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Abstract

Motivation: Microsatellites, also known as short tandem repeats (STRs), are tracts of repetitive

DNA sequences containing motifs ranging from two to six bases. Microsatellites are one of the

most abundant type of variation in the human genome, after single nucleotide polymorphisms

(SNPs) and Indels. Microsatellite analysis has a wide range of applications, including medical gen-

etics, forensics and construction of genetic genealogy. However, microsatellite variations are rarely

considered in whole-genome sequencing studies, in large due to a lack of tools capable of analyz-

ing them.

Results: Here we present a microsatellite genotyper, optimized for Illumina WGS data, which is

both faster and more accurate than other methods previously presented. There are two main ingre-

dients to our improvements. First we reduce the amount of sequencing data necessary for creating

microsatellite profiles by using previously aligned sequencing data. Second, we use population in-

formation to train microsatellite and individual specific error profiles. By comparing our genotyp-

ing results to genotypes generated by capillary electrophoresis we show that our error rates are

50% lower than those of lobSTR, another program specifically developed to determine microsatel-

lite genotypes.

Availability and Implementation: Source code is available on Github: https://github.com/Decode

Genetics/popSTR

Contact: snaedis.kristmundsdottir@decode.is or bjarni.halldorsson@decode.is

1 Introduction

Microsatellites (a.k.a. short tandem repeats, STRs) are short DNA

sequences containing a repeated motif of length 2–6 base pairs. The

human reference genome contains approximately 1 million microsa-

tellites, covering almost 1% of the genome (Gymrek et al., 2016).

Microsatellites have a mutation rate estimated between 1 � 10–4

and 1 � 10–3 mutations per locus per generation (Sun et al., 2012),

much higher than the mutation rate estimated for SNPs (Kong et al.,

2012) of 1.2 � 10–8. Due to their high mutation rate, the alleles of a

microsatellite vary greatly between individuals (Sun et al., 2012).

Apart from identical twins, no pair of individuals alive today has the

same combination of alleles for all microsatellites (Cox and Mays,

2000). Using relatively few microsatellites, it is possible to create a

unique genetic profile for every individual (Cox and Mays, 2000),

making microsatellites appealing for applications such as forensic

analysis (Veselinovi�c, 2006).

Their high mutation rate made microsatellites particularly allur-

ing for genotyping during the linkage era (Gudbjartsson et al.,

2000). Despite their abundance and the increasing availability of

whole genome sequencing data, microsatellites are however often

neglected in GWAS studies (Gudbjartsson et al., 2015), in large due

to a lack of tools capable of analyzing them (Duitama et al., 2014).

The high mutation rate can be attributed to the repetitive struc-

ture of microsatellites, which causes a secondary DNA conform-

ation that makes replication slippage events more likely than in

other locations of the genome (Mirkin, 2007). Replication slippage
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occurs during DNA replication when the copy strand being created

and the original template strand get shifted in their relative pos-

itions, causing a part of the template to either be copied twice or not

copied at all (cf. Fig. 1 ), resulting in either an increase or decrease in

the number of motif repeats (Brown, 2002).

Replication slippage can occur within individual cells, as well as

when the DNA sample is being analyzed. A slippage event that

occurs during replication of a sex cell results in a germline mutation

and may be passed on to an offspring, while slippage events within

other cells of the body lead to somatic mutations. Slippage events

also frequently occur in PCR amplification, a pre-processing step

often performed prior to sequencing, or during sequencing itself. As

a result, the sequence reads of an individual contain both reads from

its germline variants and reads resulting from slippage events, com-

plicating the genotyping of microsatellites.

The genotyping of microsatellites is further complicated by the

fact that their high mutation rate can make it difficult to align

microsatellite reads to the correct location on the genome; most

popular read-to-reference aligners trade-off between the tolerance of

insertions/deletions and running time. Yet another complication is

the length of the microsatellite, as aligners generally require a unique

match to the genome to seed their alignment, reads that are fully

contained within a microsatellite can often not be placed within the

genome. Further, reads that do not fully encompass the microsatel-

lite and only contain a portion of the microsatellite can only give a

lower bound on the number of repeats (Gymrek et al., 2012).

A number of methods have been developed to genotype micro-

satellites (Gelfand et al., 2014; Gymrek et al., 2012; Highnam et al.,

2013). We present popSTR, a method capable of studying microsat-

ellite (STR) variation within all individuals of a population simul-

taneously. Microsatellite mutation rates have been shown to vary

greatly between microsatellites as well as between individuals (Sun

et al., 2012). Consequently, our model allows for an error model

specific to each microsatellite and individual being studied.

Our results show that popSTR is both faster and more accurate

than lobSTR (Gymrek et al., 2012), a previously described method

for determining microsatellites. popSTR also finds more microsatellite

genotypes than the general purpose genotype caller GATK (McKenna

et al., 2010), with the ones found also being more reliable.

2 Methods

popSTR requires three inputs; a reference genome, a list of microsat-

ellite locations (markers) on the reference genome and sequencing

data of the set of individuals (population) being studied. We assume

that the sequencing data is Illumina whole genome paired-end

sequencing data, mapped to the reference genome and stored in

BAM-files, with one BAM file per individual. The output of popSTR

are for each marker the set of alleles occurring in at least one indi-

vidual in the population and the genotype likelihoods of all allele

pairs of the marker for each individual.

popSTR starts by determining a set of informative reads for each

marker/individual pair and computing various attributes for the

reads. Subsequently, an iterative algorithm is employed to train

error models and report genotypes.

2.1 Read selection and processing
The input to the read selection algorithm is a BAM-file, containing

the read pairs of a single individual, j, the reference genome and a

file containing a set, I, of microsatellite locations. The algorithm

outputs for each microsatellite i 2 I, a set Rij of reads aligned to the

microsatellite and for each read r 2 Rij a set of attributes computed

for r.

The algorithm iterates through the sequencing data and the

microsatellite location file in parallel and compares read coordinates

to microsatellite coordinates. For each microsatellite, i, we deter-

mine a set of candidate informative reads as those reads whose

alignment intersects the microsatellite location as well as unmapped

mates of reads that have been mapped near the microsatellite

(within a fixed distance, chosen by default as 1000 bp).

For each candidate informative read we first determine if the

read contains the repeat motif of the microsatellite. Those reads that

contain the repeat sequence are aligned to the sequences flanking the

microsatellite location. The read is split into three parts; the se-

quence before the microsatellite, the microsatellite repeat sequence

and the sequence after the microsatellite. Figure 2 shows how two

subsequences are constructed from the read, containing the repeat

and the flanking base pairs on either side. Both subsequences are

aligned to the reference genome using an overlap alignment and the

Needleman-Wunsch algorithm; the first sequence is aligned to the

bases preceding the repeat in the reference and the second is aligned

to the bases following the repeat in the reference. If the sum of the

alignment scores exceeds a minimum threshold the read is con-

sidered aligned. The user also specifies a minimum number of flank-

ing bases needed on each side of the repeat. Aligned reads that meet

this threshold are added to Rij.

To increase our sensitivity in identifying microsatellite contain-

ing reads we also process reads when there is a strong support for

the alignment on one side of the microsatellite, while only few bases

can be aligned at the other end. We also consider reads to be aligned

at both ends if at least four bases can be aligned on each side. Such

reads are added to Rij if the sum of the aligned flanking bases is

greater than or equal to twice the user specified minimum number

of flanking bases on each side.

Fig. 1. An extra repeat element added because of replication slippage (Brown,

2002)

Fig. 2. We split the read into two overlapping parts where the first part has

the repeat as a suffix and the second part has the repeat as a prefix. We then

align the first part to the reference sequence preceding the microsatellite and

the second part to the reference sequence after the microsatellite
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We estimate the length, li(r) of the microsatellite repeat in r as

the number of bases in r between the last base aligned to the se-

quence preceding i in the reference and the first base aligned to the

sequence following i in the reference. We represent alleles of a

microsatellite i with the number of times its repeat motif m(i) is re-

peated. We let jm(i)j represent the length of the repeat motif of

microsatellite i, the allele Ar reported by r can be computed as:

Ar ¼
liðrÞ
jmðiÞj (1)

Some microsatellite alleles are very long, at times longer than the

read length used for sequencing. Reads overlapping long microsatel-

lites can only give partial information on the length of the microsat-

ellite allele; the length of the microsatellite allele must be at least as

long as the overlap of the read with the microsatellite. To address

the challenge presented by reads only able to give a lower bound on

the number of repeats, we set a user-specified maximum length of al-

lele, ml. All alleles longer than ml are lumped together and reported

as the composite allele �ml. Reads that contain repeats that span

the entire length of the read or occur at either end of a read and the

base pair length of the repeat is at least ml are processed and the

number of repeats is reported as:

Ar ¼
ml

jmðiÞj (2)

For each read r 2 Rij we store a number of attributes relevant to

the alignment, summarized and defined in Table 1. These attributes

were chosen with the intent of revealing reads that are the result of

misclassification events, i.e. sequencing or mapping errors.

2.2 Iterative algorithm
There are multiple sources of error that need to be accounted for in

our model. Replication slippage is dependent on the marker being

considered as well as the individual. In addition, some of the reads

may be the results of sequencing or mapping errors.

Replication slippage has two forms; full motif slippage and stut-

ter noise. A full motif slippage is when the length of the slippage is

an integer multiple of the length of the repeat motif of the microsat-

ellite, all other slippages are referred to as stutter noise. Following

lobSTR (Gymrek et al., 2012) we model these two types of slippage

events separately. We assume a Poisson distribution for full motif

slippage events and a geometric distribution for stutter noise. In

what follows, we will refer to the rate of full motive slippage events

as slippage rate while we will refer to the rate of stutter noise as stut-

ter rate.

Sequencing and mapping errors are accounted for using logistic

regression classification of the reads for each microsatellite

separately. Based on the attributes computed above and the geno-

type of an individual at the microsatellite, the classifier assigns a

probability to each read of being an error read, i.e. the result of a

mapping or sequencing error.

We use an iterative approach to simultaneously train logistic re-

gression classifiers, estimate slippage and stutter rates for each

microsatellite and a slippage rate for each individual. We start by

describing the individual steps of our algorithm and then show how

these are combined into an algorithm.

2.2.1 Read classification

To identify reads resulting from sequencing or mapping errors we

train a logistic regression classifier (Hosmer and Lemeshow, 2004)

for each microsatellite using the reads of all individuals. At each iter-

ation of the algorithm, each individual has a currently estimated

genotype at the microsatellite. This currently estimated genotype

allows us to label reads as either TRUE or FALSE. Reads reporting

one of the two alleles in the current genotype are labelled as TRUE

and reads reporting other alleles that further cannot be explained

with a single slippage event, are labelled as FALSE. We use the attri-

butes computed in the read selection step (cf. Table 1) as control

variables for the logistic regression classifiers.

The resulting classifier allows us to assign a probability, pi(r), to

each read, r, representing the probability that r is correctly classified

as a read from microsatellite i. Reads classified as TRUE are believed

to represent the sequence of the individual at the marker being con-

sidered. Reads classified as FALSE are believed to be the result of a

mapping or a sequencing error.

2.2.2 Slippage rate estimation

The frequency of slippage events varies between microsatellites. To

account for this we estimate a marker specific slippage rate.

Assuming we know which reads are the results of a full motif

slippage event, we can estimate the slippage rate at microsatellite i

by dividing the number of reads resulting from full motif slippage by

the total number of reads aligned to the microsatellite. SM
i , the slip-

page rate at microsatellite i, could be estimated as:

SM
i ¼

n!
i

ni
(3)

where n!
i represents the number of reads aligned to microsatellite i

that do not support the current genotype and are considered to be

results of a full motif slippage and ni represents the total number of

reads aligned to microsatellite i.

The above expression however ignores the fact that individuals

may have different slippage rates. We assume that the slippage of

Table 1. The attributes used as control variables in the Logistic regression classification

Attribute Definition

Quality score Mapping quality score of the aligned read.

Microsatellite purity No of base pairs matching microsatellite repeat sequence/No of base pairs in microsatellite sequence

Repeat bases over 20 The number of base pairs with a PHRED-scaled quality over 20 in the microsatellite sequence.

Flanking bases on right over 20 The number of base pairs with a PHRED-scaled quality over 20 in flanking bases after the repeat.

Edit distance of mate Edit distance of aligned base pairs of the mate sequence to the reference.

Left side alignment score Alignment score of sequence before the microsatellite to the reference.

Right side alignment score Alignment score of sequence after the microsatellite to the reference.

Was unaligned Boolean value indicating if the read was unaligned by BWA.

Alignment shift Measures changes from original alignment during the realignment of flanking sequences.

Read length Total length of the read.
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marker i in individual j, Sij, is a composite of a marker specific slip-

page rate, SM
i , and an individual specific slippage rate SP

j .

Sij ¼ SM
i þ SP

j (4)

Given the current genotype of individual j at marker i we con-

struct the set R!
ij of those reads that do not agree with either of the

alleles of the current genotype and are considered to be the result of

full motif slippage events.

We can then estimate Sij as:

Sij ¼
P

r2R!
ij
piðrÞP

r2Rij
piðrÞ

(5)

Consequently, we can estimate SM
i and SP

j as

SM
i ¼

P
r2R!

ij
piðrÞP

r2Rij
piðrÞ

� SP
j (6)

SP
j ¼

P
r2R!

ij
piðrÞP

r2Rij
piðrÞ

� SM
i (7)

Giving us multiple estimates for each SM
i and SP

j . We weight these

estimates by the inverse variance of Sij and the number of correctly

classified reads at microsatellite i in individual j. The variance of Sij

is Sijð1� SijÞ, assuming Sij obeys a binomial distribution. The

weight, wij of microsatellite i in individual j is then:

wij ¼
P

r2Rij
piðrÞ

Sijð1� SijÞ
(8)

Allowing us to estimate SM
i and SP

j as:

SM
i ¼

X
j

wijP
jwij
�

P
r2R!

ij
piðrÞP

r2Rij
piðrÞ

� SP
j

 !
(9)

SP
j ¼

X
i

wijP
iwij
�
P

r2R!
ij
piðrÞP

r2Rij
piðrÞ

� SM
i

 !
(10)

2.2.3 Stutter rate estimation

Following the model presented in lobSTR (Gymrek et al., 2012), we

estimate a microsatellite specific parameter ti, for the geometric dis-

tribution assumed for stutter noise as:

ti ¼
1

1þ �xi
(11)

Where �xi is an estimate of the fraction of reads at microsatellite i

that are results of stutter noise events.

To estimate �xi we start by computing the absolute value of the

minimum base pair distance to the current genotype for all reads cov-

ering microsatellite i. A read from individual j, supporting either allele

of the individual’s current genotype (A,B) has a distance of zero but

reads not supporting the current genotype have a distance of:

distðrÞ ¼ minðjlðAÞ � liðrÞj; jlðBÞ � liðrÞjÞ (12)

where l(A) and l(B) represent the base pair length of alleles A and B,

respectively and li(r) represents the base pair length of the allele re-

ported by the read. We then estimate �xi as the average of this num-

ber modulo the length of the repeat motif at microsatellite i.

2.2.4 Computing genotype likelihoods

We focus our attention on determining the likelihood of a genotype,

gt. We are given a set R of reads, which we assume are independent

observations of the microsatellite i, allowing us conclude that:

LðRjgtÞ ¼
Y

r2R
LðrjgtÞ (13)

We now show how to compute LðrjgtÞ, adding terms for each

source of error successively to our model. We first consider the case

when the only sources of error are full motif slippage events and

read misclassification events. Recall, that Ar represents the number

times the repeat motif of i is repeated in r and that the alleles of a

genotype are represented with the number of times the repeat motif,

mi, is repeated. Given an allele, A, we compute xr(A) as the number

of slippage events needed to explain r with A as xrðAÞ ¼ jA�Arj.
We assume that the number of slippage events follows a Poisson dis-

tribution with k¼ Sij. This gives the following expression for a

homozygous genotype gt¼ (A,A).

LðrjA;AÞ ¼ piðrÞ � poisðxrðAÞ; SijÞ (14)

For a heterozygous genotype (A, B) we assume that each allele is

drawn with equal probability:

LðrjA;BÞ ¼

piðrÞ �
1

2
� poisðxrðAÞ; SijÞ þ

1

2
� poisðxrðBÞ; SijÞ

� �
(15)

The above expression assigns a very small likelihood for reads

that are not the results of slippage events. With probability 1� piðrÞ
the read being considered is an error read, in this case we assume

that each of the other reported alleles is equally likely. We let ni be

the number of alleles present in the population for microsatellite i

and refine our expression for L(rjA,B) as follows:

LðrjA;BÞ¼piðrÞ �
1

2
�poisðxrðAÞ;Sij

� �
þ1

2
�poisðxrðBÞ;SijÞÞþ

1�piðrÞ
ni

(16)

Slippage events are more likely to delete repeat units than insert.

To account for this, we further refine our model and add a param-

eter, pd, representing the probability that if a slippage event occurs,

this event results in a deletion of a motif. Given an allele A and a

read r we compute aA
r as pd if A� Ar � 0 and 1 � pd if A � Ar > 0.

Our refined model then becomes:

LðrjA;BÞ ¼ piðrÞ�
1

2
� poisðxrðAÞ; SijÞ � aA

r þ
1

2
� poisðxrðBÞ; SijÞ � aB

r

� �
þ 1� piðrÞ

ni

(17)

Finally, we account for stutter noise, for which we assume a geo-

metric distribution and use the marker specific tis estimated using

Equation (11). To reflect this in our model we split xr(A) and xr(B)

into their integer and decimal portions. We let xk
r ðAÞ denote the inte-

ger portion and xd
r ðAÞ the decimal portion of xr(A). Similarly we

split xr(B) into xk
r ðBÞ and xd

r ðBÞ and our final model becomes:

LðrjA;BÞ ¼ piðrÞ�
1

2
� poisðxk

r ðAÞ; SijÞ � geomðxd
r ðAÞ; ti

� �
� aA

r

þ1

2
� poisðxk

r ðBÞ; SijÞ � geomðxd
r ðBÞ; tiÞ � aB

r Þ

þ1� piðrÞ
ni

(18)

Given a set of reads Ri,j for a microsatellite i and individual j we

compute this genotype likelihood for all genotypes A, B present in

the population. The current genotype is the A, B with the highestQ
r2Ri;j

LðrjA;BÞ.
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2.2.5 Algorithm pseudocode

The algorithm can now be described with the following pseudocode:

• Select and process reads
• Initialize genotypes.
• Initialize all SM

i ; S
P
j ;pi; ti.

• While genotypes have not converged:
• Use SM

i ;pi; ti; S
P
j to compute genotypes.

• Update SP
j s using SM

i s,piS and tis.
• From the current genotypes determine the probability of each

read being TRUE and FALSE.
• Update piS using read classification.
• Update tis using current genotypes.
• Update SM

i s using current genotypes, SP
j s and piS.

• Compute genotype likelihoods and exit.

2.3 Kernelization of iterative algorithm
Our iterative algorithm can be too memory and time intensive for

large data sets. In order to make our time and memory requirements

more manageable we can kernelize our algorithm. We select a small

set of well behaving microsatellites and individuals with high quality

sequencing data for our initial training, a set we refer to as a kernel.

Within this kernel we apply the full algorithm described in section

2.2.5.

Once this kernel has been trained we estimate individual specific

slippage rates, SP
j s, using only the markers within the kernel, keeping

the marker slippage rates, SM
i s, the stutter rates, tis, and the marker

classification models (piðrÞs) fixed.

Once the SP
j s have been trained for all individuals, j, we train SM

i ,

ti and pi(r) for all markers i keeping the SP
j s fixed, allowing us to

compute a final set of genotype likelihoods.

3 Implementation

PopSTR was written in Cþþ using the sequence analysis library

SeqAn (Döring et al., 2008) which allows for easy reading and ma-

nipulation of data stored in BAM-files.

The implementation of popSTR has four steps. In the first step,

we identify the reads useful for genotyping, compute their attributes

and initialize genotypes. In the second step, we estimate SP
j s, SM

i s, tis

and pis on a kernel of markers. In the third step, we use results from

the kernelization to compute SP
j s. In the final step we train SM

i s, tis

and pis and finally perform genotyping.

3.1 Read selection and processing
We use the fact that the sequencing data has already been aligned (in

a BAM file), allowing us to limit the number of reads that we con-

sider. We can however not limit our search only to reads that have

been aligned to a microsatellite, as alignment to microsatellites by

general purpose aligners, such as BWA (Li and Durbin, 2009), is not

reliable. General purpose aligners trade accuracy and speed in their

implementation and do not account for the high mutation rate of

microsatellites. We limit our search to reads that have been aligned

to microsatellites and reads that are unaligned but have a mate that

is aligned near the microsatellite being considered. Sequences al-

ready aligned to non-microsatellite sequences are unlikely to be use-

ful while sequences that are unaligned may in fact contain a

microsatellite but have not been aligned because they are too differ-

ent from the reference.

When selecting reads and in order to perform the read classifica-

tion, we compute a number of attributes related to the reads’

alignment and their sequencing quality. As previously mentioned,

candidate microsatellite reads are processed by first identifying the

repeat sequence within the read. Subsequently, the sequences flank-

ing the repeat are aligned to the sequences flanking the microsatellite

in the reference genome. The quality of this alignment is one of the

attributes used as a control variable in the logistic regression classifi-

cation. We define purity of an alignment as the number matching

base pairs divided by the total number of base pairs in the alignment.

The purity of a microsatellite repeat sequence is the number of base

pairs matching the repeat divided by the total number of base pairs in

the repeat. The purity of the repeat sequence in the read is another

control variable. All attributes computed, used as control variables in

the logistic regression, are summarized in Table 1.

Further, some attributes are required to reach a minimum value

for the read to be used. The minimum microsatellite purity required

is relative to the purity of the microsatellite sequence in the reference

and also depends on the number of flanking bases available in the

read. Table 2 summarizes these filters used.

Finally, we do not consider low quality reads, i.e. the ones that

fail platform or vendor quality checks nor reads that are PCR or op-

tical duplicates.

3.2 Kernelization
Convergence has been reached in the kernelization when <0.5% of

the genotypes are updated between iterations.

We initialize the slippage rate for individual j, using the follow-

ing expression

SP
j ¼

n!
j

nj
(19)

where n!
j represents the number of reads from individual j not sup-

porting the initialized genotype and nj represents the total number

of reads from individual j.

3.3 Individual slippage rate computation
The marker slippage and stutter rates estimated (SM

i s and tis) and

the logistic regression classifiers (pi(r)s) trained during the kerneliza-

tion are used to directly estimate the individual specific slippage

rates (SP
j s). First, we compute the attributes of reads aligned to the

microsatellites in the kernel. Next, we assign misclassification prob-

abilities, pi(r)s to the reads using the logistic regression classifiers

from the kernel and we update the genotypes, with marker slippage

and stutter rates from the kernel using the expression given in

Equation (18) to determine the most likely genotype. Finally, we use

the expression given in Equation (10) to estimate an individual slip-

page rate, SP
j s. We iterate this process, keeping the marker specific

properties from the kernel constant, until the individual slippage

rates, (SP
j s), have reached convergence.

Table 2. Minimum numeric values when identifying useful reads

Name Condition Minimum value

Microsatellite purity both flanking 0.75*(ref. purity)

one sided flanking 0.8*(ref. purity)

no flanking 0.85*(ref. purity)

Alignment purity one sided flanking 0.7

No. repeats motiflength ¼ 2 4

motiflength ¼ 3 3

motiflength 2 4; 5; 6 2
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3.4 Marker slippage and stutter rate computation,

logistic regression and genotyping
We fix the probability of deletion Equation (18) as pd ¼ 0.85 and

consequently 1� pd ¼ 0:15. We iterate between updating genotypes

and updating the microsatellite slippage and stutter rates, (SM
i s and

tis), and logistic regression classifiers (pi(r)s), while keeping individ-

ual slippage rates, (SP
j s), constant, until convergence has been

reached.

4 Results

4.1 Data set
We analyzed microsatellites for 15 220 whole genome sequenced in-

dividuals, sequenced using Illumina sequencers. Sequencing reads

had previously been mapped to GRCh38 using BWA (Li and

Durbin, 2009).

We ran Tandem Repeat Finder on 1 Mb non-overlapping inter-

vals using the parameters and options suggested in (Willems et al.,

2014) to determine the microsatellite locations (Benson, 1999). We

filtered the output in order to include only repeats with motif-length

between 2 and 6 bp. We removed repeats with alignment scores

below thresholds suggested in (Willems et al., 2014), repeats closer

than 100 bp to each other and repeats longer that 100 bp. This re-

sulted in a set of 880 355 microsatellite locations found on GRCh38

autosomes after excluding microsatellites located in high coverage

regions.

We initially ran popSTR on a set of 8453 individuals and

880 355 microsatellites. We chose a kernel set of 703 individuals

with high-quality sequencing data and 8303 microsatellites on

chromosome 1, based on their imputation info (Gudbjartsson et al.,

2015) when imputed into the Icelandic population.

Our comparison set is based on the genotypes of 15 220 individ-

uals on 880 355 microsatellites. Out of these a total of 380 261

microsatellites were found to be polymorphic and were subsequently

imputed into the Icelandic population (Gudbjartsson et al., 2015).

For comparison purposes, we chose 141 markers where capillary

electrophoresis benchmark genotypes were available, sequenced as

parts of various disease association efforts at deCODE genetics (Sun

et al., 2012).

Comparisons to lobSTR were done by choosing 10 individuals

from the 15 220 sequenced individuals. The 10 individuals were

chosen to have a large number of electrophoresis genotypes

available.

The 15 220 samples were also genotyped using the GATK

(McKenna et al., 2010) genotype caller and imputed into the

Icelandic population. GATK is a general purpose genotype caller

that does not distinguish between indels and microsatellites. To fur-

ther investigate the quality of our genotypes we matched our micro-

satellites coordinates to output coordinates of indel alleles from the

GATK genotype caller where the indel allele matched the microsat-

ellite repeat motif. We then compared the imputation results into

the Icelandic population for markers where a match was found.

4.2 Comparison to lobSTR
We compared the popSTR and lobSTR genotypes to inhouse bench-

mark data obtained through capillary electrophoresis. The capillary

electrophoresis genotypes are represented as base pair distances

from a reference individual, while genotypes reported from sequenc-

ing (by popSTR or lobSTR) are presented as lengths of the microsat-

ellite alleles. As we did not have the length of the microsatellite

alleles of the reference individual, we considered the genotypes

reported from capillary electrophoresis and sequencing to agree if an

identical difference in lengths between the two alleles carried by the

individual was reported by the two methods.

Both lobSTR and popSTR can be expected to report more accur-

ate genotypes when more reads overlapping the microsatellite are

used in the genotyping. We therefore condition our results on the

number of reads used in the genotyping. The number of reads used

for genotyping at a particular location is upper bounded by the

sequencing coverage at the given location. Not all reads overlapping

the location can however be used as both algorithms require the

reads to fully overlap the microsatellite and sequences flanking the

microsatellite on both sides. Figure 3 shows the accuracy of lobSTR

and popSTR as a function of the number of reads used by lobSTR.

The figure clearly shows that, as expected, the accuracy of both

methods increases when more reads overlapping the microsatellite

are used. The figure also shows that popSTR consistently has higher

genotyping accuracy than lobSTR.

Table 3 summarizes the comparison between the two methods.

We observe that, when we restrict our analysis to microsatellites

and individuals where there are at least 10 reads overlapping the

microsatellite, popSTR has a 96% agreement with the capilllary

electrophoresis genotypes while lobSTR has a 92% agreement.

Consistently, over all coverage thresholds the number of genotypes

that are in disagreement with the capillary electrophoresis genotypes

is approximately two times higher for lobSTR than for popSTR, i.e.

the error rate of popSTR is 50% lower than that of lobSTR.

To further confirm the accuracy of our method we compared the

popSTR genotypes of 409 individuals to the benchmark genotypes,

considering the same 141 markers as in the comparison to lobSTR.

Figure 4 shows how the accuracy of popSTR increases with the

number of reads used in the genotyping.

We compared the running times of popSTR and lobSTR and

found an average speed-up provided by popSTR of 74.7%. The

average running time of lobSTR from start to finish was 39.2 h per

individual (SD 6.7 h). This includes the time of the alignment

(39.1 h) and allelotyping (0.1 h) step of lobSTR.

The running time for the steps of popSTR we ran jointly was div-

ided by the number of genotyped individuals (15 220) and then

added to the average running time of individually run steps.

Fig. 3. The accuracy of the lobSTR and popSTR genotypers as a function of

the number of reads used by lobSTR overlapping the microsatellite, binned

with bin size ¼ 3. Results are averages over 10 individuals and 141

microsatellites

4046 S.Kristmundsd�ottir et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/24/4041/2525679 by guest on 20 August 2022

Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: ,
Deleted Text: base pairs
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text:  
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: 2
Deleted Text: ours
Deleted Text: s.d
Deleted Text: .
Deleted Text: ours
Deleted Text: ,


Summing up the running time of all steps of popSTR we get a total

of 9.9 hours per individual. Table 4 breaks the total running time of

popSTR into its components.

4.3 Comparisons to GATK
We use imputation info (Gudbjartsson et al., 2015) to compare the

quality of genotypes reported by GATK and popSTR. Imputation

info is a measure between 0 and 1, representing confidence in geno-

type assignment reported by the imputation software (Gudbjartsson

et al., 2015), with larger values of imputation info representing

higher confidence. We have previously determined imputation info

of greater than or equal to 0.9 as a threshold for which we believe

that the genotypes are highly reliable (Gudbjartsson et al., 2015).

GATK is a general purpose tool for determining genotypes and

does not have a specific model for microsatellites, but rather lumps

them in a category with indels. We compared the imputation info of

popSTR microsatellites to the imputation info of indel alleles from

GATK in cases where alleles reported by GATK were located within

a microsatellite sequence. At microsatellite locations, some of the

indels reported by GATK contain the microsatellite motif, while

others do not. We condition our comparison to GATK on whether

the microsatellite motif is found in the indel reported by GATK.

For a judicious comparison, we construct a single number for

each microsatellite by summing the info of each allele weighted by

frequency. This is shown in Equation (20) where iw represents the

weighted info value and fa and ia represent the frequency and imput-

ation info of allele a, respectively.

iw ¼
P

afa � iaP
afa

(20)

For a total of 152 152 microsatellites found by popSTR an indel

was reported by GATK within the microsatellite. We compared the

imputation info for these popSTR-microsatellite/GATK-indel pairs

in several different ways; these are summarized in Table 5

(Matching coordinates).

In 75 057 of the microsatellites found by popSTR the indel re-

ported by GATK contained the microsatellite motif. The same com-

parison was performed for these pairs as the previous ones and is

also summarized in Table 5 (Matching motifs).

5 Conclusion

Here we have shown that, by creating a microsatellite profile for an

individual using previously aligned data, it is possible to significantly

decrease the running time of microsatellite genotyping by consider-

ing only reads that are either aligned to a known microsatellite loca-

tion or not aligned at all. The filtering dismisses a large portion of

the data immediately while minimally effecting the microsatellite

profile. Our results also show that the genotyping accuracy of our

program is higher than for the general purpose genotype caller

GATK as well as lobSTR, a program specifically designed for calling

of microsatellites.

Several improvements could still be made to our model and

method. Our method does not consider reads where neither the read

nor its mate align to the reference genome. Our method also

assumes that the mate of the read containing the microsatellite is

correctly mapped. If the read pair were to be mapped to a graph ref-

erence (a reference genome containing all variants) it is possible that

a joint alignment of both the read containing the microsatellite and

its mate would reveal the correct location for the read pair. We do

not account for possible sampling biases, i.e. it may be more likely

that we observe reads that are similar to the reference than those

that are highly divergent from the reference. Similarly, there may

be biases introduced by our alignment algorithm or filtering

steps not accounted for in our model. Finally, our implementation is

Table 3. Genotyping accuracy of lobSTR and popSTR compared

with capilllary electrophoresis genotypes

Coverage filter lobSTR popSTR

�1 87.3% 93.5%

�5 89.5% 94.3%

�10 92.0% 96.0%

�15 93.5% 96.4%

�20 94.4% 97.2%

The results are thresholded on the number of reads available to lobSTR.

Fig. 4. The accuracy of the popSTR genotyper as a function of the number of

reads used by popSTR overlapping a microsatellite. Results are averages

over 409 individuals and 141 microsatellites

Table 5. Imputation info comparison of popSTR and GATK

Matching coordinates Matching motifs

Total 152 152 75,057

popSTR info > GATK info 107 104 (70.4%) 56 521 (75.3%)

GATK info > popSTR info 45 048 (29.6%) 18 536 (24.7%)

popSTR info > 0.9 120 317 62 962

GATK info > 0.9 92 854 49 684

Either info > 0.9 133 366 68 216

popSTR info > GATK info 99 787 (74.8%) 53 812 (78.9%)

GATK info > popSTR info 33 579 (25.2%) 14 404 (21.1%)

Mean popSTR info 0.95 (SD 0.16) 0.96 (SD 0.12)

Mean GATK info 0.90 (SD 0.16) 0.93 (SD 0.08)

Table 4. Running times of popSTR steps

Step Run individually Run jointly Time

Kernelization � 0.1 h

Read selection and processing � 9.2 h

Individual slippage estimation � 0.25 h

Genotyping � 0.35 h

Population-scale detection of STR variants 4047
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optimized for Illumina paired-end sequencing data. Although we be-

lieve that our algorithm could be used for other types of sequencing

data the method would need to be tuned to the error models of those

data.

Conflict of Interest: none declared.
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