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ABSTRACT

Foursquare, the currently most popular location-based social
network, allows users not only to share the places (venues)
they visit but also post micro-reviews (tips) about their pre-
vious experiences at specific venues as well as “like” previ-
ously posted tips. The number of “likes” a tip receives ulti-
mately reflects its popularity among users, providing valu-
able feedback to venue owners and other users.

In this paper, we provide an extensive analysis of the pop-
ularity dynamics of Foursquare tips using a large dataset
containing over 10 million tips and 9 million likes posted by
over 13,5 million users. Our results show that, unlike other
types of online content such as news and photos, Foursquare
tips experience very slow popularity evolution, attracting
user likes through longer periods of time. Moreover, we find
that the social network of the user who posted the tip plays
an important role on the tip popularity throughout its life-
time, but particularly at earlier periods after posting time.
We also find that most tips experience their daily popular-
ity peaks within the first month in the system, although
most of their likes are received after the peak. Moreover,
compared to other types of online content (e.g., videos), we
observe a weaker presence of the rich-get-richer effect in our
data, demonstrating a lower correlation between the early
and late popularities. Finally, we evaluate the stability of
the tip popularity ranking over time, assessing to which ex-
tent the current popularity ranking of a set of tips can be
used to predict their popularity ranking at a future time.
To that end, we compare a prediction approach based solely
on the current popularity ranking against a method that
exploits a linear regression model using a multidimensional
set of predictors as input. Our results show that use of the
richer set of features can indeed improve the prediction ac-
curacy, provided that enough data is available to train the
regression model.
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1. INTRODUCTION

Understanding the popularity dynamics of online content,
particularly user generated content (UGC), is quite a chal-
lenge due to the various factors that might affect how the
popularity of a particular piece of content (here referred to
as an object) evolves over time. Moreover, the processes
that govern UGC popularity evolution may vary greatly de-
pending not only on the type of content but also on char-
acteristics of the particular application where the content is
shared. For example, mechanisms employed by the applica-
tion, such as search and recommendation, social links among
users, and even elements of the application that might favor
the visibility of some objects over the others, may affect how
content popularity evolves.

We here analyze the popularity dynamics of an increas-
ingly popular type of UGC, namely Foursquare micro-reviews,
also called tips, estimating the popularity of a tip at a cer-
tain time ¢ by the number of likes it received from posting
time until ¢.

A study of how the popularity of a tip evolves over time al-
lows us to compare tips against other types of content whose
popularity and dissemination dynamics have already been
studied, such as videos [28, 31], photos [6, 34], and tweets
and news articles [32]. Tips have inherent characteristics
that distinguish them from these other types of content and
that might impact their popularity evolution. For example,
tips are associated with specific venues, and thus are visible
to all users that visit the venue, including those that are
drawn to it by other reasons (e.g., other tips). Also, tips
usually contain opinions that might interest others for much
longer periods of time than news and tweets. Thus, tips may
remain live in the system, attracting attention (and likes),
for longer periods.

The present effort also complements prior studies on the
automatic assessment of the helpfulness (or quality) of on-
line reviews, which focused mainly on traditional (longer)
reviews, often exploiting textual features [17, 38]. Unlike
such reviews, tips are more concise (constrained to 200 char-



acters), often containing more subjective and informal con-
tent. Thus, attributes used by existing solutions, particu-
larly those related to the textual content, may not be ade-
quate for assessing the popularity of shorter reviews. More-
over, we are not aware of any prior study that analyzed the
temporal popularity evolution of online reviews.

The study of tip popularity dynamics (as of any other type
of content) can also provide valuable insights into improve-
ments to the system. For example, it can guide the future de-
sign of tip popularity prediction methods [35], which in turn,
can benefit various other services, including content filtering
and recommendation, as well as more cost-effective market-
ing strategies. In the particular context of Foursquare tips,
such predictions can benefit both users and venue owners as
they can react quickly to opinions that may have a greater
impact on decision making. For example, business owners
are able to more quickly identify (and fix) aspects of their
services or products that may affect revenues most.

In this context, we here provide an extensive analysis of
the popularity dynamics of Foursquare tips. Using a large
dataset containing over 10 million tips and 9 million likes
posted by over 13,5 million users, we characterize how the
popularity of different sets of tips evolves over time, and
how it is affected by the social network of the user who
posted the tip (its author). We observe that tips experience
a very slow popularity evolution, compared to other types of
UGC. While news articles acquire most of their comments
within the first day of publication [32] and Flickr photos
obtain half of their views within two days [34], tips take a
couple of months to attract their likes. The social network
of the tip’s author has an important influence on the tip
popularity throughout its lifetime, but especially in earlier
periods after posting. For example, 62% of the likes received
by the most popular tips during the first hour come from the
social network of the user who posted them. This fraction
is even larger for the less popular tips.

We also analyze tip popularity at and around the daily
peak, and assess to which extent the rich-get-richer phe-
nomenon impacts the popularity evolution of tips. We find
that most tips experience their daily popularity peak within
a month in the system. Yet, these peaks usually correspond
to a small fraction of the total popularity, as most likes are
received after the daily peak. Compared to YouTube videos
[4], we observe a weaker presence of the rich-get-richer phe-
nomenon in the popularity evolution of tips, suggesting that
other factors, but the current popularity, may significantly
impact the tip’s future popularity.

Finally, we assess to which extent the future relative pop-
ularity of a set of Foursquare tips can be predicted based
only on their popularity ranking at the prediction time, or,
in other words, to which extent the tip popularity ranking
remains stable over time. To that end, we compare two
prediction strategies: one based solely on the current popu-
larity ranking, and one that exploits a regression model and
a much richer and multidimensional set of features, captur-
ing aspects related to the user who posted the tip, the venue
where it was posted, and its content. Our experimental re-
sults indicate that these features can improve the prediction
accuracy, given that enough training data is available.

The rest of this paper is as follows. We review related work
in Section 2 and describe our Foursquare dataset in Section
3. We analyze the dynamics of tip popularity in Section
4 and tackle the popularity ranking prediction problem in

Section 5. Section 6 offers conclusions and directions for
future work.

2. RELATED WORK

Our work is focused on analyzing the popularity evolu-

tion of Foursquare tips, estimated by the number of likes
received. Previous related efforts can be grouped into: anal-
yses of online content popularity, and methods to assess the
helpfulness of online reviews.
Online Content Popularity. A number of studies on
popularity dynamics were conducted analyzing the role of
the social networks in the spread of news, videos [7, 20, 4],
images [6] and tweets [20, 36]. Crane and Sornette [7] de-
scribed four classes (memoryless, viral, quality and junk)
of YouTube videos characterized by how their popularity
evolves over time. The authors defined these classes accord-
ing to the degree of influence of endogenous user interactions
and external events. In contrast, Yang and Leskovec [36]
proposed a clustering algorithm to classify the temporal
evolution patterns of online content popularity, finding six
“curves” that explain the popularity dynamics of tweets and
news documents.

Lerman and Gosh [20] performed an empirical study to
measure how popular news spread on Digg and Twitter.
They observed that the number of votes and retweets ac-
cumulated by stories on both sites increases quickly within
a short period of time and saturates after a day. In con-
trast, Cha et al. [6] showed that popular photos on Flickr,
with popularity estimated by the number of favorite marks,
spread neither widely nor rapidly through the network, con-
trary to the viral marketing intuition. Complementarily,
Borghol et al. [4] assessed the impact of content-agnostic
factors on the popularity of YouTube videos. They focused
on groups of videos that have the same content (clones),
finding a strong linear “rich-get-richer” behavior with the
number of previous views as the most important factor.

Other studies have addressed the prediction of popular-
ity of online content [1, 14, 28, 32]. Bandari et al. [1] and
Hong et al. [14] exploited textual features extracted from
messages (e.g., hashtags or URLS) or the topic of the mes-
sage, and user related features to predict popularity of news
and tweets. Tatar et.al [32] modeled the problem of predict-
ing the popularity of a news article based on user comments
as a ranking problem. Pinto et al. [28] proposed a multi-
variate regression model to predict the long-term popularity
of YouTube videos based on measurements of user accesses
during an early monitoring period. In [23], the authors pro-
posed a unifying model for popularity evolution of blogs and
tweets, showing that it can be used for tail-part forecasts.

Our current effort complements these prior studies by fo-
cusing on an inherently different type of content. Unlike
news, videos and tweets, tips are associated with specific
venues, and tend to be less ephemeral (particularly com-
pared to news and tweets), as they remain associated with
the venue (and thus visible to users) for a longer time. Thus,
the analysis of tip popularity dynamics may lead to new
insights. Also, towards analyzing the stability of popular-
ity ranking over time, we tackle a different prediction task.
While most prior efforts aim at predicting the future popu-
larity of a given piece of content, we here explore strategies
to predict the future popularity ranking of a set of tips.
Quality of Online Reviews. Most previous efforts to au-
tomatically assess the helpfulness or quality of online reviews
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Figure 1: Distribution of Number of Likes per Tip

employ classification or regression-based models. For exam-
ple, Kim et al. [17] used Support Vector regression (SVR)
to rank reviews according to their helpfulness, exploiting
features such as the length and the unigrams of a review
and the reviewers’ ratings. Mahony et al. [26] proposed a
classification-based system to recommend the most helpful
hotel reviews in Trip Advisor using features related to the
user reviewing history and the scores previously assigned to
the hotels. Zhang et al. [38], in turn, found that syntac-
tic features (e.g., number of nouns, comparatives and modal
verbs) extracted from the text reviews are the most effec-
tive predictors for SVR and linear regression to predict the
utility of Amazon reviews. Ghose and Ipeirotis [13] applied
a Random Forests classifier on a variety of textual features
to predict if an Amazon product review is helpful or not.
Hong et al. [15] built a binary helpfulness based system to
classify Amazon reviews using textual features and features
related to user preferences, and used this classification to
rank product reviews. Finally, Momeni et al. [24] developed
a “usefulness” classifier for predicting useful comments on
YouTube and Flickr based on textual features as well as fea-
tures that describe the author’s posting and social behavior.
These prior studies focused on longer reviews, often ex-
ploiting textual features and, in some cases, aiming at a
binary classification of reviews (helpful or not). Instead, we
here tackle the ranking of tips based on the predicted num-
ber of likes. Tips have length constraints which lead users to
write reviews using non-standard textual artifacts and infor-
mal language [3]. Thus, textual features often exploited are
not adequate in our context. Moreover, previous work has
not addressed how the helpfulness as perceived by users (or
popularity) of the reviews evolve over time, as we do here.
The only prior study of tip popularity is a recent work of
ours [35] which proposed regression and classification meth-
ods to predict, at posting time, the popularity level (high or
low) of a given tip at a future time. We here greatly ex-
tend this work by: (1) providing an extensive analysis of tip
popularity dynamics, and (2) tackling a different prediction
task: the ranking of a set of tips based on their predicted
popularity. Ranking and classification tasks support differ-
ent applications. For example, tip ranking supports filtering
and recommendation at a finer granularity (as opposed to 2
popularity levels) which is useful to users and venue owners.

3. FOURSQUARE DATASET

Our experiments are performed on a dataset consisting
of more than 10 million tips posted by 13,5 million users at
almost 16 million different venues. This dataset was crawled
from Foursquare using the system’s API from August to
October 2011.

Figure 1 shows the complementary cumulative distribu-
tion of the number of likes received by each tip. The distri-
bution is highly skewed, and only 34% of the tips received
at least one like. As discussed in [35], this distribution, as
the distributions of numbers of tips per user, likes per user,
and tips per venue, are heavy tailed.

For the sake of analyzing tip popularity dynamics, we
group tips with at least one like by breaking their popu-
larity distribution into 10 slices, each one containing tips
whose popularity fall into a certain range of the distribu-
tion'. For example, slice 0-10% contains the top-10% most
popular tips, while slice 10%-20% contains the tips whose
popularities fall between the 10" and 20" percentile of the
popularity distribution. This partitioning is the same used
in [34] for analyzing Flickr photos, since it is more balanced
and less biased towards the more popular tips. Table 1 shows
the number tips as well as total number of likes per slice.

Table 1: Distribution of Likes for Groups of Tips

Slice # of | Total # | % Social | Group
Tips | of Likes Likes
0-10% 23,746 202,804 30.8% Gy
10-20% 23,746 72,824 48.4% Go
20-30% 23,746 47,492 49.0% G
30-40% 23,746 47,492 49.0% G
40-50% 23,746 24,163 48.2% [en
50-60% 23,746 23,746 49.1% Ga
60-70% 23,746 23,746 48.5% Gs
70-80% | 23,746 23746 482% | G
80-90% 23,746 23,746 48.5% G4
90-100% || 23,750 23,750 48.4% G4

We also examine the fraction of likes coming from the
social network (friends and followers) of the user who posted
the tip (i.e., the tip’s author). Table 1 shows the percentages
of likes coming from the social network, referred to as social
likes, for tips in each slice. We note that for all slices but
the first one, almost half of the likes received by tips come
from the user’s social network, highlighting the importance
of friends and followers to the popularity of those tips. In
contrast, for the most popular tips, the fraction of social likes
is smaller (31%), suggesting that most likes probably come
from venue visitors. We further analyze the importance of
the social network to tip popularity in Section 4.2.
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Figure 2: Distribution of Tip Popularity over Time

We aggregate the slices into 4 major groups, as shown in
Table 1. Groups 3 and 4 contain tips that received, on av-
erage, 2 and 1 likes, respectively. We analyze tip popularity

'Note that we exclude tips with no likes from these slices.
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Figure 3: Distribution of Percentage of Likes Received During the First Month after Posting Time

separately for each slice. However, as the same conclusions
hold for tips in different slices of the same group, we present
results for each group only.

4. DYNAMICS OF TIP POPULARITY

In this section, we analyze the dynamics of tip popularity
in Foursquare. We start by discussing how the number of
likes of a tip evolves over time (Section 4.1), and how it is
affected by the social network of the tip’s author (Section
4.2). We then analyze tip popularity at and around the peak
(Section 4.3), and assess to which extent the rich-get-richer
phenomenon is present in the popularity evolution of tips
(Section 4.4).

4.1 Popularity Evolution

We start by analyzing how the popularity of tips in each
group of slices defined in Table 1 evolves over time. We fo-
cus on the first six months after the tip is posted. Figure 2a
plots the fraction of unique tips in each group that received
at least one like within the first x hours (h), week (w) or
months (m) after posting time. We observe that within the
first 48 hours, 29% of the tips in the most popular group
(G1) received at least one like, while in one and two months
this fraction grows up to 80% and 92%, respectively. That
is, 20% of the top-10% most popular tips take more than one
month to attract their first likes. This slow popularity evo-
lution is even more clear for tips in the other (less popular)
groups. Figure 2b shows the cumulative fraction of the total
number of likes (as observed in our dataset) received by tips
in each group over time. Note that, for all four groups, be-
tween 41% and 48% of the likes are received after 2 months
since posting time.

1.0 e
08/
=0.6
N A 10%
Toa ;) 50%
Ny 70%
0.2/ 7 - 90%
o — 100%
0.

5 10 15 2(
Number of manths x

Figure 4: Distribution of time until x% of total likes are
received for the most popular tips (G1)

Thus, in general, tips tend to live long in the system, pre-
senting a gradual increase of interest. Indeed, tip popularity

evolves much more slowly compared to other types of con-
tent, even for tips that end up becoming very popular. For
example, news articles have a very short lifespan [32] acquir-
ing all comments within the first day of publication, while a
large fraction of views of Flickr photos are generated within
the first two days after upload[34]. In contrast, we here find
a significant fraction of tips that can take quite months to
attract likes and become popular. This longer lifecycle was
also observed in the acquisition of fans by Flickr photos [6].

We further analyze the popularity evolution of tips in each
group by showing in Figure 3 the curves of the 10" and 90"
percentiles as well as the median of number of likes over time
during the first one month since the tip was posted. For all
groups, the 10*" percentile curve is equal to zero through
the whole period, implying 10% of the tips in each group
did not receive any like within the first month in the system.
Around half of the most popular tips (G1) starts receiving
likes after 7 days since posting time, achieving only 20% of
the total likes after a month. For the second most popular
group (G2), we note half of the tips start receiving likes after
15 days while tips in group G3 and G4 take more than 20
and 30 days, respectively, to start attracting likes.

We also analyze the amount of time it takes for a tip to
receive at least X% of their total likes, for X equal to 10,
50, 70, 90 and 100%. Figure 4 shows those distributions for
the most popular tips (G1). Note that 57% of the tips in
this group take at least 2 (3) months to reach 50% (70%)
of its total observed popularity. In sum, many tips do take
a few months to attract likes, even those that end up being
the most popular ones.

4.2 The Role of the Social Network

The popularity evolution of a tip is directly related to
how users find the tip: either by visiting the venue page
or through activity notifications from their friends and fol-
lowees. Thus, the number of likes received by a tip depends
on a combination of its visibility and interest by the social
network of the tip’s author and by others.

In this section, we discuss the role of the social network
of the tip’s author on its popularity evolution. To that end,
we revisit Figure 2b by separating likes coming from the
author’s social network (social likes) and likes coming from
other users (non-social likes). Figure 5 shows the cumulative
fraction of likes, in both categories, for tips in each group.
Note that the author’s social network has an important in-
fluence on the popularity of a tip throughout its lifetime: at
least half of all likes received in any period of time (up to
6 months since posting) come from the author’s social net-



100 ) ; 100 ) .
I social N I social
80 [ non social 80 [ non social
3 )
= X
— 60 — 60
8 3
S ]
= 40 w 40
o o
X X
20 20
c & & B 1 H w5 @ B0 i

100 ) ‘ 100 )
N social N N social
80 [ non social 80 [ non social
] i
X X
— 60 — 60
8 8
S S
« 40 w 40
o o
X X
20 20
s w8 00 i i i i i i

1h 3h 6h 12h?24h48h 1w 1m 2m 6m

(a) (b)

1h 3h 6h 12h24h48h 1w 1m 2m 6m

Th 3h 6h 12h?24h48h 1w 1m 2m 6m

Figure 5: Social vs. Non Social Likes: Distribution of Percentage of Likes Received over Time

90th Percentil

1.0 1.0 1.0
[ /’
0.8 Los 0.8
= .
v10.6 ©0.6 J10.
% < Median 306
%04 50.4 ) &0.4
© 10th Percentil
'S
0.2 02f ... s 0.2
0050 100 150 200 25¢ %% 5 10 15 20 35 30 %85 1.0

# of days from posting until peak

(a) Time Until Peak

Days after peak day

(b) % Likes At/After Peak

02 04 06 0.8
Fraction of likes before peak

(c) % Likes Before Peak
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work, for tips in all four groups. This fraction is higher in
the earlier periods after posting time, and tends to decrease
with time as the tip becomes visible to other users (e.g.,
venue visitors). For example, the social likes correspond to
62% of all likes received by the most popular tips (G1) in the
1% hour since posting time, decreasing to 54% after 6 hours.
Interestingly, the social network seems to have an even more
important role for the least popular tips. For example, for
tips in G2, G3 and G4, the social likes correspond to more
than 70% of all likes received by a tip in the first week in
the system.

These results indicate that the social network of a tip’s
author may be responsible for boosting its popularity, par-
ticularly during early periods after posting. As consequence,
they also suggest that it might be possible for a recently
posted tip to become more popular than other tips that had
already attracted many likes and thus gained visibility in
the system.

4.3 Popularity Peak

We further analyze tip popularity evolution by focusing
on the popularity peak. Considering the daily popularity
time series of each tip, we define the peak k,, of tip p; as
the largest number of likes received by p; on a single day.
We then compute the time (in number of days) it takes for p;
to reach is popularity peak?. We also measure the fraction
of the total likes p; received at, before and after the peak.
For this analysis we focus on the most popular tips (G1).

Figure 6a shows the cumulative distribution of the time
until the popularity peak. Around 18% of the tips experience
its popularity peak one day after posting time, and around
72% of the tips reach their popularity peak within a month
since posting. This implies that most tips do not take too

. likes.

2In case of ties, we pick the first day with k,,

long (less than a month) to reach its daily popularity peak.
Yet, we observe that, for many tips, this peak represents
only a small fraction of the total observed popularity. This
is illustrated in Figure 6b, which presents the cumulative
distributions of the median, 10" and 90" percentiles of the
fraction of likes received at and after the peak day. As a
complement, Figure 6¢ shows the cumulative distribution
of the fraction of likes received before the peak day. Like
observed for other types of online content (e.g., videos and
news [7, 28, 32]), some tips do experience heavy bursts of
popularity on the peak day: for 10% of the tips, the daily
peak corresponds to at least 67% of their total popularity
(see 90'" percentile curve in Figure 6b).

However, for half of the tips (median curve), the peak cor-
responds to only 25% of all likes. Moreover, Figure 6¢ shows
that most tips (82%) receives their first like in the peak
day, and only a very small fraction of the tips (3.3%) re-
ceive more than 50% of the likes before the peak day. Thus,
a large fraction of tips receive most of their likes after the
peak day, suggesting, once again, that tips experience a slow
popularity evolution.

Contrasting our findings with the acquisition of fans by
Flickr photos [6], we observe that both fans and likes are
acquired after a longer period of time after posting/upload,
compared to, for example, tweets. Also, as in [6], we do not
observe an exponential growth on popularity as suggested
by existing models of information diffusion [33]. However,
comparing our results (particularly Figure 3), with similar
ones presented in [6], we find that tip popularity seems to
increase even more slowly than photo fan acquisition. For
example, we do not observe a period of steady linear popu-
larity growth during the first month, as observed for photos.

Th 3h 6h 12h24h48h 1w 1m 2m 6m



4.4 The Rich-Get-Richer Phenomenon

Most online systems offer their users the option to see dif-
ferent pieces of content (or objects) sorted by their posting
dates or by some estimate of their popularity. The adopted
strategy may have a direct impact on the visibility of dif-
ferent objects. For example, by displaying objects sorted in
decreasing order of popularity, a website may contribute to
further increasing the popularity of an object that is already
very popular, a phenomenon that is known as rich-get-richer
[2]. Indeed, prior work has already suggested that popu-
larity of some types of online content (e.g., video) evolves
according to this phenomenon [4, 31].

Foursquare tips may be sorted by the number of likes (in
increasing/decreasing order) or by posting time, but only
the former is available in the mobile application. Thus, we
here assess to which extent the rich-get-richer phenomenon
can explain tip popularity evolution.

The rich-get-richer, or preferential attachment, models de-
fine that the probability of a tip p; experiencing an increase
in popularity is directly proportional to p;’s current popular-
ity [2]. As in [4], we consider a model where the probability
that a tip p; with [, likes receives a new like is a power law,
i.e., Prob(p;) o< ly,.

We analyze the rich-get-richer effect using a univariate
linear regression to observe the impact of the number of
likes of a tip after a monitoring time ¢, (predictor variable)
in the total number of likes of the tip at target time ¢, + 9
(response variable), using log-transformed data. The case
of a=1 corresponds to a linear preferential selection [2], and
a > 1 implies in a case where the rich gets much richer with
time. The sublinear case (o < 1) results in a (stretched)
exponential popularity distribution, which reflects a much
weaker presence of the rich-get-richer effect [19]. We perform
this analysis separately for tips in each group as well as for
all tips.

Table 2 shows the coefficients « (along with 95% confi-
dence intervals) and the coefficients of determination R? of
the univariate regressions performed using various predic-
tor and response variables, for tips in G1 as well as for all
tips. For all considered cases, we find a < 1, which indi-
cates an exponential popularity evolution that could result
in a much more even popularity distribution than suggested
by the pure (linear) rich-get-richer dynamics. This has also
been observed for a set of different YouTube videos [4], al-
though the values of « found in that case (0.93 on average)
are much larger than those we observed in all considered sce-
narios. This suggests that the rich-get-richer effect might be
weaker in Foursquare tips than in YouTube videos, even con-
sidering all tips jointly. This also implies that other factors
might strongly impact tip popularity. Indeed, as discussed
in Section 4.2, the social network of the tip’s author is re-
sponsible for a significant fraction of the likes received by
the tip, and thus might contribute to reduce the impact of
the rich-get-richer effect.

The univariate regression model has also been proposed as
a means to predict the future popularity of YouTube videos
and Digg stories [31]. This prediction strategy was moti-
vated by a strong linear correlation observed between the
(log-transformed) popularity of objects and earlier measures
of user accesses (also log-transformed). For example, the
authors observed Pearson linear correlations above 0.90 be-
tween the popularity of Digg stories measured at 1 hour and
at 30 days after upload as well as between the popularity

Table 2: Rich-get-richer Analysis: coefficients o (and 95%
confidence intervals) and R? of linear regressions from (log)
popularity in ¢. to (log) popularity ¢, + 0.

Tips in G1 All tips

tr+d | tr @ R o R
1mo | 1hr | 0.799 £ 0.033 | 0.09 | 0.749 + 0.011 | 0.07
1mo | 1day | 0.763 £ 0.016 | 0.26 | 0.822 + 0.006 | 0.21
1mo | 1wk | 0.838 £ 0.009 | 0.57 | 0.887 + 0.004 | 0.49
2mo | 1day | 0.594 4+ 0.017 | 0.17 | 0.673 £ 0.007 | 0.13
2mo | 1wk | 0.681 4+ 0.011 | 0.40 | 0.753 £ 0.004 | 0.31
2mo | 1 mo | 0.834 4+ 0.006 | 0.74 | 0.856 + 0.003 | 0.65
6 mo | 1day | 0.309 &+ 0.015 | 0.07 | 0.397 £ 0.007 | 0.05
6mo | 1wk | 0.394 + 0.010 | 0.20 | 0.489 £ 0.005 | 0.16
6 mo | 1 mo | 0.504 &+ 0.008 | 0.40 | 0.562 £ 0.003 | 0.33

of YouTube videos measured at 7 and 30 days after upload.
These correlations are stronger than those observed for tips.
For example, the R? value of the regression from popularity
in 1 week to popularity in 1 month is only 0.57 (for tips
in G1) and 0.49 (for all tips), which correspond to linear
correlations of 0.75 and 0.7, respectively®. For shorter mon-
itoring periods ¢, or longer values of §, the R? values are
much lower, indicating that popularity at time ¢, can only
explain a small fraction of the total popularity acquired by
the tip at ¢, + 6.

This result motivates the development of more sophis-
ticated prediction models, such as those proposed in [35],
which exploit other factors (e.g., characteristics of the user
who posted the tip, the venue where it was posted and its
content) to estimate the future popularity of a given tip.
Yet, a different prediction task consists of estimating the
ranking by popularity of a given set of tips at a future time.
This is a possibly easier task, as it requires predicting not
the actual popularity (or popularity level, as in [35]) of a tip
but rather its relative popularity according to others. The
prediction of popularity ranking supports various applica-
tions such as tip filtering and recommendation. Next, we
evaluate the stability of tip popularity ranking over time,
and assess to which extent the current popularity of a set of
tips can be used to predict their future popularity ranking,
and to which extent such prediction can be improved by also
exploiting other features.

5. PREDICTING THE FUTURE

In the previous section, we observed that tips have longer
lifespans than other types of online content (e.g, tweets, pho-
tos), and that tip popularity dynamics may be more strongly
influenced by factors other than simply their current pop-
ularity (e.g., social network). We now further analyze this
issue by assessing to which extent the relative popularity of
a set of Foursquare tips can be predicted using only their
popularity at prediction time, and to which extent the use
of other attributes may improve prediction accuracy. In [35],
we tackled the problem of predicting the popularity level of
a given tip at posting time, formulating it as a classification
task, and showed the importance of taking into account at-
tributes of both the user who posted the tip and the venue
where the tip was posted for that task.

3The R? is the square of the linear correlation between pre-
dictor and response variables.



We here focus on a different task, modeling the prediction
as a ranking task, which aims at ranking a group of tips
based on their predicted popularity at a future time. The
ranking of the most popular tips helps to summarize a large
set of tips focusing on the most popular ones for a scenario
of interest (e.g., a city, a venue), instead of looking at the
tips individually. By focusing on this task, we complement
not only our prior prediction effort [35] but also our current
analyses of tip popularity dynamics. Our ultimate goal is
to assess to which extent the popularity ranking of a group
of tips remains stable over time, and thus can be used to
predict the ranking at a future time.

We first define our prediction task (Section 5.1), present
the ranking strategies (Section 5.2) and the set of features
(Section 5.3) used. We then discuss our experimental setup
(Section 5.4) and results (Section 5.5).

5.1 Popularity Prediction Task

The problem we tackle can be formally defined as follows.
Given a set P; of tips posted in the previous d time units
(d € (0,00)) that meet a certain criterion ¢, rank those tips
according to their expected popularity, measured in terms
of the total number of likes they will receive up to time
t, + 0, where t, is the time when the ranking is performed.
Criterion ¢ may be, for example, tips posted at venues of a
given city and/or category (e.g., Food), or even at a given
venue. An empty criterion implies in no further constraint
on set Py.

Note that different tips in P; may have been posted at
different times within the time window [¢, — d,¢,]. Thus,
we associate a posting time ¢,, with each tip p; in Py. We
also consider sets V' and U of venues and users, respectively,
where u; € U is the user who posted p;, and v; € V is
the venue where it was posted. For evaluation purposes,
we consider that each tip p; € Py is labeled with a numeric
value that represents the number of likes received by p; in the
time interval [tp,,t. + 0] (i.e., the true popularity acquired
by p; up to t» 4+ 9), as discussed in Section 5.4. Each entity
in Py, U and V has a set of features F' associated with it.
Collectively, the features associated with p;, u; and v; are
used as inputs to a ranking model (see below) representing
the given tip instance. The values of these features for a tip
p; are computed considering all the information available up
to the time when the ranking is performed (¢,).

The choice of criterion c allows for different scenarios where
the tip ranking problem becomes relevant. One scenario is
that of a user who is interested in quickly finding tips with
greater potential of becoming popular, and thus of contain-
ing valuable information, posted in any venue in her home
city. A different scenario is that of a user who is partic-
ularly interested in retrieving tips regarding restaurants in
her home city (or neighborhood). A business owner can also
benefit from a ranking restricted to tips posted at venues of
a specific category to get feedback about her business and
about her competitors. Also, changes in the current and fu-
ture tip popularity rankings can help with indirect analysis
such as the influence of certain users whose tips got pro-
moted in the future and the potential market share gains or
losses for certain venues or venue categories.

5.2 Ranking Strategies

Recall that our goal is to assess to which extent using
only the tips’ current popularity ranking is enough to accu-

rately predict their ranking at a future time. Thus, we here
consider two ranking strategies. The first approach simply
uses the ranking of the tips at prediction time (¢,) as an
estimate of their ranking at the future time ¢, 4+ §. If the
popularity ranking is stable, this approach should lead to
perfect predictions. Thus, by analyzing the effectiveness of
this approach we are indirectly assessing the stability of tip
popularity ranking. We refer to this approach as baseline.

In order to assess the potential benefit of exploiting other
factors to this prediction task, we consider a second ap-
proach that combines multiple features. To that end, we
rely on an ordinary least square (OLS) multivariate regres-
sion model to predict the popularity of each tip p; in Py
at time ¢, + 6 and then rank the tips by their predictions.
In this approach, the logarithm of the number of likes of
a tip pi, R¢, is estimated as a linear function of k£ predic-
tor variables or features (presented in the next section), i.e.:
Rt = Po + fix1 + Bex2 + -+ Brxr. Model parameters [;
(1=0..k) are determined by the minimization of the least
squared errors [16] in the training data, as will be discussed
in Section 5.4.

We note that various other algorithms could be used to
exploit multiple features to predict the popularity ranking
of a set of tips. Indeed, we did experiment with more sophis-
ticated regression algorithms (notably Support Vector Re-
gression (SVR) with radial basis function kernel (8], which
handles non-linear relationships) as well as with a state-of-
the-art learning-to-rank algorithm called Random Forests
[5]. However, when applied with the same set of features,
their results are similar (or even worse in some cases) than
those obtained with the simpler OLS regression®. Thus, in
order to avoid hurt readability, we present only OLS results.

5.3 Features

We consider a large set of features related to the three
central entities which, intuitively, should be related to the
popularity of a tip: textual content, user (i.e., tip’s author),
and venue. Specifically, we represent each tip p; by k = 53
features related to the user u; who posted p;, the venue v;
where p; was posted, and to the content of p;. The values of
these features are computed at the time when the ranking is
performed (¢,). Table 3 shows the complete set of features.
We have exploited most of these features for classifying a tip
into low or high (predicted) popularity [35], although some
features are novel and specific to the task of ranking multiple
tips, as further discussed below. Some of these features, such
as average number of likes received by all previous tips of
user u; and size of the tip p;, have also been previously
explored to analyze the helpfulness of online reviews [17, 38]
and predict the ratings of (long) reviews [22, 29].

User features describe the tip’s author past behavior and
degree of activity in the system. Features related to the
numbers of tips previously posted, number of likes received
or given, and her social network are considered. Similarly,
venue features capture the activity at the venue or its visi-
bility to other users. For example, a tip may have a higher
chance of becoming popular if it is posted at a venue that has
more visibility. We also try to capture the strategy adopted
by Foursquare to display the tips posted at the same venue,

“We note that we also found OLS to be as good as (if not
better than) SVR when applied to the (different) task of
predicting the popularity level of a given tip [35].
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which may also impact the visibility of a tip by including
the position of the tip in the rankings of tips of the venue.

We also consider features related to the tip’s content.
Numbers of characters and words, number of URLs or e-
mails, as well as the fractions of words of each grammati-
cal class are included. The latter are computed using the
Stanford Part of Speech tagger®, which employs probabilis-
tic methods to build parse trees for sentences aiming at rep-
resenting their grammatical structure, as in [21, 22]. We
also include three features to represent sentiment scores ob-
tained from SentiWordNet [9]. SentiWordNet is a lexical
resource for supporting opinion mining by assigning three
scores (positive, negative and neutral) to each synset (set of
one or more synonyms) in the WordNet lexical database of
English [11]. The scores are in the range of [0,1] and sum
up to 1 for each word. We compute a positive, a negative
and a neutral score for each tip by taking the average of the
respective scores for each word in the tip that has an entry
in SentiWordNet, as in [29]. To handle negation, we add
the tag NOT to every word between a negation word (e.g.,
“no”, “didn’t”) and the first punctuation mark following it
[27], which implies that the positive scores of these words are
converted to negative ones. Since some of our textual fea-
tures are computed based on tools that were developed for
English language only, we used a Linux dictionary (myspell)
to filter tips with fewer than 60% of the words in English
out from our datasets.

Since different tips in set P; may have been posted at
different times, we also add the age of the tip (in number
of hours since posting time ¢,,) and the number of likes it
has already received. These features are novel and have not
been exploited in [35].

Tips can also be evaluated for their credibility as source of
information. Fogg et al. [12] described credibility as a per-
ceived quality composed by multiple dimensions, and showed
that four website design elements — Real- World Feel, Ease
of Use, Ezxpertise, and Trustworthiness — impact credibil-
ity. Some of our features are based on these elements, as
indicated in Table 3.

5.4 Experimental Setup

We build two scenarios to evaluate the prediction strate-
gies: ranking all tips recently posted at venues located in
New York, the city for which we have the largest number of
tips, and ranking tips posted at venues of a specific category
(Food) (also the largest category) located in New York ©. In
both scenarios, we consider only tips posted in the previous
month (i.e., d = 30 days), and produce rankings based on
their predicted popularity ¢ days later. We compare the ef-
fectiveness of both prediction strategies for various values of

Swww-nlp.stanford.edu/software/corenlp.shtml

5Other scenarios, such as ranking tips posted at a venue,
are also possible. However, the highly skewed distribution
of tips per venue leads to severe data sparsity, which, in turn,
poses a challenge to the training of the regression model.

Table 3: Features Used by the OLS Regression Model

Type [ Description

Total # of tips posted by the user

Number of of venues where the author posted tips

User Total # of likes received by previous tips of the author':¢
Total # of likes given by the tip’s author

Number of friends or followers of the author

Ratio of all likes received by the author coming from his
friends and followers

Total # of tips posted by the author’s social network®
# likes given by author’s social network (in any tip)*
Fraction of all likes received by the tip’s author that are
associated with tips posted at the same venue of the cur-
rent tip but after it was posted!

User category defined by Foursquare

Total # of mayorships won by the author®

If the author was mayor of the venue where tip was posted®

Total # of tips posted at the venue®
Total # of likes received by tips posted at the venue®”
Venue | ¢ # of checkins at the venue®

Total # of unique visitors®

If the tipped venue was verified by Foursquare®

Venue category defined by Foursquare

Position of the tip in the tips of the venue sorted by #
of likes in ascending order

Position of the tip in the ranking of the venue sorted by
# of likes in descending order

Position of the tip in the ranking of the venue sorted by
date in ascending order

# of Tikes received until time ¢,

Hours since posting until time ¢,

Length of the text of the tip, in characters

Length of the text of the tip, in number of words

# of URLSs or emails address contained on a tip
Fraction of nouns in the tip

Fraction of adjectives in the tip

Fraction of adverbs in the tip

Fraction of comparatives in the tip

Fraction of verbs in the tip

Fraction of non-English words in the tip

Fraction of numbers in the tip

Fraction of superlatives in the tip

Fraction of symbols in the tip

Fraction of punctuation in the tip

Average positive score over all words in the tip

Average neutral score over all words in the tip

Average negative score over all words in the tip

Content

! Median, average and standard deviation are also included.
? Based on Fogg’s design element Expertise.

b Based on the Fogg’s design element Trustworthiness.
¢ Based on the Fogg’s design element Real-world feel.

0. Table 4 summarizes these two datasets, presenting the
total numbers of tips, venues and users in each of them (the
two rightmost columns are discussed below).

Unlike the baseline, the regression model needs to be pa-
rameterized. Thus, our experimental setup consists, in gen-
eral terms, of dividing the data into training and test sets,
using the former to learn the model parameters and the lat-
ter to evaluate the learned model. We split the tips chrono-
logically into training and test sets, rather than randomly,
to avoid including in the training tips that were posted after
the tips for which predictions will be performed (test set).
Figure 7 illustrates this chronological splitting used. For
comparison purposes, we also evaluate the baseline only in
the test sets.

The training set is composed of all tips posted from De-
cember 1% to 30", 2010. These tips are used to learn the
(regression-based) ranking model. We assume the ranking
of the training instances is done on December 30*", and thus
use the total number of likes received by these tips at the
target date (i.e., § days later) as the ground truth to build
the regression model.



Table 4: Overview of Datasets and Scenarios of Evaluation

Scenarios | # of tips | # of users | # of venues

# of tips in training sets | Avg # of tips in test sets

NY 169,393 55,149 31,737
NY Food 81,742 32,961 8,927

516 4,697.87
244 2,365.0

Recall that the distribution of number of likes per tip is
highly skewed towards very few number of likes (Section 3),
which might bias the regression model and ultimately hurt
its accuracy’. Thus, we adopt the following approach to re-
duce this skew. We group tips in the training set according
to a threshold 7 for the number of likes received by the tip
at the target date. Two classes are defined: all tips with
at least 7 likes are grouped into the high popularity class,
and the others are grouped into the low popularity class.
We then build balanced training sets according to these two
classes by performing under-sampling: we randomly select n
tips from the low popularity class, whereas n is the number
of tips in the high popularity class®. We repeat this process
r times, thus building multiple (balanced) training sets. We
experiment with various values of 7 finding best results with
7=>5. This was also the threshold used in [35] to predict the
popularity level of a tip at a future target date. However,
whereas in that work the classification task was the core of
the prediction strategy, here it is employed simply for evalu-
ation purposes (i.e., for balancing the training set). We also
use r=>5 replications, which allows us to assess the variability
of our results. We note that this under-sampling approach
(and threshold 7) is applied only to the training set. The
test sets (described next) remains unchanged (imbalanced).
Table 4 (5 column) presents the total number of tips in
the training sets for each scenario.

We then use tips posted from December 31% until Febru-
ary 27" 2011 to build 30 different test sets, as follows. Since
tips can be continually liked, the predicted ranking may be-
come stale. Thus, we evaluate the effectiveness of the rank-
ing methods by using them to build a new ranking by the
end of each day (starting on January 29°"), always consid-
ering the tips posted in the previous d = 30 days. Thus, 30
test sets are built by considering a window of 30 days and
sliding it 1 day at a time, 30 times. Table 4 (6" column)
shows the average number of tips in each test set®. For each
test set, we report average results produced by all 5 training
sets, and corresponding 95% confidence intervals.

For both training and test sets, the features of each tip are
computed using all data collected up to the time when rank-
ing is performed (), including (for the regression model)
information associated with tips posted before the begin-
ning of each training set. Moreover, feature values are com-
puted by first applying a logarithm transformation on the
raw numbers to reduce their large variability, and then scal-
ing these results between 0 and 1. We note that, in order
to have enough historical data about users who posted tips,
for both training and test sets, we consider only tips posted
by users with at least five tips. We determine the best pa-

"Great imbalance in the training set, as observed in our
datasets, is known to have a detrimental impact on the ef-
fectiveness of classification and regression algorithms.

8For illustration purposes, we note that the original training
set for the NY scenario had 5,225 tips in the low popularity
class and only 258 tips in the other (smaller) class.

9The results are qualitatively similar when ranking is per-
formed at lower frequencies, once each k days (k > 1).

rameters of the regression models by minimizing the least
squared errors of predictions for the candidate tips in the
training set.
We evaluate each ranking method by computing the Kendall

7 rank distance of the top-k tips in the rankings produced
by it (i.e., Kr@k). Since we are comparing two top-k lists
(m1 and 72), we use a modified Kendall 7 metric [18], that
uses a penalty parameter p, with 0 < p < 1, to account for
the distances between non-overlapping tips in 7 and 7.
The modified Kendall 7 is defined as follows:

Kr(r1,m2)Qk = (k— |1 N)((2+p)k —plmi N +1—p)+

S kiglrm)— > n@ - > mG) (1)

1€ET;NT2 1€ET] —T2 1ETY —T1

where 71(i) or 72(4) is the position in the rank of the ith
item and Iii’j(Tl,Tg) =0if Tl(i) < Tl(j) and Tg(i) < T2(j),
or ki,j(T1,7T2) = 1, otherwise. K7@k ranges from 0 to 1, with
values close to 1 indicating greater disagreement between the
predicted ranking and an ideal ranking defined by the actual
number of likes accumulated by each tip until ¢,46 (i.e., the
tip’s label).

5.5 Experimental Results

We discuss our results by first assessing how the popular-
ity ranking of tips varies over time (Section 5.5.1), and then
comparing the prediction based only on the current ranking
(baseline) and the regression-based prediction that uses a
richer set of features (Section 5.5.2).

5.5.1 Ranking Stability

Using the experimental setup described in Section 5.4, we
investigate the differences between the true popularity rank-
ings of tips at times ¢, and ¢, + §, for various values of §.
To that end, we quantify the correlation between these two
rankings using Kendall’s 7 coefficient. Recall that the closer
to 1 the value of K7 is, the larger the disagreements between
both rankings.

Figure 8 shows the K7@k for each day in the test fold of
both NY and NY Food scenarios, for values of § varying from
1 to 5 months. We focus on the top-10 most popular tips
(k=10). Focusing first on the NY scenario, Figure 8a shows
that the disagreements between both rankings increase as we
increase 0. Indeed, for a fixed test day (fixed set of tips), the
K7@10 varies from 0.26 to 0.72 as we increase ¢ from 1 to 5
months. Moreover, we can still observe some discrepancies
even if we predict for only one month ahead in the future
(6=1 month). Indeed, as discussed in Section 4, over 40% of
the likes of most tips arrive after two months since posting
time. Since the tips in each test fold are at most 1 month
old, most of them are still at very early stages of their pop-
ularity curves, and the popularity ranking, even considering
only the top-10 tips, will change. Very similar results were
also observed for the NY Food scenario, as shown in Figure

OWe use p = 0.5 which was recommended by [10].
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Figure 8: Correlations between the top-10 most popular tips
at time ¢, and at time ¢, + 6 (¢ in months).

8b, although the values of K7@10 (and thus the disagree-
ments between current and future rankings) seem somewhat
smaller on some days, particularly for larger values of §.

Examining the top most popular tips in each test fold for
the NY scenario, we found that some of them referred to
special events occurring in the city. These tips exhibit a
somewhat different pattern: all of their likes are received
until the event occurs. Thus, once they reach the top of
the ranking, they tend to remain there for a while, which
contributes to lower the discrepancies between predicted and
future rankings.

Overall, these results corroborate our discussion in Section
4, and suggest that there are some noticeable discrepancies
between the current and the long-term popularity of tips
(even within the top-10 most popular tips). Thus, models
that use only early measurements may lead to inaccurate
predictions not only of popularity measures (as discussed in
Section 4.4) but also of popularity ranking. Next, we assess
to which extent such ranking predictions can be improved
by exploiting a multidimensional set of predictors.

5.5.2 Prediction Results

‘We now compare the prediction results using only the pop-
ularity ranking at ¢, (baseline) against the prediction pro-
duced by using the OLS regression model jointly with the
features defined in Section 5.3. Figure 9 shows the average
daily K7@10 along with 95% confidence intervals for the two
ranking methods and each value of §, for the NY scenario.
For § equal to 1 month, both methods produce 7@k results
below 0.4, showing a high correlation between the predicted
ranking and the true popularity ranking at ¢, + 6. However,
the OLS regression model produces results that are signif-
icantly better (lower K7@10) than those produced by the
baseline in 67% of the days (reductions in up to 69%).

Moreover, as we predict further into the future, increas-
ing 6 to 2, 5 and 6 months, we observe increasing values
of K7@10 for both methods. This implies that the dis-
crepancies with the true ranking tend to increase as both
methods start using outdated and possibly inaccurate data.
Yet, the gap between the baseline and the OLS regression
model tends to increase (reaching up to 65% for ¢ equal
to 6 months). This result shows that taking factors other
than simply the current popularity of the tips into account
is important and can improve prediction accuracy of the
long-term popularity ranking.

We note, however, that there are some cases where the
baseline performs as good as the more sophisticated OLS
model. These specific cases are explained by the following:

some of the most popular tips (which referred to real events),
acquired most of their likes very early on before time ¢, (be-
fore the event). Thus, they quickly reached top positions of
the ranking, remaining there until ¢,+4J. For such cases, the
use of other features produces only marginal improvements
in prediction.

Figure 10 shows similar results for the NY Food scenario.
In this case, we see smaller differences between both meth-
ods. In most cases, the baseline is just as good as the more
sophisticated OLS method, although the use of the extra
features does provide improvements (up to 30%) in some of
the days for large values of §. These results reflect the higher
stability of the tip popularity ranking in the NY Food sce-
nario (Section 5.5.1). Moreover, as shown in Table 4, the
number of tips in the training set of this scenario is almost
half of that used in the NY scenario, which also impacts the
accuracy of the regression model. That is, the benefits from
using more features are constrained by the limited amount
of data to train an accurate model*

These results highlight that the accurate popularity pre-
diction of tips is a challenging task. Although tip popularity
ranking remains roughly stable over short periods of time
(e.g., 1 month), there are still significant discrepancies that
occur in the top of the ranking. Moreover, the use of other
features related to the tip’s author, venue and tip’s content
can improve prediction accuracy to some extent, provided
that enough information about the features is available to
train the model.

Finally, we sorted the features used by the OLS method
using the Information Gain feature selection technique [37].
We found that the most important feature is, unsurprisingly,
the current popularity of the tip. It is followed by features
related to the user’s popularity, such as the total number of
likes in previous tips. Features related to the social network
of the tip’s author (number of followers and friends, and
average number of tips posted by them) are also in the top-
10 most important features, consistently with our results in
Section 4.2.

The most important venue feature is the total number of
check-ins, followed by the current position of the tip in the
ranking of tips of the venue sorted by increasing number of
likes. However, these features, like the other venue related
features, are much less important than the user features,
occupying only the 24" and 25" positions of the ranking.
Similarly, the most important content feature is the number
of characters in the tip, but it occupies only the 21%* position
of the ranking. Thus, like observed in [35] and unlike in
other efforts to assess the helpfulness of online reviews [17,
38], textual features play a much less important role in the
tip popularity ranking prediction task, possibly due to the
inherent different nature of these pieces of content.

We did test whether multicollinearity exists among differ-
ent predictors, which could affect robustness of the results
of the OLS model. In our analysis, we use two methods:
variance inflation factors (VIF) [30] and tolerance [25]. For

each predictor variable j, VIF; = ﬁ, where R? is the co-
J

efficient of determination from a regression using predictor j
as response variable and all the other predictors as indepen-
dent variables. A VIF value greater than 10 is a indication

N Recall that we did experiment with other prediction strate-
gies based on SVR and Random Forests, but OLS provided
the best results across all scenarios.
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Figure 10: Effectiveness of Ranking for Varying Target Time ¢.+4d: NY Food Scenario (average and 95% confidence intervals)

of potential multicollinearity problem [30]. The tolerance is
the reciprocal of VIF, and is computed as 1 — VIF. The
smaller the tolerance value (< 0.10), the higher the degree
of collinearity [25]. We compute the VIFs and tolerances
for all features of our OLS model and we found that despite
the strong correlations between some pairs of predictors, re-
moving some of these variables from the model does not have
impact on the accuracy (KT@10).

6. CONCLUSION AND FUTURE WORK

We presented an extensive study of tip popularity dy-
namics using a large dataset collected from Foursquare. Al-
though prior work has tackled the popularity dynamics of
various types of user generated content, we are not aware
of prior temporal analysis of online reviews. We found that
most tips have a slow popularity evolution, acquiring most
of their likes after a few months, and that the social net-
work of the tip’s author plays an important role to draw
attention to the tip, particularly soon after posting time.
We also found that most tips reach their daily popularity
peak within a month in the system, although most of their
likes are received after the peak. Moreover, compared to
other types of content, we observed a weaker presence of
the rich-get-richer phenomenon, indicating a lower correla-
tion between the early and long-term popularities of the tip.
This suggests that the tip popularity prediction may require
more sophisticated models, exploring other factors related
to the tip, besides their current popularity.

We further analyzed this issue by looking into the stabil-
ity of the popularity ranking over time, observing that there
are some noticeable disagreements between the current and
future popularity rankings, even when considering only the
top-10 most popular tips and a time window of only 1 month.
This suggests that predicting the future ranking based only
on the current ranking may not be accurate. We thus inves-
tigated to which extent we can improve such predictions by

using a regression model and exploiting a multidimensional
set of features related to the tip’s author, the venue where
it was posted and its content. Our results show that the use
of these features can improve the prediction accuracy, given
that enough training data is available.

As future work, we intend to analyze the temporal dynam-
ics of user tipping and “liking” activities, and their correla-
tions with tip popularity, and investigate the benefits for pre-
diction of adding new features, particularly geographic re-
lated features, such as the distance between different venues
where a user posts tips.

7. ACKNOWLEDGEMENTS

This research is partially funded by the Brazilian Na-
tional Institute of Science and Technology for Web Research
(MCT/CNPq/ INCT grant number 573871/2008-6), CNPq,
CAPES and Fapemig.



[16]

[17]

[18]

[19]

[20]

REFERENCES

R. Bandari, S. Asur, and B. Huberman. The Pulse of
News in Social Media: Forecasting Popularity. In
Proc. of ICWSM, 2012.

A.-L. Barabasi and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509-512, 1999.
A. Bermingham and A. Smeaton. Classifying
Sentiment in Microblogs: is Brevity an Advantage? In
Proc. of CIKM, 2010.

Y. Borghol, S. Ardon, N. Carlsson, D. L. Eager, and
A. Mahanti. The Untold Story of the Clones:
Content-Agnostic Factors that Impact YouTube Video
Popularity. In Proc. of SIGKDD, 2012.

L. Breiman. Random Forests. Machine Learning,
45(1):5-32, Oct. 2001.

M. Cha, A. Mislove, and K. P. Gummadi. A
Measurement-driven Analysis of Information
Propagation in the Flickr Social Network. In Proc. of
WWW, 2009.

R. Crane and D. Sornette. Robust Dynamic Classes
Revealed by Measuring the Response Function of a
Social System. In Proc. of PNAS, volume 105, pages
15649-15653, 2008.

H. Drucker, C. Burges, L. Kaufman, A. Smola, and
V. Vladimir. Support Vector Regression Machines. In
Proc. of NIPS, 1997.

A. Esuli and F. Sebastiani. SentiWordNet: A Publicly
Available Lexical Resource for Opinion Mining. In In
Proc. of LREC, 2006.

R. Fagin, R. Kumar, and D. Sivakumar. Comparing
Top K Lists. In Proc. of SODA, 2003.

C. Fellbaum. WordNet: An Electronical Lezical
Database. The MIT Press, Cambridge, MA, 1998.

B. Fogg, J. Marshall, O. Laraki, A. Osipovich, et al.
What Makes Web Sites Credible?: a Report on a
Large Quantitative Study. In Proc. of CHI, 2001.

A. Ghose and P. Ipeirotis. Estimating the helpfulness
and economic impact of product reviews: Mining text
and reviewer characteristics. IEEE TKDFE,
23(10):1498-1512, 2011.

L. Hong, O. Dan, and B. D. Davison. Predicting
Popular Messages in Twitter. In Proc. of WWW, 2011.
Y. Hong, J. Lu, J. Yao, Q. Zhu, and G. Zhou. What
Reviews are Satisfactory: Novel Features for
Automatic Helpfulness Voting. In Proc. of SIGIR,
2012.

R. Jain. The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling. Wiley, 1991.
S.-M. Kim, P. Pantel, T. Chklovski, and

M. Pennacchiotti. Automatically Assessing Review
Helpfulness. In Proc. of EMNLP, 2006.

A. Konagurthu and J. Collier. An Information
Measure for Comparing Top k Lists. CoRR,
abs/1310.0110, 2013.

P. L. Krapivsky, S. Redner, and F. Leyvraz.
Connectivity of Growing Random Networks. Physical
Review Letters, 85(21):4629-4632, Nov. 2000.

K. Lerman and R. Ghosh. Information Contagion: An
Empirical Study of the Spread of News on Digg and
Twitter Social Networks. In ICWSM, 2010.

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]

(30]

(31]

(32]

(33]
34]

(35]

(36]

37]

(38]

Y. Liu, X. Huang, A. An, and X. Yu. Modeling and
Predicting The Helpfulness of Online Reviews. In
Proc. of the ICDM, 2008.

Y. Lu, P. Tsaparas, A. Ntoulas, and L. Polanyi.
Exploiting Social Context for Review Quality
Prediction. In Proc. of WWW, 2010.

Y. Matsubara, Y. Sakurai, A. Prakash, L. Li, and

C. Faloutsos. Rise and Fall Patterns of Information
Diffusion: Model and Implications. In Proc. of the
KDD, 2012.

E. Momeni, C. Cardie, and M. Ott. Properties,
Prediction, and Prevalence of Useful User-Generated
Comments for Descriptive Annotation of Social Media
Objects. In Proc. of ICWSM, 2013.

R. O’Brien. A Caution Regarding Rules of Thumb for
Variance Inflation Factors. Quality & Quantity:
International Journal of Methodology, 41(5):673-690,
October 2007.

M. O’Mahony and B. Smyth. Learning to Recommend
Helpful Hotel Reviews. In Proc. of RecSys, 2009.

B. Pang, L. Lee, and S. Vaithyanathan. Thumbs Up?
Sentiment Classification Using Machine Learning
Techniques. In Proc. of EMNLP, 2002.

H. Pinto, J. Almeida, and M. Gongalves. Using Early
View Patterns to Predict the Popularity of YouTube
Videos. In Proc. of WSDM, 2013.

S. Siersdorfer, S. Chelaru, W. Nejdl, and J. San Pedro.
How Useful are Your Comments?: Analyzing and
Predicting YouTube Comments and Comment
Ratings. In Proc. of WWW, 2010.

J. Stevens. Applied Multivariate Statistics for The
Social Sciences. L. Erlbaum Associates Inc., Hillsdale,
NJ, USA, 2002.

G. Szabo and B. A. Huberman. Predicting the
Popularity of Online Content. Communications of the
ACM, 53(8):80-88, Aug. 2010.

A. Tatar, P. Antoniadis, M. Amorim, and S. Fdida.
From Popularity Prediction to Ranking Online News.
Soc. Netw. Anal. and Min., page 4:174, Jan. 2014.

T. Valente. Network Models of the Diffusion of
Inovations. Hampton Press, Cresskill, NJ, 1995.

R. van Zwol. Flickr: Who is Looking? In Web
Intelligence, 2007.

M. Vasconcelos, J. Almeida, and G. Marcos. What
Makes your Opinion Popular? Predicting the
Popularity of Micro-Reviews in Foursquare. In Proc.
of SAC, 2014.

J. Yang and J. Leskovec. Patterns of Temporal
Variation in Online Media. In Proc. of, 2009.

Y. Yang and J. Pedersen. A Comparative Study on
Feature Selection in Text Categorization. In Proc. of
ICML, 1997.

Z. Zhang and B. Varadarajan. Utility Scoring of
Product Reviews. In Proc. of CIKM, 2006.



