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Abstract

Owing to visual ambiguities and disparities, person re-

identification methods inevitably produce suboptimal rank-

list, which still requires exhaustive human eyeballing to

identify the correct target from hundreds of different likely-

candidates. Existing re-identification studies focus on im-

proving the ranking performance, but rarely look into

the critical problem of optimising the time-consuming and

error-prone post-rank visual search at the user end. In this

study, we present a novel one-shot Post-rank OPtimisation

(POP) method, which allows a user to quickly refine their

search by either “one-shot” or a couple of sparse negative

selections during a re-identification process. We conduct

systematic behavioural studies to understand user’s search-

ing behaviour and show that the proposed method allows

correct re-identification to converge 2.6 times faster than

the conventional exhaustive search. Importantly, through

extensive evaluations we demonstrate that the method is ca-

pable of achieving significant improvement over the state-

of-the-art distance metric learning based ranking models,

even with just “one shot” feedback optimisation, by as

much as over 30% performance improvement for rank 1 re-

identification on the VIPeR and i-LIDS datasets.

1. Introduction

For person re-identification (re-id), a probe image serves

as a query to be compared against a gallery that consists

of images of different individuals captured at distributed

locations at different time. Typically, a rank list of possi-

bly hundreds of matched likely-images are returned by an

appearance-based matching method. The final judgement is

left to the end user, who needs to inspect the list and man-

ually search for the correct match to the query. Existing re-

identification methods generally assume the rank list being

good enough for decision making. In reality, such a ranking

? ? 

? 

Figure 1. Human-in-the-loop re-identification is needed to resolve

the inherent visual ambiguities and disparities caused by different

camera view orientations, occlusion, and lighting variations.

list is far from good and necessarily suboptimal.

We wish to address this problem of person re-id post-

rank optimisation, as it is both non-trivial and critical for

making the existing re-identification pipeline viable for any

real-world practical applications. There are two reasons for

such considerations:

Visual ambiguities and disparities - In the context of

person re-identification, the visual samples are ambiguous,

i.e. the same person can look very different and different

people can look very alike under different camera views,

lighting variations, and occlusion (Fig. 1). Within the vast

amount of likely candidates, there may be only one cor-

rect target. This problem is perhaps uniquely so for re-

identification, whilst less so for general object search in the

context of image indexing and search, of which the retrieved

images have strong inter-category visual differences and

intra-category similarities, are well segmented and largely

exhibited from similar views.

Off-line learning scalability - The performance of cur-

rent distance learning based ranking approaches to per-

son re-identification remain low [19, 26, 13, 17, 16, 25],

e.g. ≤30% recognition rate at rank 1 on the popular VIPeR

dataset even with person probe images manually and care-

fully cropped. A key factor that contributes to the poor re-
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Figure 2. Examples of user negative selections.

sults is the lack of sufficient labelled pairs of training sam-

ples to cover diverse appearance variations from unknown

changes in viewing conditions, leading to suboptimal learn-

ing of the ranking function between camera views. In addi-

tion, there is currently no effective mechanism to utilise ad-

ditional information to further improve model ranked re-id

results. Owing to these difficulties, a rank list is inevitably

suboptimal. Our experiments show that in each post-rank

search, a user spends an average of 45 seconds to identify

a true match given a machine generated rank-list (i.e. post-

rank) for VIPeR dataset (316 gallery images) (Sec. 5). It is

unrealistic to expect an operator to scroll down hundreds of

images to find a possible true re-identification in a practical

system.

The main contribution of this study is that we formulate

a systematic framework for re-id post-rank optimisation,

largely unaddressed by the existing person re-identification

literature. We introduce a new one-shot Post-rank OPtimi-

sation (POP) model for very fast post-rank re-identification

convergence with significant increase in re-id accuracy.

Specifically, our method aims to minimise human-in-the-

loop effort by one-shot negative feedback selection. That

is, a user only needs to select a single strong negative feed-

back, and optionally a few weak negatives, to trigger an au-

tomated refinement of the suboptimal rank list. A strong

negative is a highly ranked, but confusing match in a ma-

chine generated suboptimal rank list with clear visual dis-

similarity to the probe image, whilst a weak negative is a vi-

sually similar but wrong match in the same rank list (Fig. 2).

We formulate a new visual expansion model that not only

synthesises pseudo-samples to complement the sparse neg-

ative selection, but also compute a generic mapping of vi-

sual change between different camera views. In addition,

we introduce an incremental affinity graph construction for

propagating sparse belief accumulated from human-in-the-

loop negative mining. In essence, the proposed model com-

bines sparse human negative feedback on-the-fly to steer au-

tomatic selection of more relevant re-identification features.

We show in Sec. 6 that our model not only improves 2.6

times of search efficiency compared to the typical exhaus-

tive search strategy, but also brings about as much as over

30% performance improvement for rank 1 re-identification

over current distance metric learning and ranking models.

This is based on “one shot” user negative selection only,

and evaluated extensively using both the VIPeR and i-LIDS

benchmark datasets.

2. Related Work

Post-rank optimisation for re-id is relatively unexplored

in the person re-identification literature. One related study

in [12] attempted to refine the rank list but their study does

not model the process of enabling human-in-the-loop for

optimising the suboptimal rank list with only sparse feed-

back, down to one-shot. Ali et al. [1] proposed to exploit

human supervision during a visual search process. In con-

trast to the proposed one-shot POP model in this study, their

interactive scheme requires a user to provide both multiple

similar and dissimilar examples, which is not always prac-

tical or accessible. Another related work [18] requires ex-

plicit relative feedback in image classifier training to diffuse

the label to unlabelled images. Their interactive scheme de-

mands more detailed and specific feedback, which may not

be feasible in the context of person re-identification when

visual cues are often of low-resolution, ambiguous, and lack

of relative details.

In a wider context, studies in [2, 7] primarily address a

different problem, i.e. face recognition in multimedia do-

main with feedback for query expansion in continuously

tracked faces, a significantly more constrained problem

when compared to person re-identification by a single im-

age (see Fig. 1). Continuously tracked facial images mostly

undergo smooth appearance changes under strong space-

time closed-world constraints, with minimal or no occlu-

sion and very rich data for model learning. In contrast,

the person re-id challenge is concerned with a single pair

of image association in a totally unconstrained open-world

environment.

Our negative mining concept is related to human rel-

evance feedback mining in generic image search and re-

trieval. However, methods designed for generic inter-class

image categerisation are not directly applicable to the per-

son re-identification problem. This is not only due to the vi-

sual ambiguity challenge unique to person re-id scenarios as

discussed in Sec. 1 and illustrated in Fig. 1, but also because

some key underlying assumptions required by most generic

image search and retrieval techniques are no longer appli-

cable in the case of person re-id. They are: (1) top-ranked

positive images are visually consistent to the probe (no vi-

sual ambiguities) [24, 10], (2) those positive images often

form the largest cluster [28], or (3) sufficient positive sam-

ples can be gathered through text keyword expansion [21].

Returning only probe-relevant images at the top rank can-

not be guaranteed in person re-id due to visual variations

across camera views. A true positive person re-id match

does not necessarily forms a large cluster in the gallery set,

in the contrary it is often sparse. Keyword expansion is not

applicable to person re-identification scenarios.
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Figure 3. An overview of the proposed one-shot Post-rank OPti-

misation (POP) model for person re-identification.

3. Optimising Post-Rank by Negative Mining

3.1. Human-in-the-Loop Negative Mining

Let us consider solving the following person re-

identification problem. Given a probe image to be matched

against an unlabelled gallery set, a ranking function gener-

ates a suboptimal rank list of the gallery set according to

each gallery image’s likelihood to be a true match of the

probe image. There may exist only one true match and there

is no guarantee that the ranking function is able to place it in

the top ranks. All other samples in the gallery space are con-

sidered as negatives, which can be divided into two negative

types (Fig. 2): (1) Strong negatives - highly ranked gallery

images that are visually clearly dissimilar to the probe im-

age. Flagging out one of them may help explaining away

many other false matches. (2) Weak negatives - albeit not

the true match, these highly ranked negative gallery images

are visually similar to the probe image. They could be good

candidates for disambiguating visual uncertainties and opti-

mising the initial ranking function. We wish to formulate a

model to best exploit human-in-the-loop feedback for post-

rank optimisation.

More precisely, for each image we extract a

d-dimensional feature vector, denoted by x =

(x1, . . . , xd)
T ∈ R

d. Given a probe instance, x
p,

we assume an initial ranking function f init is avail-

able (e.g. [19, 26]) to compute an initial score vector

s
init =

(

sinit1 , . . . , sinitn

)

to rank the n unlabelled gallery

images {xg
i }

n
i=1. If the initial ranking function fails to

return the true match x
true in the top N ranked candi-

dates, we wish to learn a post-rank function fpr for rank

re-ordering. This problem is solved by the following

procedure, with an overview in Fig. 3:

(a) A user selects one (any) strong negative from the top

N ranked instances, denoted as xs− 1.

1Although the user also has the option to select more than one strong

negatives
{

x
s−

}

and a couple of weak negatives
{

x
w−

}

, we will show

in Sections 5 and 6 that a single strong negative is far more likely to be

selected by a human user (visually distinct and intuitive) than weak neg-

atives (visually subtle) in an on-the-fly feedback process. We also show

in comparative experiments in Section 6 that any performance advantage

gained from additional multiple negative feedback over a single one-shot

(b) For learning the post-rank function, we also require

positive sample(s) in addition to the user selected nega-

tive sample. To that end, visual expansion is computed

to synthesise one or more instances of the probe image

(x̃p) in the gallery view (Sec.3.2).

(c) An affinity graph weighted by an affinity matrix Ā

is constructed to capture the appearance similarities

among all the images in the gallery view, including

both the original gallery instances and the synthesised

probe instances (Sec.3.3).

(d) This sparse negative information obtained from the

user is propagated to their nearby neighbours in the

gallery view via the above weighted affinity graph

(Sec.3.4). Through this process, the post-rank func-

tion fpr is learned. The initial score s
init is combined

by weighted sum with those obtained from fpr to pro-

duce a new set of scores. All instances in the initial

rank list are then re-ordered based on the new scores.

3.2. Cross-Camera View Visual Expansion

Learning a post-rank function for rank re-ordering re-

quires both labelled negative and positive data. Clearly, a

single strong negative selected by user is insufficient for

this purpose. A plausible solution is by synthesising some

pseudo positive-labelled samples through a process of vi-

sual expansion. However, this is computationally non-

trivial in the context of person re-identification. As dis-

cussed in Sec. 2, existing visual expansion methods are not

directly applicable since visual consistency in top-ranked

images cannot be guaranteed. Moreover, owing to poten-

tially large feature inconsistency between different camera

views, the probe image itself from the probe camera view

cannot be readily used as a positive sample in the gallery

view.

To resolve this problem, we specifically design a re-

gression forest [4] based visual expansion method. The

regression forest is well-suited to our problem due to its

robustness in learning non-linear mapping between high-

dimensional re-id visual features. Moreover, the nature of it

being an ensemble of trees allows efficient random permuta-

tion in the predictors to synthesise one or more samples that

resemble the probe’s appearance as pseudo positive-labelled

data in the gallery view.

Specifically, the visual variations between a probe and a

gallery camera view are accounted by the multi-output re-

gression forest, with Tr trees, through learning an appear-

ance mapping space

M : xp → x
g ∈ R

d, (1)

from a set of paired training instances extracted from cross-

camera views (Fig. 3(b)). A synthesised probe instance can

then be generated as follows

negative feedback is insignificant as a result of post-rank optimisation.
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x̃
p =

∑Ts

t=1
Mπt

(xp), (2)

where Ts = 2
3Tr

2, and Mt is the regression predictor for

the t-th regression tree. The subscript {π1, . . . , πTs
} is a

randomly sampled index and π = {1, . . . , Tr}. This pro-

cess can be repeated to generate more synthesised probe in-

stances if desired.

3.3. Incremental Construction of Affinity Graph

We use {xs−} to represent dissimilarity and {x̃p} to in-

dicate similarity. If {xw−} are selected, they can be treated

as positives due to the fact that they are visually similar to

the probe3. To that end, we shall describe how to propagate

the sparse labelled samples to the large quantity of unla-

belled gallery set so to avoid the need for labelling exhaus-

tively the gallery set. This process of transduction via an

affinity graph is facilitated by first constructing an affinity

graph of the unlabelled gallery set.

In contrast to existing graph-based methods [23, 14, 11,

16], we exploit clustering forest [4, 5, 27] to discover the

distances between images in order to address the inherent

noise in the re-id problem. The use of a clustering forest is

advantageous to solving this re-id problem in two aspects:

(1) its implicit feature selection mechanism is beneficial to

mitigating noisy visual features, and (2) it offers scalable

and tractable solution to our incremental graph construction

requirement so to accommodate varying number of selected

negatives accumulating on-the-fly. Note that the unsuper-

vised clustering forest differs from the supervised regres-

sion forest we used in Sec. 3.2 for visual expansion.

Let us first describe how to construct a graph for the

gallery instances {xg} excluding the synthesised probe in-

stances {x̃p}, which are not part of the gallery and also

not a constant number depending on user negative selection

choices. We shall return to the case of including synthe-

sised positives later. Our clustering forest is an ensemble

of Tc trees (Fig. 3(c)), each of which defines a partition of

the inputs x
g at its leaves, q(xg) : Rd → Q ⊂ N, where

q represents a leaf index and Q is the set of all leaves in a

given tree. In the t-th tree, the distance of x
g
i and x

g
j is

distt
(

x
g
i ,x

g
j

)

=

{

0 if q(xg
i ) = q(xg

j )

∞ otherwise
. (3)

We then collect the pairwise distances of all gallery in-

stances to construct an affinity matrix At ∈ R
n×n of that

tree, with each element At
ij given as

At
ij = exp−distt(xg

i
,xg

j ) . (4)

Intuitively, we assign affinity=1 (distance=0) to samples

x
g
i and x

g
j if they fall into the same leaf node, and affin-

2This fraction is typical in random forest bootstrap training [4].
3Using similar examples (here the weak negative) as positive is also

explored in label sharing [6] and example sharing [20].

ity=0 (distance=∞) otherwise. To obtain a smooth for-

est affinity matrix, we compute the final affinity matrix as

Ā = 1
Tc

∑Tc

t=1 A
t. The affinity is then used to weigh the

edges in an k-NN graph.

Let us now consider the case for including synthesised

positives in the construction of the affinity graph. Recall

that our method is designed to need only a single strong

negative to re-order the rank. Nevertheless, a user has the

option to select more negatives in more than one round of

feedback, if necessary and desired. To maintain a balance

in positive-negative data for the post-rank function learning,

the model needs to generate equal number of synthesised

positive probe instances {x̃p} as pseudo positive-labelled

data in the gallery view. Thus, the number of x̃p can vary

depending on the number of negatives selected by a user cu-

mulatively. Constructing a new graph from scratch catering

for each increase in the number of x̃
p is infeasible, since

it involves a complexity order of O((n+ ñ)2), where ñ is

the number of x̃p. A more tractable approach is to first build

a graph using the gallery data alone without the additional

synthesised positives, and then expand it to accommodate

the additional synthesised probe instances, as follows.

First, we compute the affinity between {x̃p} and all the

existing gallery instances {xg}. Benefited from the tree

structure of clustering forest, the affinity computation is ef-

ficient. In particular, since the index of each gallery in-

stances is stored in the leaf nodes during the forest con-

struction, we can compute distt
(

x
g
i , x̃

p
j

)

by checking on

which leaf node an x̃
p
j fall in a tree. For distances between

synthesised probe instances, we compute distt
(

x̃
p
i , x̃

p
j

)

=

min
{

distt
(

x̃
p
i ,x

g
j

)

|j = 1, . . . , n
}

. Second, with the new

set of distances we can then expand the old affinity matrix

from Ā ∈ R
n×n to Ā ∈ R

(n+ñ)×(n+ñ), followed by affin-

ity normalisation. New nodes corresponding to {x̃p} are

subsequently added to the original k-NN graph.

3.4. Sparse Negative Propagation over Graph

After constructing the affinity graph, we diffuse the

sparse negative and synthesised positive information over

the graph to all other gallery instances. First, we order

the selected negatives and synthesised probe instances into

the first l labelled samples L, followed by the remaining u

gallery instances as unlabelled samples U , i.e.

L =
{

x
s−

}

∪
{

x
w−

}

∪ {x̃p} (5)

U = {xg } \
({

x
s−

}

∪
{

x
w−

})

y =

{

+1 if x ∈ {xw−} ∪ {x̃p}

−1 if x ∈ {xs−}
. (6)

Here we accommodate the possibility of a user wanting

to select some weak negatives. Otherwise {xw−} = ∅.

Second, to propagate negative information from L to U ,

we consider the following optimisation problem similar to
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Figure 4. Effects of negative accumulation: (a) three-dimensional

embedding of gallery images obtained using multi-dimensional

scaling after the first round of negative selection, (b) the embed-

ding after the second round. The gallery images are colour coded

according to their new ranking score. The shrinking region of

bright yellow colour indicates the effectiveness of negative min-

ing in demoting initial false matches.

Laplacian SVM [3]:

fpr = argmin
f∈HK

1

l

∑l

i=1
max(1− yif(xi), 0)

+λA ‖f‖2K + λI ‖f‖
2
I , (7)

where fpr : x → R is the post-rank function. The first

term defines a hinge loss on the sparse labelled data. The

parameter λA enforces a smoothness condition on the so-

lution, and ‖f‖2K denotes the norm of the function in Re-

producing Kernel Hilbert Space (RKHS) HK [3]. The pa-

rameter λI controls the intrinsic regulariser ‖f‖2I , which

enforces the similar/dissimilar labels of nearby gallery in-

stances with respect to the affinity graph to be close. Specif-

ically ‖f‖2I = f
TLf =

∑l+u
i=1

∑l+u
j=1 Āij(f(xi) − f(xj))

2

where L = D− Ā, and D represents a diagonal matrix with

Dii =
∑

j Āij . In this study, we use L = D−1/2ĀD−1/2

instead since it provides certain theoretical guarantees and

perform well in many tasks [22].

Third, we solve Eqn. (7) to derive the Lagrange multipli-

ers α = (α1, . . . , αl+u)
T

and the bias term b, by using the

Newton’s method [3]. Finally, the estimated relevance of an

unlabelled gallery instance x
g
j to the probe is computed as

s
pr
j = fpr(xg

j ) =
∑l+u

i=1
αiK(xi,x

g
j ) + b, (8)

where kernel K(·, ·) denotes a radial basis function in our

implementation. We yield the final matching score as

s = (1− β)sinit + βspr, (9)

where s
pr = (spr1 , . . . , sprn ). The parameter β balances the

influence between initial ranking and user feedback selec-

tions.

3.5. Negative Accumulation

After each round of negative mining, we add new neg-

ative selections to a cumulated strong negative sets col-

lected from previous rounds (or also weak negative sets if

weak negatives were selected). Figure 4 shows an exam-

ple for the effect of feedback accumulation in two rounds

of negative mining. As more negatives are accumulated,

the classification boundary is refined, increasing the sep-

aration between the true match and other strong negatives.

The above negative accumulation are repeated together with

the negative mining steps (Sec. 3.1) until the true match

is found in the top ranks, or terminates after a pre-defined

number of rounds.

4. Experimental Settings

Datasets - Two widely employed benchmarking datasets

VIPeR [9] and i-LIDS [26] were used for evaluation. The

VIPeR dataset contains 632 persons, each of which has two

images captured in outdoor views. The dataset is challeng-

ing due to drastic appearance difference between most of

the matched image pairs caused by viewpoint variations and

large illumination changes at outdoor environment. The i-

LIDS dataset was captured in a busy airport arrival hall us-

ing multiple cameras. It contains 119 people with a total

of 476 images, with an average of four images per person.

Apart from the illumination changes and pose variations,

many images in this dataset are also subject to severe inter-

object occlusions.

Features - Similar to [19, 26, 15, 16], we partitioned an

image equally into six horizontal stripes, and extracted a

mixture of colour (RGB, HSV and YCbCr) and texture his-

tograms (8 Gabor filters and 13 Schmid filters), forming a

2784-dimensional feature vector for each image.

Implementation details - We set Tc = Tr = 200 for the

forest size. The depth of the forest was automatically dis-

covered by specifying the minimum forest node sizes, i.e. 1

for the clustering forest and 5 for the regression forest. The

number of nearest neighbours in a k-NN graph was cho-

sen as 20. We set λA = 0.1, λI = 0.1, variance in ker-

nel K(·, ·) to 1.5, score fusion parameter β = 0.8 through

cross-validation and kept them fixed in all the experiments.

Good performance is consistently observed when we set β

in the range of (0.8,1).

Evaluation settings - The matching performance was mea-

sured using the averaged cumulative match characteristic

(CMC) curve [9] over 10 trials. We selected all the images

of p person to build the test set. The remaining data was

used for training an initial ranking function and the regres-

sion forest. The value p was set to 316 for VIPeR and 50 for

i-LIDS. In the test set of each trial, we randomly chose one

image from each person to set up the test gallery set and the

remaining images were used as probe images. Note that for

the i-LIDS dataset, 50 images in the gallery set were insuf-

ficient to construct the intrinsic regulariser ‖f‖2I in Eqn. (7).

Thus, we randomly selected 300 images from VIPeR to help

in computing the i-LIDS’s intrinsic regulariser. During the

empirical evaluation, these ‘borrowed’ examples were never

presented to the participants.
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5. Behavioural Studies on Post-Rank Search

There are two user studies with the purpose of: (1) un-

derstanding the tendency of a user in selecting either strong

or weak negative, and (2) quantifying and comparing the

search efficiency of the conventional exhaustive search and

POP in the hardest case, when user selects only a single

strong negative for post-rank optimisation (one-shot).

A total of 10 volunteers were invited for the first study.

They were asked to manually annotate the weak and strong

negatives ranked by an off-line ranking model given a set

of random probe images. It is evident from Table 1 that

the proportion of weak and strong negatives are extremely

imbalanced with the strong negatives outnumbers the weak

negatives significantly. We found that different factors may

affect human judgement in the negative selection process,

e.g. colours (Fig. 2(a)), texture (Fig. 2(b)), accessories such

as a luggage case (Fig. 2(c)), or even some ambiguous vi-

sual traces (Fig. 2(d)). Overall, these results suggest that the

relatively more salient strong negatives are more likely to

be selected by a user during a post-rank feedback selection

process. This raises the question on how the POP model

performs given a single strong negative feedback (i.e. one-

shot) as compared to its performance given multiple weak

negatives as feedback. We shall evaluate this in Sec. 6.

In the second search efficiency study, a total of 15

participants were invited, each of whom was assigned 10

probes from the VIPeR dataset. The users were shown

the initial matching results by �1-norm, and were asked to

perform one-shot strong negative selection from the top 15

ranked results. They were allocated a maximum of 3 rank

feedback rounds with one strong negative selection each. If

the true match cannot be promoted into the top 15 ranks

by the model after the maximal 3 rounds of one-shot post-

rank optimisation, the users were asked to continue with

an exhaustive visual search to find the true match. Their

search time is automatically recorded. Similar experiment

was conducted on using exhaustive search for comparison.

Figure 5 depicts several examples of actual user inter-

actions during the post-rank optimisation process. One

can observe that the POP is effective in demoting candi-

dates who have similar appearances to the selected strong

positives. For instance, as shown in Fig. 5(b), when a user

selected the first candidate as strong negative, both the first

and second candidates who were wearing brown jackets

were removed from the top ranks. Fig. 5(c) shows a fail-

ure case where selecting one strong negative is insufficient

to resolve the visual ambiguity, since the true match expe-

riences large appearance variation due to viewpoint change.

Figure 6 shows the search time versus the initial rank. The

dataset n(gallery) weak strong unlabelled

VIPeR 632 1.73% 78.10% 20.17 %

i-LIDS 119 1.04% 62.79% 36.17 %

Table 1. Proportion of user selected strong and weak negatives.

Initial

Rank = 88

Round 1

Rank = 24

Round 2

Rank = 8

Initial

Rank = 21

Round 1

Rank = 1

Probe Top 15 Matching Results

(a)

(b)

(c)

Initial

Rank = 25

Round 1

Rank = 48

Figure 5. Examples of user feedback on-the-fly. The probe and the

true match are highlighted respectively with red and green bound-

ing boxes. In the middle we show the returned top 15 ranked re-

sults. The selected strong negative is denoted by a red cross.
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Figure 6. Search time (in second) comparison, between exhaustive

search and POP search, both of which are initialised by ℓ1-norm

matching (best viewed in colour).

search time of POP is reduced by 2.6 times on average

as compared to conventional exhaustive search by ranking.

That is from 50.24±24.55 seconds to 19.44±14.51 seconds.

These results suggest that the proposed POP model is able

to significantly improve the search efficiency.

6. Comparative Evaluations

POP vs. �1-norm, RankSVM, PRDC, MCC – First

we evaluate the benefits of POP on existing ranking

based person re-identification methods using �1-norm [26],

RankSVM [19], PRDC [26] and MCC [8], which are among

the top performers in re-id. In each round, the negative se-

lection was performed on the first N ranked images, N =
15 for the VIPeR dataset and N = 10 for the i-LIDS dataset

due to its relatively smaller size. We treat the negative selec-

tions collected offline from the first behaviour study (Sec.5)

as ground truth feedbacks from users. This is to automate

the experiments for systematic evaluation of our approach

with cross validation. Despite the negative selection was

performed without a live user in the loop, the experiments

were still using the real feedback from users. This testing
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Figure 7. POP post-rank optimisation vs. two re-identification models RankSVM and PRDC (with three rounds of feedback).

Initial Ranking VIPeR i-LIDS

one-shot multi-shots one-shot multi-shots

0 Round 1 R2 R3 0 R1 R2 R3 0 R1 R2 R3 0 R1 R2 R3

�1-norm 9.43 31.90 42.88 47.56 9.43 30.41 44.21 50.13 29.60 67.60 73.20 75.60 29.60 67.60 75.40 81.80

RankSVM [19] 14.87 59.05 67.06 71.08 14.87 58.48 67.85 71.58 29.80 73.40 77.20 79.80 29.80 73.40 79.40 82.40

PRDC [26] 16.01 59.91 67.88 72.03 16.01 59.49 68.35 72.22 31.40 70.20 75.60 78.00 31.40 70.20 77.00 80.00

MCC [8] 17.85 60.13 64.08 66.87 17.85 60.06 63.64 66.20 30.00 69.80 73.60 76.60 30.00 69.20 74.80 80.40

Table 2. Rank-1 recognition rate(%) vs. the number of feedback round on VIPeR and i-LIDS.

protocol was applied for all the experiments reported below.

We conducted both ‘one-shot’ and ‘multi-shots’

experiments. The one-shot experiment depicted an ex-

tremely sparse feedback scenario, where only one strong

negative within the top N ranked images was selected in a

round. In a multi-shots scenario, the model was presented

with multiple labelled negatives (strong and weak) by a

user. The maximum number of strong negatives was set

to 5 assuming that the users do not bother to annotate

more. Figure 7 and Table 2 show that the recognition

rate is remarkably improved with just 1 round of one-shot

feedback. Specifically, the rank-1 average recognition rates

are boosted by 38.22% and 40.05% on VIPeR and i-LIDS

respectively for all four different initial ranking models

(�1-norm, RankSVM, PRDC and MCC). With feedback

increased to three rounds, the performance improves

monotonically and converges. It is worth pointing out

that even though RankSVM, PRDC and MCC already

achieve a good initial recognition as compared to �1-norm,

notable performance gains are achieved after post-rank

optimisation by POP.

The performance comparisons between one-shot and

multi-shot negative selections are reported in Table. 2. The

one-shot negative selection in just one feedback round

yields stable and competitive results with no obvious degra-

dation in comparison to the multi-shot multi-rounds feed-

back, indicating the effectiveness of one-shot post-rank op-

timisation.

POP vs. other Post-Rank Models – We also compared

POP against other post-rank models for generic image

search and retrieval tasks, including:

1. NPRF [24] : An SVM is trained by using top-ranked

images as positive examples and bottom-ranked im-

ages as negative examples.

2. PRF [10]: An one-class SVM is trained by using the

top-ranked images as positive examples.

3. EMR [23]: A graph-based ranking method. It uses

Euclidean distance to construct the affinity matrix and

optimises a ranking function with least square regres-

sion. We treat it as a post-rank method by feeding it

with the same weak/strong negative selections as POP.

(a) one-shot

(b) multi-shots
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Figure 8. Post-rank optimisation by POP vs. Naı̈ve feedback, and

other image retrieval models including NPRF [24], PRF [10], and

EMR [23], with ℓ1-norm as the initial ranking function. The y-

axis shows the recognition rate at rank-5 along with the increment

of feedback round. (a) one-shot, (b) multi-shots.

In addition, we implemented two baseline approaches:

(1) a naı̈ve feedback method which simply demotes the

strong negatives to the bottom of the ranking list in each

round; (2) a SVM approach using the strong negatives and

synthesized positive examples for training. For NPRF and

PRF, we applied their default strategy for selecting positive

and negative samples, and RBF as their SVM kernel, with

parameters determined by cross-validation. For EMR, we

used the default settings from the authors’ code4. The �1-

norm distance measure was chosen as initial ranking func-

tion. Figure 8 shows the comparative rank-5 recognition

4http://eagle.zju.edu.cn/∼binxu/publication/EMR/EMR.htm
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Figure 9. Benefits from visual expansion. ℓ1-norm is the initial

ranking function. The y-axis shows the recognition rate at Rank-5

along with the increment of feedback round.

rates from all the models, on both one-shot and multi-shots

evaluations. NPRF, PRF and the naı̈ve feedback are gener-

ally poor in boosting the recognition rate on VIPeR dataset,

suggesting that the use of top-ranked images as positive

feedback samples can lead to erroneous post-rank results

in a re-identification task. Both POP and EMR are able

to achieve notable gain and are better than SVM method,

indicating the strength of label propagation in a graph.

POP outperforms EMR by 7.94% (one-shot) and 11.01%

(multi-shots) for Rank-5 results on the VIPeR dataset after

4 rounds of post-rank human-in-the-loop process. POP also

outperformed EMR by 4.00% (multi-shots) for Rank-5 on

the i-LIDS dataset after 4 rounds of feedback, whilst the

two giving comparable results for one-shot feedback. The

better performance of POP over EMR suggests the more

effective propagation of negatives over the clustering-forest

based affinity graph, rather than the Euclidean-based graph.

Benefits from Visual Expansion – We further evaluated

the additional benefits from visual expansion, with �1-norm

for initial ranking. We focused on the one-shot case. To pre-

pare the baseline without visual expansion, we randomly se-

lected one weak negative image from the top N ranks (N =
15 for VIPeR, 10 for i-LIDS) to pair with the one-shot

strong negative. Figure 9 shows that visual expansion im-

proves the recognition rate of POP from 37.66% to 51.39%

after 4 feedback rounds on the VIPeR dataset. However, no

notable improvement was observed on the i-LIDS dataset.

A plausible reason is that the i-LIDS dataset is not parti-

tioned into different camera sets, so learning the mapping

space is not as meaningful as in the VIPeR case.

7. Conclusion

We have formulated a systematic framework for re-

identification post-rank optimisation, which has been

mostly neglected by contemporary person re-identification

studies. Systematic behaviour studies and extensive evalu-

ations demonstrated that the proposed POP model not only

can improve 3 times of search efficiency over exhaustive

search strategy, but also achieves significant improvement

over state-of-the-art ranking-based re-id methods, even with

just one shot negative selection.
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