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Abstract 

POOSL: An Object-Oriented Specification Language 

for the Analysis and Design of Hardware/Software Systems 

J.P.M. Voeten 

POOSL (Parallel Object-Oriented Specification Language) is meant for the specification, 

design, and description of systems which contain a mixture of software and hardware com

ponents. It is based upon the object-oriented paradigm to support flexible and reusable 

design, as well as on the basic concepts of ees to enable formal verification, simulation, and 

transformation of specifications. POOSL differs from traditional (parallel) object-oriented 

(specification) languages in a number of ways. First of all, it allows explicit representation 

of system architecture and hierarchy. Further, objects in POOSL communicate through 

channels using a one-way synchronous message-passing mechanism, allowing true paral

lelism. Finally, the language explicitly distinguishes (statically interconnected) process 

objects from (dynamically moving) data objects. This, together with the fact that POOSL 

supports tail recursion, creates the possibility to specify the (communication) behaviour 

of (systems of) objects in an abstract and elegant way. 
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Chapter 1 

Introduction 

1.1 History and Background 

The specification language presented in this report has its roots in [Ver92]. This thesis 

describes how object-oriented techniques can be applied to the design of systems which 

sontain a mixture of hardware and software modules. [Ver92] also presents a design 

methodology, an object model based upon Small talk [GRS9], and a simulation environ

ment meant for the specification, verification, and simulation of complex (communicating) 

systems. The design methodology is split into the following three phases: 

• High-level behavioul' analysis. The system is analyzed and an abstract specification 

(the behaviour (object) model) of the functionality is built. Such a specification 

consists of a set of (process) objects which communicate through static channels. In 

the analysis phase a specification is architecture and implementation independent. 

• High-lcvel architectlll'c synthesis. An architecture (object) model or specification is 

made. Such a specificat.ion describes, in addition to a more detailed beha.viour or 

functionality, the architecture of the system to implement. For every entity and 

channel in the specification it is decided how it will be implemented. In the ideal 

situation the architecture model could be constructed directly from the behaviour 

model by defining the implementation of objects and channels. However, because of 

technological, architectural or timing constraints, this might be impossible. Also the 

behaviour model might not be detailed enough. In these cases the behaviour model 

has to be transformed into an architecture model which meets the extra constraints 

and which has the desired level of detail. These transformations are performed by 

predefined so-called functionality-preserving transformations. Non-predefined trans

formation steps, like refinement or decomposition steps, can also be made. The 

correctness of such transformation steps has to be checked (automatically) using 

verification tools. 

• Low-level synthesis and implementation. During this phase the entities and channels 

specifil'd in the architecture model are actua.\ly implemented. The implementat.ion 

I'OOSL 



2 Language Concepts 

ca,n contain a mixture of software and hardware. 

In [Ver92] a number of useful and interesting functionality-preserving transformations are 

described. Our research began as an investigation of how to formalize these transformations 

and how to prove them correct. We soon came to the conclusion that a formal semantics of 

the object model was indispensible and therefore we started to define the model formally. 

However, the object model turned out to be very complex, mainly due to a number of very 

high level (communication) constructs, and it seemed not possible to define a usable formal 

semantics. Therefore we decided to design a new language meant as a formalization of the 

object model and based upon the following basic concepts of this model: 

• A model consists of a set of statically interconnected distributed objects (processes) 

which execute in parallel and which communicate through a static network of chan

nels. 

• The distributed objects communicate by exchanging messages which may contain 

parameters. The communication mechanism is one-way synchronous which means in 

particular that objects do not have to wait for replies. 

• Distributed objects contain internal data in the form of traveling objects or data 

objects which are strictly private to the owning object. 

• Message parameters refer to traveling objects or data objects which are private to 

the sending process. If a message is exchanged, the involved parameter objects are 

actually copied from the sending process to the receiving process. 

• A model explicitly reflects a system architecture (or a system topology) and can be 

hierarchical. 

A first official version of the designed language is defined in [Voe94]. This technical report 

describes an improved version which was achieved after a number of case studies and 

experiments with the language. 

1.2 Language Concepts 

In [Weg87] the following basic concepts of the object-oriented paradigm are distinguished: 

• a unified notion of objects, which are composed from a set of "operations" and a 

"state". Objects are encapsulated in the sense that they interact with other objects 

according to a predefined interface. 

• the concept of classes 

• the use of inheritance 

Introduction 



Processes versus Data 3 

Another important concept is polymorfism. [Mey88] explains that polymorfism, "the abil

ity to take several forms", is the key factor in producing reusable designs or specifications. 

The design methodology and the object model mentioned in the previous section have a 

number of characteristics which are not directly covered by the object-oriented paradigm. 

Especially, transformation, (automatic) verification, parallelism, and hierarchy are topics 

which are better supported by (algebraic) process-oriented techniques. These algebraic 

techniques are especially applicable to systems in which communication between system 

elements is a major feature [Ko09l]. Algebraic techniques enable formal (automatic) ver

ification, simulation, and even transformation [Lan92] of specifications. Furthermore, ar

chitecture and hierarchy can be expressed in algebraic languages in an elegant way. One 

of the first algebraic theories dealing in a formal way with the communication behaviour 

of systems is CCS [MiISO, MiI89]. Other algebraic formalisms are CSP [HoaS5], LO

TOS [EVDS9], and ACP [Bae86]. CCS is based upon the following two concepts [MiI80]: 

• Observation. Concurrent systems are described fully enough to determine what be

haviour will be seen or experienced by an external observer. Two systems are indis

tinguishable if we cannot tell them apart without pulling them apart. Observation 

equivalence is based upon this notion . 

• Synchronized communication. A concurrent system is built from independent agents 

(processes) which communicate synchronously. Parallel composition is used to com

pose two independent agents, allowing them to communicate. 

To support reusable design in a flexible way, POOSL builds upon the concepts of the 

object-oriented paradigm. On the other hand, to support verification, simulation, and 

transformation, the language also builds on the concepts of CCS. These process formalisms 

provide a number of elegant language constructions to express hierarchy, architecture, 

topology, and parallelism. 

1.3 Processes versus Data 

Like lIlost. if not all, (practically applicable) specification languages, forma.lisms, and tech

lIi'lI"·S. POOSL distinguish,·s p"Of'esses frolll da/a. 1\ specification in POOSL collsist.s of a 

lix('d 1I11[\l1)(,f of siatindly illtt'ITollllccied distribut.ed processes which a.rc able 1.0 (,X('CII/.<' 

in parallel. Processes, or process objects, arc connected to a fixed network of chanllels, 

through which they can communicate by sending messages. These messages may carry 

parameters in the forlll of data ohjects. These data objects arc a.lso uscd to model pri

va.te data as well as internal computations of process objects. Data objects a.re essentia.lly 

sequential in nature, which means that within one process object at any time only one 

data object can be active. The data part of POOSL is based upon (restricted) versions of 

POOL [AR89] and Smalltalk [GR89]. Data objects and their declarations are described in 

detail in Chapter 2. Chapters 3 and 4 deal with the explanation of process objects and 

POOSL 
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4 Related Work 

specifications of systems of process objects. This process part of POOSL is mainly based 

on CCS [MiI80J. 

The strict separation between statically interconnected process objects and dynamic (trav

eling) data objects makes it possible to specify systems in an abstract and natural way. 

One can define the abstract (communication) behaviour of process objects or systems of 

interconnected process objects, without being concerned about (internal) data of process 

objects or data which has to be transported over the communication channels. The sepa

ration also opens the way to formal (automatic) verification a,nd transformation of static 

system structure. 

1.4 Related Work 

The idea of combining object-oriented concepts with the concepts of process-oriented for

mali.snls is not new. 

In [Bla90J and [CRS90J, for example, it is shown how LOTOS can be used as an object

oriented specification language. [MC94, MC93J describes the ROOA (Rigorous Object

Oriented Analysis) method which combines object-oriented analysis methods and formal 

description techniques (LOTOS) to produce a formal object-oriented analysis model that 

acts as the requirement speci'lication of a system. [Cus88J demonstrates that it is possible to 

use a process algebra (CSP) in a natural and integrated way within the context of object

oriented specification of distributed systems. Other, more fundamental and theoretical, 

approaches towards integrating object-oriented and process-oriented concepts are given in 

[HT91J and [Nie91J. 

The great advantage of using algebraic process-oriented techniques for object-oriented spec

ification is that they enable the description of what a system should do, without giving 

the solution of, or even details about, its implementation. Further, process-oriented l.ech

niques allow for a strict formal reasoning about objects, relations between objects, and 

other object-oriented concepts. 

However, using algebraic process languages for object-oriented specification also has a num

ber of disadvantages. First of all, it seems difficult to interpret all object-oriented concepts 

in existing process-oriented languages. Especially the concept of inheritance (strict as well 

as non-strict inheritance) is hard to capture [BJa90, CRS90, Cus88j. 

A second problem is caused by algebraic data typing languages, which are usually part 

of (practically applicable) algebraic process languages. It seems hard to interpret these 

languages according to the object-oriented paradigm and this makes it difficult to interpret 

process-oriented languages in their full strength [CRS90, Cus88J. 

1 Introduction 
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Two other, more practical, problems are also caused by algebraic data languages. In an 

attempt to prohibit all implementation biases from the specification, the algebraic (data) 

specifications become difficult to understand. In practice, most designers find it very hard 

to define abstract. data types in algebraic data languages [NarS7]. Further, because of their 

highly abst.ract nature, abstract data types do in general not allow direct and efficient. 

implementation [MMS9]. 

On the opposite side of formal description techniques we find (parallel) object-oriented 

programming languages like POOL [AmeS7, AR89], PROCOL [BLS9], DROL [TT92]' Actl 

[LieS7], and ABCL!l [YBS86]. Although these languages can in principle be used for the 

specification of software or hardware systems, they are not really suited for our purposes. 

This is mainly due to the fact that none of these languages support all characteristics of 

the design methodology and the object model mentioned in Section 1.1. Especially system 

architecture, topology, and hierarchy are topics which are not explicitly expressible in any 

current object-oriented language. This is caused by the traditional conception that all 

objects should, in some sense, be equivalent. In our view there exists a kind of dualism, 

which is why we chose to distinguish data objects from process objects. 

Om approach aims at. developing a new practical language which combines the advant.ages 

of object orientation as well as those of process orientation. Because in our view one of 

the most important aspects of specifications is readability and understandability, we have 

chosen to base the data part of POOSL upon constructs of object-oriented programming 

languages and not upon any algebraic data typing language. Concepts of classes, inheri

tance and polymorfism are also taken from traditional object-oriented languages. Of course, 

the descriptive nature of these languages may result in overspecified specifications. How

ever, Meyer [MeySS] shows that object-oriented program constructs allow the definition of 

very abstract data entities which, in a sense, come very close to algebraic specifications. 

The process part of POOSL is strongly based upon CCS. This languages offer elegant and 

intuitively clear constructs to express parallelism, communication, synchronization, and 

system structure. 

POOSL 
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Chapter 2 

Data Objects 

2.1 Informal Explanation 

Data objects or traveling objects in POOSL are much alike objects in sequential object

oriented programming languages such as Smalltalk [GR89], C++ [Str92], Eiffel [:\1ey88], 

and SPOOL [AB90]. A data object consists of some private data and has the ability to 

act on this data. Data is stored in instance variables, which contain (references to) other 

objects or to the object which owns the variables. The variables of an object cannot be 

accessed directly by any other object. They can only be read and changed by the object 

itself. 

Objects can interact by sending messages to each other. A message consists of a message 

name, also called a message selector, and zero or more parameters. A message can be 

seen as a request to carry out one of the objects' services. An object explicitly states to 

which object it wants to send a message. When an object sends a message, its activities 

are suspended until the result of the message arrives. An object that receives a message 

will execute a corresponding "o-called method. A method implements one of the object's 

services. It can· access all instance variables of its corresponding object. In addition, it 

may have local variables of its own. The result of a method execution is returned to the 

sender. 

Objects are grouped into classes. A class describes a set of objects which all have the same 

functiona.lity. The individual objects in a class are called instances. The instance variables 

and methods, which are the same for all instances, are specified within a class definition. 

Future versions of POOSL should support some form of inheritance. The precise form, 

however, has not been decided yet (see also Section 5.5). For now we will assume that the 

language incorporates the liberal inheritance scheme of Smalltalk. In Small talk a class ca.n 

have a number of subclasses. The instances of such a subclass inherit all instance variables 

and methods of the corresponding superclass. Next to these variables and methods they 
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can also have additional variables, additional methods or redefined (overridden) methods. 

Within the class definition of the subclass it is specified how the subclass' instances differ 

from the instances of its superclass. Every class can have at most one superclass, which 

implies that multiple inheritance is not supported. 

POOSL has four predefined classes of commonly used data types, namely Boolean, Integer, 

lIenl, and Char. Instances of these predefined classes are called standard objects. The sd. 

of Illessages of these objects correspond to the usual operations of the object.'s data. type. 

Besides these objects a special standard object, named nil, exists. This object has no 

methods and an error occurs when a message is sent to it. 

2.2 Formal Syntax 

In this section an (abstract) syntax of the language of data objects is given. The syntax 

resembles the syntax of Smalltalk defined in [GRS9j. We assume that the following sets of 

syntactic elements are given: 

IVar 

LVar 

CName 

MName 

instance variables 

local variables 

class nan1es 

method names 

X," . 

u, v, w,'" 

C,'" 

m,'" 

Firs!' we define the set SObj of standard objects with typical eleIl,lents /, .... This set. 

contains boolean objects, integer objects, real objects, char objects, and nil. 

SObj = ra u Z U IR U Char U {nil} 

We define the set Exp of expressions, with typical elements E, "', as follows: 

E .. - .T 

u 

newt C) 

self 

E m(EI'"'' En) 

1 
S.E 

The first two expressions are instance variables, local variables, or parameters. The value 

of such a variable expression is (a reference to) the object currently stored in that variable. 

The next. type of expression is t.he new expression. This expression indicates that a new 

object (of class C) has to be created. The expression yields the newly created object.. 

Expression self refers 10 t.ll<' object which is currently evaluating this expression. The sixth 

type of expression is a message-send expression. Here E refers to the object to which 

message m has to be sent and E1 , ..• ,En are the parameters of the message. When a send 

POOSL 
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expression is evaluated, first t.he destination expression is evaluated, then the parameters 

are evaluated from left to right, and then the message is sent to the destination object. 

This object initializes its method parameters to the objects in the message and initializes 

its local method variables to nil. Next, the receiving object starts evaluating its method 

expression. The result of this evaluation is the result of the send expression which is 

returned to the sending object. Next, we have constant expressions 1,"', which refer to 

the above defined standard objects, such as integers and booleans. 1 stands for the direct 

naming (textual representation) of standard object ,. An expression can be composed 

from a statement and another expression. When such a composite expression is "vaIuated, 

first. t.he st.at.ement. is executed and then the succeeding expression is evaIuat."d. The "alut' 

of this expression will be the value of the composite expression. 

Next, we define the set Stat of statements. We let S, ... range over Stat which is defined 

as 

S .. - E 

skip 

x+-E 

u+-E 

SI . S2 

if E then SI else S2 fi 

do E then S od 

The first type of statement is an expression. Executing such a statement means that the 

expression is evaluated and result is discarded. The effect of the execution is the side-effect 

of the expression evaluation. Statement skip has no computational effect. Next, we have 

two assignment statements; the first to an instance variable and the second to a local 

variable. Upon execution of an assignment statement, the expression is evaluated and the 

result, a reference to an object, is assigned to the variable. The sequential composition 

(indicated with a dot (.) as in Smalltalk [GRS9]), the if-statement, and the do-statement 

have their usual meaning. 

Further, we define the set Systems with typical elements Sys, .... 

Sys ::= (CDI ··· CDn) 

A system Sys is a set of user-defined classes, comparable to a set of system classes in 

Smalltalk. A system is built from a number of class definitions. 

The set Classde! of class definitions, with typical elements CD, ... , is defined as 

CD ::= class name C 

instance variabl€~ names Xl·" Xn 

instance methods 

2 Data Objects 



Example: An Unbounded FIFO Buffer 

class name 

super class 

instance variable names Xl'" xn 

instance methods MDI ... MDk 

9 

Within a class definition the functionality of the classes' instances is specified. First, the 

name of the class is given. Then, optionally, the name of a possible superclass is specified. 

Next, the instance variables XI ••. Xn of the class are indicated. The last part of a class 

definition consists of a number of method definitions MDI ... MDk. 

The set of all method definitions is called Methdef and has typical elements MD,···, 

MD ::= 111(UI,···,lln ) 

I Vj ... Vm I 
E 

111(UI,···, un) 

primitive 

Within a method definition the functionality of a certain message or method is described. 

A method definition starts with a method or message name 111 and zero or more parameters 

Ill, ... , Un. Next, zero or more local variables Vj ... Vm are specified. A method definition 

ends with an expression E which is the body of the method. This expression is evaluated 

when the method is invoked. The result of this evaluation is returned to the message 

sender. 

However, there exist methods for which the functionality cannot be expressed in terms 

of expressions. The functionality of these, often called primitive methods, is specified in 

the form of axioms in the semantics of the language. A primitive method definition only 

contains the parameters of the method and a keyword which indicates that the method is 

primitiyc. A typical example of a primitive method is a deepCopy method which is tlsed 

to create a complete copy of some object. 

2.3 Example: An Unbounded FIFO Buffer 

[n this scctioll we will give all example of a description of an unbounded FIFO buffer in 

POOSL. To ease the readability we will use the following syntactical conventions: 

• statements of the form if E then 5 else skip fi are abbreviated to if E then 5 fi 

• method calls or method headers of the form E m () are abbreviated to m 

• ""1pty local vari"hk d"c\aratiolls in md.hod d"fillitions are ]PH out 

• pairs of brackets around the parameters of method calls of standard objects are oftell 

left. away. So we will write 3 + 2 to mean :3 + (2) and 5 > 10 instead of 5> (10) 

POOSL 



10 Example: An Unbounded FIFO Buffer 

First we define a class FIFOLink. A FIFO link is composed from an actual FIFO element 

and two references to other FIFO links. The class definition of class FIFOLink we will 

give is specified as: 

class name FIFOLink 

instance variable names element 

previousLink 

nextLink 

instance methods 

setElement( anElement) 

element <- anElement· 

self 

setNextLink( aLink) 

nextLink <- aLink· 

self 

setPreviousLink( aLink) 

previousLink <- aLink· 

self 

element 

element 

nextLink 

nextLink 

previousLink 

previousLink 

By means of class FIFOLink we are able to declare class FIFOBujJer. A FIFO buffer 

has a depth, a reference to " FIFO link which represents the bottom of the buffer and a 

reference to another FIFO link which represents the head of the buffer. We assume that 

there exists a class Object which defines (primitive) method error. Class FIFOBujJer will 

be a subclass of Object which means that it also recognizes errol' messages. The class 

ddinition of FfFOBujTer is as follow", 

2 

class name 

superclass 

instance variable names 

instance methods 

clear 

fifoDepth <- o· 
firstLink <- nil· 

lastLink <- nil· 

self 

FIFOBujJer 

Object 

fifoDepth 

firstLink 

lastLink 

Data Objects 



Example: An Unbounded FIFO Buffer 

read 

I aLink I 
if fifoDepth = 0 then self error fi . 

aLink <- lastLink· 

if fifoDepth > 1 then lastLink <- lastLink previousLink· 

lastLink setNextLink( nil) 

else firstLink <- nil· 

lastLink <- nil 

fi· 

fifoDepth <- fifoDepth - 1· 

alink element 

writer anElement) 

I aLink I 
if fifoDepth = 0 thenfirstLink <- new( FIFOLink) 

setElement( anElement)· 

lastLink <- firstLink 

fi· 

self 

isEmpty 

fifoDepth = 0 

else aLink <- new( FIFOLink) 

setElement( anElement) 

setNextLink(firstLink ). 

fiTstLink setPreviousLink( aLink)· 

firstLink <- aLink 

11 

If we call the class definitions of classes FIFOLink, FIFOBujJer and Object respectively 

CDFlFOLink, CDFlFOBuf/cr and CDObj ,," then we can define a system Sys of classes 

Sys = (CDFlFOLink CDFlFOBuf/er CDObj,,') 

POOSL 
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Chapter 3 

Process Objects 

This chapter describes the process-oriented part of POOSL. This part is based upon the 

language of data objects described in the previous chapter. 

3.1 Informal Explanation 

A specification in POOSL consists of a fixed set of stat.ically interconnected distributed 

processes (a definition is given in [WegS7]). Processes or process objects are connected by 

statically defined channels through which they can communicate by exchanging messages. 

The communication mechanism we use is based upon the synchronous (rendez-vous) pair

wise message-passing mechanism of CCS. It resembles the one-way synchronous message

passing mechanism of PROCOL [BL89]. 

When a process wants to send a message it explicitly states to which channel this message 

has to be sent. It also explicitly states when and from which channel it wants to receive a 

message. Immediately after a message has been received, the sending process resumes its 

activities (it does not have to wait for a result). If a process receives a message, it does not 

execute a method like in traditional object-oriented languages. Also, a possible expected 

result is not automatically returned to the sender. If a result of the message is expected. 

it has to be transmitted by means of another rendez-vous. 

Process objects can call one of their methods. Such a call is either a call of a tErminating 

method or a call of a non-terminating one. Terminating methods can be compared to 

procedures of imperative programming languages such as C or Pascal. Non-terminating 

methods are used to support tail recursion. Tail recursion has proven to be a very useful 

construct for the specification of communicating systems and is incorporated in all process 

oriented languages. Non-terminating methods of a process-object can be considered as 

abstract states of the object, and can be compared with agent identifiers in CCS. 

Processes contain internal data in the form of data objects which are stored in instance 
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variables. Data objects are private to the owning process, i.e., process objects have no 

shared variables or shared data. A process can interact with its data objects by sending 

messages to them. When a process sends a message to one of its data objects, its activitities 

are suspended until the result of the message arrives. Data objects themselves cannot send 

messages (except for replies) to a process object. 

\ViIell two proc('sses conllllt1l1icate, a message and a (possibly empty) set of pa.rameters 

is passed frolll olle proc('ss 1.0 allol.l)('1'. The pil.ra.llld.('rs refer to objects wilich arc privai.e 

to the selldillg process. Because processes do not. have a.uy data in comJJlon, it. docs not 

suffice just to pass a set of references to the data objects, as in traditional object-oriented 

languages. Instead, the objects themselves have to be passed. This means that a new set 

of objects has to be created within the environment of the receiving process. These objects 

are (deep) copies of the data objects involved in the rendez-vous. 

Process objects are grouped in classes, just as data objects. We distinguish two kinds 

of process classes: basic classes and composite classes. Basic process classes are defined 

in a similar manner as classes of data objects. Composite classes, on the other hand, are 

composed from other (basic or composite) classes, by means of parallel composition, channel 

T',naming, and/or channel hiding. These combinat.ors are based upon similar combinators 

originally used in CCS [MiISOJ. Subclass relations between such composite process classes 

can not (yet) be defined. Instances of basic classes will be called basic processes (or 

basic process objects) and instances of composite classes will be called composit.e processes 

(or composite proCf'SS ollject.s). Future versions of POOSL should support SOIllC 1'01'111 of 

inheritance alllOllg process cla.sses (see also Sectioll 5.6). The precise fonn, however, is not. 

yet decided all. 

3.2 Formal Syntax 

This section describes the formal abstract syntax of POOSL. It is based on the language 

of data objects of the previous chapter. We assume that the following sets of syntactic 

clf'ments a.re given: 

Chan 

Va,' 

communication channels ch,' .. 

Ival' U LVal' p, ... 

\Ve define the set Stat' of process or parallel statements. These statements are used to 

specify the behaviour of process objects. 

POOSL 
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S' .. - S 

eh!m(Eb ···, E..,) 

eh?m(p""" p,,) 

In(E1,···,En ; Pl,"',Pm) 

m(Eb ···, En) 

Sf· SI 
scl G, or ... or Gn les 

Formal Syntax 

'I'll<' first. t.ype of st.at.'·lllellt. is a st.at.(,lIlellt. ddilled ill t.he lallguage of dat.a ohj('ct.s or t.he 

prevIOus chapt.er. These st.atements are used to model int.ernal data comput.at.ions of a 

process. 

The next two statements are the message-send and message-receive statements. A message

send statement eh!m(Eb ···, En) indicates that a process is willing to send message m 

together with parameters E""" En, on channel eh. Before the message is offered to the 

channel, first the parameters E" ... , En, which are data expressions, are evaluated from left 

t.o right.. The actual message transfer can only happen if some other process is executing a 

lIlessage-receive statement eh?m(Pb"" Pm) (or a guarded command which contains such 

a statement). Conversely, a message-receive statement can only be executed if another 

process executes a message-send statement. After a process has sent a message, it can 

immediately continue with its activities; it does not have to wait for an answer to arrive. 

Upon reception of a message, deep copies of the message paTameters are bound to t.he 

illput parameters ]i,,"', Pm of the message-receive st.atement of the receiving process. 

The fonrth statement. is a method call. By means or such a method call stat.elllC'llt a 

process object can call its methods. A method call m{ E", .. ,En; p,,"', p",) is executed 

ill the following way: First, expressions £\,"', En are evaluat.ed from left. to right. Next, 

t.he values of these expressions are bound to the input parameters of the methodm and 

the local variables are initialized to nil. Then the method body is executed. After this 

execution terminates, the exit parameters of the method are bound to variables p" ... , Pn. 

Next, we have another met.hod call st.atement. m{ E" ... , En) is executed in a similar way 

as m( E" ... ,En; Pb"', Pm). expressions E" ... , En are evaluated from left to right. The 

body execution, however, does not (necessarily) terminate and the execution control is 

never returned to the point before the call. Non-terminating method calls in POOSL are 

used to support tail recursion. Note that these method calls are completely different from 

procedure calls in imperative programming languages. 

Tlw sixth sort of st.atement is sequent.ial composit.ion, which is indicated wit.h a dot (.) as 

in Sl1lalltalk. Sequent.ial composition has it.s usual meaning. 

The last kind of statement is a select statement. A select statement indicates that a process 

can choose between a number of alternative statements, called guarded commands. The 

:~ Process Objects 
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set eCom of guarded commands with typical elements e,··· is defined as 

e .. - E; ch?m(Pl"",Pm)thenS' 

E; ch!m(E1,···, En) then S' 

Ethen S' 
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A guarded command is composed of an expression E, which is called a guard, and a 

rest statement. Upon execution of a select statement sel e, or' .. or en les, first all sub 

expressions (guards and possibly parameter expressions) of the statement are evaluated 

from left to right. All guards have to result in an object of class Boolean. The guarded 

commands from which the guard result in false are discarded (they do not playa role in 

the further execution of the statement). Now, zero or more of the following cases apply: 

• One of the remaining guarded commands contains a message-receive statement. In 

that case the message can be received only if another process is trying to send the 

same message. If the message is received it is handled in the same way as in the case 

of a normal message receive statement. Next, the statement behind the keyword then 

is executed and the select statement is terminated. 

• One of the remaining guarded commands contains a message-send statement. In this 

case the message of this statement can only be sent if some other process is willing 

to receive the message. After the message has been sent, the statement behind then 

is executed and the select statement is terminated. 

• One of the remaining guarded commands is of the form E then S'. In this case 

statement S' can be executed, after which the select statement terminates. 

• There are no remaining guarded commands. This means that all guards were evalu

ated to false and that no guarded commands can be executed. This implies that the 

process which is executing the select statement will deadlock. 

If more than one of the guarded commands can be executed, then a non-deterministic choice 

between the different alternatives is made. If no guarded command can be executed, the 

process which is executing the select statement is suspended until one or more guarded 

commands become executable. 

Next, we define a set Systems' of process systems, with typical elements Sys',' . '. 

Sys" ::= (CDr··· CDt) 

A process system is a set, of user-defined process classes. Such a system is built from a 

number of process class definitions. The set of all process class definitions Classdef' has 

typical elements CD', ... and is defined as: 

POOSL 
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CD' .. - process class na.me C 
instance variable names Xl'" xn 

communication channels ChI· .. chk 

message interface eml'" emf 

initial method call m(E],···,Eq ) 

instanre methods MD[-··MDt 

process class H a.me C 
communication channels chI ... C/" 

message interface em,··· em, 

behaviour specification BSpec 

Within a process class definition the functionality of the instances of the class is specified. 

We distinguish two kinds of process classes, each with its own specification format. The 

first kind of class is called bat:ic and the second kind is called composite. 

A specification of a basic process class starts with the name of that class. Then a number of 

instance variables are specified. These variables model the private or internal data of each 

instance of the class. Next, all communication channels, through which the class' instance 

processes communicate with other processes, are specified. This channel specification is 

followed by a description of a message interface. A message interface is a list of channel

message combinations. A channel-message combination states that a process can send it 

certain message to a certain channel, or that. a process can receive a specified messa.ge from 

it certai" channel. The set CM of all channel-message combinations ha.s typical elements 

em,···, and is defined as follows: 

em ch!m(Pl'···, Pm) 

eh?m(PI'···, Pm) 

The first clause states that a process, at some point in time, can send message m, together 

with (formal) parameters P!,···, pm, to channel eh. The second channel-message combi

nation states that message m, with (formal) parameters PI, ... , Pm can be received from 

channel eh. A message interface is not a fundamental part of the behaviour specification 

of a process class. It mainly serves as an abstract description of the functionality of the 

instances of a process class. 

The description of a message interface is followed by the specification of an initial method 

call of the form m(EI ,···, Em). An instance of a process class always starts its activit.it.ie" 

by first evaluating the parameter expressions EI ,···, Em from left to right followed by 

calling its initial (non-terminating) method. 

The last part of a basic process class definition consists of a number of method definitions. 

A method definition specifies the behaviour of its corresponding method. The set Methdef' 

of all method definitions, with typical elements MD', ... , is defined as 

3 Process Objects 
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m( Ul,"', urn) exitWith( Vl,"', v,,) 

I Wl ••• Wk I S· 

m( Ul,"', urn) noExit 

I Wl •.. Wk I S· 

17 

Every method is either terminating or non-terminating. Terminating methods are invoked 

though a m(El,···,E,,; Pl,"',Pm) statement. A method definition of a terminating 

method contains a header with name m, the input parameters Ul,"', Urn, and the exit 

variablesV:t, ... , v" of the method. The keyword exit With is used to express that the 

method terminates. The method header is followed by a declaration I WJ. ... Wk I of local 

variables. Then the message body, which is a statement S·, is defined. 

Non-terminating methods are used to describe tail recursion. Such a method is invoked if a 

process which owns the met.hod calls it by means of a st.atement of the form m(E,,···, R,,). 

A IlOIl-Lcl'Illillat.illg method defillition has almost the same format. as a ddillitioll of a t.er

minating method. The only difference is that the former does not terminate and therefore 

have no exit variables, as is indicated by the keyword noExit. 

The second kind of process classes are called composite process classes. A composite 

process class is built from other classes, which Can be either basic or composite themselves. 

A class definition of a composite class consists of a process class name, communication 

channels, and a message interface. The behaviour of a process class is specified by means 

of a behaviour specification. The set BSpecifications of all process specifications has typical 

elements BSpec and is defined as follows: 

BSpec C 

BSpecl II BSpecz 

BSpec \ L 

BSpeclfJ 

Here L <;; Chan denotes a set of channels. f is a so-called channel relabelling function: a 

functioll from Chan to Chan, which respects channel types. The first sort of behaviour 

specifications are class names of process classes. A class name C expresses the behaviour 

of a single instance of class C. 

The second kind of specifications BSpecl II BSpec2 expresses the parallel composition of 

specifications BSpec! and BSpecz. Assume, for example, that the class definition of a class, 

say C, contains behaviour specification C! II C2 . This specification expresses the behaviour 

of two process objects, one of class Cl and the other of class Cz, which execute in parallel 

and which (perhaps) communicate through their common channels. The channel set of 

class C is the union of the channel sets of classes C! and ~. An instance of class C can 

sent and receive any message which can be sent and received by instances of either C! or 

Cz. The parallel composition combinator is comparable to the composition combinator of 

CCS. 

POOSL 



18 Formal Syntax 

The third kind of behaviour specification is called channel hiding. A channel hiding BSpec \ 

L expresses a specification BSpec from which the channels in L are made externally invisible. 

This means that other (external) processes cannot communicate through channels in L 

with processes contained in specification BSpec. Assume, for example, that the method 

definition of a class C contains a behaviour specification (C1 II C2 ) \ {ch}. This means 

that, even though classes C1 and C2 may contain channel ch, class C may not. Channel 

ch may only be used for the communication between the processes of classes C1 and C2 • 

The cha.nnel hiding constructor is simila.r to the restriction combinator of CCS. 

The last sort of specification expresses a channel renaming. The channel relabelling 

BSpec[j] denotes a specification BSpec from which the channels are relabelled as dictated 

by f. We shall often write chU chI,"" ch~/ chn for the relabelling function f for which 

f( ch;) = chi for i = 1,· .. , nand f( ch) = ch otherwise. Channel renaming can be very 

useful if process objects of the same class are used within different process environments 

and have to communicate through different channels. 

3 Process 0 b j ects 
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Chapter 4 

System Specifications 

We are now ready to define what we consider to be a specification of a system. A spec

ification of a system of parallel process objects consists of three parts. The first part is 

a behaviour specification BSpec which expresses how the actual system is composed from 

process classes defined in Sysp. The second part is a process system SysP which contains a 

set of user-defined process classes. The last part is a system Sys of user-defined classes of 

data objects. Formally we define the set of all system specifications SSpecijications, with 

typical elements SSpec,"', as 

SSpec ::= (BSpec, SysP, Sys) 

4.1 Example: A Simple Integer Unit 

In this section we will specify the behaviour of a simple unit which can perform operations 

on integer numbers. The unit, shown in figure 4.1, has an input port in and an output 

port out. 

in 

--------------------------------------c 

Integer Unit 

Figure 4.1: A simple integer unit 

r-
out 

It can receive commands add, substract, multiply, and power from channel in, compute the 

result of the command, and send this result as a message to the output port. To simplify 

the syntactical formal notations, we will use the following conventions: 

POOSL 
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• guarded commands of the form true; ch?m(p},···, Pm) then SP, or those of the form 

true; ch!m(Et,···, En) then S" may be abbreviated to ch?m( U1, ... , 11m) then S" re

spectively ch!m(Et,···, En) then S'. 

• "then skip" parts of a guarded command may be left out 

• a message receive statement ch?mO may be replaced by ch?m 

• statements ch!mO and mO may be abbreviated to respectiyely ch!m and Tn 

• method definition headers of the form mO exitWith(v},···,vn ) or of the form 

mO no Exit may be replaced by respectively m exitWith( lit,· .. , vn ) and m noExit 

• empty local variable declarations within method definitions are left out 

The class definition of IntegerUnit can then be defined as 

process class name 

instance variable names 

IntegerUnit 

communication channels in out 

message interface in?add(int}, ;nt2) ;n?s1Ibslract(intt, inl2) 

in? multiply( int}, ;nt2) in? power( int}, int2) 

out!result(anlnt) out!error 

initial method call startO 

instance methods 

start() noExit 

sel 

or 

then out!result( intI + int2) 

in?substract(inlt, ;nI2) then outr,·esult(inl} - inl2) 

or 

in? muItiply( int}, ini2) then out! result ( intI * int2 ) 

or 

in?power(int}, int2) 

les . start 

then powerresult( int}, int2 ; ) 

Within non-terminating method start terminating method powerresult is called. This 

method is used to compute intI to the power of int2 (int} ;nl,). If int2 < 0, an error message 

is generated. Otherwise, the computed result is send to channel out. The method definition 

of powerresult is 

4 System Specifications 



Example: An Unbounded Transmission Channel 

powerresult( int" int2) exitWithO 

sel 

(int2 < 0) then out!error 

or 

(int2 2: 0) then 

out! result ( intI 'int2) 

les 
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If we call the class definition of class IntegerUnit CD1n',g"Unit, we can define a system 

sl'ccification SSpec, describing a single integer unit, as follows: 

SSpec = (IntegerUnit, (CD1n',g"Unit), ()) 

Note that the system of user-defined classes of data objects in this specification is empty. 

Further, note that we have assumed that the standard objects of class Intege!' recognize 

+,-,*, and' messages. 

4.2 Example: An Unbounded Transmission Channel 

By means of the class FIFOBujJe!' defined in Section 2.3, we are able to construct an 

unbounded transmission channel (see figure 4.2). The channel has an input port in and 

an output port out. 

in 
Transmission Channel -

out 

Figure 4.2: An unbounded transmission channel 

Incoming accept-messages are received at port in, after which they are internally buffered 

in a FIFO fashion. The buffered messages are delivered at the output port in the form of 

deliver messages. A specification of the class TransmissionChannel is 

process class name TransmissionChannel 

instance variable names buffer 

communication channels 

message interface 

initial IlIethod caU 

instance methods 

POOSL 

in out 

in ?accept( data) out!deliver( data) 
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start no Exit 

buJJer +- new( FIFOBuJJer) clear· 

loop 

loop no Exit 

I data I 
sel 

in? accept( data) then buJJer write( data) . loop 

or 

(buJJer isEmpty not); out!deliver(buJJer read) . loop 

les 

4.3 Example: The Alternating-bit Protocol 

A communication protocol is a discipline for transmission of messages from a source to 

a destination. An often-studied protocol is the alternating-bit protocol. A simple speci

fication of this protocol is given in [MiIS9]. In this section a slightly different version is 

specified. As shown in figure 4.3, the specification consists of six communicating processes: 

a Sender, a Receiver, two Timers, an Acknowledgement Channel and a Transmissions 

Channel. 

If the sender receives a message (together with some data) from its input port, it sets a 

Timer, adds a bit to the received data, and sends the tagged message via the Transmission 

Channel to the Receiver. The value of the bit is the complement of the value assigllcd 

to the previous message. After the tagged message has been sent, the Sender waits for a 

message together with an acknowledge bit to arrive. The value of this bit should be equal 

to the value of the bit assigned to the previously sent message. If this is the case, a new 

message can be offered by the environment. If the bits are not equal, the acknowledge 

message is just absorbed. If in the mean time the Timer expires and gives a timeout, the 

tagged message is retransmitted. 

The Receiver operates in a similar manner. If the Receiver is offered a tagged message it 

checks whether the tag hit equals to the expected hit. If this is so, the message, together 

with the data is offered to the environment, an acknowledge message is offered to the 

Acknowledgement Channel and the Timer is set. If the bit differs from the expected bit, the 

message is just ignored. When the Receiver gets a timeout, the previously sent a.cknowledge 

message is retransmitted. Both channels are unreliable: they can either duplicate or lose 

messages. 

Before we start specifying the protocol, we first define a class Bit, which is used to model 

the tag bits. 

4 System Specifications 
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r-L Transmission ~ 
Channel 

~ Sender Receiver 

r--c Acknowledgement 

'f Channel 

a b 91 Ih 

Timer Timer 

Figure 4.3: The Alternating-bit Protocol 

class name 

instance variable names 

instance methods 

setToZero 

bit <- o· 
self 

setToOne 

bit <- 1· 

self 

isZero 

(bit = 0) 

is One 

(bit = 1) 

Bit 

bit 

invert 

bit <- 1 - bit· 

self 

equals( aBit) 

(self isZero /\ aBit isZero) V 

(self isOne /\ aBit isOne) 

inverts( aBit) 

self equals ( aBit) not 

The classes Receiver and Sender are specified as follows: 

POOSL 
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4 

process class name Sender 

instance variable names 

communication channels in abc d 

message interface in?receive(data) a!trigger b?timeout 

d!packet( data, aBit) c? ack( ackBit) 

initial method call start 

instance methods 

start no Exit 

accept (new (Bit )set ToOne) 

accept( aBit) no Exit 

I data I 
in? receive ( data)· 

send ( data, aBit) 

sending( data, aBit) noExit 

I ackBi! I 
sel 

or 

b?timeout then send( data, aBit) 

c? ack( ackBit) then 

sel 

send( data, aBit) noExit 

d!packet( data, aBit)· 

a!trigger· 

sending( data, aBit) 

"Bit equals( ackBit) then accept( aBit invert) 

or 

(aBit equals( aekBit)) not then sending( data, aBit) 

les 

les 

Receiver 

out e f 9 h 

process class name 

instance variable names 

communication channels 

message interface 

initial method call 

instance methods 

out!send( data) e?packet( data, aBit} 

f!aek( ackBit) g!trigger h ?timeout 

start 

start noExit 

reply(new(Bit)setToZero) 

deliver( ackBit, data) noExit 

out!send( data)· 

reply ( ackBit) 

reply( aekBit) no Exit 

I data I 
f!ack(ackBit)· 

g!trigger· 

replying( ackBit) 

System Specifications 
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replying( ackBit) no Exit 

I data aBit I 
sel 

or 

h?limeo'llt then reply( "Bit) 

e?packet( data, aBit) then 

sel 

aBit inverts( ackBit) then deliver( ackBit invert, data) 

or 

aBit inverts(ackBd) not then replying(ackBit) 

les 

les 
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Before we define the class AcknowledgeChannel, we first define a class AckB'll! An instance 

of AckBuJ models an unreliable one-place buffer. We will model the Acknowledge Channel 

as a parallel composition of four unreliable one-place buffers. 

process class name AckB'llJ 

instance variable names aBit 

communication channels 

message interface 

initial method call 

instance methods 

emptyBuf no Exit 

sel 

in out 

in?ack(aBit) out!ack(aBit) 

emptyBuJ 

fuUBuf no Exit 

sel 

in? ack( aBit) then emptyB'llJ in? ack( aBit) then emptyB'llJ 

or or 

in? ack( aBit) then JallBuJ 

les or 

in? ack( aBit) then JullB'llJ 

out!ack( aBit) then emptyBuJ 

or 

o'llt!ack( aBit) then JullBuJ 

les 

We are now able to specify class AcknowledgeChannel. 

process c1ass name 

instance variable names 

communication channels 

message interface 

behaviour specification 

POOSL 

AcknowledgeChannel 

cJ 
c!ack(aBit) J?ack(aBit) 

(AckBuJ[j/in,cJ/outlll AckBuJ[cJ/in, c2/outlll 

AckBuJ[ C2/ in, C3/ outlll AckBuJ[ C3/ in, c/outD \ {c" C2, C3} 
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In a similar manner we can specify class TransmissionChannel. Note that both the trans

mission channel and the acknowledgement channel are bounded. Unbounded reliable or 

unreliable communication channels can be specified by means of the unbounded FIFO 

buffer of Section 2.3 just like the unbounded transmission channel of the previous section. 

Finally, we specify the class Timer. 

Timer 

a b 

process class name 

instance variable names 

communication channels 

message interface 

initial method call 

instance methods 

a ?trigger b!timeout 

timerNotSet 

timerSet noExit 

sel 

a?trigger then timerSet 

or 

b!timeout then timerNotSet 

les 

timerNotSet noExit 

a?trigger· timerSet 

A behaviour specification BSpec of the Alternating-bit protocol can now be defined as 

(Timer II Sender II AcknowledgeChannel II TransmissionChannei II Receiver 

II Timer[gl a, hi bJ) \ {a, b, c, d, e,f, g, h} 

and a total system specification would be 

(BSpec, 

(CD~imeT CD~ender CD~cknowledgeChannef CD~ran5missionChanne/ CDkeceiver CD~imer) 1 

(CDB;') ) 

The specification of the Alternating-bit protocol shows how tail recursion can be used to 

model typical process-oriented systems in POOSL. These systems are very hard to model 

naturally in traditional object-oriented languages. Of course, POOSL is also suited to 

describe typical object-oriented systems. 

4 System Specifications 
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Chapter 5 

Final Remarks and Future Work 

5.1 Abstract Specifications 

In Sections 1.3 and 1.4 we mentioned that POOSL supports the possibility to specify sys

tems in an abstract and natural way. By means of message receive, message send, and select 

otatements one can define the abstract (communication) behaviour of process objects or 

systems of interconnected process objects, without being concerned about (internal) data 

of process objects or data which has to be transported over the communication channels. 

The main reason why abstract specifications are expressible is that POOSL strictly distin

guishes statically inicrconncc/.cd process objects, whose communication behaviour call be 

statically determined, fronl data objects, whose con1munication behaviour is very dynalnic 

and time dependent. Another reason is that POOSL supports tail recursion. Complex 

abstract communication behaviour is hard to express naturally in languages which do not 

support tail recursion. Especially state-machine-alike behaviour is difficult to model with

out the expressive power of tail recursion. 

5.2 Semantics and Transformations 

One of the main goals of our research is to formalize the functionality-preserving trans

formations mentioned in Section 1.1 and to prove them correct. The formalization of 

these transformations can easily be established by expressing them in POOSL. Correct

ness proofs of the trallsformations, however, can only be given if a formal semalltics is 

availahle. A formal opnational ,,'mantics of rOOSL has heen <kfined ill [Vo<'J, CIIlTenti.\· 

we iln' looking at the forlllaliY-ation and correctness proving or the transformations. 

5.3 Automatic Verification 

Verification is an activity which decides whether a specification meets certain properties. 

One of the most popular verification methods is equivalence checking, by means of which 

POOSL 
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it can be decided whether two specifications have the same observable behaviour. Other 

interesting methods are preorder checking and model checking. These verification methods 

can be used very effectively during the high-level architecture synthesis phase of the de

sign methodology described in Section 1.1. By means of equivalence checking or preorder 

checking, for example, it can be decided whether a (potential) implementation satisfies its 

specification. Model checking can be used to verify whether a specification satisfies certain 

temporal properties such as deadlock freedom. 

Currently, a number of tools which automate verification activities are available. Exam

ples of such tools include CCStool2 [VV94], The Concurrency Workbench [CPS93j, and 

Auto/ Autograph [BRSV89, RS90j. Recently we have applied CCStool2 for the verification 

of the Alternating-bit protocol of Section 4.3. For such a verification, POOSL specifications 

have to be transformed to equivalent CCS descriptions. Abstract POOSL specifications, 

specifications without data, can be translated into CCS in a straightforward way. It is 

not yet clear how full POOSL descriptions can in general be transformed into CCS. This, 

and the general linking of POOSL with automatic verification tools, will be the subject of 

future research. 

5.4 Messages and Methods 

In most (parallel) object-oriented languages, messages are strongly coupled to their corre

sponding methods. If an object receives a message, a method is executed which t.akes care 

of that message. The data part of POOSL follows this convention. In the process part 

of the language, however, messages and methods are not coupled at all! After a number 

of case studies, during which we tried to model reactive objects, we found out that mes

sage reception often resulted in nothing more than copying of the data parameters of the 

message. In our first official version of POOSL [Voe94]' message reception resulted in the 

call of a terminating method. In most cases, however, the only thing these met hods had 

to achieve was to copy the input parameters to the output parameters. Further, the syn

tactic notation for message reception was conceptually unclear. Therefore, we decided to 

completely decouple message reception from method calling in t.he new version of POOSL. 

5.5 Inheritance and Typing 

The version of POOSL described in this report is a typeless language. For reasons of clarity 

and improved reliability, we believe that any (object-oriented) specification langua,ge should 

be 

·5 

(i) statically typed: types of variables, parameters, and method results are explicitly 

defined in the specification 

(ii) strongly typed: all type checking can be performed statically 

Final Remarks and Future Work 
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(iii) type-safe: it can be statically checked that execution never causes "message not 

understood errors" 

This would mean that we have to develop a type system for (the data part of) POOSI.. 

However, developing appropriate type systems for object-oriented languages has shown to 

be difficult. The major difficulty involves the interaction and competition between classes 

and inheTitance on one side and types and subtyping on the other. The construction of a 

suitable type system for POOSL requires more investigation and will be subject of future 

research. Since there exists a strong interdependence between type systems and inheritance 

schemes, we have also not yet decided on the latter. An appropriate inheritance scheme for 

(the data part of) POOSL will have to be developed simultaneously with the type system. 

For more information on type systems, subtyping, classes, and inheritance, we refer to 

[DT92, Hiir94, Co089, AL90, CHC90). 

5.6 The Inheritance Anomaly 

The inheritance anomaly refers to the serious difficulty in combining inheritance and con

currency in a simple and satisfactory way within a concurrent object-oriented language. 

The problem is closely connected with the need to impose synchronization constmints on 

the acceptance of a message by an object [Mes93). In most object-oriented concurrent pro

gramming languages synchronization code is used to control the acceptance of messages by 

objects. It has been pointed out that synchronization code cannot be effectively inherited 

without non-trivial class redefinitions or violation of class encapsulation. An excellent anal

ysis and survey of the inheritance anomaly together with a number of proposed solutions is 

presented in [MY93). The most promising solutions of the anomaly tend to the application 

of very flexible and dynamic synchronization schemes (schemes for achieving object-wise 

synchronization using language primitives) (possibly) build upon "efiective [YW88, WY88) 

language capabilities. 

Although POOSL employs a synchronization scheme which is more flexible than that of 

some other object-oriented programming languages, it is not nearly flexible enough to 

allow complete elimination of the inheritance anomaly, independent of the future inheri

tan('(' schellle. In our opinion one of the major problems with very flexible and dynamic 

syn('hroni~at.ion schcmes is t.hat they clash with the verifiability and understandabilit.y re

quirements of specification languages, which is why we have chosen to adopt a more static 

scheme. 

The severeness of the problem has caused a number of well-known concurrent object

oriented languages, such as POOL/T [Ame87j, Act! [Lie87) and ABCL/! [YBS86j, to give 

"1' supporting inheritance as a basic language feature. In POOSL only the process part can 

possibly suffer from the inheritance anomaly. This means that even if the anomaly causes 

too many problems, which is not known yet, the language would still support inheritance, 

POOSL 



30 Assertions 

the prime language feature in sequential object-oriented languages, among classes of data 

objects. 

5.7 Assertions 

The Eiffellanguage is one of the few object-oriented programming languages that enables 

designers to define specification elements within Eiffel programs [Mey88l. Such a specifica

tion element, called an assertion, states what a certain element must do, independently of 

how it does it. Assertions in Eiffel create the possibility to define program entities which 

come very close to abstract data types, and they make Eiffel both a design and a program

ming language. Ideally, the assertion language should at least have the power of first-order 

predicate logic [AL90l. However, if the assertion language is so powerful, it is inherently 

impossible to automatically check (a priori by a compiler or at run-time) whether program 

('ntities meet their specifications. Eiffel, therefore, uses a somewhat restricted, yet practi

cal, set of assertions. These assertions call be monitored at run-time to validate program 

COl'I'Cctlless. 

We find the approach taken by Eiffel very elegant, especially because it is practically 

applicable, easily understandable, and readable. We are therefore considering to follow the 

Eiffel approach by incorporating assertions into POOSL too. 

5.8 Selective Message Reception 

Assume we are dealing with" number of identical resource objects, sharing a common set 

of communication channels, and suppose that some process would like to claim one of the 

available resources, exchange a number of messages, and give the resource free. For this the 

process would have to be able to selectively send messages to one of the resources. However, 

since the resources can only select messages on the basis of channel names and message 

names, and because all resources are acquainted with the same channels and messages, it 

is impossible for the process to indicate that a certain message is meant for one specific 

resource. 

However, constructions such as the above occur frequently, especially in object-oriented 

systems. The analysis and design method described in [Ver92], for example, recognizes 

this and uses a special kind of entity, called (dynamic) multiple, to model these construc

tions. The ROOA method, described in [MC94, MC93], uses class templates and object 

generators for similar purposes. Both methods use constructs for selective message recep

tion, i.e., method reception on the basis of values of parameters (addresses respectively 

object identifiers) of messages. 

To deal with the described problem, we have to increase the expressive power of POOSL. 

.5 Final Remarks and Future Work 
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This can be achieved by replacing the message receive statement Ch?m(PI,···, Pm) by a 

similar statement ch?m(p,,··· ,Pm I E), with E denoting a boolean expression over 

parameters PI,"', Pm. The intended semantics is that a process is willing to receive mes

sage m with parameters PI,"', Pm on channel ch only if expression E evaluates to true. 

We expect that the statement, which solves the described problem very elegantly, can be 

incorporated in (the formal semantics of) POOSL in a straightforward way. 

POOSL 
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Chapter 6 

Conclusions 

In this report we have presented an object-oriented language for the specification of com

plex hardware and software systems. The language builds upon a design methodology 

formulated in [Ver92]. This methodology demands a number of very specific requirements 

of the specification language. The most important requirements are: 

• the language should be object-oriented 

• it should support functionality-preserving transformations and (automatic) verifica

tion 

• the language should support the explicit representation of system architecture, system 

topology, and hierarchy. 

To meet these requirements, POOSL builds upon the concepts of the object-oriented 

paradigm as well as on the basic concepts of the algebraic process formalism CCS. POOSL 

explicitly distinguishes (statically interconnected distributed) process objects from data 

objects. 

Process objects communicate through channels using a synchronous message-passing mech

anism based on ees. Further, by means of parallel composition, "estriction, and channel 

renaming constructions, process objects can be composed to form composite processes. 

These constructions, originating from ees, are also used to make hierarchical system 

specifications which reflect system architecture and system topology. 

Data or traveling objects are used to model private data of process objects as well as data 

which is exchanged between (different) process objects. Data objects are much like objects 

in traditional object-oriented programming languages, such as POOL and Small talk. Also 

concepts of classes, inheritance, and polymorfism are taken from these languages. 

The strict distinction between process and data objects opens the way to formal (auto

matic) verification and transformation. This, together with possibility to describe tail 

recursion, also creates a way to specify systems in an abstract and natural way. 
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The version of POOSL described in this report is only a basic software/hardware specifica

tion language. To complete the language, it has to be extended with a number of language 

constructions, such as inheritance, static typing, assertions, and selective message recep

tion. At this moment the precise form of these extensions is unknown and requires more 

research. 

POOSL 
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