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In this article, we present an image-based modeling and rendering system, which we call pop-up light field, that models a sparse
light field using a set of coherent layers. In our system, the user specifies how many coherent layers should be modeled or popped
up according to the scene complexity. A coherent layer is defined as a collection of corresponding planar regions in the light field
images. A coherent layer can be rendered free of aliasing all by itself, or against other background layers. To construct coherent
layers, we introduce a Bayesian approach, coherence matting, to estimate alpha matting around segmented layer boundaries by
incorporating a coherence prior in order to maintain coherence across images.

We have developed an intuitive and easy-to-use user interface (UI) to facilitate pop-up light field construction. The key to our
UI is the concept of human-in-the-loop where the user specifies where aliasing occurs in the rendered image. The user input is
reflected in the input light field images where pop-up layers can be modified. The user feedback is instant through a hardware-
accelerated real-time pop-up light field renderer. Experimental results demonstrate that our system is capable of rendering
anti-aliased novel views from a sparse light field.

Categories and Subject Descriptors: I.3.6 [Computer Graphics]: Methodology and Techniques—interaction techniques; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism; I.4.6 [Image Processing and Computer Vision]: Seg-
mentation

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Image-based rendering, interactive techniques, light field, lumigraph, layers, matting

1. INTRODUCTION

Central to many image-based rendering (IBR) systems is the goal of interpolating accurately between
the sample images in order to generate novel views. In IBR, rendering a desired pixel is often equivalent
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to interpolating intensity values of some input pixels. Such an interpolation, however, depends on the
correspondence between the rendered pixel and those pixels from the input sample images. Accurate
correspondence between these pixels can be obtained if we have a large number of input images or an
accurate geometric model of the scene.

The issue of realistic rendering using dense image samples in IBR has been very well explored in
the forms of Light Field [Levoy and Hanrahan 1996] and Lumigraph [Gortler et al. 1996]. In light field
rendering, a simple focal plane is sufficient to establish accurate correspondence between interpolating
pixels. When sampling is sparse, however, conventional light field rendering would cause aliasing be-
cause of erroneous correspondence. Some researchers designed reconstruction filter more sophisticated
than a simple linear interpolation filter to reduce the ghosting effects [Stewart et al. 2003]. On the
other hand, the Facade system [Debevec et al. 1996] shows that, from only a few photographs, realistic
rendering of a building’s architecture can be achieved because the reconstructed geometry model pro-
vides accurate correspondence for view-dependent texture mapping. A formal analysis of the tradeoff
between the number of images and the amount of geometry (in terms of the number of depth layers
associated with each pixel) is presented in Chai et al. [2000].

Many IBR systems have proposed different geometric proxies [Buehler et al. 2001] to alleviate the
problem introduced by undersampled light fields. In practice, however, acquiring an approximate yet
continuous proxy model is a challenging task. A continuous proxy model is needed for these IBR systems
because every desired ray must intersect a point on the geometric proxy in order to establish the corre-
spondence between interpolating pixels [Schirmacher et al. 2000]. This explains why most IBR systems
today have used a very simple geometric proxy (e.g., a focal plane in dynamically reparameterized light
field [Isaksen et al. 2000]) for a complex scene, but can construct a relatively complex proxy for a single
object (e.g., the lion model in Lumigraph [Gortler et al. 1996] or the car model in unstructured Lumi-
graph [Buehler et al. 2001]). The image-based visual hull [Matusik et al. 2000] is another geometry
proxy that can be constructed and updated in real-time from silhouettes of a single object. If a single
global geometric proxy is not sufficient, local geometric proxies can also be used to improve rendering
quality such as the view-dependent geometry [Rademacher 1999] used in impostors [Schaufler 1995],
Microfacet Billboarding [Yamazaki et al. 2002], and Billboard Clouds [Décoret et al. 2003]. These local
geometric proxies are mostly for single objects as well.

The Problem. We address the following problem in this article. Can we use a relatively sparse set of
images of a complex scene and produce photorealistic virtual views free of aliasing? A straightforward
approach would be to perform stereo reconstruction or to establish correspondence between all pixels of
the input images. The geometric proxy is a depth map for each input image. Unfortunately, state-of-the-
art automatic stereo algorithms are inadequate for producing sufficiently accurate depth information
for realistic rendering. Typically, the areas around occlusion boundaries [Kolmogorov and Zabih 2002;
Kang et al. 2001] in the scene have the least desirable results, because it is very hard for stereo
algorithms to handle occlusions without prior knowledge of the scene.

Our Approach. We approach this problem by suggesting that it is not necessary to reconstruct accurate
3D information for each pixel in the input light field. Our solution is to construct a pop-up light field
by segmenting the input–sparse light field into multiple coherent layers. Pop-up light field differs from
other layered modeling and rendering approaches (e.g., Lengyel and Snyder [1997], Shade et al. [1998],
and Baker et al. [1998]) in a number of ways. First, the number of layers needed in a pop-up light
field is not pre-determined. Rather, it is decided interactively by the user. Second, the user specifies
the layer boundaries in key frames. The layer boundary is then propagated to the remaining frames
automatically. Third, our representation is simple. Each layer is represented by a planar surface without
the need for per-pixel depth. Fourth and most importantly, our layers are coherent so that anti-aliased
rendering using these coherent layers is achieved. Each coherent layer must have sufficiently small
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depth variation so that anti-aliased rendering of the coherent layer itself becomes possible. Moreover,
to render each coherent layer with its background layers, not only is accurate layer segmentation is
required on every image, but segmentation across all images must be consistent as well.

To segment the layers, the user interface is key. A good user interface can enable the user to intuitively
manipulate the structure of a pop-up light field so that virtual views with the desired level of fidelity can
be produced. By having a human-in-the-loop for pop-up field construction, the user can specify where
aliasing occurs in the rendered image. Then, corresponding layers are refined accordingly. More layers
are popped up, refined, and propagated across all images in the light field until the user is satisfied
with the rendering quality (i.e., no aliasing is perceived).

Outline of this Article. The rest of this article is organized as follows. After reviewing related work in
Section 2, we introduce in Section 3 the representation of pop-up light field, which consists of a set of
coherent layers, and our novel coherence matting that maintains the layer consistency across frames in
the light field. Section 4 details the operations in the user interface. Section 5 describes our real-time
hardware-accelerated pop-up light field rendering algorithm. Experimental results are presented in
Section 6. Discussion and concluding remarks are made in Section 7.

2. RELATED WORK

Interactive Modeling Systems. Many image-based interactive modeling systems use only one image,
which impose or assume certain geometric constraints on the scenes (e.g., Tour in Pictures [Horry
et al. 1997] models the scene by a simple spidery mesh. In single view metrology [Criminisi et al.
1999], 2D projections of 3D parallel lines must be present in the input image so that the user can click
on them for computing vanishing points). An elaborate modeling system was proposed in Mok et al.
[2001] where depth values are assigned to pixels in a single picture. Interactive single-view systems are
difficult to generalize to a sparse light field, that still consists of many images. Furthermore, while it is
straightforward to perform interactive image segmentation on a single image, consistent propagation
of image regions to different images is a challenging task.

The UI for designing a multiview/multiframe interactive modeling system has been a challenge.
Most available movie editing tools are in fact manual systems, requiring frame-by-frame editing and
consistency maintenance. In Debevec et al. [1996], an interactive modeling system is proposed that
makes use of a depth map derived from a sparse set of views (image-based) and a modeling program
(geometry-based). Plenoptic editing [Seitz and Kutulakos 1998] first recovers a 3D voxel model from a
sparse light field, and then applies traditional 3D warping to the recovered model. Thus, this automatic
system shares the same shortcomings with stereo reconstruction. Recently, feature-based light field
morphing [Zhang et al. 2002] has been proposed to morph two light fields. The key is an easy-to-use UI
for feature specification. The feature polygons are then used to compute the visibility map and perform
ray space warping. Consistency is maintained by ray correspondence.

Layer Modeling and Rendering. Layers have been proved successful [Lengyel and Snyder 1997;
Baker et al. 1998; Shade et al. 1998] in image-based rendering. Coherent layers [Lengyel and Snyder
1997] are constructed from 3D models for efficient rendering. In layered depth image (LDI), a two-step
rendering algorithm is proposed to render sprites (layers) with depth. While great progress has been
made in automatic reconstruction of layers [Wang and Adelson 1994; Baker et al. 1998; Ke and Kanade
2002] in the computer vision community, the layers are not accurate enough for artifact-free rendering.
In pop-up light field, the user interactively determines how many layers are to be popped up, initializes
the layers in key frames, and modifies the layers by inspecting the rendering quality.

Matting. Layered representations always demand accurate alpha matting along the layer boundary
(e.g., the sprites in Shade et al. [1998]). To estimate alpha matting from images, blue screen mat-
ting was proposed in Smith and Blinn [1996]. Recently, a Bayesian approach for digital matting was
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Fig. 1. An example of rendering with pop-up light fields. Rendering using the 5 × 5 Tsukuba light field data set is shown in the
top left. Aliasing is clearly visible near the front objects in the bottom left image because the input light field is sparse. The top
row shows that the pop-up light field splits the scene gradually into 4 coherent layers, and achieves an anti-aliased rendering as
shown in the bottom right image.

proposed in Chuang et al. [2001], that provides an excellent survey on other patented matting algo-
rithms [Mishima 1993; Berman et al. 2000; Ruzon and Tomasi 2000]. Video matting based on the same
Bayesian framework has been reported in Chuang et al. [2002]. However, video matting is not designed
to have consistent alpha mattes across frames. More accurate alpha matte can be estimated when
the multi-backgrounds are available Wexler et al. [2002]. In image-based opacity hulls [Matusik et al.
2002], multi-background matting is used to acquire alpha mattes to construct a visual hull with view
dependent opacity.

3. POP-UP LIGHT FIELD REPRESENTATION

3.1 An Example

When a light field is undersampled, conventional light field rendering [Levoy and Hanrahan 1996]
results in aliasing. Figure 1 shows the rendering of a sparse light field with 5 × 5 Tsukuba images.
The bottom left image is rendered with the 5 × 5 sparse light field by setting a single focal plane in the
scene [Isaksen et al. 2000]. Double images can be easily observed on the front objects.
ACM Transactions on Graphics, Vol. 23, No. 2, April 2004.
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Fig. 2. A light field (with images I1 and I2) can be represented by a set of coherent layers (L1 and L2). A coherent layer is a
collection of layered images in the light field. For instance, L1 is represented by layered image R1

1 (from I1) and R1
2 (from I2).

Each layered image has an alpha matte associated with its boundary. Part of the scene corresponding to each layer (e.g., L1) is
simply modeled as a plane (e.g., P1).

The bottom right of Figure 1 shows that anti-aliased rendering can be achieved using four layers, each
of which employs a simple planar surface as its geometric proxy. By splitting the scene into multiple
layers, the depth variation in each layer becomes much smaller than that in the original sparse light
field.

The pop-up light field is represented by a collection of coherent layers. A key observation in our pop-up
light field representation is that the number coherent layers that should be modeled or “popped up”
depends on the complexity of the scene and how undersampled the input light field is. For a sparser
light field, more layers need to be popped up for anti-aliased rendering.

3.2 Coherent Layers

We represent a coherent layer L j by a collection of corresponding layered image regions Ri
j in the light

field images I i. These regions are modeled by a simple geometric proxy without the need for accurate
per-pixel depth. For example, a global planar surface (Pj ) is used as the geometric proxy for each layer
L j in the example shown in Figure 2. To deal with complicated scenes and camera motions, we can also
use a local planar surface Pi

j to model the layer in every image i of the light field.
A layer in the pop-up light field is considered coherent if the layer can be rendered free of aliasing

by using a simple planar geometric proxy (global or local). Anti-aliased rendering occurs at two levels
when

(1) the layer itself is rendered; and
(2) the layer is rendered with its background layers.

Therefore, to satisfy the first requirement, the depth variation in each layer must be sufficiently
small, as suggested in Chai et al. [2000]. Moreover, the planar surface can be adjusted interactively to
achieve the best rendering effect. This effect of moving the focal plane has been shown in Isaksen et al.
[2000] and Chai et al. [2000].
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Fig. 3. Illustration of the major steps in coherence matting. (a) The user specifies an approximate segmentation. (b) An uncertain
region is added in between the foreground and background. (c) A background mosaic is constructed from multiple under-segmented
background images. (d) A coherent foreground layer is then constructed using coherence matting.

However, to meet the second requirement, accurate layer boundaries must be maintained across all
the frames to construct the coherent layers. A natural approach to ensuring segmentation coherence
across all frames is to propagate the segmented regions on one or more key frames to all the remaining
frames [Shade et al. 1998; Zhang et al. 2002]. Sub-pixel precision segmentation may be obtained on
the key frames by meticulously zooming on the images and tracing the boundaries. Propagation from
key frames to other frames, however, causes inevitable under-segmentation or over-segmentation of a
foreground layer. Typically over-segmentation of a foreground layer leads to the inclusion of background
pixels, thus introducing ghosting along the occlusion boundaries in the rendered image. A possible
example of foreground over-segmentation is exhibited in Figure 4(g) of Shade et al. [1998] where black
pixels on the front object’s boundary can be observed. To alleviate the rendering artifacts caused by
over-segmentation or under-segmentation of layers, we need to refine the layer boundary with alpha
matting [Porter and Duff 1984].

Figure 2 illustrates coherent layers of a pop-up light field. All the pixels at each coherent layer have
consistent depth values (to be exact, within a depth bound), but may have different fractional alpha
values along the boundary.

To produce fractional alpha mattes for all the regions in a coherent layer, a straightforward solution
is to apply video matting [Chuang et al. 2002]. The video matting problem is formulated as a Maximum
A Posterior (MAP) estimation as in Bayesian matting [Chuang et al. 2001],

arg max
F,B,α

P (F, B, α|C) = arg max
F,B,α

L(C|F, B, α) + L(F ) + L(B) + L(α) (1)

where L(·) = logP (·) is log likelihood, C is the observed color for a pixel, and F , B and α are foreground
color, background color and alpha value to be estimated, respectively. For color image, C, F and B are
vectors in RGB space. In Bayesian matting and video matting, the log likelihood for the alpha L(α) is
assumed constant so that L(α) is dropped from Eq. (1).

In video matting, the optical flow is applied to the trimap (the map of foreground, background and
uncertain region), but not to the output matte. The output foreground matte is produced by Bayesian
matting on the current frame, based on the propagated trimap. Video matting works well if we simply
replay the foreground mattes against a different background. However, these foreground mattes may
not have in-between frame coherence that is needed for generating novel views.

3.3 Coherence Matting

We propose a novel approach, called coherence matting to construct the alpha mattes in a coherent layer
that have in-between frame coherence. The workflow of our approach is similar to video matting and is
illustrated in Figure 3. First, the user-specified boundaries are propagated across frames. Second, the
uncertain region along the boundary is determined. Third, the under-segmented background regions
from multiple images are combined to construct a sufficient background image. Fourth, the alpha matte
for the foreground image (in the uncertain region) is estimated. The key to our approach is at the fourth
step in Figure 3(d) where we introduce a coherent feathering function across the corresponding layer
ACM Transactions on Graphics, Vol. 23, No. 2, April 2004.
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Fig. 4. The feathering function used in coherence matting.

boundaries. Note that, for a given layer, a separate foreground matte is estimated independently for
each frame in the light field, and the coherence across frames is maintained by foreground boundary
consistency.

L(B) in Eq. (1) can be dropped since we can explicitly estimate the background (see Sect. 4.4). By
incorporating a coherence prior on the alpha channel L(α) across frames, coherence matting can be
formulated as

L(F, B, α|C) = L(C|F, B, α) + L(F ) + L(α) (2)

where the log likelihood for the alpha L(α) is modeled as:

L(α) = −(α − α0)2/σ 2
a (3)

where α0 = f (d ) is a feathering function of d and σ 2
a is the standard deviation. d is the distance from

the pixel to the layer boundary. The feathering function f (d ) defines the α value for surrounding pixels
of a boundary. In this article, the feathering function is set as f (d ) = (d/w) ∗ 0.5 + 0.5, where w is
feathering width, as illustrated in Figure 4.

Assume the observed color distribution P (C) and sampled foreground color distribution P (F ) (from
a set of neighboring foreground pixels) are all of Gaussian distribution:

L(C|F, B, α) = −‖C − αF − (1 − α)B‖2/σ 2
C (4)

L(F ) = −(F − F )T �−1
F (F − F ) (5)

where σC is the standard deviation of the observed color C, F is the weighted average of foreground
pixels and �F is the weighted covariance matrix. Taking the partial derivatives of (2) with respect to
F and α and forcing them to equal zero, results in the following equations:

F = �−1
F F + Cα/σ 2

C − Bα(1 − α)/σ 2
C

�−1
F + Iα2/σ 2

C

(6)

α = (C − B) · (F − B) + α0 · σ 2
C/σ 2

a

‖F − B‖2 + σ 2
C/σ 2

a

(7)

α and F are solved alternatively by using (6) and (7). Initially, α is set to α0.

3.4 Rendering With Coherence Matting

Bayesian matting [Chuang et al. 2001] and video matting [Chuang et al. 2002] solve the matting from
the equation

α = (C − B) · (F − B)
‖F − B‖2

,
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Fig. 5. Comparison between video matting and coherence matting: (a) is a small window on one frame in the Plaza data
(Figure 12); (b) and (c) are two alpha epipolar plane images (α-EPI) corresponding to the red line in (a), using the algorithm
of video matting and coherence matting respectively; (d) and (e) are the alpha curves of two adjacent columns, marked as blue
and red lines in (b) and (c); (d) corresponds to video matting and shows a large jump at i = 13, which causes an accidental
transparency within the face; (e) corresponds to coherence matting, which provides a more reasonable result.

which works well in general but becomes unstable when F ≈ B. In comparison, Eq. (7) of the coherence
matting can be solved more stably because applying the coherence prior on α results in a nonzero
denominator. The coherence prior behaves similar to the smoothness constraint commonly used in
visual reconstruction (e.g., shape from shading [Horn and Brooks 1989]).

The spatial inconsistency of the alpha matte from video matting can be observed in Figure 5. We plot
the alpha epipolar plane image (α-EPI) of a video matting result. Similar to the conventional EPI [Baker
and Bolles 1989], for a short segment of scanline from the Plaza sequence, we stack the alpha values
along this segment for all of the 16 frames ((b) and (c)). The alpha values along 2 lines (solid and dotted)
in the α-EPI are plotted in (d) and (e). Each line represents the alpha values of the corresponding pixels
across 16 frames. A close inspection of (b) around frame i = 13(video matting method), shows that the
alpha value changes from about 126 to 0, then to 180, (the range of alpha is from 0 to 255) indicating a
small part of the face accidently becomes transparent.

The temporal incoherence of the alpha matte from video matting can be more problematic during ren-
dering. The fluctuation of alpha values along both dotted and solid lines will generate incoherent alpha
values and thus cause rendering artifacts as we change viewpoints (along axis i). This phenomenon can
be more clearly observed in the accompanying videotape. Figure 5(e) shows the same solid and dotted
lines with coherence matting results. Both lines have much less fluctuation between neighboring pixels
and appear temporally smoother than their counterparts in Figure 5(d).

4. POP-UP LIGHT FIELD CONSTRUCTION

To construct a pop-up light field, we design an easy-to-use user interface (UI). The user can easily
specify, refine, and propagate layer boundaries and indicate rendering artifacts. More layers can be
popped up and refined until the user is satisfied with the rendering quality.

4.1 UI Operators

Figure 6 summarizes the operations in the pop-up light field construction UI. The key is that a human is
in the loop. The user supplies the information needed for layer segmentation, background construction,
ACM Transactions on Graphics, Vol. 23, No. 2, April 2004.
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Fig. 6. Flowchart of pop-up light field construction UI.

and foreground refinement. By visually inspecting the rendering image from the pop-up light field, the
user also indicates where aliasing occurs and thus which layer needs to be further refined. The user
input or feedback is automatically propagated across all the frames in the pop-up light field. The four
steps of operations in the UI are summarized as follows.

(1) Layer pop-up. This step segments layers and specifies their geometries. To start, the user selects a
key frame in the input light field, specifies regions that need to be popped up, and assigns the layer’s
geometry by either a constant depth or a plane equation. This step results in a coarse segmentation
represented by a polygon. The polygon region and geometry configuration can be automatically
propagated across frames. Layers should be popped up in order of front-to-back. More details of
layer pop-up are shown in Section 4.3.

(2) Background construction. This step obtains background mosaics that are needed to estimate the
alpha mattes of foreground layers. Note that the background mosaic is useful only for the pixels
around the foreground boundaries, for example, in the uncertain region as shown in Figure 3. More
details of background construction are discussed in Section 4.4.

(3) Foreground refinement. Based on the constructed background layers, this step refines the alpha
matte of the foreground layer by applying the coherence matting algorithm described in Section 3.3.
Unlike layer pop-up in Step 1, foreground refinement in this step should be performed in back-to-
front order.

(4) Rendering feedback. Any modification to the above steps will update the underlying pop-up light
field data. The rendering window will be refreshed with the changes as well. By continuously chang-
ing the viewpoint, the user can inspect for rendering artifacts. The user can mark any rendering
artifacts such as ghosting areas by brushing directly on the rendering window. The corresponding
frame and layer will then be selected for further refinement.

4.2 UI Design

Figure 7 shows the appearance of our UI, including five workspaces where the user interacts with a
frame and a layer in the pop-up light field. These workspaces and their functionalities are explained
as follows.

Lower middle. The user chooses an active frame by clicking on the frame navigator, shown at the
lower middle in Figure 7. The active frame appears in the editing frame view, shown at the upper left
in Figure 7.

ACM Transactions on Graphics, Vol. 23, No. 2, April 2004.
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Fig. 7. The UI for Pop-up light field construction.

Upper left. In the editing frame view, the user can create or select an active layer and edit its
polygon region. This active layer is displayed in blue polygons with crosses for each editable vertex.
The information of the active layer is available in the layer navigator, shown at the lower right of
Figure 7.

Lower right. From the layer navigator, the user can obtain the active layer’s information. The user
can select, add, or delete layers in the list. By selecting the layer in the check box, the user can turn
on/off a layer’s display in the editing frame view, reference frame view (shown at the upper right of
Figure 7) and the rendering window. The plane equation of the active layer is displayed and can be
modified through keyboard input. Layer equations can also be set through adjusting the rendering
quality in the rendering window.

Upper right. The reference frame view is used to display another frame in the light field. This
workspace is useful for a number of operations where correspondences between the reference frame
view and the editing frame view need to be considered, such as specifying plane equations.

Lower left. To fine tune the polygon location for the active layer, the boundary monitor (lower left of
Figure 7) shows close-up views of multiple frames in the light field. The first row shows the close-up
around the moving vertex. The second and third rows show the foreground and background of the active
layer composed with a fixed background selected by the user. For instance, using mono fuchsia color in
Figure 7 as the background, it is easy for the user to observe over-segmentation or under-segmentation
of the foreground across multiple frames simultaneously.

Not shown in the figure is the rendering window on which the user can render any novel view in real-
time and can inspect the rendering quality. The user can also specify the frontal plane’s equation for an
ACM Transactions on Graphics, Vol. 23, No. 2, April 2004.
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active layer by sliding the plane depth back and forth until the best rendering quality (i.e., minimum
ghosting) is achieved. If the ghosting cannot be completely eliminated at the occlusion boundaries, the
layer’s polygon must be fine tuned. The user can brush on the ghosting regions, and the system can
automatically select the affected frame and layer for modification. The affected layer is front-most and
closest to the specified ghosting region.

To specify the slant plane equation for a layer, the user needs to select at least four pairs of corre-
sponding points on the editing frame view and the reference frame view. The plane equation can be
automatically computed and then used for rendering.

Also not shown in the above figure is a dialog box where the user can specify the feathering function.
Specifying a feathering curve is useful for the coherence matting algorithm described in Section 3.3.

4.3 Layer Pop-Up

To pop up a layer, the user needs to segment and specify the geometry of the layer for all frames in the
light field. This section discusses the operations by which the user interacts with the system and the
underlying algorithms.

4.3.1 Layer Initialization. We use polygons to represent layer boundaries, since the correspondence
between polygons can be maintained well in all frames by the corresponding vertices. The user can
specify the layer’s boundary with a polygon (e.g., using the polygon lasso tool in Adobe Photoshop) and
edit the polygon by dragging the vertices. The editing will be immediately reflected in the boundary
monitor window and in the rendering window (Sect. 4.2).

First of all, the user needs to inspect the rendering window by changing the viewpoint and decide
which region is going to be popped up (usually the front-most, non-ghosting object). The user then
selects a proper key frame to work with and draws a polygon on the frame.

Then, the user needs to specify the layer’s geometry. For a frontal plane, the layer depth is the one
that achieves the best rendering quality which can be observed on the rendering window by the user.
For a slant plane, the user specifies at least four pairs of corresponding points on at least two frames
to estimate the plane equation.

Once the layer geometry is decided, the polygon on the first key frame can be propagated to all other
frames by back-projecting its vertices, resulting in a coarse segmentation of the layer on all frames
in the light field. All vertices on the key frame are marked as key points. At this stage, the layer has
a global geometry which is shared across all the frames. Moreover, an accurate polygon boundary for
layer initialization is not necessary. Because of occlusions and viewpoint changes, propagated polygon
boundaries inevitably need to be refined.

4.3.2 Layer Refinement. The following aspects need to be considered in layer refinement.
Boundary Refinement in a Key Frame. All vertices on any frame can be added, deleted, and moved.

Once a vertex is modified, it is marked as a key point. The position of the modified vertex will be
propagated across frames at once and the layer region will be updated in several UI workspaces. To
adjust a vertex position, the user can observe how well foreground and background colors are separated
in the boundary monitor window, or how much the ghosting effect is removed in the rendering window.

Boundary Propagation across Multiple Frames. For a specific vertex on the layer boundary, if it is
a nonkey point on frame IP , we want to interpolate its image coordinate from the corresponding key
points in other frames. If there is only one key point in other frames, we compute the coordinate by back-
projecting the intersection point of the layer plane and the viewing ray from the key point. Otherwise,
we select two or three neighboring frames that contain the key points. Then, we compute the coordinate
by back-projecting the 3D point which has a minimal sum of distances to the viewing rays from key
points in these frames.
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Fig. 8. Neighboring frames selection for 2D camera array. The solid (yellow) dots are frames including key point and hollow
(red) dots are frames to be interpolated.

Fig. 9. Local geometry.

For an 1D camera array, we select the two frames closest to the left and right of the frame IP that
contain the key points. For a 2D camera array, we first compute the Delaunay triangulation in the
camera plane, using all frames containing key points. If frame IP is in the interior of a triangle, the
three frames on the triangle vertices are neighboring frames. For example in Figure 8, A, B, and D are
the neighboring frames of frame b. If frame IP is in the exterior of all triangles, we select two frames I0
and I1 that maximize the angle � I0 IP I1 in the camera plane. For example, A and D are the neighboring
frames of frame a, as shown in Figure 8.

Note that the key points are those that have been modified by the user. They don’t necessarily exist
on key frames.

Coherence Matting. It is difficult to accurately describe a layer boundary simply by using polygons.
It is hard for the user to manually adjust a boundary with subtle micro geometry to sub-pixel accuracy.
A pixel is often blended with colors from both foreground and background due to the camera’s point
spread function. Therefore, we choose not to require the user to specify very accurate sub-pixel boundary
positions. Instead, a coherence matting algorithm is applied to further refine the layer boundary. Polygon
editing (in a frame and across frames) and coherence matting can be alternatively performed with
assistance from the user.

Local Geometry. When the viewpoint changes significantly, a single planar geometry may not be
sufficient to achieve anti-aliased rendering, such as cameras C1 and C2 in Figure 9. Therefore, we
introduce a local geometry representation in our system which allows each frame to have its own
planar equation L1 and L2 as illustrated in Figure 9.

Using the same UI as in Section 4.3.1, the plane equation can be estimated for each frame. Our system
allows the user to specify only a few key frames’ geometry, and interpolates the plane equations for
frames in between. Similar to the neighboring frames selection algorithm in the boundary propagation
step, we can select two (for 1D camera array) or three (for 2D camera array) key frames for interpolation.
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Fig. 10. (a) The background mosaic operator uses the polygon lasso operator to segment the layer into regions. (b) The resulting
background mosaic fills in many missing pixels in (a). Although (b) still has many missing pixels, it is enough for coherence
matting of the foreground.

For the frontal plane model, we interpolate the depth of the plane. For the 3D plane model, we interpolate
the plane orientation while keeping the intersecting line if using two key frames, or the intersecting
point if using three key frames. Once the plane equation is estimated for each frame, the same rendering
algorithm can be applied as in global geometry.

4.4 Constructing the Background

The algorithm of coherence matting in Section 3.3 assumes that the background for the uncertain
regions (where matting is estimated) is known. A key observation is that because the uncertain regions
are located around foreground boundaries, they can only appear on neighboring frames in the light field
where these regions are disoccluded. Our background reconstruction algorithm fills the disoccluded
region using (warped) pixels from neighboring frames.

Once the foreground is popped up, we obtain the background image by removing the foreground
image, as shown in Figure 10(a). Moreover, the background boundary is eroded by a few pixels (typically
two pixels) before constructing the background mosaic because a possible under-segmentation of the
foreground may leave some mixed foreground pixels on the background around boundaries.

An automatic algorithm is designed to construct the background, which warps the neighboring images
to fill the holes using the background layer’s geometry. This method works well if the the background
is well approximated by plane, for example, in Figure 1.

However, when the background contains objects with relatively large depth variation, we need to
further subdivide the background layer into sub layers, each of which can be represented as one plane.
As shown in Figure 10(a), a background layer is segmented manually into four sub layers using polygons.
This time, the location of the polygon is not critical. Instead, the criterion here is to group the background
boundaries into a better planar approximation.

The sub layers are propagated from the key frame, where the user specifies the division, to all other
frames using the existing background layer geometry. This propagation requires less accuracy as long as
it covers the same group of boundaries. The relative motion of the sub layer across frames is estimated
hierarchically, starting from translation to affine, and from affine to perspective transform [Szeliski and
Shum 1997]. Only the pixels visible in both frames are used to estimate parameters. Figure 10(b) shows
the resulting mosaic. Note that we need not create a hole-free mosaic, as a few pixels surrounding the
occlusion boundaries are adequate for coherence matting.

5. REAL-TIME RENDERING OF POP-UP LIGHT FIELD

An integral part of our UI is the real-time pop-up light field renderer which provides the user instant
feedback on the rendering quality. It is based on previous light field and Lumigraph rendering sys-
tems [Gortler et al. 1996; Isaksen et al. 2000; Buehler et al. 2001]. Our rendering algorithm includes
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three steps: (1) splitting a light field into layers, (2) rendering layers in back-to-front order, and (3) com-
bining the layers.

5.1 Data Structure

The data structure used in our rendering algorithm is shown below.

struct PopupLightField {
Array<CameraParameter> cameras;
Array<Layer> layers;

};
struct Layer {

Array<Plane> equations;
Array<Image> images;

};
struct Image {

BoundingBox box;
Array2D<RGBA> pixels;

};

The pop-up light field keeps the camera parameters associated with all the input frames. Each layer
in the pop-up light field has corresponding layered images, one for each frame. Each layered image has
a corresponding plane equation, so as to represent the local geometry. If global geometry is applied to
a layer, all equations are the same for images in this layer.

Since these corresponding layered images vary their shapes in different views, they are stored as
an array of images on each layer. Layers can be overlapping in the pop-up light field and each layered
image is modified independently by mosaicing and coherence matting. Therefore it is necessary to keep
both the color and opacity of the images for each layer separately. Each layered image is stored as an
RGBA texture image of the foreground colors with its opacity map, and a bounding box as well. The
opacity (alpha value) of the pixel is zero when this pixel is out of the foreground.

5.2 Layered Rendering Algorithm

The scene is rendered layer-by-layer using texture-mapped triangles in back-to-front order. Then the
layers are sequentially combined by alpha blending. Our rendering scheme is based on Heigl et al.
[1999] and Buehler et al. [2001], but extended to multiple layers. The pseudo-code of our rendering
algorithm is shown below.

ClearFrameBuffer()
T ←CreateRenderingPrimitives()
for all layers Layer from back to front do

for all triangles � ∈ T do
SetupProjectiveTextureMapping(�)
Render(�)
BlendToFrameBuffer(�)

end for
end for

After initializing a frame buffer, we generate a set of triangular polygons on which the original images
are blended and drawn. We first project the camera positions onto the image plane and triangulate these
projection points together with the image plane’s four corner points into a set of triangles.

Then, we assign a triple of texture images {Ii}3
i=1 to each triangle which are blended across the triangle

when rendering. The blending ratio {wk
i }3

k=1(0 ≤ wk
i ≤ 1,

∑3
k=1 wk

i = 1) for three images are also assigned
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Fig. 11. Set-up of projective texture mapping.

to each of the three vertices and linearly interpolated across the triangle. The exact blending ratio based
on ray angles is not necessarily distributed linearly on the screen. If the size of a triangle is not small
enough with respect to the screen size, we subdivide the triangle into four triangles iteratively. On the
vertex which is the projection of a Ii ’s camera, the blending ratio wk

i is calculated using the following
equation.

wk
i = 1 if camera i is projected onto the kth vertex

= 0 otherwise.

For the vertex which is not the projection of a camera, the weights are calculated using the angle
between the ray through the camera and the ray through the vertex [Buehler et al. 2001].

Then, each layer is rendered by blending texture images {Ii}, using blending ratios {wk
i }. At the point

other than the vertices on the triangle, the blending ratios {ṽi} are calculated by interpolating {wk
i }3

k=1.
Using {Ii} and {ṽi}, the pixels on the triangle are drawn in the color

∑3
i=1 ṽi Ii.

The texture images are mapped onto each triangle projectively as illustrated in Figure 11. Let Pview
be the projection matrix for the rendering camera (to produce the novel view), Pi be the projection
matrix for the camera corresponding to Ii, and Hlayer be a planar homography from the triangle to the
layer plane. Then, the texture image Ii is mapped onto the triangle using a projection matrix Pi Hlayer.

5.3 Hardware Implementation

Light field rendering can be accelerated using graphics hardware. Although several hardware-
accelerated light field rendering approaches have been proposed [Gortler et al. 1996; Isaksen et al.
2000; Heigl et al. 1999; Buehler et al. 2001], we cannot use them directly for pop-up light field ren-
dering. In these previous approaches, texture images are blended by multi-pass rendering of triangles
and alpha-blending them in the frame buffer. In a layered rendering algorithm, we must alpha-blend
layers using alpha values assigned in texture images, which means each layer must be rendered onto
the frame buffer in a single pass.

One straightforward way is to copy the frame buffer into memory and composite them after rendering
each layer. We implemented this method and found that it is too slow for interactive usage. Instead,
we have developed a single-pass rendering method using multitexture mapping and programmable
texture blending, which is available on modern graphics hardware.

In order to blend all textures on a single triangle, we first bind three different textures assigned
to each triangle, then assign three blending ratios {w1, w2, w3} as the primary color {R, G, B} on each
vertex. The primary color is smoothly interpolated on the triangle. Hence, the interpolated blending
ratios {ṽi} are obtained simply by referring to the primary color at an arbitrary point on the triangle.
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Table I. Performance of Rendering
Resolution Size of Original LF Size of Pop-up LF

Data (w × h × #cameras) (MB) (MB [#layers]) Frames per second

Tsukuba 384 × 288 × 25 8.3 19.4 [5] 62.5
Plaza 640 × 486 × 16 14.9 38.3 [16] 58.8
Pokemon 512 × 384 × 81 47.8 117.8 [5] 31.3
Fur 1136 × 852 × 23 66.8 140.4 [5] 46.9
Statuette 1136 × 852 × 43 124.8 161.2 [4] 37.1

Table II. User Interaction
Data Tsukuba Plaza Pokemon Fur Statuette

# frame 25 16 81 23 43
# layer 4 16 5 5 4
points/frame 129 379 90 167 47
key points/frame 6.3 62.4 8.6 16.1 12.3
Time (hours) ≈0.5 ≈4 ≈1 ≈1 ≈1.5

Then the texture images on the triangle can be blended using the blending equation programmed in
the pixel shader in graphics hardware.

The layers can be composed simply by alpha-blending each triangle on the frame buffer when it is
rendered because the triangles are arranged without overlap in a layer and each triangle is drawn in
a single pass.

Our rendering system has been implemented using OpenGL and its extensions for multi-texturing
and per-pixel shading, and tested on a PC (CPU 660 MHz, memory 768 MB) equipped with an NVidia
GeForce4 or ATI Radeon9700 graphics card with 128 MB of graphics memory. The performance of
rendering is shown in Table I.

6. EXPERIMENTAL RESULTS

We have constructed several pop-up light fields from several real scenes. The “Tsukuba” data set and
the “Plaza” sequence are courtesy of Prof. Ohta of University of Tsukuba, and Dayton Taylor, respec-
tively. “Pokemon” data is captured by a computer-controlled vertical X-Y table in our lab. Data sets of
“Statuette” (with unstructured camera motion) and “Furry toys” (with the camera moving along a line)
are captured by a Canon G2 Digital Camera.

As shown in Table I, rendering of all the pop-up light fields can be done in real-time (with a frame
rate greater than 30). Table II summarizes the amount of work required to construct these pop-up light
fields. For most scenes in our experiments, it takes a couple of hours for a graphics graduate student in
our lab to interactively model the pop-up light field. It, however, took the student 4 hours to construct
the pop-up light field from the Plaza sequence where 16 layers are segmented.

Tsukuba. Some rendering results of the Tsukuba 5 × 5 light field are shown in Figure 1. It is
demonstrated that with 4 layers, an anti-aliased rendering can be achieved. In our experiment, we
have found that the same rendering quality can be achieved with 7 layers if the light field is down-
sampled to 3 × 3.

Plaza. Figure 12 shows an aliasing-free novel view we rendered using the pop-up light field con-
structed from the Plaza sequence, which is a collection of only 16 images. The sequence was captured
by a series of “time-frozen cameras” arranged along a line or curve. Because the scene is very complex,
stereo reconstruction is very difficult. Note that nearly perfect matting is achieved for the floating pa-
pers in the air. The boundaries for the foreground characters are visually acceptable, made possible
mainly by the coherent layers produced by coherence matting.
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Fig. 12. Result of pop-up light field rendering of the Plaza sequence rendered from a novel viewpoint (in the position midway
between the 11th and 12th frames). The input consists of only 16 images. We have used 16 layers to model the pop-up light field.

Fig. 13. Results on Pokemon 9 × 9: comparison of conventional light field rendering and pop-up light field rendering.

Pokemon. Figure 13 again demonstrates the progressive improvement of visual quality when more
layers are popped up. With 5 layers, anti-aliased rendering of pop-up light fields (Pokemon 9 × 9) is
achieved. The four layers that model the three toys and the background use frontal-parallel planes
while the table plane is slanted.

Statuette. For complicated scenes, instead of using a global planar surface defined in the world coor-
dinate system, local geometry should be used. Figure 14 shows the rendering result from a sequence of
42 images taken with unstructured camera motion. If a global planar surface is set as a frontal-parallel
plane in the frame (Figure 14(a)), rendering at a very different viewpoint will have noticeable artifacts,
as shown in Figure 14(b). Figure 14(c) shows a good rendering result using view-dependent geometry.
Specifically, we have changed the plane orientations for different views.

Furry Rabbit. To show the efficacy of our coherence matting methodology, we use a sparse light field
that captures 23 images of a Furry Rabbit with the camera path along a line. Figure 15 compares the
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Fig. 14. Results on sparse images taken with unstructured camera positions. (a) The global planar surface is set as a frontal-
parallel plane in this view, (b) rendering result from another view with the global plane, (c) rendering result from the same view
of (b) with local geometry.

Fig. 15. Comparison of results on furry rabbit, with video matting (middle image) and with coherence matting (right image).
The alpha matte from coherence matting is smoother that the one from video matting in the rendering image.

results with video matting and with coherence matting. The zoomed-up views of the left ear demonstrate
that coherence matting obtains a more consistent matte than video matting.

7. DISCUSSION

Motivation. Our work was inspired by the real-time 3D model acquisition system of Rusinkiewicz et al.
[2002], in which the user specifies areas that need to be modeled depending on the current merge model
from multiple scans. Though the goal and methodology are very different, the key concept in our system
is similar: our user is in the modeling loop and specifies, through a real-time pop-up light field renderer,
where aliasing occurs and how the scene should be further modeled.

Another motivation stems from our frustration with not being able to get accurate per-pixel depth
using stereo or other vision techniques. Pop-up light field is an image-based modeling technique that
does not rely on accurate 3D depth/surface reconstruction. Rather, it is based on accurate layer extrac-
tion/segmentation in the light field images. In a way, we trade a difficult correspondence problem in
3D reconstruction for another equally difficult segmentation problem. However, for a user, it is much
easier to specify accurate contours in images than accurate depth for each pixel.

Coherence Matting vs. Prefiltering. In a way, coherence matting is similar to prefiltering the alpha
channel in the foreground layer. It was suggested in Levoy and Hanrahan [1996] and Chai et al. [2000]
that prefiltering can be used to reduce aliasing at the expense of lower rendering resolution. With
coherence matting, we do not need to prefilter the entire light field. It is adequate to prefilter only
occlusion boundaries.
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Moreover, we handle background and foreground layers differently in pop-up light field. Because we
have multiple images, we can construct a complete background mosaic from under-segmented back-
ground layers. For the foreground image, we prefilter (by coherence matting) the pixels around the
boundary before rendering. The rendering artifact is that the boundary of the foreground image is
slightly blurred.

Limitations of Our Approach. Our pop-up light field takes on sparse light field as input. It cannot
handle specular highlights and other significant appearance changes. It also assumes each layer itself
can be rendered correctly by the sparse light field. Our method cannot guarantee an alias-free result if
the layer is too complicated, such as a tree that cannot be segmented accurately, or a single object that
violates plenoptic sampling criterion. Our layer-based approach does not handle topological changes
properly. Moreover, coherence matting does not work well for semi-transparent surfaces and long hairs
because the prior L(α) used in our formulation is approximately modeled as a point spread function.
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