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  Chapter 1 

 SUMMARY 

    1     In this chapter we discuss the best methodologi-

cal tools for visually and statistically comparing 

predictions of  the metabolic theory of  ecology to 

data.  

  2     Visualizing empirical data to determine whether 

it is of  roughly the correct general form is accom-

plished by log - transforming both axes for size -

 related patterns, and log - transforming the  y  - axis 

and plotting it against the inverse of  temperature 

for temperature - based patterns. Visualizing these 

relationships while controlling for the infl uence of  

other variables can be accomplished by plotting the 

partial residuals of  multiple regressions.  

  3     Fitting relationships of  the same general form as 

the theory is generally best accomplished using 

ordinary least - squares - based regression on log -

 transformed data while accounting for phylogenetic 

non - independence of  species using phylogenetic 

general linear models. When multiple factors are 

included this should be done using multiple regres-

sion, not by fi tting relationships to residuals. 

Maximum likelihood methods should be used for 

fi tting frequency distributions.  

  4     Fitted parameters can be compared to theoretical 

predictions using confi dence intervals or likelihood -

 based comparisons.  

  5     Whether or not empirical data are consistent 

with the general functional form of  the model can 

be assessed using goodness - of - fi t tests and compari-

sons to the fi t of  alternative models with different 

functional forms.  

  6     Care should be taken when interpreting statisti-

cal analyses of  general theories to remember that 

the goal of  science is to develop models of  reality 

that can both capture the general underlying pat-

terns or processes and also incorporate the impor-

tant biological details. Excessive emphasis on 

rejecting existing models without providing alter-

natives is of  limited use.    

   1.1    INTRODUCTION 

 Two major functional relationships characterize the 

current form of  the metabolic theory of  ecology 

(MTE). Power - law relationships, of  the form  y     =     cM  α    

(Fig.  1.1 A,B), describe the relationship between body 

size and morphological, physiological, and ecological 

traits of  individuals and species (West et al.  1997 ; 

Brown et al.  2004 ). The Arrhenius equation, of  the 

general form,  y     =     ce   −    E   /   kT   (Fig.  1.1 C,D), characterizes the 



     Figure 1.1     Examples of  power - law relationships and exponential temperature relationships. Several power - law relationships 

are shown on untransformed (A) and logarithmically scaled (B) axes. Power - law relationships with exponents equal to one 

characterize direct proportionalities, which are linear relationships with intercepts of  zero. Several temperature relationships 

are shown on untransformed (C) and Arrhenius plot axes (1/ T  vs. logarithmically scaled  y ) (D). Power laws with exponents 

greater than 1 are described as superlinear because their slope is increasing in linear space and power laws with exponents 

less than 1 are described as sublinear because their slope is decreasing. Relationships that have exponents equal to zero do not 

change with the variable of  interest and are therefore described as invariant with respect to mass or temperature. Note that in 

the Arrhenius plots different coeffi cients are used to allow for clear presentation.  
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ing the exponential infl uence of  temperature on bio-

chemical kinetics.

   I i M e E kT/= −
0

α     (1.1)  

  See Brown and Sibly (Chapter  2 ) or Brown et al.  (2004)  

for details. 

 Most analyses of  this central equation focus on 

either size or temperature in isolation, or attempt to 

remove the infl uence of  the other variable before pro-

ceeding. As such, the most common analyses focus on 

either power - law relationships,  y     =     cM b  , or exponential 

relationships,  y     =     ce   −    E   /   kT  , both of  which can be log -

 transformed to yield linear relationships (Fig.  1.1 ).

   y cM y c M= ( ) = ( ) + ( )⇒α αlog log log     (1.2a)  

   y c y c E kT= ⇒ ( ) = ( ) −−e E kT/ log log ( / )     (1.2b)   

 The linear forms of  these relationships form the basis 

for the most common approaches to plotting these data 

and graphically assessing the validity of  the general 

form of  the equations. Plots of  these linearized forms 

are obtained either by log - transforming the appropri-

ate variables or by logarithmically scaling the axes 

so that the linear values remain on the axes, but 

the distance between values is adjusted to be equiva-

lent to log - transformed data. In this book all linearized 

plots will used log - scaled, rather than log - transformed, 

axes. Relationships between size and morphological, 

physiological, and ecological factors are typically 

plotted on log - log axes and relationships between tem-

perature and these factors are displayed using 

Arrhenius plots with the log - scaled  y  variable plotted 

against the inverse of  temperature (Fig.  1.2 A,B). If  the 

relationships displayed on plots of  these forms are 

approximately linear then they are at least roughly 

consistent with the general form predicted by meta-

bolic theory. 

 When information on both size and temperature are 

included in an analysis to understand their combined 

impacts on a biological factor, this has been displayed 

graphically by removing the effect of  one factor and 

then plotting the relationship for the other factor (Fig. 

 1.2 C,D). The basic idea is to rewrite the combined size –

 temperature equation so that only one of  the two vari-

ables of  interest appears on the right - hand side.

   
y

ce

M y
E

kT
c M

E

kT
−

= ⇒ ( ) + − =α αlog ( ) ( )log log     (1.3a)  

relationships between temperature and physiological 

and ecological rates (Gillooly et al.  2001 ; Brown et al. 

 2004 ). In addition to being central to metabolic theory, 

these empirical relationships are utilized broadly 

to characterize patterns and understand processes 

in areas of  study as diverse as animal movement 

(Viswanathan et al.  1996 ), plant function (Wright 

et al.  2004 ), and biogeography (Arrhenius  1920 ; 

Martin and Goldenfeld  2006 ).   

 Methodological approaches for comparing meta-

bolic theory predictions to empirical data fall into two 

general categories: (1) determining whether the 

general functional form of  a relationship predicted by 

the theory is valid; and (2) determining whether the 

observed values of  the parameters match the specifi c 

quantitative predictions made by the theory. Both of  

these categories of  analysis rely on being able to accu-

rately determine the best fi tting form of  a model with 

the same general functional form as that of  MTE, so we 

will begin by discussing how this has typically been 

done using ordinary least - squares (OLS) regression on 

appropriately transformed data. Potential improve-

ments to these approaches that account for statistical 

complexities of  the data will then be considered. We 

will discuss methods for comparing the fi tted parame-

ters to theoretical values and how to determine 

whether the general functional form predicted by the 

theory is supported by data. This will require some dis-

cussion of  the philosophy of  how to test theoretical 

models. So we will end with a general discussion of  the 

technical and philosophical challenges of  testing and 

developing general ecological theories.  

   1.2    VISUALIZING  MTE  

RELATIONSHIPS 

 Before conducting any formal statistical analysis it is 

always best to visualize the data to determine whether 

the model is reasonable for the data and to identify any 

potential problems or complexities with the data. 

   1.2.1    Visualizing functional relationships 

 The primary model of  metabolic theory describes the 

relationship between size, temperature, and metabolic 

rate; combining a power function scaling of  mass and 

metabolic rate with the Arrhenius relationship describ-
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the partial residuals to visualize the relationship with 

a single predictor variable in multiple regression. Often 

in the MTE literature the theoretical forms of  the rela-

tionships (  α      =    0.75,  E     =     − 0.65) have been used rather 

than the fi tted forms based on multiple regression. For 

reasons discussed below we recommend using the 

fi tted values of  the parameters, or simply using the 

partial residuals functions in most statistical packages, 

to provide the best visualization of  the relationship 

with the variable of  interest.  

   
y

cM
e y M c

E

kT

E kT

α α= ⇒ ( ) − ( )− = −− / log log ( )log   

  (1.3b)     

 The value for the dependent variable (i.e., the value 

plotted for each point on the vertical axis) is then deter-

mined by dividing the observed value of   y  by the appro-

priate transformation of  temperature or mass for the 

observation and log - transforming the resulting value. 

This is equivalent to the standard approach of  plotting 

     Figure 1.2     Plots of  metabolic rate as a function of  mass and temperature. (A) Log - log plot of  mass vs. metabolic rate not 

accounting for temperature. (B) Arrhenius plot of  temperature vs. metabolic rate not accounting for mass. (C) Log - log plot of  

mass vs. metabolic rate accounting for temperature. (D) Arrhenius plot of  temperature vs. metabolic rate accounting for mass. 

 Data is for reptiles from Gillooly et al.  (2001) .   
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rithmic distances apart) and then dividing the counts 

in each bin by the linear width of  the bin prior to 

graphing (Fig.  1.3 B). The logarithmic scaling of  the bin 

sizes decreases the number of  bins with zero counts 

(often to zero) and the division by the linear width of  

the bin preserves the underlying shape of  the relation-

ship. Another, equally valid approach is to visualize the 

relationship using appropriate transformations of  the 

cumulative distribution function (Fig.  1.3 C; see White 

et al.  2008  for details), but we have found that it is 

often more diffi cult to intuit the underlying form of  the 

distribution from this type of  visualization and there-

fore recommend normalized logarithmic binning in 

most cases.     

   1.3    FITTING  MTE  MODELS TO DATA 

   1.3.1    Basic fi tting 

 Since the two basic functional relationships of  meta-

bolic theory can be readily written as linear relation-

ships by log - transforming one or both axes, most 

analyses use linear regression of  these transformed 

variables to estimate exponents, compare the fi tted 

values to those predicted by the theory, and character-

ize the overall quality of  fi t of  the metabolic models to 

the data. Given the most basic set of  statistical assump-

tions, this is the correct approach. 

   1.2.2    Frequency distributions 

 In addition to making predictions for the relationships 

between pairs of  variables  –  e.g., size, temperature, and 

metabolic rate  –  metabolic ecology models have been 

used to make predictions for the form of  frequency dis-

tributions (i.e., histograms) of  biological properties 

such as the number of  trees of  different sizes in a stand 

(Fig.  1.3 ; West et al.  2009 ). The predicted forms of  

these distributions are typically power laws and have 

often been plotted by making histograms of  the varia-

ble of  interest, log - transforming both the counts and 

the bin centers and then plotting the counts on the  y  -

 axis and the bin centers on the  x  - axis (Fig.  1.3 A; e.g., 

Enquist and Niklas  2001 ; Enquist et al.  2009 ). This is 

a reasonable way to visualize these data, but it suffers 

from the fact that bins with zero individuals must be 

excluded from the analysis due to the log - transformation. 

These bins will occur commonly in low probability 

regions of  the distribution (e.g., at large diameters), 

thus impacting the visual perception of  the form of  the 

distribution. To address this problem we recommend 

using normalized logarithmic binning ( sensu  White 

et al.  2008 ), the method typically used for visualizing 

this type of  distribution in the aquatic literature (e.g., 

Kerr and Dickie  2001 ). This approach involves binning 

the data into equal logarithmic width bins (either by 

log - transforming the data prior to constructing the his-

togram or by choosing the bin edges to be equal loga-

     Figure 1.3     Examples of  visualizations of  frequency distributions. Methods include (A) linear binning, (B) normalized -

 logarithmic binning, and (C) linearizing the cumulative distribution function.  Data are from the Nosy Mangabe, Madagascar, 

site of  Alwyn Gentry ’ s tree transect data (site 201; Phillips and Miller  2002 ).   
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urement using nonlinear regression (e.g., Packard and 

Birchard  2008 ; Packard and Boardman  2008, 2009a, 

2009b ; Packard  2009 ; Packard et al.  2009, 2010 ). 

 One fundamental difference between log - linear 

regression and nonlinear regression on untransformed 

data lies in the assumptions that the two approaches 

make about the nature of  unexplained variation. In 

nonlinear regression the error term (i.e., residuals) is 

assumed to be normally distributed and additive, 

 y     =      α x b      +      ε  ,   ε      ∼    N(0,   σ   2 ), while log - linear regression 

assumes the error term is log - normally distributed and 

multiplicative (equation  1.1 ). The form of  the error 

distribution in the empirical data determines which 

method performs better, with the method that assumes 

the appropriate error form (i.e., nonlinear regression 

with additive error, and log - linear regression with mul-

tiplicative error) yielding the best results (Xiao et al. 

 2011 ). 

 Throughout this chapter we recommend that the 

form of  the error distribution be explicitly considered, 

when possible, in deciding which methods to use 

(Cawley and Janacek  2010 ; Xiao et al.  2011 ). However, 

log - normal error is substantially more common than 

normal error in physiological and morphological 

data (Fig.  1.4 : Xiao et al.  2011 ; see also Gingerich 

 Specifi cally, if  the data points are independent, the 

error about the relationship is normally distributed 

when the relationship is properly transformed (i.e., it is 

multiplicative log - normal error on the untransformed 

data):

   log log log , ~ ,y c b M( ) = ( ) + ( )+ ( )ε ε σN 0 2     (1.4a)  

   y cM eb= ε ε σ, ~ ( , )N 0 2     (1.4b)  

  and there is error (i.e., stochasticity) only in the  y  -

 variable, then the correct approach to analyzing the 

component relationships is ordinary least - squares 

regression. 

 Given the same basic statistical assumptions, analyz-

ing the full relationship including both size and tem-

perature should be conducted using multiple regression 

with the logarithm of  mass and the inverse of  tempera-

ture as the predictor variables. This approach is supe-

rior to the common practice of  using simple regression 

after correcting for the infl uence of  the other variable 

(see, e.g., Gillooly et al.  2001 ; Brown et al.  2004 ) 

because it appropriately allows for correlation between 

the predictor variables, thus yielding the best simulta-

neous estimates of  the parameters for each variable 

and the appropriate estimates of  the confi dence inter-

vals for those parameters (Freckleton  2002 ; Downs 

et al.  2008 ). 

 In many cases the assumptions underlying these 

basic statistical analyses may be reasonable, and these 

methods are often robust to some violations of  the 

assumptions. However, there are also a number of  

instances in common MTE analyses where substantial 

violations of  assumptions related to the independence 

of  data points, and even the basic form of  the error 

about the relationship, may necessitate the use of  

more complex methods to obtain the most rigorous 

results.  

   1.3.2    Log - transformation vs. nonlinear 

regression 

 While most analyses utilize the fact that log -

 transforming one or both sides of  the equation yields a 

linear relationship, allowing appropriately transformed 

data to be modeled using linear regression (log - linear 

regression), it has recently been suggested that analysis 

on logarithmic scales is fl awed and that, instead, analy-

sis should be carried out on the original scale of  meas-

     Figure 1.4     Likelihood analysis comparing the fi ts of  

normal vs. log - normal error to 471 biological power laws 

shows that most morphological and physiological 

relationships are better characterized by multiplicative 

log - normal error and therefore that traditional log -

 transformed regression is better in most cases than 

nonlinear regression  (Xiao et al.  2011 ).   
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measurement error, which is unlikely to be the case in 

biological systems (e.g., Sokal and Rohlf   1995 ; Smith 

 2009 ) and even then this argument is not valid in 

most situations (Warton et al.  2006 ; Smith  2009 ). 

Recent advice regarding when it is appropriate to use 

RMA (or a related alternative) vs. OLS is based on a 

combination of  the goal of  the analysis and the causal 

relationship between the variables (Warton et al.  2006 ; 

O ’ Connor et al.  2007a ; Smith  2009 ). For an excellent 

treatment of  the logic behind RMA vs. OLS see Smith 

 (2009) . All line - fi tting techniques discussed can be 

implemented using the SMATR package in R ( http://

www.bio.mq.edu.au/ecology/SMATR/ ).  

   1.3.4    Which method(s) should I use? 

 Our interpretation of  the recent discussion on which 

method to use is that, for the majority of  cases in meta-

bolic theory, OLS regression on log - transformed data is 

the correct approach. Most analyses in metabolic 

theory are causal in nature  –  the hypothesis is that the 

size and temperature of  an organism determine a 

broad suite of  dependent variables. In the case of  

hypothesized causal relationships we are logically 

assigning all equation error (i.e., variability about the 

line not explained by measurement error; Fuller  1987 ; 

McArdle  2003 ) to the Y variable and therefore should 

be estimating the form of  the relationship using OLS 

(Warton et al.  2006 ; Smith  2009 ). In addition to 

causal relationships, OLS regression is also most 

appropriate in cases where one wants to predict 

unknown values of  Y based on X (Sokal and Rohlf  

 1995 ; Warton et al.  2006 ; Smith  2009 ). Metabolic 

theory is often used in this context to estimate the 

metabolic rate of  individuals based on body size (e.g., 

Ernest and Brown  2001 ; White et al.  2004 ; Ernest et 

al.  2009 ). The fact that OLS is appropriate for many 

metabolic theory predictions is convenient because 

variants on simple bivariate relationships (e.g., phylo-

genetic correction, mixed effects models) are typically 

based on OLS. 

 There are some cases where directional causality 

between the two variables being analyzed is not implied 

by metabolic models. For example, predictions for the 

relationships between different measures of  size (e.g., 

height and basal stem diameter in trees) do not imply 

a direct causal relationship between the variables but 

an  “ emergent ”  outcome of  a process affected by two 

interdependent variables. In this case, the choice of  

 2000 ; Kerkhoff  and Enquist  2009 ; Cawley and 

Janacek  2010 ), which implies that for most metabolic 

theory analyses log - linear regression is appropriate. 

This is good news because log - linearity allows the 

implementation of  some approaches discussed below 

which cannot readily be implemented in a nonlinear 

context.    

   1.3.3    Alternatives to ordinary 

least - squares regression 

 The ordinary least - squares (OLS) approach is just one 

of  several available choices for fi tting a linear relation-

ship between X and Y variables, with each method 

making different assumptions about the variation 

around the regression line. Understanding which of  

these methods to use can seem complicated because 

these choices depend on information about the sources 

and magnitude of  variability around the regression 

line, the nature of  the relationship between X and Y, 

and the goal of  the analysis. In addition, there is con-

fl icting advice in the literature regarding when to use 

which method, and uncertainty about best practice 

has led to many studies reporting regression slopes 

determined using more than one approach (e.g., 

Coomes et al.  2011 ). 

 The main alternative to OLS regression is commonly 

known as reduced major axis (RMA) regression. 

Whereas OLS assumes that residual variation occurs 

only in the vertical direction, RMA allows for variation 

also in the horizontal direction by minimizing the sum 

of  the products of  deviations in the vertical and hori-

zontal directions. For most datasets, slopes estimated 

by RMA are steeper than those estimated by regression 

(Smith  2009 ). Other alternatives include major axis 

(MA), which generates estimates of  the slope that are 

intermediate between RMA and OLS regression, and 

the OLS bisector, which determines the average of  the 

slope of  X on Y and the slope of  Y on X (Isobe et al. 

 1990 ). OLS, RMA, and MA are all special cases of  a 

general model in which the ratio of  the error variances 

in X and Y can take on any value (Harvey and Pagel 

 1991 ; M.P. O ’ Connor et al.  2007a ). 

 A common argument for the use of  alternatives to 

OLS in allometric studies is that it is inappropriate to 

assume that X is measured without error, as implied in 

OLS regression (e.g., Legendre and Legendre  1998 ). 

However, this argument relies on the assumption that 

all of  the variation about the regression line is due to 
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a priori or estimated from the data. The most important 

of  these is  λ , which is a measure of  the strength of  the 

phylogenetic signal in the data. Suppose some trait(s) 

have been measured in fi ve species for which an evolu-

tionary tree, i.e., phylogeny, is available, as shown in 

Figure  1.5 A. If  the pattern of  trait variation among 

these species is consistent with random evolutionary 

change along the branches of  the phylogeny, then  λ  is 

said to be 1. At the other extreme it is possible that close 

relatives are no more similar to each other than dis-

tantly related species. It is then as if  all species were 

completely independent, equally distant phylogeneti-

cally from their common ancestor, as shown in Figure 

 1.5 B. In this case  λ  is said to be 0. Most analyzed cases 

fall in between these two extremes and fi nd that some 

proportion  λ  of  the variation is accounted for by the 

phylogeny, the rest being attributable to recent inde-

pendent evolution, as in Figure  1.5 C. Parameters  κ  and 

 δ  provide a way of  scaling the rates of  evolutionary 

change along the branches of  the phylogeny. For 

example,  κ     =    1 corresponds to gradual evolution, and 

 κ     =    0 is a model in which evolution is concentrated 

at speciation events. Parameter  δ , which is rarely 

used, measures whether the rates of  evolution have 

increased, decreased, or stayed constant over time. The 

best mathematical account of  the method is provided 

by Garland and Ives ( 2000 , p. 349) where it is referred 

to as the generalized least - squares approach. A recent 

guide to the use and misuse of  PGLMs is given in 

Freckleton  (2009) .   

 The traits of  interest in metabolic scaling analyses 

tend to show strong phylogenetic signals. For example, 

in mammals,  λ     =    0.984, 1.0, and 0.84 for basal meta-

bolic rate, mass, and body temperature, respectively 

which variable to place on the  x  - axis is arbitrary. In this 

case (and in many similar cases in other areas of  allom-

etry; e.g., the leaf  economics spectrum) RMA or a 

related approach is more appropriate for analysis 

because we want to partition equation error between 

X and Y, rather than assigning it all to Y.  

   1.3.5    Phylogenetic methods 

 A common goal of  analysis in metabolic ecology is to 

understand the relationship between two morphologi-

cal, physiological, or ecological properties, across 

species. The data points in these analyses are typically 

average values of  the two properties for each species, 

which leads to a potential complication. Because there 

are limits to how quickly traits can evolve, closely 

related species may not be statistically independent due 

to their shared evolutionary history. This lack of  inde-

pendence among data points violates a key assumption 

of  ordinary least - squares regression (and general 

linear models more broadly). 

 The problem of  phylogenetic non - independence is 

well known in evolutionary biology, and a method 

known as independent contrasts (Felsenstein  1985 ) 

remains popular for correcting for the phylogenetic 

signal in comparative data. Independent contrasts 

have been recently superseded by phylogenetic general 

linear models (PGLMs), which allow a wide range of  

evolutionary scenarios to be modeled (Garland and 

Ives  2000 ). 

 The current implementation of  PGLMs was devised 

by Mark Pagel (Pagel  1997, 1999 ). There are three 

parameters,  λ ,  κ , and  δ , each of  which can be specifi ed 

     Figure 1.5     The Pagel  λ  approach to modeling the evolution process. (A) shows the phylogeny of  fi ve species A – E, which are 

descended from a common ancestor Z ; (B) shows how evolution is modeled if  the species appear to be independent; (C) shows 

the type of  intermediate model currently used (the Pagel  λ  model).  

19%

A B C D E B C D E A B C D E

19%

81%81%

ZZZ

All variation due to

phylogeny

λ = 1

No variation due to

phylogeny

λ = 0

81% variation due to

phylogeny

λ = 0.81

A



Methodological tools  17

to this problem, it fails to properly account for the 

structure of  the data, which can result in inaccurate 

parameter estimates (Clark et al.  1999 ; Edwards  2008 ; 

White et al.  2008 ) and incorrect estimates of  the 

quality of  fi t of  the model to the data (Newman  2005 ; 

Edwards et al.  2007 ; Clauset et al.  2009 ). 

 The correct approach for fi tting frequency distribu-

tions in metabolic theory to data is based on likelihood 

(Edwards et al.  2007 ; White et al.  2008 ). Maximum 

likelihood estimation determines the values of  the 

parameters that maximize the likelihood of  the model, 

given the data. In the case of  the metabolic theory this 

is typically fi nding the best - fi tting exponent of  a power -

 law frequency distribution. Determining the best 

parameters using maximum likelihood estimation for 

power laws is straightforward in most cases, requiring 

only a simple calculation. In the most common case 

where there is a meaningful lower bound (e.g., trees 

 < 1   cm are not measured) and the upper bound is 

assumed to be infi nite, the exponent is determined 

simply by

   θ = − ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢
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⎦⎥∑

−

1
1

1

– log
minn

x

x
    (1.5)  

  where the summation is over all values of   x . In other 

cases the calculations may be different, so care is 

required to confi rm that assumptions being used to 

determine the MLE of  the parameters are consistent 

with the data to which the calculation is being applied. 

In the case of  the power - law frequency distributions 

predicted by metabolic theory, MLEs for all possible 

detailed forms are available in White et al. ( 2008 ; 

see Johnson et al.  1994, 2005 , for more technical 

treatments).   

   1.4    ARE THE FITTED PARAMETERS 

CONSISTENT WITH THEORETICAL 

PREDICTIONS? 

 Having fi t a relationship of  the same general form as 

the MTE predictions using the methods above, the next 

step in evaluating the MTE is to determine whether the 

fi tted parameters are consistent with the specifi c quan-

titative predictions of  the theory. 

 In regression - based analyses this is typically done 

by determining whether or not the 95% confi dence 

(Clarke et al.  2010 ). However, estimates of  scaling 

parameters from PGLMs and conventional GLMs tend 

to be similar, converging on the same answer when the 

explanatory power ( R  2 ) approaches 1. 

 Despite their promise, PGLMs are currently diffi cult 

to use. They require that a phylogeny, ideally with 

branch lengths, be available or assembled for the 

species of  interest. They also assume that the form of  

the phylogeny and the assumed models of  evolution 

are accurate. However, little analysis has been done to 

determine the impacts of  error in either of  these inputs 

on the outcome of  the analysis. In addition, while soft-

ware is available for conducting PGLM analyses, 

including BayesTraits ( http://www.evolution.rdg.ac.

uk/BayesTraits.html ) and several packages in R includ-

ing ape ( http://cran.r - project.org/web/packages/ape/ ) 

and caper ( http://r - forge.r - project.org/projects/caper/ ; 

Orme et al.  2011 ), the documentation is fragmentary 

and utilizing these packages can be diffi cult for new 

users. 

 In general we recommend that PGLMs be used when 

quality phylogenies are available. However, in cases 

where the relationship between two variables is strong 

this is unlikely to have a demonstrable infl uence on the 

results. If  no phylogeny is available, an alternative is to 

use taxonomy as a proxy for phylogeny in a hierarchi-

cal (mixed effects) model (e.g., McGill  2008 ; Isaac and 

Carbone  2010 ). We also caution that factors other 

than phylogenetic relationship, such as similar body 

size or environment, can potentially be additional 

causes of  non - independence of  data in species - level 

analyses.  

   1.3.6    Methods for fi tting frequency 

distributions 

 The predicted form of  MTE frequency distributions is 

typically power law,  f ( x )    =     cx  θ    (also known as the Pareto 

distribution in the probability and statistics literature), 

and the fi t of  these predictions to empirical data has 

typically been evaluated by fi tting a regression through 

the data generated using histograms for visualization 

(i.e., binning the values of  the variable of  interest, 

counting how many values occur in each bin, log -

 transforming the counts and the position of  the bin, 

and then fi tting a relationship to those data points 

using linear regression). An example of  this would be 

fi tting a regression through the points in Figure  1.3 A 

or  1.3 B. While this seems like a reasonable approach 
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 Determining the goodness of  fi t of  regressions is 

more complicated and therefore simple tests are not 

available. Instead, it is standard to evaluate several 

assumptions of  regression to determine whether the 

regression should be used or to compare the fi ts of  

linear regressions to more complex models (see below). 

Evaluating the assumptions of  regression is good 

general practice, and failure to satisfy these assump-

tions can indicate that the model is not suffi cient for 

characterizing the pattern in the data. Specifi cally the 

two most relevant tests are to determine: (1) whether 

or not the residuals about the regression are normally 

distributed (which can be done using standard 

goodness - of - fi t tests); and (2) whether the variance 

of  the residuals does not change as a function of  the 

value of  the predictor variable (i.e., the residuals are 

homoskedastic).  

   1.5.2    Comparison to alternative models 

 The other approach to determining whether or not 

the observed relationship has the same shape as the 

predictions of  MTE is to compare the fi t of  the relation-

ship or distribution to alternative models. The most 

common example of  this is the use of  polynomial 

regression to determine whether or not a simple linear 

relationship (among log - transformed variables) is an 

appropriate fi t to the data. The standard approach is 

to fi t polynomial regressions that include one or more 

higher - order terms (x 2 , x 3 , etc.) and determine whether 

or not those terms are signifi cant in the regression. 

If  they are, this is typically considered to be an indi-

cation that a different, or more complex, model than 

the simple linear relationship (on log - transformed 

data) is necessary. This polynomial approach has 

only rarely been used in MTE analyses, perhaps for 

reasons discussed below (see section  1.6 ), but it has 

been successfully utilized to indicate that the current 

metabolic theory predictions for the relationship 

between temperature and species richness are not 

suffi cient to fully characterize the observed patterns 

(Algar et al.  2007 ; Hawkins et al.  2007 ; but see Gillooly 

and Allen  2007 ). 

 A more general approach is to use likelihood and 

information criteria - based methods. These methods 

determine which of  a set of  models is most consistent 

with the empirical data and whether that model pro-

vides a meaningfully better fi t than alternative models 

interval (CI) about the best - fi tting parameter includes 

the theoretical prediction. This is a well - established 

practice and easy to apply (most statistical software 

that will generate parameter estimates will also gener-

ate confi dence intervals for those estimates). However, 

hypothesis testing of  this kind is not intended to deter-

mine whether two values of  a parameter are similar. 

The appropriate interpretation of  a CI containing the 

theoretical value is that we cannot reject the model, 

but this is not the same as supporting it. Alternatives 

that focus on determining whether or not two values 

are meaningfully similar are available (i.e., equivalence 

testing; Dixon and Pechmann  2005 ) but have never 

been applied to metabolic theory and are only rarely 

used in ecology in general. 

 Comparing the parameters of  frequency distribu-

tions to those predicted by theory can also be done 

using confi dence intervals, which can be determined 

accurately for all forms of  power - law distribution when 

the number of  data points is large (see appendix in 

White et al.  2008 ) and for small sample sizes for the 

most common form of  the distribution (the Pareto; 

Johnson et al.  1994 ; Newman  2005 ; Clauset et al. 

 2009 ). Confi dence intervals can also be calculated 

using bootstrap or jackknife techniques if  necessary 

(Newman  2005 ). An alternative approach is to explic-

itly test whether a distribution with a fi tted value pro-

vides a meaningfully better fi t to the data than one with 

the theoretical value. This can be done using likelihood 

ratio tests (Vuong  1989 ; Clauset et al.  2009 ).  

   1.5    IS THE SHAPE OF THE 

RELATIONSHIP CONSISTENT WITH 

THEORETICAL PREDICTIONS? 

   1.5.1    Goodness - of - fi t tests 

 For frequency distributions it is possible to directly ask 

whether or not the observed form of  the distribution is 

consistent with (i.e., not signifi cantly different from) 

the form predicted by the theory. This is done using 

goodness - of - fi t tests, where the null hypothesis is that 

observed data are drawn from the theoretical distribu-

tion. A number of  goodness - of - fi t tests are available 

that entail different detailed assumptions including the 

chi - square test, the Kolmogorov – Smirnov test, and the 

G - test. If  the sample size is suffi ciently large and data 

are continuously distributed, all of  these tests should 

give similar answers. 
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ble starting assumptions and makes reasonable predic-

tions, it may be better to modify and improve that 

model than to abandon it. This iterative process of  

hypothesis refi nement is considered essential for the 

development of  ecology (Mentis  1988 ), and several 

recent attempts to refi ne models from metabolic ecology 

make valuable contributions to this process (Banavar 

et al.  2010 ; Savage et al.  2010 ). 

 The goal of  theory is to provide simplifi ed characteri-

zations of  reality; so rejecting models is only useful if  it 

leads to better models. Testing models and identifying 

their fl aws is a necessary, but not suffi cient, part of  the 

process. This raises questions about the merits of  com-

paring process - based models to purely phenomenologi-

cal models that lack a biological mechanism. Consistent, 

directional, deviations from a general theory indicate 

that the theory is either incomplete or simply wrong. 

However, studies that only demonstrate the superior 

performance of  phenomenological over mechanistic 

models often yield little direct progress towards accept-

able theories. In contrast, comparing theoretical pre-

dictions to mechanistic models that include either 

additional or alternative processes has the potential to 

yield improved characterizations of  biological systems. 

An illustrative example is Fisher ’ s sex ratio theory, 

which predicts a canonical ratio of  1   :   1. When sample 

sizes are large, signifi cant deviations are almost always 

observed. This does not mean the theory is wrong. 

Indeed, considering the direction and magnitude of  

the deviations (large in eusocial hymenoptera, small 

in humans) leads to progress in understanding the 

additional processes that affect sex ratios in real 

populations. 

 It is important to consider the goal of  a model when 

determining whether it should be replaced or modifi ed 

(Martinez del Rio  2008 ). For example, in many cases 

related to MTE the goal is to understand the fundamen-

tal processes that produce the fi rst - order relationship 

between body size and metabolic rate. MTE is success-

ful at characterizing the relevant empirical pattern, 

because a 3/4 - power allometric relationship is the 

best - supported pattern, both when analyzing large 

numbers of  species and when the average form of  the 

model across taxonomic groups is determined (Savage 

et al.  2004b ; Isaac and Carbone  2010 ). As such, MTE 

may provide information about the underlying process. 

However, if  the goal is to accurately predict the meta-

bolic rate of  species for which data is not available 

then it is necessary to consider the empirical evidence 

of  variation among taxonomic groups (e.g., Nagy et al. 

(Hilborn and Mangel  1997 ; Burnham and Anderson 

 2002 ). A full introduction to this area is beyond the 

scope of  this chapter, but the basic approach is to cal-

culate the likelihoods of  all the candidate models and 

then compare those likelihoods to one another, taking 

into account that some models have more parameters 

than others and are therefore more likely to provide 

good fi ts to empirical data (for ecological examples see 

Muller - Landau et al. 2006a and Coomes and Allen 

 2007 ). We strongly recommend Hilborn and Mangel 

 (1997)  to those looking for an accessible introduction 

to this area of  statistics. Equivalent Bayesian methods 

are also available, but have rarely been applied in the 

context of  metabolic ecology. Good examples are avail-

able in Dietze et al.  (2008)  and Price et al.  (2009)  for 

those interested in this approach. 

 In addition to testing the basic shape of  the predicted 

relationship and the specifi c parameter values, these 

methods can be used to assess the form of  the error 

distribution to allow for decisions to be made about 

whether to use log - linear or nonlinear regression 

(Xiao et al.  2011 ; see above) and to determine the 

degree of  phylogenetic non - independence among data 

points that needs to be accounted for (Freckleton 

 2009 ).   

   1.6    THOUGHTS ON TESTING 

ECOLOGICAL THEORIES 

 It is useful and informative to compare the fi ts of  meta-

bolic theory models (and ecological models in general) 

to alternative models to see if  a better characterization 

of  the empirical data is possible. If  an alternative model 

provides a better fi t to the data there are two different 

conclusions that can be drawn: (1) the model is not 

useful and should be abandoned; or (2) the model is 

incomplete and requires further development. In 

ecology we have tended to prefer the language of  rejec-

tion  –  any model for which data deviates from the pre-

diction using a goodness - of - fi t test, or for which an 

alternative model is found to provide a superior fi t, is 

rejected. This attitude likely has its origins in an 

emphasis on Plattian inference (Platt  1964 ) and an, 

arguably improper (Hurlbert and Lombardi  2009 ), 

emphasis on the arbitrary defi nition of   p     <    0.05 as 

being  “ signifi cant. ”  Further discussion of  how a 

rejected model may be improved is rarely undertaken. 

However, in cases where a model is based on reasona-
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 In conclusion, the goal of  science is to develop 

models of  reality that both capture general underlying 

patterns and processes, and incorporate important bio-

logical details. Developing general ecological theories 

allows us to understand how ecological systems 

operate and make predictions for how they will respond 

to global change and other major perturbations. 

Rigorous statistical approaches and proper testing of  

theories are necessary to accomplish this result. Efforts 

to improve methodological approaches and to use 

these approaches to test existing theories should always 

be undertaken with the goal of  improving our under-

standing of  ecological systems.  
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 1999 ; Isaac and Carbone  2010 ). In this case models 

that incorporate taxonomic variation are an important 

improvement over the more general MTE (Isaac and 

Carbone  2010 ). 

 Evaluating models is further complicated by the fact 

that general ecological theories (including MTE) typi-

cally make predictions for multiple empirical patterns 

(see Brown et al.  2004 ). This generality is desirable 

because it makes metabolic theory applicable in a 

broad range of  situations, but it also makes MTE easier 

to reject since rejection of  any prediction implies rejec-

tion of  the entire theory. However, it is unreasonable to 

compare a model that makes a large number of  predic-

tions to a model that makes one or a few specifi c predic-

tions without penalizing the more specifi c model for its 

lack of  generality and resultantly larger number of  

parameters per prediction (Price et al.  2009 ). 

Unfortunately there are no general approaches for 

dealing with this type of  difference among models, and 

the one example that we are aware of  (Price et al. 

 2009 ) represents a fi rst attempt rather than a general 

solution to the challenge of  evaluating models that 

make multiple predictions. 




