

POOSL : an object-oriented specification language for the
analysis and design of hardware/software systems
Citation for published version (APA):
Voeten, J. P. M. (1995). POOSL : an object-oriented specification language for the analysis and design of
hardware/software systems. (EUT report. E, Fac. of Electrical Engineering; Vol. 95-E-290). Eindhoven University
of Technology.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/639a36a9-ea57-4e4f-9efa-b5e7ee65fa1e

POOSL:
An Object-Oriented Specification
Language for the Analysis and
Design of Hardware / Software
Systems

by

J.P.M. Voeten

EUT Report 95-E-290

ISBN 90-6144.290-7

May 1995

Eindhoven University of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

ISSN 0167-9708

Faculty of Electrical Engineering

Eindhoven, The Netherlands

POOSL: An Object-Oriented Specification Language

Coden: TEUEDE

for the Analysis and Design of Hardware/Software Systems

by

J.P.M. Voeten

EUT Report 95-E-290

ISBN 90-6144-290-7

Eindhoven

May 1995

Abstract

POOSL: An Object-Oriented Specification Language

for the Analysis and Design of Hardware/Software Systems

J.P.M. Voeten

POOSL (Parallel Object-Oriented Specification Language) is meant for the specification,

design, and description of systems which contain a mixture of software and hardware com

ponents. It is based upon the object-oriented paradigm to support flexible and reusable

design, as well as on the basic concepts of ees to enable formal verification, simulation, and

transformation of specifications. POOSL differs from traditional (parallel) object-oriented

(specification) languages in a number of ways. First of all, it allows explicit representation

of system architecture and hierarchy. Further, objects in POOSL communicate through

channels using a one-way synchronous message-passing mechanism, allowing true paral

lelism. Finally, the language explicitly distinguishes (statically interconnected) process

objects from (dynamically moving) data objects. This, together with the fact that POOSL

supports tail recursion, creates the possibility to specify the (communication) behaviour

of (systems of) objects in an abstract and elegant way.

Keywords: object-oriented methods, specification languages, formal specification.

Voeten J.P.M.

POOSL: An object-oriented specification language

for the analysis and design of hardware/software systems.

Eindhoven: Faculty of Electrical Engineering, Eindhoven University of Technology, 1995.

EUT Report 95-E-290

Address of the author:

Section of Digital Information Systems

Faculty of Electrical Engineering

Eindhoven University of Technology

P.O. Box 51:3, NL-5600 MB Eindhoven, The Netherlands

IV

Table of Contents

Table of Contents

Acknowledgements

List of Figures

1 Introduction

1.1 History and Background

1.2 Language Concepts . .

1.3 Processes versus Data

1.4 Related Work

2 Data Objects

2.1 Informal Explanation

2.2 Formal Syntax.

2.3 Example: An Unbounded FIFO Buffer

3 Process Objects

3.1 Informal Explanation

3.2 Formal Syntax ...

4 System Specifications

4.1 Example: A Simple Integer Unit

4.2 Example: An Unbounded Transmission Channel

4.3 Example: The Alternating-bit Protocol

5 Final Remarks and Future Work

5.1 Abstract Specifications

5.2 Semantics and Transformations

5.3 Automatic Verification .

5.4 Messages and Methods . .

.5.5 Inheritance and Typing ..

5.6 The Inheritance Anomaly

5.7 Assertions.........

IV

VI

VII

1

1

2

3

4

6

6

7

9

12

12

13

19

19

21

22

27

27

27

27

28

28

29
30

Table of Contents

5.8 Selective Message Reception

6 Conclusions

References

POOSL

v

30

32

35

VI

Acknowledgements

I sincerely thank R. Liskova, P. van der Putten, A. van Rangelrooij, M. Stevens, A. Ver

schueren, and M. van Weert for reading earlier drafts of this report and for many fruitful

discussions.

List of Figures

4.1 A simple integer unit

4.2 An unbounded transmission channel

4.3 The Alternating-bit Protocol

POOSL

Vll

19

21

23

VllJ

To Inge

1

Chapter 1

Introduction

1.1 History and Background

The specification language presented in this report has its roots in [Ver92]. This thesis

describes how object-oriented techniques can be applied to the design of systems which

sontain a mixture of hardware and software modules. [Ver92] also presents a design

methodology, an object model based upon Small talk [GRS9], and a simulation environ

ment meant for the specification, verification, and simulation of complex (communicating)

systems. The design methodology is split into the following three phases:

• High-level behavioul' analysis. The system is analyzed and an abstract specification

(the behaviour (object) model) of the functionality is built. Such a specification

consists of a set of (process) objects which communicate through static channels. In

the analysis phase a specification is architecture and implementation independent.

• High-lcvel architectlll'c synthesis. An architecture (object) model or specification is

made. Such a specificat.ion describes, in addition to a more detailed beha.viour or

functionality, the architecture of the system to implement. For every entity and

channel in the specification it is decided how it will be implemented. In the ideal

situation the architecture model could be constructed directly from the behaviour

model by defining the implementation of objects and channels. However, because of

technological, architectural or timing constraints, this might be impossible. Also the

behaviour model might not be detailed enough. In these cases the behaviour model

has to be transformed into an architecture model which meets the extra constraints

and which has the desired level of detail. These transformations are performed by

predefined so-called functionality-preserving transformations. Non-predefined trans

formation steps, like refinement or decomposition steps, can also be made. The

correctness of such transformation steps has to be checked (automatically) using

verification tools.

• Low-level synthesis and implementation. During this phase the entities and channels

specifil'd in the architecture model are actua.\ly implemented. The implementat.ion

I'OOSL

2 Language Concepts

ca,n contain a mixture of software and hardware.

In [Ver92] a number of useful and interesting functionality-preserving transformations are

described. Our research began as an investigation of how to formalize these transformations

and how to prove them correct. We soon came to the conclusion that a formal semantics of

the object model was indispensible and therefore we started to define the model formally.

However, the object model turned out to be very complex, mainly due to a number of very

high level (communication) constructs, and it seemed not possible to define a usable formal

semantics. Therefore we decided to design a new language meant as a formalization of the

object model and based upon the following basic concepts of this model:

• A model consists of a set of statically interconnected distributed objects (processes)

which execute in parallel and which communicate through a static network of chan

nels.

• The distributed objects communicate by exchanging messages which may contain

parameters. The communication mechanism is one-way synchronous which means in

particular that objects do not have to wait for replies.

• Distributed objects contain internal data in the form of traveling objects or data

objects which are strictly private to the owning object.

• Message parameters refer to traveling objects or data objects which are private to

the sending process. If a message is exchanged, the involved parameter objects are

actually copied from the sending process to the receiving process.

• A model explicitly reflects a system architecture (or a system topology) and can be

hierarchical.

A first official version of the designed language is defined in [Voe94]. This technical report

describes an improved version which was achieved after a number of case studies and

experiments with the language.

1.2 Language Concepts

In [Weg87] the following basic concepts of the object-oriented paradigm are distinguished:

• a unified notion of objects, which are composed from a set of "operations" and a

"state". Objects are encapsulated in the sense that they interact with other objects

according to a predefined interface.

• the concept of classes

• the use of inheritance

Introduction

Processes versus Data 3

Another important concept is polymorfism. [Mey88] explains that polymorfism, "the abil

ity to take several forms", is the key factor in producing reusable designs or specifications.

The design methodology and the object model mentioned in the previous section have a

number of characteristics which are not directly covered by the object-oriented paradigm.

Especially, transformation, (automatic) verification, parallelism, and hierarchy are topics

which are better supported by (algebraic) process-oriented techniques. These algebraic

techniques are especially applicable to systems in which communication between system

elements is a major feature [Ko09l]. Algebraic techniques enable formal (automatic) ver

ification, simulation, and even transformation [Lan92] of specifications. Furthermore, ar

chitecture and hierarchy can be expressed in algebraic languages in an elegant way. One

of the first algebraic theories dealing in a formal way with the communication behaviour

of systems is CCS [MiISO, MiI89]. Other algebraic formalisms are CSP [HoaS5], LO

TOS [EVDS9], and ACP [Bae86]. CCS is based upon the following two concepts [MiI80]:

• Observation. Concurrent systems are described fully enough to determine what be

haviour will be seen or experienced by an external observer. Two systems are indis

tinguishable if we cannot tell them apart without pulling them apart. Observation

equivalence is based upon this notion .

• Synchronized communication. A concurrent system is built from independent agents

(processes) which communicate synchronously. Parallel composition is used to com

pose two independent agents, allowing them to communicate.

To support reusable design in a flexible way, POOSL builds upon the concepts of the

object-oriented paradigm. On the other hand, to support verification, simulation, and

transformation, the language also builds on the concepts of CCS. These process formalisms

provide a number of elegant language constructions to express hierarchy, architecture,

topology, and parallelism.

1.3 Processes versus Data

Like lIlost. if not all, (practically applicable) specification languages, forma.lisms, and tech

lIi'lI"·S. POOSL distinguish,·s p"Of'esses frolll da/a. 1\ specification in POOSL collsist.s of a

lix('d 1I11[\l1)(,f of siatindly illtt'ITollllccied distribut.ed processes which a.rc able 1.0 (,X('CII/.<'

in parallel. Processes, or process objects, arc connected to a fixed network of chanllels,

through which they can communicate by sending messages. These messages may carry

parameters in the forlll of data ohjects. These data objects arc a.lso uscd to model pri

va.te data as well as internal computations of process objects. Data objects a.re essentia.lly

sequential in nature, which means that within one process object at any time only one

data object can be active. The data part of POOSL is based upon (restricted) versions of

POOL [AR89] and Smalltalk [GR89]. Data objects and their declarations are described in

detail in Chapter 2. Chapters 3 and 4 deal with the explanation of process objects and

POOSL

Copyright © 1995 J.P.M. Voeten

Eindhoven, The Netherlands

Permission is granted to make and distribute verbatim copies of this report provided the

copyright notice and this permission are preserved on all copies.

This report is distributed in the hope that the contents will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE.

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Voeten, J.P.M.

POOSL: an object-oriented specification language for the

analysis and design of hardware/software systems / by

J.P.M. Voeten. - Eindhoven: Eindhoven University of

Technology, Faculty of Electrical Engineering. - Fig. -

(EUT report, ISSN 0167-9708 ; 95-E-290)

With ref.

ISBN 90-6144-290-7

NUGI832

Subject headings: object-oriented methods / specification

languages / formal specification.

4 Related Work

specifications of systems of process objects. This process part of POOSL is mainly based

on CCS [MiI80J.

The strict separation between statically interconnected process objects and dynamic (trav

eling) data objects makes it possible to specify systems in an abstract and natural way.

One can define the abstract (communication) behaviour of process objects or systems of

interconnected process objects, without being concerned about (internal) data of process

objects or data which has to be transported over the communication channels. The sepa

ration also opens the way to formal (automatic) verification a,nd transformation of static

system structure.

1.4 Related Work

The idea of combining object-oriented concepts with the concepts of process-oriented for

mali.snls is not new.

In [Bla90J and [CRS90J, for example, it is shown how LOTOS can be used as an object

oriented specification language. [MC94, MC93J describes the ROOA (Rigorous Object

Oriented Analysis) method which combines object-oriented analysis methods and formal

description techniques (LOTOS) to produce a formal object-oriented analysis model that

acts as the requirement speci'lication of a system. [Cus88J demonstrates that it is possible to

use a process algebra (CSP) in a natural and integrated way within the context of object

oriented specification of distributed systems. Other, more fundamental and theoretical,

approaches towards integrating object-oriented and process-oriented concepts are given in

[HT91J and [Nie91J.

The great advantage of using algebraic process-oriented techniques for object-oriented spec

ification is that they enable the description of what a system should do, without giving

the solution of, or even details about, its implementation. Further, process-oriented l.ech

niques allow for a strict formal reasoning about objects, relations between objects, and

other object-oriented concepts.

However, using algebraic process languages for object-oriented specification also has a num

ber of disadvantages. First of all, it seems difficult to interpret all object-oriented concepts

in existing process-oriented languages. Especially the concept of inheritance (strict as well

as non-strict inheritance) is hard to capture [BJa90, CRS90, Cus88j.

A second problem is caused by algebraic data typing languages, which are usually part

of (practically applicable) algebraic process languages. It seems hard to interpret these

languages according to the object-oriented paradigm and this makes it difficult to interpret

process-oriented languages in their full strength [CRS90, Cus88J.

1 Introduction

Related Work .5

Two other, more practical, problems are also caused by algebraic data languages. In an

attempt to prohibit all implementation biases from the specification, the algebraic (data)

specifications become difficult to understand. In practice, most designers find it very hard

to define abstract. data types in algebraic data languages [NarS7]. Further, because of their

highly abst.ract nature, abstract data types do in general not allow direct and efficient.

implementation [MMS9].

On the opposite side of formal description techniques we find (parallel) object-oriented

programming languages like POOL [AmeS7, AR89], PROCOL [BLS9], DROL [TT92]' Actl

[LieS7], and ABCL!l [YBS86]. Although these languages can in principle be used for the

specification of software or hardware systems, they are not really suited for our purposes.

This is mainly due to the fact that none of these languages support all characteristics of

the design methodology and the object model mentioned in Section 1.1. Especially system

architecture, topology, and hierarchy are topics which are not explicitly expressible in any

current object-oriented language. This is caused by the traditional conception that all

objects should, in some sense, be equivalent. In our view there exists a kind of dualism,

which is why we chose to distinguish data objects from process objects.

Om approach aims at. developing a new practical language which combines the advant.ages

of object orientation as well as those of process orientation. Because in our view one of

the most important aspects of specifications is readability and understandability, we have

chosen to base the data part of POOSL upon constructs of object-oriented programming

languages and not upon any algebraic data typing language. Concepts of classes, inheri

tance and polymorfism are also taken from traditional object-oriented languages. Of course,

the descriptive nature of these languages may result in overspecified specifications. How

ever, Meyer [MeySS] shows that object-oriented program constructs allow the definition of

very abstract data entities which, in a sense, come very close to algebraic specifications.

The process part of POOSL is strongly based upon CCS. This languages offer elegant and

intuitively clear constructs to express parallelism, communication, synchronization, and

system structure.

POOSL

6

Chapter 2

Data Objects

2.1 Informal Explanation

Data objects or traveling objects in POOSL are much alike objects in sequential object

oriented programming languages such as Smalltalk [GR89], C++ [Str92], Eiffel [:\1ey88],

and SPOOL [AB90]. A data object consists of some private data and has the ability to

act on this data. Data is stored in instance variables, which contain (references to) other

objects or to the object which owns the variables. The variables of an object cannot be

accessed directly by any other object. They can only be read and changed by the object

itself.

Objects can interact by sending messages to each other. A message consists of a message

name, also called a message selector, and zero or more parameters. A message can be

seen as a request to carry out one of the objects' services. An object explicitly states to

which object it wants to send a message. When an object sends a message, its activities

are suspended until the result of the message arrives. An object that receives a message

will execute a corresponding "o-called method. A method implements one of the object's

services. It can· access all instance variables of its corresponding object. In addition, it

may have local variables of its own. The result of a method execution is returned to the

sender.

Objects are grouped into classes. A class describes a set of objects which all have the same

functiona.lity. The individual objects in a class are called instances. The instance variables

and methods, which are the same for all instances, are specified within a class definition.

Future versions of POOSL should support some form of inheritance. The precise form,

however, has not been decided yet (see also Section 5.5). For now we will assume that the

language incorporates the liberal inheritance scheme of Smalltalk. In Small talk a class ca.n

have a number of subclasses. The instances of such a subclass inherit all instance variables

and methods of the corresponding superclass. Next to these variables and methods they

Formal Syntax 7

can also have additional variables, additional methods or redefined (overridden) methods.

Within the class definition of the subclass it is specified how the subclass' instances differ

from the instances of its superclass. Every class can have at most one superclass, which

implies that multiple inheritance is not supported.

POOSL has four predefined classes of commonly used data types, namely Boolean, Integer,

lIenl, and Char. Instances of these predefined classes are called standard objects. The sd.

of Illessages of these objects correspond to the usual operations of the object.'s data. type.

Besides these objects a special standard object, named nil, exists. This object has no

methods and an error occurs when a message is sent to it.

2.2 Formal Syntax

In this section an (abstract) syntax of the language of data objects is given. The syntax

resembles the syntax of Smalltalk defined in [GRS9j. We assume that the following sets of

syntactic elements are given:

IVar

LVar

CName

MName

instance variables

local variables

class nan1es

method names

X," .

u, v, w,'"

C,'"

m,'"

Firs!' we define the set SObj of standard objects with typical eleIl,lents /, This set.

contains boolean objects, integer objects, real objects, char objects, and nil.

SObj = ra u Z U IR U Char U {nil}

We define the set Exp of expressions, with typical elements E, "', as follows:

E .. - .T

u

newt C)

self

E m(EI'"'' En)

1
S.E

The first two expressions are instance variables, local variables, or parameters. The value

of such a variable expression is (a reference to) the object currently stored in that variable.

The next. type of expression is t.he new expression. This expression indicates that a new

object (of class C) has to be created. The expression yields the newly created object..

Expression self refers 10 t.ll<' object which is currently evaluating this expression. The sixth

type of expression is a message-send expression. Here E refers to the object to which

message m has to be sent and E1 , ..• ,En are the parameters of the message. When a send

POOSL

8 Formal Syntax

expression is evaluated, first t.he destination expression is evaluated, then the parameters

are evaluated from left to right, and then the message is sent to the destination object.

This object initializes its method parameters to the objects in the message and initializes

its local method variables to nil. Next, the receiving object starts evaluating its method

expression. The result of this evaluation is the result of the send expression which is

returned to the sending object. Next, we have constant expressions 1,"', which refer to

the above defined standard objects, such as integers and booleans. 1 stands for the direct

naming (textual representation) of standard object ,. An expression can be composed

from a statement and another expression. When such a composite expression is "vaIuated,

first. t.he st.at.ement. is executed and then the succeeding expression is evaIuat."d. The "alut'

of this expression will be the value of the composite expression.

Next, we define the set Stat of statements. We let S, ... range over Stat which is defined

as

S .. - E

skip

x+-E

u+-E

SI . S2

if E then SI else S2 fi

do E then S od

The first type of statement is an expression. Executing such a statement means that the

expression is evaluated and result is discarded. The effect of the execution is the side-effect

of the expression evaluation. Statement skip has no computational effect. Next, we have

two assignment statements; the first to an instance variable and the second to a local

variable. Upon execution of an assignment statement, the expression is evaluated and the

result, a reference to an object, is assigned to the variable. The sequential composition

(indicated with a dot (.) as in Smalltalk [GRS9]), the if-statement, and the do-statement

have their usual meaning.

Further, we define the set Systems with typical elements Sys,

Sys ::= (CDI ··· CDn)

A system Sys is a set of user-defined classes, comparable to a set of system classes in

Smalltalk. A system is built from a number of class definitions.

The set Classde! of class definitions, with typical elements CD, ... , is defined as

CD ::= class name C

instance variabl€~ names Xl·" Xn

instance methods

2 Data Objects

Example: An Unbounded FIFO Buffer

class name

super class

instance variable names Xl'" xn

instance methods MDI ... MDk

9

Within a class definition the functionality of the classes' instances is specified. First, the

name of the class is given. Then, optionally, the name of a possible superclass is specified.

Next, the instance variables XI ••. Xn of the class are indicated. The last part of a class

definition consists of a number of method definitions MDI ... MDk.

The set of all method definitions is called Methdef and has typical elements MD,···,

MD ::= 111(UI,···,lln)

I Vj ... Vm I
E

111(UI,···, un)

primitive

Within a method definition the functionality of a certain message or method is described.

A method definition starts with a method or message name 111 and zero or more parameters

Ill, ... , Un. Next, zero or more local variables Vj ... Vm are specified. A method definition

ends with an expression E which is the body of the method. This expression is evaluated

when the method is invoked. The result of this evaluation is returned to the message

sender.

However, there exist methods for which the functionality cannot be expressed in terms

of expressions. The functionality of these, often called primitive methods, is specified in

the form of axioms in the semantics of the language. A primitive method definition only

contains the parameters of the method and a keyword which indicates that the method is

primitiyc. A typical example of a primitive method is a deepCopy method which is tlsed

to create a complete copy of some object.

2.3 Example: An Unbounded FIFO Buffer

[n this scctioll we will give all example of a description of an unbounded FIFO buffer in

POOSL. To ease the readability we will use the following syntactical conventions:

• statements of the form if E then 5 else skip fi are abbreviated to if E then 5 fi

• method calls or method headers of the form E m () are abbreviated to m

• ""1pty local vari"hk d"c\aratiolls in md.hod d"fillitions are]PH out

• pairs of brackets around the parameters of method calls of standard objects are oftell

left. away. So we will write 3 + 2 to mean :3 + (2) and 5 > 10 instead of 5> (10)

POOSL

10 Example: An Unbounded FIFO Buffer

First we define a class FIFOLink. A FIFO link is composed from an actual FIFO element

and two references to other FIFO links. The class definition of class FIFOLink we will

give is specified as:

class name FIFOLink

instance variable names element

previousLink

nextLink

instance methods

setElement(anElement)

element <- anElement·

self

setNextLink(aLink)

nextLink <- aLink·

self

setPreviousLink(aLink)

previousLink <- aLink·

self

element

element

nextLink

nextLink

previousLink

previousLink

By means of class FIFOLink we are able to declare class FIFOBujJer. A FIFO buffer

has a depth, a reference to " FIFO link which represents the bottom of the buffer and a

reference to another FIFO link which represents the head of the buffer. We assume that

there exists a class Object which defines (primitive) method error. Class FIFOBujJer will

be a subclass of Object which means that it also recognizes errol' messages. The class

ddinition of FfFOBujTer is as follow",

2

class name

superclass

instance variable names

instance methods

clear

fifoDepth <- o·
firstLink <- nil·

lastLink <- nil·

self

FIFOBujJer

Object

fifoDepth

firstLink

lastLink

Data Objects

Example: An Unbounded FIFO Buffer

read

I aLink I
if fifoDepth = 0 then self error fi .

aLink <- lastLink·

if fifoDepth > 1 then lastLink <- lastLink previousLink·

lastLink setNextLink(nil)

else firstLink <- nil·

lastLink <- nil

fi·

fifoDepth <- fifoDepth - 1·

alink element

writer anElement)

I aLink I
if fifoDepth = 0 thenfirstLink <- new(FIFOLink)

setElement(anElement)·

lastLink <- firstLink

fi·

self

isEmpty

fifoDepth = 0

else aLink <- new(FIFOLink)

setElement(anElement)

setNextLink(firstLink).

fiTstLink setPreviousLink(aLink)·

firstLink <- aLink

11

If we call the class definitions of classes FIFOLink, FIFOBujJer and Object respectively

CDFlFOLink, CDFlFOBuf/cr and CDObj ,," then we can define a system Sys of classes

Sys = (CDFlFOLink CDFlFOBuf/er CDObj,,')

POOSL

12

Chapter 3

Process Objects

This chapter describes the process-oriented part of POOSL. This part is based upon the

language of data objects described in the previous chapter.

3.1 Informal Explanation

A specification in POOSL consists of a fixed set of stat.ically interconnected distributed

processes (a definition is given in [WegS7]). Processes or process objects are connected by

statically defined channels through which they can communicate by exchanging messages.

The communication mechanism we use is based upon the synchronous (rendez-vous) pair

wise message-passing mechanism of CCS. It resembles the one-way synchronous message

passing mechanism of PROCOL [BL89].

When a process wants to send a message it explicitly states to which channel this message

has to be sent. It also explicitly states when and from which channel it wants to receive a

message. Immediately after a message has been received, the sending process resumes its

activities (it does not have to wait for a result). If a process receives a message, it does not

execute a method like in traditional object-oriented languages. Also, a possible expected

result is not automatically returned to the sender. If a result of the message is expected.

it has to be transmitted by means of another rendez-vous.

Process objects can call one of their methods. Such a call is either a call of a tErminating

method or a call of a non-terminating one. Terminating methods can be compared to

procedures of imperative programming languages such as C or Pascal. Non-terminating

methods are used to support tail recursion. Tail recursion has proven to be a very useful

construct for the specification of communicating systems and is incorporated in all process

oriented languages. Non-terminating methods of a process-object can be considered as

abstract states of the object, and can be compared with agent identifiers in CCS.

Processes contain internal data in the form of data objects which are stored in instance

Formal Syntax

variables. Data objects are private to the owning process, i.e., process objects have no

shared variables or shared data. A process can interact with its data objects by sending

messages to them. When a process sends a message to one of its data objects, its activitities

are suspended until the result of the message arrives. Data objects themselves cannot send

messages (except for replies) to a process object.

\ViIell two proc('sses conllllt1l1icate, a message and a (possibly empty) set of pa.rameters

is passed frolll olle proc('ss 1.0 allol.l)('1'. The pil.ra.llld.('rs refer to objects wilich arc privai.e

to the selldillg process. Because processes do not. have a.uy data in comJJlon, it. docs not

suffice just to pass a set of references to the data objects, as in traditional object-oriented

languages. Instead, the objects themselves have to be passed. This means that a new set

of objects has to be created within the environment of the receiving process. These objects

are (deep) copies of the data objects involved in the rendez-vous.

Process objects are grouped in classes, just as data objects. We distinguish two kinds

of process classes: basic classes and composite classes. Basic process classes are defined

in a similar manner as classes of data objects. Composite classes, on the other hand, are

composed from other (basic or composite) classes, by means of parallel composition, channel

T',naming, and/or channel hiding. These combinat.ors are based upon similar combinators

originally used in CCS [MiISOJ. Subclass relations between such composite process classes

can not (yet) be defined. Instances of basic classes will be called basic processes (or

basic process objects) and instances of composite classes will be called composit.e processes

(or composite proCf'SS ollject.s). Future versions of POOSL should support SOIllC 1'01'111 of

inheritance alllOllg process cla.sses (see also Sectioll 5.6). The precise fonn, however, is not.

yet decided all.

3.2 Formal Syntax

This section describes the formal abstract syntax of POOSL. It is based on the language

of data objects of the previous chapter. We assume that the following sets of syntactic

clf'ments a.re given:

Chan

Va,'

communication channels ch,' ..

Ival' U LVal' p, ...

\Ve define the set Stat' of process or parallel statements. These statements are used to

specify the behaviour of process objects.

POOSL

14

S' .. - S

eh!m(Eb ···, E..,)

eh?m(p""" p,,)

In(E1,···,En ; Pl,"',Pm)

m(Eb ···, En)

Sf· SI
scl G, or ... or Gn les

Formal Syntax

'I'll<' first. t.ype of st.at.'·lllellt. is a st.at.(,lIlellt. ddilled ill t.he lallguage of dat.a ohj('ct.s or t.he

prevIOus chapt.er. These st.atements are used to model int.ernal data comput.at.ions of a

process.

The next two statements are the message-send and message-receive statements. A message

send statement eh!m(Eb ···, En) indicates that a process is willing to send message m

together with parameters E""" En, on channel eh. Before the message is offered to the

channel, first the parameters E" ... , En, which are data expressions, are evaluated from left

t.o right.. The actual message transfer can only happen if some other process is executing a

lIlessage-receive statement eh?m(Pb"" Pm) (or a guarded command which contains such

a statement). Conversely, a message-receive statement can only be executed if another

process executes a message-send statement. After a process has sent a message, it can

immediately continue with its activities; it does not have to wait for an answer to arrive.

Upon reception of a message, deep copies of the message paTameters are bound to t.he

illput parameters]i,,"', Pm of the message-receive st.atement of the receiving process.

The fonrth statement. is a method call. By means or such a method call stat.elllC'llt a

process object can call its methods. A method call m{ E", .. ,En; p,,"', p",) is executed

ill the following way: First, expressions £\,"', En are evaluat.ed from left. to right. Next,

t.he values of these expressions are bound to the input parameters of the methodm and

the local variables are initialized to nil. Then the method body is executed. After this

execution terminates, the exit parameters of the method are bound to variables p" ... , Pn.

Next, we have another met.hod call st.atement. m{ E" ... , En) is executed in a similar way

as m(E" ... ,En; Pb"', Pm). expressions E" ... , En are evaluated from left to right. The

body execution, however, does not (necessarily) terminate and the execution control is

never returned to the point before the call. Non-terminating method calls in POOSL are

used to support tail recursion. Note that these method calls are completely different from

procedure calls in imperative programming languages.

Tlw sixth sort of st.atement is sequent.ial composit.ion, which is indicated wit.h a dot (.) as

in Sl1lalltalk. Sequent.ial composition has it.s usual meaning.

The last kind of statement is a select statement. A select statement indicates that a process

can choose between a number of alternative statements, called guarded commands. The

:~ Process Objects

Formal Syntax

set eCom of guarded commands with typical elements e,··· is defined as

e .. - E; ch?m(Pl"",Pm)thenS'

E; ch!m(E1,···, En) then S'

Ethen S'

15

A guarded command is composed of an expression E, which is called a guard, and a

rest statement. Upon execution of a select statement sel e, or' .. or en les, first all sub

expressions (guards and possibly parameter expressions) of the statement are evaluated

from left to right. All guards have to result in an object of class Boolean. The guarded

commands from which the guard result in false are discarded (they do not playa role in

the further execution of the statement). Now, zero or more of the following cases apply:

• One of the remaining guarded commands contains a message-receive statement. In

that case the message can be received only if another process is trying to send the

same message. If the message is received it is handled in the same way as in the case

of a normal message receive statement. Next, the statement behind the keyword then

is executed and the select statement is terminated.

• One of the remaining guarded commands contains a message-send statement. In this

case the message of this statement can only be sent if some other process is willing

to receive the message. After the message has been sent, the statement behind then

is executed and the select statement is terminated.

• One of the remaining guarded commands is of the form E then S'. In this case

statement S' can be executed, after which the select statement terminates.

• There are no remaining guarded commands. This means that all guards were evalu

ated to false and that no guarded commands can be executed. This implies that the

process which is executing the select statement will deadlock.

If more than one of the guarded commands can be executed, then a non-deterministic choice

between the different alternatives is made. If no guarded command can be executed, the

process which is executing the select statement is suspended until one or more guarded

commands become executable.

Next, we define a set Systems' of process systems, with typical elements Sys',' . '.

Sys" ::= (CDr··· CDt)

A process system is a set, of user-defined process classes. Such a system is built from a

number of process class definitions. The set of all process class definitions Classdef' has

typical elements CD', ... and is defined as:

POOSL

16 Formal Syntax

CD' .. - process class na.me C
instance variable names Xl'" xn

communication channels ChI· .. chk

message interface eml'" emf

initial method call m(E],···,Eq)

instanre methods MD[-··MDt

process class H a.me C
communication channels chI ... C/"

message interface em,··· em,

behaviour specification BSpec

Within a process class definition the functionality of the instances of the class is specified.

We distinguish two kinds of process classes, each with its own specification format. The

first kind of class is called bat:ic and the second kind is called composite.

A specification of a basic process class starts with the name of that class. Then a number of

instance variables are specified. These variables model the private or internal data of each

instance of the class. Next, all communication channels, through which the class' instance

processes communicate with other processes, are specified. This channel specification is

followed by a description of a message interface. A message interface is a list of channel

message combinations. A channel-message combination states that a process can send it

certain message to a certain channel, or that. a process can receive a specified messa.ge from

it certai" channel. The set CM of all channel-message combinations ha.s typical elements

em,···, and is defined as follows:

em ch!m(Pl'···, Pm)

eh?m(PI'···, Pm)

The first clause states that a process, at some point in time, can send message m, together

with (formal) parameters P!,···, pm, to channel eh. The second channel-message combi

nation states that message m, with (formal) parameters PI, ... , Pm can be received from

channel eh. A message interface is not a fundamental part of the behaviour specification

of a process class. It mainly serves as an abstract description of the functionality of the

instances of a process class.

The description of a message interface is followed by the specification of an initial method

call of the form m(EI ,···, Em). An instance of a process class always starts its activit.it.ie"

by first evaluating the parameter expressions EI ,···, Em from left to right followed by

calling its initial (non-terminating) method.

The last part of a basic process class definition consists of a number of method definitions.

A method definition specifies the behaviour of its corresponding method. The set Methdef'

of all method definitions, with typical elements MD', ... , is defined as

3 Process Objects

Formal Syntax

m(Ul,"', urn) exitWith(Vl,"', v,,)

I Wl ••• Wk I S·

m(Ul,"', urn) noExit

I Wl •.. Wk I S·

17

Every method is either terminating or non-terminating. Terminating methods are invoked

though a m(El,···,E,,; Pl,"',Pm) statement. A method definition of a terminating

method contains a header with name m, the input parameters Ul,"', Urn, and the exit

variablesV:t, ... , v" of the method. The keyword exit With is used to express that the

method terminates. The method header is followed by a declaration I WJ. ... Wk I of local

variables. Then the message body, which is a statement S·, is defined.

Non-terminating methods are used to describe tail recursion. Such a method is invoked if a

process which owns the met.hod calls it by means of a st.atement of the form m(E,,···, R,,).

A IlOIl-Lcl'Illillat.illg method defillition has almost the same format. as a ddillitioll of a t.er

minating method. The only difference is that the former does not terminate and therefore

have no exit variables, as is indicated by the keyword noExit.

The second kind of process classes are called composite process classes. A composite

process class is built from other classes, which Can be either basic or composite themselves.

A class definition of a composite class consists of a process class name, communication

channels, and a message interface. The behaviour of a process class is specified by means

of a behaviour specification. The set BSpecifications of all process specifications has typical

elements BSpec and is defined as follows:

BSpec C

BSpecl II BSpecz

BSpec \ L

BSpeclfJ

Here L <;; Chan denotes a set of channels. f is a so-called channel relabelling function: a

functioll from Chan to Chan, which respects channel types. The first sort of behaviour

specifications are class names of process classes. A class name C expresses the behaviour

of a single instance of class C.

The second kind of specifications BSpecl II BSpec2 expresses the parallel composition of

specifications BSpec! and BSpecz. Assume, for example, that the class definition of a class,

say C, contains behaviour specification C! II C2 . This specification expresses the behaviour

of two process objects, one of class Cl and the other of class Cz, which execute in parallel

and which (perhaps) communicate through their common channels. The channel set of

class C is the union of the channel sets of classes C! and ~. An instance of class C can

sent and receive any message which can be sent and received by instances of either C! or

Cz. The parallel composition combinator is comparable to the composition combinator of

CCS.

POOSL

18 Formal Syntax

The third kind of behaviour specification is called channel hiding. A channel hiding BSpec \

L expresses a specification BSpec from which the channels in L are made externally invisible.

This means that other (external) processes cannot communicate through channels in L

with processes contained in specification BSpec. Assume, for example, that the method

definition of a class C contains a behaviour specification (C1 II C2) \ {ch}. This means

that, even though classes C1 and C2 may contain channel ch, class C may not. Channel

ch may only be used for the communication between the processes of classes C1 and C2 •

The cha.nnel hiding constructor is simila.r to the restriction combinator of CCS.

The last sort of specification expresses a channel renaming. The channel relabelling

BSpec[j] denotes a specification BSpec from which the channels are relabelled as dictated

by f. We shall often write chU chI,"" ch~/ chn for the relabelling function f for which

f(ch;) = chi for i = 1,· .. , nand f(ch) = ch otherwise. Channel renaming can be very

useful if process objects of the same class are used within different process environments

and have to communicate through different channels.

3 Process 0 b j ects

19

Chapter 4

System Specifications

We are now ready to define what we consider to be a specification of a system. A spec

ification of a system of parallel process objects consists of three parts. The first part is

a behaviour specification BSpec which expresses how the actual system is composed from

process classes defined in Sysp. The second part is a process system SysP which contains a

set of user-defined process classes. The last part is a system Sys of user-defined classes of

data objects. Formally we define the set of all system specifications SSpecijications, with

typical elements SSpec,"', as

SSpec ::= (BSpec, SysP, Sys)

4.1 Example: A Simple Integer Unit

In this section we will specify the behaviour of a simple unit which can perform operations

on integer numbers. The unit, shown in figure 4.1, has an input port in and an output

port out.

in

--------------------------------------c

Integer Unit

Figure 4.1: A simple integer unit

r-
out

It can receive commands add, substract, multiply, and power from channel in, compute the

result of the command, and send this result as a message to the output port. To simplify

the syntactical formal notations, we will use the following conventions:

POOSL

20 Example: A Simple Integer Unit

• guarded commands of the form true; ch?m(p},···, Pm) then SP, or those of the form

true; ch!m(Et,···, En) then S" may be abbreviated to ch?m(U1, ... , 11m) then S" re

spectively ch!m(Et,···, En) then S'.

• "then skip" parts of a guarded command may be left out

• a message receive statement ch?mO may be replaced by ch?m

• statements ch!mO and mO may be abbreviated to respectiyely ch!m and Tn

• method definition headers of the form mO exitWith(v},···,vn) or of the form

mO no Exit may be replaced by respectively m exitWith(lit,· .. , vn) and m noExit

• empty local variable declarations within method definitions are left out

The class definition of IntegerUnit can then be defined as

process class name

instance variable names

IntegerUnit

communication channels in out

message interface in?add(int}, ;nt2) ;n?s1Ibslract(intt, inl2)

in? multiply(int}, ;nt2) in? power(int}, int2)

out!result(anlnt) out!error

initial method call startO

instance methods

start() noExit

sel

or

then out!result(intI + int2)

in?substract(inlt, ;nI2) then outr,·esult(inl} - inl2)

or

in? muItiply(int}, ini2) then out! result (intI * int2)

or

in?power(int}, int2)

les . start

then powerresult(int}, int2 ;)

Within non-terminating method start terminating method powerresult is called. This

method is used to compute intI to the power of int2 (int} ;nl,). If int2 < 0, an error message

is generated. Otherwise, the computed result is send to channel out. The method definition

of powerresult is

4 System Specifications

Example: An Unbounded Transmission Channel

powerresult(int" int2) exitWithO

sel

(int2 < 0) then out!error

or

(int2 2: 0) then

out! result (intI 'int2)

les

21

If we call the class definition of class IntegerUnit CD1n',g"Unit, we can define a system

sl'ccification SSpec, describing a single integer unit, as follows:

SSpec = (IntegerUnit, (CD1n',g"Unit), ())

Note that the system of user-defined classes of data objects in this specification is empty.

Further, note that we have assumed that the standard objects of class Intege!' recognize

+,-,*, and' messages.

4.2 Example: An Unbounded Transmission Channel

By means of the class FIFOBujJe!' defined in Section 2.3, we are able to construct an

unbounded transmission channel (see figure 4.2). The channel has an input port in and

an output port out.

in
Transmission Channel -

out

Figure 4.2: An unbounded transmission channel

Incoming accept-messages are received at port in, after which they are internally buffered

in a FIFO fashion. The buffered messages are delivered at the output port in the form of

deliver messages. A specification of the class TransmissionChannel is

process class name TransmissionChannel

instance variable names buffer

communication channels

message interface

initial IlIethod caU

instance methods

POOSL

in out

in ?accept(data) out!deliver(data)

sfarl

22 Example: The Alternating-bit Protocol

start no Exit

buJJer +- new(FIFOBuJJer) clear·

loop

loop no Exit

I data I
sel

in? accept(data) then buJJer write(data) . loop

or

(buJJer isEmpty not); out!deliver(buJJer read) . loop

les

4.3 Example: The Alternating-bit Protocol

A communication protocol is a discipline for transmission of messages from a source to

a destination. An often-studied protocol is the alternating-bit protocol. A simple speci

fication of this protocol is given in [MiIS9]. In this section a slightly different version is

specified. As shown in figure 4.3, the specification consists of six communicating processes:

a Sender, a Receiver, two Timers, an Acknowledgement Channel and a Transmissions

Channel.

If the sender receives a message (together with some data) from its input port, it sets a

Timer, adds a bit to the received data, and sends the tagged message via the Transmission

Channel to the Receiver. The value of the bit is the complement of the value assigllcd

to the previous message. After the tagged message has been sent, the Sender waits for a

message together with an acknowledge bit to arrive. The value of this bit should be equal

to the value of the bit assigned to the previously sent message. If this is the case, a new

message can be offered by the environment. If the bits are not equal, the acknowledge

message is just absorbed. If in the mean time the Timer expires and gives a timeout, the

tagged message is retransmitted.

The Receiver operates in a similar manner. If the Receiver is offered a tagged message it

checks whether the tag hit equals to the expected hit. If this is so, the message, together

with the data is offered to the environment, an acknowledge message is offered to the

Acknowledgement Channel and the Timer is set. If the bit differs from the expected bit, the

message is just ignored. When the Receiver gets a timeout, the previously sent a.cknowledge

message is retransmitted. Both channels are unreliable: they can either duplicate or lose

messages.

Before we start specifying the protocol, we first define a class Bit, which is used to model

the tag bits.

4 System Specifications

Example: The Alternating-bit Protocol

r-L Transmission ~
Channel

~ Sender Receiver

r--c Acknowledgement

'f Channel

a b 91 Ih

Timer Timer

Figure 4.3: The Alternating-bit Protocol

class name

instance variable names

instance methods

setToZero

bit <- o·
self

setToOne

bit <- 1·

self

isZero

(bit = 0)

is One

(bit = 1)

Bit

bit

invert

bit <- 1 - bit·

self

equals(aBit)

(self isZero /\ aBit isZero) V

(self isOne /\ aBit isOne)

inverts(aBit)

self equals (aBit) not

The classes Receiver and Sender are specified as follows:

POOSL

23

out

24 Example: The Alternating-bit Protocol

4

process class name Sender

instance variable names

communication channels in abc d

message interface in?receive(data) a!trigger b?timeout

d!packet(data, aBit) c? ack(ackBit)

initial method call start

instance methods

start no Exit

accept (new (Bit)set ToOne)

accept(aBit) no Exit

I data I
in? receive (data)·

send (data, aBit)

sending(data, aBit) noExit

I ackBi! I
sel

or

b?timeout then send(data, aBit)

c? ack(ackBit) then

sel

send(data, aBit) noExit

d!packet(data, aBit)·

a!trigger·

sending(data, aBit)

"Bit equals(ackBit) then accept(aBit invert)

or

(aBit equals(aekBit)) not then sending(data, aBit)

les

les

Receiver

out e f 9 h

process class name

instance variable names

communication channels

message interface

initial method call

instance methods

out!send(data) e?packet(data, aBit}

f!aek(ackBit) g!trigger h ?timeout

start

start noExit

reply(new(Bit)setToZero)

deliver(ackBit, data) noExit

out!send(data)·

reply (ackBit)

reply(aekBit) no Exit

I data I
f!ack(ackBit)·

g!trigger·

replying(ackBit)

System Specifications

Example: The Alternating-bit Protocol

replying(ackBit) no Exit

I data aBit I
sel

or

h?limeo'llt then reply("Bit)

e?packet(data, aBit) then

sel

aBit inverts(ackBit) then deliver(ackBit invert, data)

or

aBit inverts(ackBd) not then replying(ackBit)

les

les

25

Before we define the class AcknowledgeChannel, we first define a class AckB'll! An instance

of AckBuJ models an unreliable one-place buffer. We will model the Acknowledge Channel

as a parallel composition of four unreliable one-place buffers.

process class name AckB'llJ

instance variable names aBit

communication channels

message interface

initial method call

instance methods

emptyBuf no Exit

sel

in out

in?ack(aBit) out!ack(aBit)

emptyBuJ

fuUBuf no Exit

sel

in? ack(aBit) then emptyB'llJ in? ack(aBit) then emptyB'llJ

or or

in? ack(aBit) then JallBuJ

les or

in? ack(aBit) then JullB'llJ

out!ack(aBit) then emptyBuJ

or

o'llt!ack(aBit) then JullBuJ

les

We are now able to specify class AcknowledgeChannel.

process c1ass name

instance variable names

communication channels

message interface

behaviour specification

POOSL

AcknowledgeChannel

cJ
c!ack(aBit) J?ack(aBit)

(AckBuJ[j/in,cJ/outlll AckBuJ[cJ/in, c2/outlll

AckBuJ[C2/ in, C3/ outlll AckBuJ[C3/ in, c/outD \ {c" C2, C3}

26 Example: The Alternating-bit Protocol

In a similar manner we can specify class TransmissionChannel. Note that both the trans

mission channel and the acknowledgement channel are bounded. Unbounded reliable or

unreliable communication channels can be specified by means of the unbounded FIFO

buffer of Section 2.3 just like the unbounded transmission channel of the previous section.

Finally, we specify the class Timer.

Timer

a b

process class name

instance variable names

communication channels

message interface

initial method call

instance methods

a ?trigger b!timeout

timerNotSet

timerSet noExit

sel

a?trigger then timerSet

or

b!timeout then timerNotSet

les

timerNotSet noExit

a?trigger· timerSet

A behaviour specification BSpec of the Alternating-bit protocol can now be defined as

(Timer II Sender II AcknowledgeChannel II TransmissionChannei II Receiver

II Timer[gl a, hi bJ) \ {a, b, c, d, e,f, g, h}

and a total system specification would be

(BSpec,

(CD~imeT CD~ender CD~cknowledgeChannef CD~ran5missionChanne/ CDkeceiver CD~imer) 1

(CDB;'))

The specification of the Alternating-bit protocol shows how tail recursion can be used to

model typical process-oriented systems in POOSL. These systems are very hard to model

naturally in traditional object-oriented languages. Of course, POOSL is also suited to

describe typical object-oriented systems.

4 System Specifications

27

Chapter 5

Final Remarks and Future Work

5.1 Abstract Specifications

In Sections 1.3 and 1.4 we mentioned that POOSL supports the possibility to specify sys

tems in an abstract and natural way. By means of message receive, message send, and select

otatements one can define the abstract (communication) behaviour of process objects or

systems of interconnected process objects, without being concerned about (internal) data

of process objects or data which has to be transported over the communication channels.

The main reason why abstract specifications are expressible is that POOSL strictly distin

guishes statically inicrconncc/.cd process objects, whose communication behaviour call be

statically determined, fronl data objects, whose con1munication behaviour is very dynalnic

and time dependent. Another reason is that POOSL supports tail recursion. Complex

abstract communication behaviour is hard to express naturally in languages which do not

support tail recursion. Especially state-machine-alike behaviour is difficult to model with

out the expressive power of tail recursion.

5.2 Semantics and Transformations

One of the main goals of our research is to formalize the functionality-preserving trans

formations mentioned in Section 1.1 and to prove them correct. The formalization of

these transformations can easily be established by expressing them in POOSL. Correct

ness proofs of the trallsformations, however, can only be given if a formal semalltics is

availahle. A formal opnational ,,'mantics of rOOSL has heen <kfined ill [Vo<'J, CIIlTenti.\·

we iln' looking at the forlllaliY-ation and correctness proving or the transformations.

5.3 Automatic Verification

Verification is an activity which decides whether a specification meets certain properties.

One of the most popular verification methods is equivalence checking, by means of which

POOSL

28 Messages and Methods

it can be decided whether two specifications have the same observable behaviour. Other

interesting methods are preorder checking and model checking. These verification methods

can be used very effectively during the high-level architecture synthesis phase of the de

sign methodology described in Section 1.1. By means of equivalence checking or preorder

checking, for example, it can be decided whether a (potential) implementation satisfies its

specification. Model checking can be used to verify whether a specification satisfies certain

temporal properties such as deadlock freedom.

Currently, a number of tools which automate verification activities are available. Exam

ples of such tools include CCStool2 [VV94], The Concurrency Workbench [CPS93j, and

Auto/ Autograph [BRSV89, RS90j. Recently we have applied CCStool2 for the verification

of the Alternating-bit protocol of Section 4.3. For such a verification, POOSL specifications

have to be transformed to equivalent CCS descriptions. Abstract POOSL specifications,

specifications without data, can be translated into CCS in a straightforward way. It is

not yet clear how full POOSL descriptions can in general be transformed into CCS. This,

and the general linking of POOSL with automatic verification tools, will be the subject of

future research.

5.4 Messages and Methods

In most (parallel) object-oriented languages, messages are strongly coupled to their corre

sponding methods. If an object receives a message, a method is executed which t.akes care

of that message. The data part of POOSL follows this convention. In the process part

of the language, however, messages and methods are not coupled at all! After a number

of case studies, during which we tried to model reactive objects, we found out that mes

sage reception often resulted in nothing more than copying of the data parameters of the

message. In our first official version of POOSL [Voe94]' message reception resulted in the

call of a terminating method. In most cases, however, the only thing these met hods had

to achieve was to copy the input parameters to the output parameters. Further, the syn

tactic notation for message reception was conceptually unclear. Therefore, we decided to

completely decouple message reception from method calling in t.he new version of POOSL.

5.5 Inheritance and Typing

The version of POOSL described in this report is a typeless language. For reasons of clarity

and improved reliability, we believe that any (object-oriented) specification langua,ge should

be

·5

(i) statically typed: types of variables, parameters, and method results are explicitly

defined in the specification

(ii) strongly typed: all type checking can be performed statically

Final Remarks and Future Work

The Inheritance Anomaly 29

(iii) type-safe: it can be statically checked that execution never causes "message not

understood errors"

This would mean that we have to develop a type system for (the data part of) POOSI..

However, developing appropriate type systems for object-oriented languages has shown to

be difficult. The major difficulty involves the interaction and competition between classes

and inheTitance on one side and types and subtyping on the other. The construction of a

suitable type system for POOSL requires more investigation and will be subject of future

research. Since there exists a strong interdependence between type systems and inheritance

schemes, we have also not yet decided on the latter. An appropriate inheritance scheme for

(the data part of) POOSL will have to be developed simultaneously with the type system.

For more information on type systems, subtyping, classes, and inheritance, we refer to

[DT92, Hiir94, Co089, AL90, CHC90).

5.6 The Inheritance Anomaly

The inheritance anomaly refers to the serious difficulty in combining inheritance and con

currency in a simple and satisfactory way within a concurrent object-oriented language.

The problem is closely connected with the need to impose synchronization constmints on

the acceptance of a message by an object [Mes93). In most object-oriented concurrent pro

gramming languages synchronization code is used to control the acceptance of messages by

objects. It has been pointed out that synchronization code cannot be effectively inherited

without non-trivial class redefinitions or violation of class encapsulation. An excellent anal

ysis and survey of the inheritance anomaly together with a number of proposed solutions is

presented in [MY93). The most promising solutions of the anomaly tend to the application

of very flexible and dynamic synchronization schemes (schemes for achieving object-wise

synchronization using language primitives) (possibly) build upon "efiective [YW88, WY88)

language capabilities.

Although POOSL employs a synchronization scheme which is more flexible than that of

some other object-oriented programming languages, it is not nearly flexible enough to

allow complete elimination of the inheritance anomaly, independent of the future inheri

tan('(' schellle. In our opinion one of the major problems with very flexible and dynamic

syn('hroni~at.ion schcmes is t.hat they clash with the verifiability and understandabilit.y re

quirements of specification languages, which is why we have chosen to adopt a more static

scheme.

The severeness of the problem has caused a number of well-known concurrent object

oriented languages, such as POOL/T [Ame87j, Act! [Lie87) and ABCL/! [YBS86j, to give

"1' supporting inheritance as a basic language feature. In POOSL only the process part can

possibly suffer from the inheritance anomaly. This means that even if the anomaly causes

too many problems, which is not known yet, the language would still support inheritance,

POOSL

30 Assertions

the prime language feature in sequential object-oriented languages, among classes of data

objects.

5.7 Assertions

The Eiffellanguage is one of the few object-oriented programming languages that enables

designers to define specification elements within Eiffel programs [Mey88l. Such a specifica

tion element, called an assertion, states what a certain element must do, independently of

how it does it. Assertions in Eiffel create the possibility to define program entities which

come very close to abstract data types, and they make Eiffel both a design and a program

ming language. Ideally, the assertion language should at least have the power of first-order

predicate logic [AL90l. However, if the assertion language is so powerful, it is inherently

impossible to automatically check (a priori by a compiler or at run-time) whether program

('ntities meet their specifications. Eiffel, therefore, uses a somewhat restricted, yet practi

cal, set of assertions. These assertions call be monitored at run-time to validate program

COl'I'Cctlless.

We find the approach taken by Eiffel very elegant, especially because it is practically

applicable, easily understandable, and readable. We are therefore considering to follow the

Eiffel approach by incorporating assertions into POOSL too.

5.8 Selective Message Reception

Assume we are dealing with" number of identical resource objects, sharing a common set

of communication channels, and suppose that some process would like to claim one of the

available resources, exchange a number of messages, and give the resource free. For this the

process would have to be able to selectively send messages to one of the resources. However,

since the resources can only select messages on the basis of channel names and message

names, and because all resources are acquainted with the same channels and messages, it

is impossible for the process to indicate that a certain message is meant for one specific

resource.

However, constructions such as the above occur frequently, especially in object-oriented

systems. The analysis and design method described in [Ver92], for example, recognizes

this and uses a special kind of entity, called (dynamic) multiple, to model these construc

tions. The ROOA method, described in [MC94, MC93], uses class templates and object

generators for similar purposes. Both methods use constructs for selective message recep

tion, i.e., method reception on the basis of values of parameters (addresses respectively

object identifiers) of messages.

To deal with the described problem, we have to increase the expressive power of POOSL.

.5 Final Remarks and Future Work

Selective Message Reception 31

This can be achieved by replacing the message receive statement Ch?m(PI,···, Pm) by a

similar statement ch?m(p,,··· ,Pm I E), with E denoting a boolean expression over

parameters PI,"', Pm. The intended semantics is that a process is willing to receive mes

sage m with parameters PI,"', Pm on channel ch only if expression E evaluates to true.

We expect that the statement, which solves the described problem very elegantly, can be

incorporated in (the formal semantics of) POOSL in a straightforward way.

POOSL

32

Chapter 6

Conclusions

In this report we have presented an object-oriented language for the specification of com

plex hardware and software systems. The language builds upon a design methodology

formulated in [Ver92]. This methodology demands a number of very specific requirements

of the specification language. The most important requirements are:

• the language should be object-oriented

• it should support functionality-preserving transformations and (automatic) verifica

tion

• the language should support the explicit representation of system architecture, system

topology, and hierarchy.

To meet these requirements, POOSL builds upon the concepts of the object-oriented

paradigm as well as on the basic concepts of the algebraic process formalism CCS. POOSL

explicitly distinguishes (statically interconnected distributed) process objects from data

objects.

Process objects communicate through channels using a synchronous message-passing mech

anism based on ees. Further, by means of parallel composition, "estriction, and channel

renaming constructions, process objects can be composed to form composite processes.

These constructions, originating from ees, are also used to make hierarchical system

specifications which reflect system architecture and system topology.

Data or traveling objects are used to model private data of process objects as well as data

which is exchanged between (different) process objects. Data objects are much like objects

in traditional object-oriented programming languages, such as POOL and Small talk. Also

concepts of classes, inheritance, and polymorfism are taken from these languages.

The strict distinction between process and data objects opens the way to formal (auto

matic) verification and transformation. This, together with possibility to describe tail

recursion, also creates a way to specify systems in an abstract and natural way.

33

The version of POOSL described in this report is only a basic software/hardware specifica

tion language. To complete the language, it has to be extended with a number of language

constructions, such as inheritance, static typing, assertions, and selective message recep

tion. At this moment the precise form of these extensions is unknown and requires more

research.

POOSL

34

6 Conclusions

35

References

[AB90J America, P.H.M. and F.S. de Boer.

A proof theory for a sequential version of POOL.

Faculty of Mathematics and Computer Science, Eindhoven University of Tech

nology, October, 1990.

Report Series: Computing Science Notes, nr. 90/12.

[AL90J America, P.H.M. and F. van der Linden.

A parallel object-01'iented language with inheritance and subtyping.

In: Proceedings of the European Conference on Object-Oriented Programming

(ECOOP'90), Ottawa, Canada, October 21-25, 1990. Ed. by N. Megrowitz.

New York: ACM, 1990. P. 161-168.

[Ame87J America, P.H.M.

Synchronizing actions.

In: Proceedings of the European Conference on Object-Oriented Programming

(ECOOP'87), Paris, France, June 15-17, 1987. Ed. by J. Bezivin et al. Berlin:

Springer, 1987 (Lecture Notes in Computer Science, Vol. 276). P. 234-242.

[AR89J America, P.H.M. and J.J.M.M. Rutten.

A parallel object-oriented language: Design and semantic foundations.

Amsterdam: Vrije Universiteit, 1989.

Ph.D. thesis.

[Bae86J Baeten, J.C.M.

Procesalgebra: Een formalism e voor parallel, communicerende processen.

rkvent.er : KIlIwer, 1986.

[8L89J Bos, J. vall den ami C. Laffra ..

POOSL

l'ROCOL: A parallel object language with]>1"Otocols.

In: Proceedings of the 1989 conference on Object-Oriented Programming, Sys

tems, Languages and Applications (OOPSLA'89), New Orleans, Louisiana, Oc

tober 1-6, 1989. Ed. by N. Meyrowitz. New York: ACM, 1989. P. 95-102.

36

[BlagO]

References

Black, B.

Objects and LOTOS.

In: Proceedings of the second international conference on formal description

techniques for distributed systems and communication protocols (FORTE'89),

Vancouver, Canada, December 5-8, 1989. Ed. by Son T. Vuong. Amsterdam:

North-Holland, 1!190. P. 285-297.

[BRSV89] Boudol, G. and V. Roy, R. de Simone, D. Vergamini.

Process calculi, from theory to practice: Verification tools.

In: Proceedings of the International workshop on automatic verification meth

ods for finite state systems, Grenoble, France, June 12-14, 1989. Ed. by J.

Sifakis. Berlin: Springer, 1990. P. 1-10.

[CHC90] Cook, W. and W.L. Hill, P.S. Canning.

Inheritance is not subtyping.

In: Conference record of the 17th annual symposium on principles of program

ming languages, San Francisco, USA, January 17-19, 1990. New York: ACM,

1990. P. 125-135.

[Coo89] Cook, W.

A proposal for making Eiffel type-safe.

In: Proceedings of the European Conference on Object-Oriented Programming

(ECOOP'89), Nottingham, England, July 10-14, 1989. Ed. by S. Cook. Cam

bride: Cambridge University Press, 1989. P. 57-70.

[CPS93] Cleaveland, R. and J. Parrow, B. Steffen.

The Concurreny Workbench: A semantics-based tool for the verification of con

current systems.

ACM Transactions on programming languages and systems, Vol. 15(1993), no.

1, p. 36-72.

[CRS90] Cusack, E. and S. Rudkin, C.Smith.

An object-oriented interpretation of LOTOS.

In: Proceedings of the second International conference on formal description

techniques for distributed systems and communication protocols (FORTE'89),

Vancouver, Canada, December 5-8, 1989. Ed. by Son T. Vuong. Amsterdam:

North-Holland, 1!190. P. 265-284.

[Cus88] Cusack, E.

Formal object-oriented specification of distributed systems.

In: Proceedings of the BCS-FACS workshop on specification and verification

of concurrent systems, Stirling, Scotland, July 6-8, 1988. Ed. by C. Rattray.

Berlin: Springer, 1990. P. 71-83.

6 R.eferences

References 37

[DT92] Dodani, M. and C. Tsai.

A CTS: A type system for object-oriented programming based on abstract and

concrete classes.

In: Proceedings of the European Conference on Object-Oriented Program

ming (ECOOP'92), Utrecht, The Netherlands, June 29-July :1, 1992. Ed. by

O. Lehrmann Madsen. Berlin: Springer, 1992 (Lecture Notes in Computer

Science, Vol. 61.5). P. 309-324.

[EVD89] Eijk, P.H.J. van and C. Vissers, M. Diaz.

The formal description technique LOTOS.

Amsterdam: North-Holland, 1989.

[GR89] Goldberg, A. and D. Robson.

Smalltalk-BO: The language.

Reading, Massachusetts: Addison-Wesley, 1989.

[Hoa85] Hoare, C.A.R.

[11'1'91]

[Hur94]

Communicating sequential processes.

Englewood Cliffs, New Jersey: Prentice-Hall, 1985.

Honda, K. and M. '1'okora.

A n object calc'll Ius for asynchronous communication.

In: Proceedings of the European Conference on Object-Oriented Programming

(ECOOP'91), Geneva, Switzerland, July 15-19, 1991. Ed. by P. America.

Berlin: Springer, 1991 (Lecture Notes in Computer Science, Vol. 512). P. 133-

147.

Hursch, W.L.

Should superclasses be abstract?

In: Proceedings of the European Conference on Object-Oriented Programming

(ECOOP'94), Bologna, Italy, July 4-8, 1994. Ed. by M. Tokoro and R. Pareschi.

Berlin: Springer, 1994 (Lecture Notes in Computer Science, Vol. 821). P. 12-3l.

[1\0091] I\oomen, C.J.

[Lan92]

[Lie87]

POOSL

The design of communicating systems: A system engineering approach.

Dordrecht : Kluwcr, 1991.

Langerak, R.

Transformations and semantics for LOTOS.

Ph.D. thesis, University of Twente, 1992.

Liebermann, H.

Concurrent object-oriented programming in Act 1.

In: Object-oriented concurrent programming. Ed. by A. Yonezawa and M.

Tokoro. Cambridge: Mit Press, 1987. P. 9-36.

38 References

[MC93] Moreira, A.M.D. a.nd R.G. Clark.

Rigorous object-oriented analysis.

University of Strirling, Computing Science Department, 1993.

Technical Report, nr. TR 109.

[MC94] Moreira, A.M.D. and R.G. Clark.

Combining object-oriented analysis and formal description techniques.

In: Proceedings of the European Conference on Object-Oriented Programming

(ECOOP'94), Bologna, Italy, July 4-8, 1994. Ed. by M. Tokoro and R. Pareschi.

Berlin: Springer, 1994 (Lecture Notes in Computer Science, Vol. 821). P. 345-·

364.

[Mes93] Meseguer, J.

Solving the inheritance anomaly in concurrent object-oriented programming.

In: Proceedings of the European Conference on Object-Oriented Programming

(ECOOP'93), Kaiserslautern, Germany, July 26-30, 1993. Ed. by O. Nierstrasz.

Berlin: Springer, 1993 (Lecture Notes in Computer Science, Vol. 707). P. 220-

246.

[Mey88] Meyer, B.

Object-oriented software construction.

New Jersey, Englewood Cliffs: Prentice-Hall, 1988.

[MiI80] Milner, R.

A Calculus of communicating systems.

Berlin: Springer, 1980.

(Lecture Notes in Computer Science, Vol. 92).

[MiI89] Milner, R.

Communication and concurrency.

London: Prentice Hall, 1989.

[MM89] Manas J. and T. De Miguel.

From LOTOS to C.
In: Proceedings of the first international conference on formal description tech

niques for distributed systems and communication protocols (FORTE'88), Stir

ling, Scotland, September 6-9, 1988. Ed. by K. Turner. Amsterdam: North

Holland, 1989. P. 79-84.

[MY93] Matsuoka, S. and A. Yonezawa.

Analysis of inheritance anomaly in object-oriented concurrent programming lan

guages.

In: Research directions in concurrent object-oriented programming. Ed. by

G. Agha and P. Wegner, A. Yonezawa. London: MIT Press, 1993. P. 107-

150.

6 References

References 39

[Nar87] Narfelt, K.H.

SYSDAX: An object-oriented design methodology based on SDL.

In: Proceedings of SDL'87: State of the art and future trends, The Hague, The

Netherlands, April 3-10, 1987. Ed. by R. Saracco and P. Tilanus. Amsterdam:

North-Holland, 1987. P.247-254.

[Nie91] Nierstrasz, O.

Towards an object calculus.

In: Proceedings of the ECOOP'91 workshop on object-based concurrent pro

gramming, Geneva, Switzerland, July 15-16, 1992. Ed. by M. Tokoro and O.

Nierstrasz, P. Wegner. Berlin: Springer, 1992 (Lecture Notes in Computer

Science, Vol. 612). P. 1-20.

[RS~O] Roy, V. and R. de Simone.

A uto/ Autograph.

In: Proceedings of the 2nd International conference on Computer-Aided Verifi

cation (CAV'90), New Brunswick, USA, June 18-21,1990. Ed. by E. Clark and

R. Kurshan. Berlin: Springer, 1990 (Lecture Notes in Computer Science, Vol.

531). P. 65-75.

[Str92] Stroustrup, B.

The C++ programming language.

Reading, Massachusetts: Addison-Wesley, 1992.

[TT92] Takashio, K. and M. Tokoro.

[Ver92]

[Voe]

POOSL

DROL: An object-oriented programming language for distributed real-time sys

tems.

In: Proceedings of the 1992 conference on Object-Oriented Programming,

Systems, Languages and Applications (OOPSLA'92), Vancouver, British

Columbia, Canada, October 18-22, 1992. Ed. by A. Paepcke. New York: ACM

Press, 1992 (ACM Sigplan Notices, Vol. 27/10). P. 276-294.

Verschueren, A.C.

An object-oriented modelling technique for analysis and design of complex (real

time) systems.

Ph.D. thesis, Eindhoven University of Technology, 1992.

Voeten, J.P.M.

Semantics of POOSL: An object-oriented specification language for the analysi.,

and design of hardware/software systems.

To be published as a technical report, Eindhoven University of Technology

(1995).

40 References

[Voe94] Voeten, J.P.M.

POOSL, A parallel object-oriented specification language.

In: Proceedings of the eight workshop computer systems, Amsterdam, The

Netherlands, March 25, 1994. Ed. by P. Hartel. Amsterdam: University of

Amsterdam, 1994. Technical Report University of Amsterdam, Department of

Computer Science, nr. CS-94-04. P. 25-45.

[VV94] Van Rangelrooij, A. and J.P.M. Voeten.

CCStoo12: An expansion, minimization, and verification tool for finite state

CCS descriptions.

Eindhoven: EindllOven University of Technology, Faculty of Electrical Engi

neering, 1994.

EUT Report 94-E-284.

[Weg87] Wegner, P.

Dimensions of object-based language design.

In: Proceedings of the 1987 Conference on Object-Oriented Programming, Sys

tems, Languages and Applications (OOPSLA'87), Orlando, Florida, October

4-8, 1987. Ed. by N. Meyrowitz. New York: ACM Press, 1987 (ACM Sigplan

Notices, Vol. 22/12). P. 168-182.

[WY88] Watanabe, T. and A. Yonezawa.

Reflection in an object-oriented concurrent language.

In: Proceedings of the 1988 conference on Object-Oriented Programming,

Systems, Languages and Applications (OOPSLA'88), San Diego, California,

September 25-30, 1988. Ed. by N. Meyrowitz. New York: ACM Press, 1988

(ACM Sigplan Notices, Vol. 23/11). P. 306-314.

[YBS86] Yonezawa, A. and J. Briot, E. Shibayama.

Object-oriented concurrent programming in ABCL/l.

In: Proceedings of the 1986 conference on Object-Oriented Programming, Sys

tems, Languages and Applications (OOPSLA'86), Portland, Oregon, September

29-0ctober 2, 1986. Ed. by N. Meyrowitz. New York: ACM Press, 1986 (ACM

Sigplan Notices, Vol. 21/11). P. 258-268.

[YW88] Yonezawa, A. and T. Watanabe.

6

An introduction to object-based reflective concurrent computation.

In: Proceedings of the 1988 ACM SIGPLAN workshop on object-based concur

rent programming, San Diego, September 26-27, 1988. Ed. by G. Agha and P.

Wegner, A. Yonezawa. New York: ACM Press, 1988 (ACM Sigplan Notices,

Vol. 24/04). P. 50--54.

References

41

Eindhoven University of l'echnoloav Research Reool'ts IS:SN 0167-9708
Cede n : lEUEnE

Facul tv of Electrical Eha)neerirlQ'

(264) Freriks. L.W. and P.J.M. Cluitmans. N.J. van Gils
THE ADAPTIVE RESONANCE THEORY NETWORK: (Clustering-) behaviour in relation wIth brainstem
auditory evoked potentIal patterns.
EUT Report 92-E-264. 1992. ISBN 90-6144-264-8

i265) Wel~~, J.S. and F. Karout!. H.C. ~£bl'~ann. E. ~~,LblU9]e. L.N.F. ~auf~_nn

iilJIUFICTURING AND CHARActERIZATION ofGIlSiICGAAS lluLrfprrouANTUMwELLRfooE WAVEGUIDE
LASERS.
EUT Report 92-E-265. 1992. ISBN 90-6144-265-6

(266) CJ~,itmans. L.J.M.
USING GENETIC ALGORITHMS FOR SCHEDULING DATA FLOW GRAPHS.
EUT Report 92-E-266. 1992. ISBN 90-6144-266-4

(267) Jozwiak. L. and A.P.H. van Di)k
A METHOD FOR GENERAL SIMULTANEOUS FULL DECOMPOSITION OF SEQUENTIAL MACHINES:
Algorithms and implementatIon.
EUT Report 92-E-267. 1992. ISBN 90-6144-267-2

(2681 Boom. H. van den and W. van Ettell .. V.H.C. de !!rom. P. van ~nn~ko~. F. I!!w~.kens.

t~~~~en. F. de !&,im. -- ---,

AN OPTICAL ASK AND FSK PHASE DIVERSITY TRANSMISSION SYSTEM.
EUT Report 92-E-268. 1992. ISBN 90-6144-268-0

(2691 Putten. P.H.A. van der
iiULTIDISCIPLINAIR SPECIFICEREN EN ONTWERPEN VAN MICROELEKTRONICA IN PRODUKTEN (In Dutch).
EUT Report 93-E-269. 1993. ISBN 90-6144-269-9

(2701 ~!2.kll, R.H.J.
PROGRIL: A languag,l for the definition of protocol grammars.
BUT Report 93-E-270. 1993. ISBN 90-6144-270-2

(2711 ~oks, R.H.J.
CODE GENERATION FOil THE ATTRIBUTE EVAWATOR OF THE PROTOCOL ENGINE GRAMMAR PROCESSOR UNIT.
BUT Report 93-E-271. 1993. ISBN 90-6144-271-0

(272) '(all, Keping and E.lt van Veldh!0ze~
FLUE GAS CLEANING aY PULSECORONASTRElMER.
EUT Report 93-E-271. 1993. ISBN 90-6144-272-9

(2731 Smolders. U.
FINITE'STACKED MICROSTRIP ARRAYS WITH THICK SUBSTRATES.
EUT Report 93-E-273. 1993. ISBN 90-6144-273-7

(274) Boll~, M.H.J. and M.A. van Hout~
ilN1iiSuLAR POWER S,(STEMS: Drawlng'up an Inventory of phenomena and research OOSsiDllItJes.
EUT Report 93-E-27oI. 1993. ISBN 90-6144-274-5

(2751 Deursen. A.P.J. vall
ELECTROMAGNETIC COIIPATIBILITY: Part 5. installation and mltJgatlOo guidelines, section 3,
cabling aDd wiring.
EUT Report 93-E-27!i. 1993. ISBN 90-6144-275-3

(l761 801l0n. M,H,J,

LlTERATUU mRCK !lOR RELmlLlTY DATA 0' COMPONSm I" f,UCmC mTRlBIITION mWORK~,
BUT Report 93-E-271i. 1993. ISBN 90-6144-276-1

r:indbov.!::..D UOlversit-,/ 1:1 JAchonlcx;ry R~~h ReDOr~ ISSN i,j167-··9708
Coden: TEVEDE

12771 Weiland, Siep
A BEHAVIORAL APPROACH TO BALANCED REPRESENTATIONS OF DYNAMICAL SYSTEMS.
EUT Report 93-E-277. 1993. ISBN 90-6144-277-X

12781 ~Qr1h!2~. YU.A. and V.I. Vladimiroy
[lNl:lfEVERSAL GAS FLOW TEMPERATURE MEASUREMENTS: Evaluations of the optical arrangements tor
the instrument.
RUT Report 93-E-278. 1993. ISBN 90-6144-278-8

12791 Cteygjlton. U.K. and U. Rutqers. U. van \!Ldhul~e,~

flI-SlfiJlNvESmATION OF PULSEo'cORONA DISCHARl>I.--
EUT Report 93-E-279. 1993. ISBN 90-6144-279-6

1280! !d, H.O and R.P.P. ~e!li

GAP-LENGTH DEPENDENT'PHENOMENA OF HIGH-FREOUENCY VACUUM ARCS.
EUT Report 93-E-280. 1993. ISBN 90-6144-280-1

12811 Di. Chennian and Jochen A.G. Jess
ON THE DEVELOPMENT OF A FAST AND ACCURATE BRIDGING FAULT SIMULATOR.
EUT Report 94-E-281. 1994. ISBN 90-6144-281-8

12821 Falkus. H.M. and A.A.H. Damen
MULTIVARIABLE H-INFINITY-CONTROL DESIGN TOOLBOX: User manual.
EUT Report 94-E-262. 1994. ISBN 90-6144-262-6

12831 MeM. l.t and J.G.J. ~l2.Ql

THERMAL BUCKLING BEHAVIOUR OF FUSE WIRES.
RUT Report 94-E-283. 1994. ISBN 90-6144-263-4

12841 Ranqelrooi). A. van and J.P.M. Voete.R
CCSTOOL2: An expanSlon. mlnimization, and verification tool for flnite state
CCS descriptions.
EUT Report 94-.-284. 1994. ISBN 90-6144-284-2

12851 Roer. Th.G. van de
MODELING OF DOUBLE BARRIER RESONANT TUNNELING DIODES: D.C. and noise model.
RUT Report 95-E-285. 1995. ISBN 90-6144-285-0

12861 IlQ.lmans. G.
ELECTROMAGNETIC FIELDS INSIDE A LARGE ROOM WITH PERFECTLY CONDUCTING WALLS.
EUT Report 95-E-286. 1995. ISBN 90-6144-286-9

(2871 Llao. Boshu and P. Massee
RELIABILITY ANALYSIS OF AUXILIARY ELECTRICAL SYSTEMS AND GENERATING UNITS.
EUT Report 95-E-287. 1995. ISBN 90-6144-287-7

(2881 W!llaQ~, Slep and InIon A. ~tQorvogel

OPTIMAL HANKEL NORM IDENTIFICATION OF DYNAMICAL SYSTEMS.
EUT Report 95-E-288. 1995. ISBN 90-0144- 288-5

(2891 Konieczny. Pawel A. and Lech J6zwlak
MINIMAL INPUT SUPPORT PROBLEM AND JlLGORITHMS TO SOLVE IT.
EUT Report 95-E-289. 1995. ISBN 90-6144-289-3

12901 V_oeten .. J.P. M.
POOSL __ An object-orlented specification language for the analysis and deslgn
of hardware/software systems.
EUT Report 95-E-290. 1995. ISBN 90-6144-290-7

	Abstract
	Table of contents
	Acknowledgements
	List of figures
	1. Introduction
	1.1 History and background
	1.2 Language concepts
	1.3 Processes versus data
	1.4 Related work
	2. Data objects
	2.1 Informal explanation
	2.2 Formal syntax
	2.3 Example : An unbounded FIFO buffer
	3. Process objects
	3.1 Informal explanation
	3.2 Formal syntax
	4. System specifications
	4.1 Example : A simple integer unit
	4.2 Example : An unbounded transmission channel
	4.3 Example : The alternating-bit protocol
	5. Final remarks and future work
	5.1 Abstract specifications
	5.2 Semanticcs and transformations
	5.3 Automatic verification
	5.4 Messages and methods
	5.5 Inheritance and typing
	5.6 The inheritance anomaly
	5.7 Assertions
	5.8 Selective message reception
	6. Conclusions
	References

