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Abstract

Web caching aims at reducing network traffic, server load,
and user-perceived retrieval delays by replicating popular
content on proxy caches that are strategically placed within
the network. While key to effective cache utilization, pop-
ularity information (e.g. relative access frequencies of ob-
jects requested through a proxy) is seldom incorporated di-
rectly in cache replacement algorithms. Rather, other prop-
erties of the request stream (e.g. temporal locality and con-
tent size), which are easier to capture in an on-line fash-
ion, are used to indirectly infer popularity information, and
hence drive cache replacement policies. Recent studies sug-
gest that the correlation between these secondary properties
and popularity is weakening due in part to the prevalence
of efficient client and proxy caches. This trend points to the
need for proxy cache replacement algorithms that directly
capture popularity information.

In this paper, we (1) present an on-line algorithm that
effectively captures and maintains an accurate popularity
profile of Web objects requested through a caching proxy,
(2) propose a novel cache replacement policy that uses such
information to generalize the well-known GreedyDual-Size
algorithm, and (3) show the superiority of our proposed al-
gorithm by comparing it to a host of recently-proposed and
widely-used algorithms using extensive trace-driven simu-
lations and a variety of performance metrics.

1. Introduction

Web caching aims to reduce network traffic, server load,
and user-perceived retrieval delay by replicating “popular”
content on proxy caches [1, 14] that are strategically placed
within the network—at organizational boundaries or major
AS exchanges, for example.

�This work was partially supported by NSF research grant CCR-
9706685.

It may be argued that the ever decreasing prices of RAM
and disks render the optimization or fine tuning of cache re-
placement policies a “moot point”. Such a conclusion is ill-
guided for several reasons. First, recent studies have shown
that Web cache hit ratio (HR) and byte hit ratio (BHR) grow
in a log-like fashion as a function of cache size [2, 7, 8, 9].
Thus, a better algorithm that increases hit ratios by only
several percentage points would be equivalent to a several-
fold increase in cache size. Second, the growth rate of Web
capacity is much higher than the rate with which memory
sizes for Web caches are likely to grow. The only way to
bridge this widening gap is through efficient cache manage-
ment. Finally, the benefit of even a slight improvement in
cache performance may have an appreciable effect on net-
work traffic, especially when such gains are compounded
through a cache hierarchy.

There are many factors that affect the performance of
cache replacement policies. Among others, these factors
include object size, miss penalty, temporary locality, and
long-term access frequency.

� Unlike traditional caching in memory systems, Web
caches are required to manage objects of variable
sizes. Caching smaller and thus more objects usually
results in higher hit ratios, especially given the prefer-
ence for small objects in Web access [8]—though this
preference seems to be weakening [5].

� The miss penalty (i.e. retrieval cost of missed objects
from server to proxy) varies significantly. Thus, giving
a preference to objects with a high retrieval latency can
achieve high saving [22].

� Web traffic patterns were found to exhibit temporal lo-
cality [2, 9, 17], i.e., recently accessed objects are more
likely to be accessed again in the near future. This has
led to the use of LRU cache replacement policy and
generalizations thereof [9]. Recent studies have docu-
mented a weakening in temporal locality [5].

� The popularity of Web objects was found to be highly
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variable (i.e. bursty) over short times scales, but much
smoother over long time scales [4, 13], suggesting the
significance of long-term measurements of access fre-
quency in cache replacement algorithms.

Motivation and key contributions: While key to effective
cache utilization, popularity information (e.g., the relative
access frequencies of objects requested through a proxy)
is seldom maintained and rarely utilized directly in the de-
sign of cache replacement algorithms. Rather, other proper-
ties of the request stream (e.g., temporal locality and object
size), which are easier to capture in an on-line fashion, are
used to indirectly infer popularity information, and hence
drive cache replacement policies.

To elaborate on this point, consider two widely used
cache replacement policies: Least-Recently-Used (LRU)
and Largest-File-First (LFF). LRU capitalizes on the tem-
poral locality in a request stream, namely the recency of
access, whereas LFF capitalizes on the negative correla-
tion between popularity and object size. Both of these
properties—namely, recency of a repeat access and size of
requested object—are assumed to be indicative of the fu-
ture popularity of the object, and hence reflective of the
merit of keeping such an object in the cache. Recent studies
[5] suggest that such relationships are weakening and hence
may not be effective in indirectly capturing the popularity
of Web objects.

In this paper, we (1) present an on-line algorithm that ef-
fectively captures and maintains an accurate popularity pro-
file of Web objects requested through a caching proxy, (2)
propose a novel cache replacement policy (termed GDSP)
that directly uses such information to generalize the well-
known GreedyDual-Size algorithm, and (3) show the su-
periority of our proposed algorithm by comparing it to a
host of recently-proposed and widely-used algorithms with
extensive trace-driven simulations using large DEC and
NLANR proxy traces.

Our implementation of GDSP algorithm addresses a
number of important problems, namely (a) How to capture
the temporal locality exhibited in Web access streams, al-
though it is weak? (b) How to avoid cache pollution—i.e.,
the tendency of previously popular objects to linger in the
cache? (c) How to efficiently maintain the popularity profile
of a large working set of Web objects? and (d) How to use
such a profile to accurately estimate the long-term access
frequency of individual objects?

The remainder of this paper is organized as follows. We
first review earlier work on Web proxy cache replacement
algorithms. Next, we describe our generalization of the
GreedyDual-Size algorithm. Then we evaluate the perfor-
mance of our proposed algorithm by comparing it to alter-
native techniques. We conclude with a summary.

2. Related work

There is a large body of work on caching in general and
on Web caching research in particular. In this section, we
restrict our presentation to cache replacement policies for
Web proxies and servers.
Basic policies: Simple Web cache replacement policies
leverage a single basic property of the reference stream.
Least-Recently-Used (LRU) leverages temporal locality
of reference—namely, that recently accessed objects are
likely to be accessed again. Least-Frequently-Used (LFU)
leverages the skewed popularity of objects in a reference
stream—namely, that objects frequently accessed in the past
are likely to be accessed again in the future. Previous stud-
ies [7] indicate that the independent reference model [10]
explains well the distribution properties of Web access, sup-
porting the use of of frequency-based policies. Largest-File-
First (LFF) leverages the negative correlation that exists be-
tween object sizes and likelihood of access—small objects
have a higher probability of being referenced again in the
future.

Early characterizations of Web access patterns suggested
the presence of strong temporal locality of reference [2, 4,
13]. However, more recent studies have concluded that this
temporal locality is weakening [5]. One reason for this trend
is effective client caching. To understand this, it suffices to
note that the request stream generated by a client using an
efficient caching policy is precisely the set of requests that
missed in the client cache. Such a request stream is likely to
exhibit weak temporal locality of reference—in particular,
a recently accessed object is unlikely to be accessed again in
the future! This trend suggests that LRU is not an adequate
policy for cache replacement at proxies.

Early characterizations of Web access patterns suggested
a strong preference for small objects [8]. However more
recent studies have concluded that this preference is signifi-
cantly weakening [5, 7]. Again, this weakening could be re-
lated to the presence of more efficient client caching, which
tend to mask the correlation between size and frequency of
access. It suggests that LFF is not an adequate policy for
cache replacement at proxies.

Unlike LRU and LFF, LFU infers object popularity di-
rectly from the reference history. While caching the most
popular objects would yield optimal performance, recent
studies of Web access patterns suggest that the popularity
of Web objects is highly bursty [4, 13]. Objects that are
popular over short time scales are not necessarily popular
over longer time scales (and vice-versa). This property lim-
its the performance of LFU due to the cache pollution phe-
nomenon to which we alluded earlier.

To summarize, the unique characteristics of Web ac-
cesses patterns observed at caching proxies (e.g., variable-
size objects, variable-cost requests, burstiness of access



stream, weakening temporal locality, etc.) limit the effec-
tiveness of basic cache replacement algorithms.
Hybrid policies: Several studies have generalized LRU to
make it more sensitive to the variability in object size and
retrieval delays. The GreedyDual algorithm [23] was pro-
posed to deal with variable-cost uniform-size page caching
problem. Cao and Irani [9, 15] generalized the GreedyDual
algorithm to deal with variable-size Web objects. The re-
sulting algorithm, GreedyDual-Size (GDS), enables a cache
replacement strategy to be sensitive to both the variability
in Web object sizes and retrieval costs (miss penalty). The
GDS implementation described in [9] uses ��������� as the
utility value of an object. This value is deflated over time to
dynamically “age” objects in the cache. GDS was proven to
possess an optimal competitive ratio—meaning that its cost
of cache misses is within � times that of an off-line optimal
algorithm, where � is the ratio of the cache size to the size
of the smallest object in the trace.

Other generalizations of LRU have attempted to incor-
porate access frequency information into LRU. LRU-K [19]
computes the average reference rate of the last � accesses.
It was shown to outperform LRU for database disk buffer-
ing applications. LNC-W3 [20, 21] is another generaliza-
tion that incorporate object size, retrieval costs, and the av-
erage reference rate into LRU. LNC-W3 uses these aspects
to compute the profit of caching an object.

The Hybrid algorithm presented in [22] is aimed at re-
ducing total latency by estimating the utility of retaining an
object in the cache based on the object size, load delay, and
frequency. The LRV algorithm presented in [17] uses the
cost, size, and last access time of an object to calculate a
utility value. The calculation is based on extensive empir-
ical analysis of trace data. These algorithms have several
drawbacks. Most importantly, they are heavily parameter-
ized, requiring extensive tuning and parameter estimation.
This makes them susceptible to changes in access patterns
and the location of the cache.

In another attempt to leverage access frequency, Arlitt
et al proposed and evaluated two replacement policies—
GDSF and LFU-DA [3]. GDSF simply incorporates access
count into GDS. It uses ������ ����������

��	� as its base value.
LFU-DA is a special case of GDSF in which ���� is propor-
tional to ����. Simulations show that GDSF(1), in which
cost is the same for all objects, obtains the highest hit ratio
while LFU-DA obtains the highest byte hit ratio. A recent
paper [16] found the combination of a simple GD-LFU pol-
icy(same as GDSF(1)) and a Hybrid coherency policy ob-
tains the lowest average cost.

3. Popularity-aware GDS cache management

One of the weaknesses of GDS is its inability to capture
and leverage the knowledge of the long-term access fre-

quencies of Web objects. Recent studies [5, 7, 8] have
shown the prevalence of Zipf-like distributions (Power-law)
in Web access characteristics. One such distribution is iden-
tified when characterizing object popularity 	 as a function
of object rank 
. In particular, 	 � 
�
, � � � � �.
This leads to the following property: The number of objects
accessed at least  times is proportional to ���
. This
implies that the probability of future references is depen-
dent on past access frequencies—suggesting the relevance
of taking into consideration long-term access frequencies
in cache replacement strategies. In this section, we present
GDS-Popularity (GDSP), a generalization of GDS that en-
ables it to leverage the knowledge of the skewed popularity
profile of Web objects.

3.1. Overview of GDSP

We incorporate access frequency into the GDS algorithm
through the use of a new utility value for a given object. The
utility value ���� for an object � is defined as the expected
normalized cost saving as a result of having � in the cache:

���� �
����� ����

����
�

where ���� is the size of �, ���� is its retrieval cost (i.e. miss
penalty), and ���� is its access frequency. Thus, ���� repre-
sents the cost saved per byte of � as a result of all accesses
to it in a given period of time.

To capture access recency and to avoid pollution by pre-
viously popular objects, we use a dynamic aging mecha-
nism similar to that used by GDS. In particular, we rep-
resent the cumulative value of an object � by ����. The
cumulative value of the object last evicted from the cache
is denoted by �. Thus, an invariant of our algorithm is that
���� � � for any object � the cache.

The resulted algorithm is called GDS-Popularity or
GDSP. Its general steps are described in Figure 1. It has
nearly the same time and space cost as GDS. The object
meta data can be maintained with a priority queue with key
����. The processing overhead on each hit or replacement
is�(log�). Another element of overhead comes from main-
taining the popularity profile and estimating the access fre-
quency. The next subsection shows that the time and space
requirements for doing so is very low.

3.2. Capturing object popularity

GDSP maintains “meta” information for a subset of the
objects in the request stream. Such information includes
the object size, the retrieval cost, the last access time, and
the estimated access frequency. All but the last of these
quantities are readily available from the request stream (e.g.
HTTP headers, etc.).



Algorithm GDS-Popularity:

�� 0.0
for each request for object � do

if � is in cache
then ����� �� ����� ���������
else while there is not enough free cache for �

do �� ��	���
��
 is in cache�
Evict 
 which satisfies ��
� � �

fetch �
����� �� ����� ���������

Figure 1. Pseudo code of GDSP Algorithm

Popularity information: One simplistic way of computing
the relative access frequency of Web objects is to keep track
of the full reference history of every Web object requested
through the proxy. This is obviously unrealistic due to the
huge scale of the Web. Instead, our solution keeps the popu-
larity information, i.e. access frequency and last access time
of only a small fraction of all Web objects requested through
the proxy. This method allows us to bound the space used to
maintain such information. In particular, in our implemen-
tation, we bound the space by satisfying two conditions: (1)
less than (say) 1% of the cache is used to keep the popularity
information, and (2) the total number of objects for which
this information is kept is no more than (say) 20% of the
total number of objects expected in a given access stream.
Under such conditions, and for the NLANR and DEC traces
(discussed later) we considered, the total space requirement
including the auxiliary space, is only a few mega bytes.

It is important to note the necessity of keeping reference
popularity information for cached and evicted objects alike.
This is necessary not only to improve the accuracy of access
frequency estimation, but also to avoid the pollution phe-
nomenon, to which we alluded earlier. This phenomenon is
analogous to thrashing whereby a popular, newly cached
object is evicted before building up enough “inertia” (in
terms of access frequency) to resist eviction due to a burst of
references to an object that is popular only over a short time
scale [4, 13]. The situation is exacerbated further as cached
objects age—the longer the request stream, the larger the
“inertia” needed to resist eviction. Since the access fre-
quency of a new popular object is always computed from
scratch, it has no fair chance to stay in the cache unless its
reference popularity information is maintained even when
the object itself is temporarily evicted.

In the remainder of this paper, we use the term “Popular
Objects” to refer to the set of objects for which popular-
ity information is maintained at the proxy at any particular
point in time. Also, we use the term “Cached Objects” to
refer to the set of objects cached at the proxy at any particu-
lar point in time. Note that “Cached Objects” is a subset of

“Popular Objects”, which are in turn a subset of all objects
in the request stream.
Efficient management of popularity information: To
support an efficient search for popularity information as-
sociated a given URL, a hash table (on the URL) can be
used. As explained earlier, we maintain entries in this hash
table for only popular objects. To that end, we employ a
replacement policy that evicts the least frequently accessed
entry. A faithful implementation of such a policy would
require the maintenance of a priority queue with access fre-
quency as the key. This results in an expensive �(log�)
time cost for each replacement. Fortunately, since there is
a significant number of entries with identical frequency, an
efficient approximation is possible. Namely, by aggregat-
ing the entries with the lowest frequency in a linked list, our
implementation selects the oldest such entry as a candidate
for eviction. This implementation needs only ���� time for
each replacement.
Frequency computation: As described earlier, we need
to keep track of the access frequency for popular objects.
Keeping a reference count, while simple, may result in some
inaccuracies. Below, we discuss two such inaccuracies and
present the refinements adopted in our implementation.

We denote by ����� the access frequency estimate for
object � after being accessed � times since its inclusion as a
popular object.

First, access frequency estimates are time varying. To
account for this, a mechanism must be adopted to give pref-
erence to more recent references in prediction. In our im-
plementation, we use a decay function to de-emphasize the
significance of past accesses. In particular, on the ��� ��-th
reference to an object �, its frequency is iterated as:

������� � ������ ����� � ��

where � is the elapsed time since the last reference and � is a
constant that controls the rate of decay. In our experiments,
we set � � � days.1

Second, the Zipf-like nature of popularity distribution
implies that there can be arbitrarily many accessed-once ob-
jects in a request stream. The probability of future accesses
to such objects is very low. To account for this, a mecha-
nism must be adopted that de-emphasizes accesses made to
unpopular objects. In our implementation, we discount the
significance of the first access to an object. In particular, the
weight of a first reference is set to �� � ���. This value was
chosen because, in the traces we considered in our experi-
ments, the fraction of objects that were referenced twice or
more was around ���.

1The frequency value reflects the merit of keeping an object over a long
period. The significance of past accesses should not decay too fast. As for
the traces considered in our experiments, it is usually suitable to half the
effect of a reference every at least one day.



4. Performance evaluation

In this section, we present the results of extensive trace-
driven simulations that we have conducted to evaluate the
performance of GDSP.

4.1. Traces used

In our trace-driven simulations we used traces from
DEC[12] and NLANR[18]. We only present the results
obtained from the first week (08/29 - 09/04, 1996) of the
DEC trace (results from the other weeks were similar). We
have also run our simulations with traces from a multitude
of NLANR proxy sites since April, 1999. Since the results
of our simulations were similar across all sites, we present
here only the results obtained from the site UC traces(April
7-10, 1999). Some of the characteristics of these traces are
shown in Table 1. Note, ��� and ���� are the hit ra-
tios when the cache size is infinite, i.e., the upper bound of
the ratios.

Table 1. Traces used in our simulations

Traces DEC NLANR
All requests 3,543,968(44.9GB) 4,278,480(62.4GB)
Unique files 1,354,996(21.9GB) 1,464,799(30.7GB)
��� 48.7% 55.8%
���� 35.8% 50.1%

Our preprocessing of the DEC traces followed the same
procedures described in [9]. In particular, we excluded non-
cache-able requests, including cgi-bin requests and queries.
In addition, in our experiments, we count a request as a hit
if the last modification times of the cached object and the
actual reply to users are the same when both are known, or if
the object size has not changed when both last modification
times are unknown.

Our preprocessing of the NLANR traces was more elab-
orate. The NLANR traces include many IMS (If-Modified-
Since) and REFRESH requests with a reply code of “304”
(Not Modified). In order to include such requests in the
workload, we had to find the sizes of the objects of such
requests. We do so through a 2-pass scanning of the en-
tire trace. This process was 96%-successful in identify-
ing cache-able requests (The remaining 4% were IMS and
Refresh requests for which we were unable to identify the
object sizes). In addition to this preprocessing, we have
also excluded non-cache-able requests, including cgi-bin
requests and queries.

4.2. Performance metrics and algorithms

Our performance evaluation metrics reflect the various ob-
jectives of the proxy caching algorithms. We considered

three metrics: Hit Rate (HR), Byte Hit Rate (BHR), and
Latency. Optimizing HR aims to maximize the fraction of
all requests found in the cache. Optimizing BHR aims to
minimize the total traffic between the proxy and servers.
Optimizing latency aims to minimize the average response
time perceived by end-users. To achieve these objectives,
one must tune what a proxy perceives as the miss penalty.
In particular, to optimize HR, one should treat all misses as
having identical cost. We refer to this by the constant cost
assumption. To optimize BHR, one should relate the miss
penalty to the size of the missed object (in number of pack-
ets, defined as � � ��	�

���
). We refer to this by the packet cost

assumption. To minimize latency, one should relate the miss
penalty to the latency of retrieving the missed object from
the server. We refer to this by the latency cost assumption.

We compared GDSP to LRU, LFU, GDS, and GDSF al-
gorithms. LRU and LFU were selected because they rep-
resent widely used policies that exploit fundamental char-
acteristics of the request stream—LRU capitalizes on re-
cency of access and LFU capitalizes on long-term access
frequency. We excluded algorithms that were known to be
inferior to GDS as established in [9]. These include the
SIZE-based, Hybrid [22], and LRV [17] algorithms. Given
that GDSF [3] (like our proposed GDSP algorithm) is an ex-
tension of GDS, which enables it to account for access fre-
quency, we have also included comparisons of GDSF and
GDSP.

An important aspect of LFU is the policy used for evic-
tion when two objects have the same access count. To that
end, a tie breaker is necessary. In our simulations, the last
access time is used as the tie breaker. This also means that
to some extent the LFU algorithm considers access recency.
It is not clear whether different tie breakers lead to the dif-
ferent performance between the LFU algorithms in [7] and
this paper. Even if no tie breaker is used, the hit ratios of
LFU in our experiments were not as low as those in [7].

GDS is a family of algorithms, each with a different
definition of cost. Three versions of the GDS algorithm,
GDS(1), GDS(packets), and GDS(latency) are simulated,
reflecting the constant cost, packet cost, and latency cost as-
sumptions described above. Clearly, if the cost of transfer-
ring each byte is the same (i.e. retrieval cost is proportional
to object size), then the GDS algorithm degenerates into
LRU. This implies that the performance of GDS(packets)
will be close to that of LRU since the number of packets
is roughly proportional to the object size. Similar to GDS,
we also consider three versions of our GDSP algorithm—
namely, GDSP(1), GDSP(packets), and GDSP(latency).

In simulations, we varied the cache size from less than
0.5% to 30% of the total unique file size. This corresponds
to hundreds of MB to 10GB. Too large cache size (e.g.,
close to 100% of total unique file size) makes any algo-
rithms travial. It is also unrealistic since the aggregated size
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Figure 2. HR under the constant cost assumption.

of the unique files requested through a proxy is not bounded
(e.g., in one month this aggregated size for the NLANR site
UC was up to 200GB), while the proxy server resources are
restricted in terms of both memory and CPU.

4.3. Performance under constant cost assumption

First, assume that the objects have the same cost. We com-
pare LRU, LFU, GDS(1), and GDSP(1). Figures 2 and 3
give the ratios (y-axis) for these algorithms as a function of
the cache size (x-axis, logarithmic scale). We show ���
and ���� as upper bounds on performance when the
cache size is large enough (the total unique file size).

For the DEC trace, LFU and LRU have the lowest HR.
They are far worse than GDS(1) and GDSP(1)—e.g. when
cache size is 1GB, LRU’s HR is 35.4% and LFU’s HR is
36.0% while both GDS(1) and GDSP(1) obtain about 44%.
This is because LRU and LFU are not sensitive to object
sizes. The BHR of LFU is low when the cache size is small;
it increases the fastest when cache size increases. This may
be due to two reasons: (1) when cache size is larger, popular
objects have a better chance of being hit again, thus increas-
ing their likelihood of staying in the cache, and (2) since
LFU uses the last access time as the tiebreaker, a larger
cache allows LFU to benefit from temporal locality.

GDSP(1) consistently outperforms GDS(1), especially
with small cache. GDS(1) has the lowest BHR. This is
not surprising since GDS(1) favors small files independent
of their popularity—thus, a large popular object stands less
chance of being cached under GDS(1). On the other hand,
GDSP(1) achieves superior HR without significant degra-
dation in BHR. This is due to GDSP’s sensitivity to access
frequency, which enables it to cache large popular files.

For the NLANR trace, the results are similar.2 The HR of
GDSP(1) is consistently the highest. Its BHR is lower than
LFU only when the cache is very large, but much higher

2For the NLANR trace, we do not count a REFRESH request as a hit
since the proxy must contact the server. However, we count the bytes hit
since a server’s 304 reply does not lead to an object transfer. This as-
sumption does not change the relative performance of the algorithms in
simulations.
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Figure 3. BHR under the constant cost assumption

than GDS(1). The disadvantage of GDS(1) in BHR is more
obvious for this trace. Another difference is the consistently
better performance of LFU when compared to LRU. This is
probably due to the weaker temporal locality in the NLANR
trace (compared to the DEC trace). This weakening in tem-
poral locality (from 1996 to 1999) is in line with the findings
in [5]. Also, this weakening may be due to the diversity of
users of upper-level NLANR proxies.

To summarize, when HR is the main objective, GDSP(1)
is the best choice. It outperforms GDS(1) without signifi-
cantly compromising BHR.

4.4. Performance under packet cost assumption

Figures 4 and 5 show the hit ratios when the cost is the num-
ber of packets transferred. Figure 6 shows the number of
packet transfers due to the various algorithms. We compare
LRU, LFU, GDS(packets), and GDSP(packets).

For the DEC trace, both hit ratios for GDS(packets) and
LRU are close. This is because when the cost is roughly
proportional to object size, GDS(packets) is nearly equiv-
alent to LRU. GDSP(packets) consistently outperforms the
others—in terms of both hit ratios and packet transferred.
The relative BHR improvement of GDSP(packets) over
GDS(packets) and LRU is as much as 15%. The relative HR
improvement is as much as 30% when the cache is small.

For the NLANR trace, the results are similar. The BHRs
of GDS(packets) and LRU are nearly equal. GDS(packets)
outperforms LRU slightly in HR. This difference is due to
the fact that ����

��	� is not an exact constant and GDS(packets)
slightly favors small objects, resulting in increased hits.
LFU is the closest to GDSP(packets) when the cache is
large. LFU does well due to the weak temporal locality.

When cache size is larger than 4% of the total unique
file size, GDSP(packets) is superior to GDS(packets) along
several performance metrics. (1) The relative improvement
with respect to HR and BHR is 20% and 17%, respec-
tively. For example, for the NLANR trace, when cache
size is 1GB, the HR and BHR of GDS(packets) are 33.7%
and 27.5%, respectively, whereas those of GDSP(packets)
are 40.3% and 32.1%, respectively; When cache size
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Figure 4. HR under the packet cost assumption
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Figure 5. BHR under the packet cost assumption

is 4GB, the BHR of our algorithm is 42.9%, compared
with 38.2% of GDS(packets). (2) GDS(packets) needs
about twice the cache size to obtain the same HR and
BHR of GDSP(packets). (3) GDS(packets) produces 8%
more packets on the network for the NLANR trace and
same cache size as shown in Figure 6 (right). When
cache size is 1GB, GDS(packets) needs 88.6M packets
while GDSP(packets) needs 83.0M packets; when cache
size is 4GB, GDS(packets) needs 75.2M packets while
GDSP(packets) needs only 69.8M packets.

4.5. Performance under latency cost assumption

The retrieval delay for fetching an object from a remote
server can be modeled by: ���� � ����� � ���� � ����,
where ����� is the time to establish the connection and
���� is the average time to transfer a byte. We simply
estimate these two parameters for all servers in the trace,
instead of determining these parameters for each server
separately.3 We do so by computing the average delay
for objects of different sizes and estimating the parame-
ters with a least-square fit. For the DEC trace, we com-
puted ����� � �������, and ���� � ���������������.
For the NLANR trace, we computed ����� � ��	����, and

3We had originally attempted to compute these parameters on a per-
server basis using the techniques proposed in [22] and used in [9]. How-
ever, our findings revealed wide inaccuracies. We suspect that these inac-
curacies are due to the variability in network conditions as observed in [11]
and server load conditions as observed in [6].
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Figure 6. Packets(mega) under packet cost assumption
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Figure 7. LSR under the latency cost assumption

���� � ���������������.

Figure 7 shows the latency saving ratio (LSR) for both
DEC and NLANR traces under LRU, LFU, GDS(latency),
and GDSP(latency). The results show that latency reduc-
tion is minimal for LRU and LFU. GDSP(latency) clearly
outperforms GDS(latency). The relative improvement over
LRU and LFU is up to 25%; the relative improvement over
GDS(latency) is higher than 10%.

4.6. Comparison to GDSF

As suggested in [3] and [16], a simple generalization of
the GDS algorithm uses the exact access count as ���� in
our algorithm and does not maintain a popularity profile for
accurate frequency computation. This algorithm is called
GDSF in [3] and GD-LFU in [16]. Studies have shown that
this algorithm outperforms GDS. In this section we com-
pare GDSF and GDSP.

Figure 8 gives the hit ratios of GDSF(1), GDSF(packets),
GDSP(1), and GDSP(packets) for the NLANR trace. The
results are similar for the DEC trace and are not included
here for space limitations. As evident from Figure 8, the
GDSP algorithms consistently outperform the correspond-
ing GDSF algorithms, which in turn are only slightly bet-
ter than the corresponding GDS algorithms. These findings
confirm the value of GDSP’s popularity profile maintenance
and frequency estimation techniques.
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Figure 8. HR(left) and BHR(right) of GDSP vs GDSF

5. Summary

Popularity information is an important factor for effective
Web cache replacement policies. In this paper, we pre-
sented an on-line policy that effectively captures and main-
tains an accurate popularity profile of Web objects requested
through a caching proxy and designed a novel cache re-
placement algorithm that utilizes such information. To ex-
ploit temporal locality exhibited in the Web traffic as well
as to avoid cache pollution by previously popular objects,
the algorithm generalizes GreedyDual-Size by incorporat-
ing frequency information. A popularity profile of Web ob-
jects requested through the proxy is maintained efficiently,
which makes it possible to accurately estimate the long-
term access frequency of individual objects. Our evaluation
using extensive trace-driven simulations and different per-
formance metrics quantified the benefits and established the
superiority of our proposed algorithms.

References

[1] Akamai Technologies. Freeflow content delivery system.
Available at http://www.akamai.com.

[2] Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adri-
ana de Oliveira. Characterizing Reference Locality in the
WWW. In Proceedings of International Conference on Paral-
lel and Distributed Information Systems, December, 1996.

[3] Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich
Friedrich, and Tai Jin. Evaluating content management tech-
niques for Web proxy caches. In Proceedings of the 2nd Work-
shop on Internet Server Performance, May, 1999.

[4] Martin Arlitt and Carey Williamson. Internet Web servers:
Workload characterization and implications. IEEE/ACM
Transactions on Networking, 5(5): 631-644, 1997.

[5] Paul Barford, Azer Bestavros, Adam Bradley, and Mark Crov-
ella. Changes in Web client access patterns: characteristics
and caching implications. WWW Journal, 2(1): 3-16, 1999.

[6] Paul Barford and Mark E. Crovella. Measuring Web per-
formance in the wide area. Performance Evaluation Review,
Special Issue on Network Traffic Measurement and Workload
Characterization, August, 1999.

[7] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. Web caching and Zipf-like distributions: evidence
and implications. In Proceedings of Infocom’99, April, 1999.

[8] Carlos Cunha, Azer Bestavros, and Mark Crovella. Charac-
teristics of WWW client-based traces. Technical Report BU-
CS-95-010, April, 1995.

[9] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching
algorithms. In Proceedings of USENIX Symposium on Inter-
net Technology and Systems, December, 1997.

[10] E. G. Coffman and P. J. Denning. Operating Systems Theory.
Prentice-Hall, 1973.

[11] Mark E. Crovella and Azer Bestavros. Self-similarity in
World Wide Web traffic: Evidence and possible causes.
IEEE/ACM Transactions on Networking, 5(6):835–846, De-
cember 1997.

[12] Digital Equipment Corporation. Digital’s Web
proxy traces, september, 1996. Available via ftp,
ftp://ftp.digital.com/pub/DEC/traces/proxy/.

[13] Steven Gribble and Eric Brewer. System design issues for
Internet middleware services: Deductions from a large client
trace. In Proceedings of USENIX Symposium on Internet
Technology and Systems, December, 1997.

[14] Infolibria Inc. Dynacache and mediamall caching solutions.
Available at http://www.infolibria.com

[15] Sandy Irani. Page replacement with multi-size pages and ap-
plications to Web caching. In Proceedings of the 12th annual
ACM symposium on Theory of computing, May, 1997.

[16] Balachander Krishnamurthy and Craig E. Wills. Proxy cache
coherency and replacement–towards a more complete picture.
In Proceedings of the 19th IEEE ICDCS’99, June, 1999.

[17] P. Lorenzetti, L. Rizzo and L. Vicisano. Replacement poli-
cies for a proxy cache. Technical Report LR-960731, Univ. di
Pisa, http://www.iet.unipi.it/�luigi/research.html.

[18] National Laboratory for Applied Network Research. Weekly
access logs at NLANR’s proxy caches. Available via ftp,
ftp://ircache.nlanr.net/Traces/.

[19] Elizabeth J. O’Neil, Patrick E. O’Neil, Gerhard Weikum.
The LRU-K page replacement algorithm for database disk
buffering. In Proceedings of ACM SIGMOD, May, 1993.

[20] Peter Scheuermann, Junho Shim, and Radek Vingralek. A
case for delay-conscious caching of Web documents. In Pro-
ceedings of the 6th International WWW Conference, April,
1997.

[21] Junho Shim, Peter Scheuermann, and Radek Vingralek.
Proxy cache algorithms: Design, implementation, and perfor-
mance. IEEE Transactions on Knowledge and Data Engineer-
ing, 11(4): 549-562, July/August, 1999.

[22] R. Wooster and M. Abrams. Proxy caching that estimates
page load delays. In Proceedings of the 6th International
WWW Conference, April, 1997.

[23] Neal E. Young. On-line caching as cache size varies. In
Proceedings of Symposium on Discrete Algorithms, January,
1991.


