12 0.13

Bold values are above and italic values below the reference (normal) range.
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Table 4 Demographics, iron, HbA1c levels and medication usage of Type II diabetes patients

Sample
number

Gender Age Iron (μmol.L−1)
11.6-31.3

Transferrin
(g.L−1) 2.2-3.7

% saturation
20 -50%

Serum ferritin
(ng.mL-1) M = 20-250
F = 10-120

HbA1c
(%) <7%

Dyslipidemia:
Simvastatin
Atorvastatin

Met-formin/
Oral

Actrapid Humulin
Protoph-ane
Actra-phane

HT: Coversyl
Amlodopine
Carvedilol Adalat

Aspirin/
Disprin

1 M 68 25.5 3.6 28 67 x x x x

2 M 56 49 3 65 86 11.9 x x

3 M 71 28.1 2.2 51 210 8.3 x x

4 M 80 15.5 2.6 24 96 7 x x x x

5 M 37 18.5 2.8 26 191 7.6 x

6 M 56 10.6 2.7 16 39 7.7 x x

7 F 71 19.9 2.3 35 20 8 x x x x

8 F 48 15.1 3.3 18 46 6.2 x x x x

9 F 70 5.2 3.9 5 7 7.5 x x

10 F 82 33.6 3 45 101 8.9 x x x x

11 M 62 25.6 2.3 45 202 5.9 x x

12 M 71 17.8 2.4 30 243 10.5 x x x x

13 M 70 19.7 2.2 36 75 10.4 x x

14 F 58 36.5 2.9 50 164 6.0 x

15 F 61 18.6 2.8 27 29 8.2 x x

16 M 56 32.1 2.9 44 152 8.6 x x x x

17 M 42 40.7 2.3 71 217 13.6 x

18 F 62 16.2 4.1 16 24 10.6 x x x x

19 M 72 19.8 2.1 38 332 6.7 x x x x

20 M 59 18.5 2.8 26 191 ? x x

21 M 75 14 1.7 33 218 6.6 x x x x

22 M 41 28.2 3 38 235 8.3 x x x x

23 F 81 23.8 2.3 41 62 9 x x x x

24 M 41 33.4 2.7 49 101 5.5 x x x x

25 M 80 39.5 2.7 59 142 6.8 x x x

26 M 64 13.2 2.3 23 50 ? x x

27 M 63 22.9 2.4 38 265 10.2 x x x x x

28 F 49 7.1 3.4 8 12 6.8 x x x x

29 M 72 25.3 2.4 42 386 6.7 x x x x

30 M 46 21 2.4 35 233 11.6 x
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Table 4 Demographics, iron, HbA1c levels and medication usage of Type II diabetes patients (Continued)

31 M 40 14.5 2.4 24 96 8.7 x x

32 M 55 10.3 2.2 19 88 5.8 x x x

33 F 62 BLOOD CLOTTED 8.2 x x

34 M 52 25.9 3 35 155 x x

35 F 59 18.5 2.5 30 125 11.6 x x x

36 F 58 16.5 2.5 26 79 6.0 x x x x x

37 F 62 14.1 2.9 19 64 10.2 x x x x

38 M 60 6.1 2.6 9 93 7.5 x x x x x

39 F 57 24 2.7 36 60 8.0 x x x x x

40 F 63 31.4 2.5 50 77 7.6 x x x x

41 M 59 15.4 2.8 22 151 8.5 x x x x

42 M 73 29.5 2.9 51 154 8.0 x x x

43 F 58 20.3 2 41 81 10.6 x x x x

44 F 66 28.6 2.6 44 359 10.0 x x x x

45 M 60 18 2.4 30 192 12.2 x x x x

46 F 69 9.6 2.3 17 74 7.4 x x x x

47 M 62 21.1 3.1 27 28 9.2 x x x

48 M 58 28.2 2.8 40 605 11.9 x x x x x

49 F 62 12.4 2.2 23 58 11.3 x x x x

50 M 61 23 1.9 48 1097 6.9 x x x x

51 M 73 54.9 2.4 92 100 x x x x

52 F 45 8 3.7 9 9 11.6 x x x x

53 F 62 42.3 2.4 71 198 8 x x

54 F 53 BLOOD CLOTTED 10.9 x x x x

55 F 55 13.1 2.2 24 189 6.3 x x x x x

56 M 56 27 2.6 42 64 12.1 x x x x

57 F 70 17.8 3 24 23 11.6 x x x x

58 F 59 34.1 2.7 51 56 5.8 x x x x

59 M 66 32.3 2.7 48 123 11.9 x x x x x

60 F 54 BLOOD CLOTTED 15.1 x x x

61 M 65 19.3 2.8 28 57 7.0 x x x

62 F 56 16.6 2.6 26 24 11.1 x x x x
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Table 4 Demographics, iron, HbA1c levels and medication usage of Type II diabetes patients (Continued)

63 F 59 20.4 3.6 23 149

64 F 64 7.3 2.3 13 82 9.0 x x x

65 M 32 16.8 3.2 21 58

66 M 52 129.6 checked 3.2 >95 55 8.1 x x x x x

67 M 52 14.5 2.3 25 151 12.2 x x x

68 F 49 14.2 2.7 21 17 13.5 x x

69 F 42 6 3.4 7 9 8.3 x x x x

Normal (healthy values) is given in the heading. Bold values are above and italic values below the reference (normal) range.
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were proposed by the American Diabetes Association) to

define type II diabetes [145,146]. Citrated blood was col-

lected for morphology studies and full iron profiles tests

were done on both healthy and diabetic individuals.

Plasma iron levels, HbA1c (Hemoglobin Alc) and medica-

tion were noted for each of the diabetes individuals (dis-

cussed later in detail in tables).

Chelator addition to blood samples

Microscopy techniques were done with blood from dia-

betic patients with and without the addition of deferoxa-

mine (DFO) and deferasirox (DFX), and with and

without the addition of thrombin (final concentration

chelator in whole blood were 3.33 mM and where

thrombin was added, was 2.5 mM). To ensure a signifi-

cant effect, we added an excess of each chelator; stoi-

chiometric principles will ensure the full chelation of

any unliganded iron present in whatever form. The solv-

ent for both the chelators was DD H2O. Chelators were

added to whole blood (WB) and left to react for 3 min-

utes. The kinetics of the chelators are virtually instantan-

eous and the potential for sequestration of the chelators

by e.g. albumin is precisely why we added an excess of

these reagents. When thrombin is added an extensive fi-

brin network is created around trapped RBCs. These

WB preparation methods were done for all microscopy

techniques (described in the following paragraphs).

Light microscopy of erythrocytes

LM was used to study the axial ratios of RBCs, using

100 × magnification (with and without DFX and DFO).

10ul of WB was used to make a thin smear on a micro-

scopic glass slide, this smear was left for 24 hours to air

dry followed by fixing for 5 minutes in 100% methanol

and left to air dry for 30 minutes. The smears were

stained again for 4 minutes with Löffler’s methylene

blue, and rinsed under running water followed by air-

drying for 30 minutes. The final staining step involved

staining for 30 seconds in Eosin Y-solution 0.5% aque-

ous, and rinsing with running water. Slides were viewed

using a Nikon Optiphod transmitted light microscope.

Axial ratio determination of erythrocyte shape

Axial ratios were determined from the LM micrographs,

with the use of a program written in the C# program-

ming language. The longest axis from each RBC was

determined, referred to as the major axis, after which a

perpendicular line was drawn in the centre of the major

axis to establish the minor axis length. The axial ratio

for each cell was obtained by dividing the major axis

Figure 2 Blood smears from two healthy individuals, showing axial ratio positions used for calculations. A) Male: 60; serum ferritin: 48 ng.

mL−1 B) male: 58; serum ferritin: 208 ng.mL−1. Scale bar = 5 μM.

Table 5 Average axial ratios of the groups and significant differences between the groups

Healthy individuals
(no products added) (N = 25)

Untreated Diabetes
(DIAB) (N = 69)

Diabetes with Deferasirox
(DFX) (N = 69)

Diabetes with Deferoxamine
(DFO) (N = 69)

Average age and ± SD 55 ± 11 59 ± 11

Cells analysed (N) 3265 4365 4271 4369

Axial ratio average and ± SD 1.14 ± 0.15 1.25 ± 0.27 1.24 ± 0.26 1.27 ± 0.27

SIGNIFICANT DIFFERENCE BETWEEN GROUPS (p-values shown)

Healthy/Diab Diab/DFX Diab/DFO DFX/DFO Healthy/DFX Healthy/DFO

1.1E-56 4.7E-02 2.6E-04 2.6E-04 2.9E-83 2.0E-02

Data provided for healthy individuals compared with untreated diabetes, diabetes treated with deferasirox (DFX) and deferoxamine (DFO). Untreated diabetes

results were also compared (comparison done on a paired basis) with diabetes treated with DFX and DFO.
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length by the minor axis length; a value of 1 represents a

perfect circle.

Scanning electron microscopy (SEM) of erythrocytes

High magnification SEM analyses were used to look at

RBC structure and membrane surface. 20 μL of the fixed

WB was dropped on a small glass coverslip to make

smears, dehydrated, dried, mounted and coated with car-

bon according to previously described methods [93]. A

Zeiss ULTRA Plus FEG-SEM with InLens capabilities

was used to study the surface morphology of erythro-

cytes, and micrographs were taken at 1 kV.

Atomic force microscopy of erythrocytes

Sample preparation was done according to previously

described methods [143]. Characterization of RBCs was

performed with a commercial AFM system (Dimension

Icon with ScanAsyst, Bruker, USA) using the PeakForce

QNM (Quantitative Nanomechanical Property Mapping)

imaging mode [147]. At every pixel point a rapid force-

Figure 3 Light microscopy smears of diabetic patients before and after treatment. Left: untreated; middle: treated with deferasirox (DFX)

and right: treated with deferoxamine (DFO). Patient detail is shown in Table 6. Scale bar = 5 μM.
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distance curve is performed and as the cantilever’s de-

flection sensitivity and spring constant is calibrated be-

fore measurements, the curve can be analysed

quantitatively to obtain a series of specific property maps

of the sample. A retract curve is used to calculate modu-

lus and adhesion images (slope of the curve and the

minimum of the curve respectively) [141,143,148], the

variation between the zero and maximum force is used

to calculate deformation and the area between the ap-

proach and retract curve can be used to calculate energy

dissipation [149]. The slope of the curve was fit, using

the Derjaguin–Muller–Toporov (DMT) Model to deter-

mine the Young’s modulus (a measure of the stiffness of

an elastic material) [141,150]. Silicon Nitride probes

(TAP525 – MPP 13120–10, Bruker, USA) with a nom-

inal force constant of 200 N.m-1, a resonant frequency

between 430 and 516 kHz (measured by the manufac-

turer), and a nominal tip radius of 15 nm were employed

in all AFM measurements.

From the diabetes sample, RBCs from the first 22 dia-

betic patients were analysed using AFM analysis, before

and after exposure to the 2 chelators. Ten cells from

each sample were analysed by selecting a 1 μm by 1 μm

scan area on the periphery of the RBC and performing

128 by 128 data points of individual force curve mea-

surements with a peak force of 6 μN. The periphery of

the cells was chosen as not to be affected by the possible

differences in concavity of the RBCs. The scans were

performed at 0.6 Hz, which translates to a tip velocity of

1.2 μm/s and 50 force curves were chosen randomly

within the stated area. Offline software (NanoScope

Analysis version R3, Bruker, USA) was used to process

the force curves and fit the modulus model to the

unloading portion of the curve. The goodness of fit (R2)

between the modulus model and the data given by the

acquired curve is determined by calculating the ratio of

explained variation to total variation in the dataset; only

force curves with a goodness of fit so defined of 0.85

and above were used for modulus measurements. The

statistical significance of the difference between calcula-

tions was determined using one-way analysis of variance.

A P-value of less than 0.05 relative to the null hypothesis

was considered to be ‘significant’ (cf. [151]), P-values are

noted and boxplots drawn, together with descriptive sta-

tistics. A box plot was calculated using MS-Excel, to-

gether with the add-in template downloadable from

http://www.vertex42.com/.

Scanning electron microscopy of fibrin networks

10 μL platelet rich plasma (PRP) was mixed with 10 μL

human thrombin provided by the South African Blood

services. Extensive fibrin fiber networks were created

Table 6 Diabetes patient detail for light microscopy axial ratio micrographs, shown in Figure 3

AVERAGE
AXIAL RATIOS

P1 P2 Gender Age Iron ((μmol.L−1)
11.6-31.3

Transferrin
(g.L−1) 2.2-3.7

% saturation
20 -50%

Serum ferritin (ng.mL−1)
M = 20-250 F = 10-120

DIABETES 47 1.24 0.006 0.009 M 62 21.1 3.1 27 28

DFX 1.15

DFO 1.17

DIABETES 42 1.14 0.05 0.28 M 73 29.5 2.9 51 154

DFX 1.14

DFO 1.17

DIABETES 62 1.24 0.25 4.2 × 10−7 F 56 16.6 2.6 26 24

DFX 1.28

DFO 1.45

DIABETES 55 1.16 0.035 0.001 F 55 13.1 2.2 24 189

DFX 1.21

DFO 1.25

DIABETES 50 1.18 0.035 0.73 M 61 23 1.9 48 1097

DFX 1.14

DFO 1.17

DIABETES 66 1.33 5.8 × 10−7 3.9 × 10−7 M 52 129.6 3.2 >95 55

DFX 1.15

DFO 1.11

P-values: P1 (axial ratios of untreated diabetes RBCs versus DFX-treated) and P2 (axial ratios of untreated diabetes RBCs versus DFO-treated) (significant p-value

was taken as ≤ 0.05; comparisons done on a paired basis) (Figure 3). Bold values are above and italic values below the reference (normal) range.

Pretorius et al. Cardiovascular Diabetology  (2015) 14:30 Page 10 of 20

http://www.vertex42.com/


and smears washed and fixed in 4% formaldehyde.

Smears were prepared as described for RBCs and also

viewed using Zeiss ULTRA Plus FEG-SEM with InLens

capabilities. Fibrin fiber thickness were measured with

ImageJ (ImageJ is a public domain, Java-based image

processing program developed at the National Institutes

of Health: http://rsbweb.nih.gov/ij/).

Results
This study used 25 age- and gender-controlled healthy

individuals (see Table 3) and 69 individuals with type

II diabetes. The average age of healthy individuals was

55 (SD ± 11), while the average age of the diabetic

individuals was 59 (SD ± 11). The current randomly

selected type II diabetic population, in addition to

their anti-diabetic medication, are on medication for

Figure 4 Axial ratios of the erythrocytes from controls and diabetics. As indicated in Table 5, there were significant differences in the axial ratios of

diabetes vs controls, whether iron chelators were present or absent. A. Relationship between axial ratio and its standard deviation. B. Direct comparison

between patients and controls. In B the values on the abscissa (only) are ‘jittered’ to make them easier to see.

Figure 5 Whole blood of healthy individual, with added

thrombin, to create an extensive fibrin network around RBCs.

Male: 61; serum ferritin: 48 ng.mL−1. Scale Bar = 1 μM.
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dyslipidemia and hypertension as well (see Table 4).

Despite their anti-diabetic medications, very few indi-

viduals showed HbA1c (Hemoglobin Alc) within the

normal ranges, suggesting poorly controlled diabetes.

In some patients, there were also abnormal iron levels

(Table 4).

Light microscopy

Light microscopy of smears from typical healthy indivi-

duals, with their axial ratio positions indicated, is shown

in Figure 2. Light microscopy statistics of the average

RBC axial ratios of within group analysis are shown in

Table 5. Figure 3 shows smears from diabetes patients

Figure 6 Whole blood from diabetic patients before and after treatment. Left: untreated; middle: Deferasirox (DFX) and right: deferoxamine (DFO).

Table 7 shows the detail of the diabetic patients (sample numbers of diabetic patients shown on micrographs) shown in this figure. Scale Bar = 1 μM.
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before and after treatment with the 2 chelators (left: un-

treated diabetes; middle: DFX; right: DFO) Smears were

chosen that represents the sample, e.g. normal iron

levels, increased iron levels and whether addition of che-

lators showed a significant P-value (or not) (see Table 6);

for specific details of the patients shown in Figure 3. A

relationship between the RBC axial ratios and SD for the

healthy controls, untreated diabetes and treated with

DES and DEF was noted, and is illustrated in scatter

plots (see Figure 4A and B).

Scanning electron microscopy (SEM) of erythrocytes

Figure 5 shows whole blood with added thrombin, which

serves to create an extensive fibrin network around

RBCs from a typical healthy individual. Figure 6 shows

whole blood from diabetic patients before and after

treatment where left, shows untreated WB, middle,

shows WB treated with DFX and right, shows whole

blood treated with DFO. Table 7 shows the detail of the

diabetic patients shown in Figure 6. WB with added

thrombin of healthy individuals forms a fibre net around

Table 7 Diabetic patient details of micrographs from the SEM analysis shown in Figure 6

Gender Age Iron (μmol.L−1)
11.6-31.3

Transferrin
(g.L−1) 2.2-3.7

% saturation
20 – 50%

Serum ferritin (ng.mL−1)
M = 20-250 F = 10-120

DIABETES 29 M 72 25.3 2.4 42 386

DIABETES 44 F 66 28.6 2.6 44 359

DIABETES 50 M 61 23 1.9 48 1097

DIABETES 45 Yes M 60 18 2.4 88

DIABETES 46 F 69 9.6 2.3 17 74

DIABETES 49 F 62 12.4 2.2 23 58

Bold values are above and italic values below the reference (normal) range.

Figure 7 Boxplot showing the variation of the Young’s modulus values of erythrocyte membrane stiffness, after the treatment of

whole blood of diabetics with iron-chelating agents. Young’s modulus median values did not vary significantly between the diabetes and

two chelating agents (indicated in red in the figure).
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the typical discoid RBCs. The RBCs keep their character-

istic shape. However, in the diabetic populations, the

RBC structure is compromised and in all the samples,

the RBCs twist and fold easily in the presence of the fi-

brin fibres In the presence of the 2 chelators, it seems as

if the RBCs do regain their typical discoid shape. See

middle and right column micrographs of Figure 6. SEM

and LM axial ratio analyses both showed that RBC

shapes are changed in untreated RBCs of diabetic indivi-

duals (left column), but that chelator treatment seems to

stabilize RBC shape and membranes (middle and right

columns) (also noted in the AFM results shown in later

paragraphs).

Atomic force microscopy of erythrocyte membranes

A significant increase in the Young’s modulus (stiffness)

was seen in the RBCs of 22 randomly selected diabetic

patients, whose blood was treated with the 2 chelators.

This reflects a decrease in elasticity and an assumed

altered functionality in these cells. Treatment with either

DFX or DFO decreased the Young’s modulus values to-

wards more normal values, indicating a possible im-

provement in the elasticity of the cells (see Figure 7 and

Table 8).

However, when the elasticity measurements are com-

pared individually after treatment with the iron chelating

agents a more complex picture emerges, due to the sub-

stantial variation in the two cohorts. Although on aver-

age the iron chelators caused a significant increase in

elasticity, more than 50% of the diabetic group treated

with DFX and almost 40% treated with DFO showed an

increase in the elastic (see Figure 8).

Scanning electron microscopy of fibrin network

Figure 9 shows plasma with added thrombin to create

an extensive fibrin network from a typical healthy indi-

vidual. Figure 10 shows whole blood from diabetic

patients before and after treatment, where column A

shows untreated WB, column B shows WB treated with

DFX and column C shows WB treated with DFO.

Smears were chosen that represents the sample, e.g. nor-

mal iron levels, increased iron levels and whether

addition of chelators showed a significant P-value (or

not); see Table 7 for specific details of the patients

shown in the figure. Typically, fibrin forms individually

visible fibres. However, in the presence of inflammation,

the fibrin clots abnormally, to form finer fibres and in

some cases, a continuous layer, where individual fibres

Table 8 Statistical analyses of membrane stiffness as

measured by Young’s modulus values of the diabetic

group and treated groups

Group Mean Young’s modulus SD P-value

Healthy individuals 46710 39210 -

Diabetes 56483 64418 1.15E-13

Diabetes + DFX 51238 58225 2.7E-06

Diabetes + DFO 50446 36073 1.6E-10

(Diabetes p-value is from a pairwise comparison with the healthy individual

group. DFX and DFO diabetes-treated p-values are from pairwise comparisons

with the diabetic group).

Figure 8 Young’s modulus (stiffness) measurements to show trends in 19 of the individual diabetic erythrocytes after treatment with

DFX and DFO.
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are not visible. This has previously been noted in dia-

betic patients [95,96]. With the addition of the 2 che-

lators, fibrin nets with visible individual fibres are

seen. This was found irrespective of increased SF

levels (see Table 9) and we have argued [139] that

serum ferritin – which not even exist as it is it not an

extracellular iron transporter – is probably devoid of

much iron anyway.

Discussion
Type II diabetes mellitus is a metabolic disorder of

deranged fat, protein and carbohydrate metabolism

resulting in hyperglycaemia from insulin resistance and

inadequate insulin secretion [152]. This condition is very

difficult to treat and even in countries like the USA,

fewer than 50% of patients achieve the HbA1c goal of <

7% set by the American Diabetes Association [152,153].

One of the reasons might be poor adherence to treat-

ment regimes [154-156], as well as poor diet and know-

ledge regarding nutrition [157].

In the current work, we noted a changed RBC shape

and membrane structure, as well as a matted fibrin fibre

structure. Previously, we suggested that this might be

due to oxidative stress and increased iron levels [93].

Oxidative stress in diabetic subjects, including those

with cardiovascular manifestations, may also be attribu-

ted to the hyperglycaemia which modifies the RBC

membrane dynamic and electrokinetic properties when

compared to healthy controls [158].

In the present study, we noted that the axial ratio of

the RBCs from diabetic patients was significantly greater

than that of matched controls, as seems to occur in a

variety of inflammatory diseases [140,143,159]. Iron dys-

regulation is often intimately involved and unliganded

iron can act in one of two main ways, viz simply by

electrostatics or via its ability to catalyse hydroxyl rad-

ical formation with covalent modification (by hydroxyl

radicals) of proteins and other macromolecules

[139,141,160]. The former, but not the latter, may be

reversed by iron chelators [139]. In the present study,

the chelators had no effect on the axial ratios, consist-

ent with the view that in the chronic conditions of dia-

betes the changes are mainly due to hydroxyl radical

formation. However, the chelators did have effects on

the detailed morphology of the RBCs, suggesting some

contribution of electrostatic forces. AFM measure-

ments indicated that the membrane stiffness of the

RBCs of diabetics was significantly greater than that of

controls, and that overall this could be alleviated by

the addition of iron chelators. However, a detailed

analysis showed that this was quite patient-specific.

Recently, Berndt-Zipfel and coworkers, showed that

RBC deformability (measured using a laser-assisted op-

tical rotational cell analyzer by determining the elong-

ation index) was also changed in type II diabetes, and

that an improved RBC deformability correlate of

improved glycaemic control [105]. The current patient

sample mostly had very poor glycaemic control, and

this might partly be the reason for limited RBC shape

and deformability improvement.

In a similar vein, the ultrastructure of the fibrin clots

formed in the blood of diabetic patients following

Figure 9 Plasma from a healthy individual, with added thrombin, to create an extensive fibrin network. Male: 58; serum ferritin: 208 ng.

mL−1. Scale Bar = 1 μM.
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thrombin addition in vitro were highly aberrant in na-

ture relative to those from the controls, much as we

have seen before in a variety of inflammatory diseases.

In this study, the chelators could act to make the fibrin

morphology much more like those of the controls, con-

sistent with the view that at least of these effects were

due to the presence of unliganded iron acting electrosta-

tically to modify fibrinogen and its behavior during

polymerization to form fibrin.

Overall, we note, as we have before in a number of in-

flammatory diseases [139,141,143,159,160] that patients

with type II diabetes manifest this via significant

Figure 10 Fibrin formed in plasma from diabetic patients before and after treatment. Left: untreated; middle: Deferasirox (DFX) and right:

desferrioxamine (DFO).
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changes in both the morphology of their erythrocytes

and in the nature of the fibrin fibres formed upon the

addition of thrombin. We do not yet know whether

these morphological changes have prognostic (as well

as diagnostic) significance, but it is clear that lowering

the amounts of labile iron are likely to be of benefit, as

serum ferritin is an important disease marker, and

implicated in most inflammatory conditions. Previously,

we argued that and it is mainly a leakage product from

damaged cells [139]. There are therefore possible clin-

ical implications for “labile” (chelatable) iron in the

thrombin-elicited fibrin formation in the plasma of dia-

betic patients, and also the elasticity of RBCs, possibly

associated with serum proteins.
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