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RESEARCH ARTICLE Open Access

Population- and genome-specific patterns of
linkage disequilibrium and SNP variation in
spring and winter wheat (Triticum aestivum L.)
Shiaoman Chao1, Jorge Dubcovsky2, Jan Dvorak2, Ming-Cheng Luo2, Stephen P Baenziger3, Rustam Matnyazov4,18,

Dale R Clark5, Luther E Talbert6, James A Anderson7, Susanne Dreisigacker8, Karl Glover9, Jianli Chen10,

Kim Campbell11, Phil L Bruckner12, Jackie C Rudd13, Scott Haley14, Brett F Carver15, Sid Perry16, Mark E Sorrells17,

Eduard D Akhunov4*

Abstract

Background: Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution
genetic maps, studying population evolutionary history and performing genome-wide association mapping
experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population
structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the
United States and Mexico.

Results: Most of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478
cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed
among wheat lines within populations than among populations. A total of nine genetically distinct clusters were
identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry.
Estimates of population structure (FST) at individual loci showed a high level of heterogeneity across the genome.
In addition, seven genomic regions with elevated FST were detected between the spring and winter wheat
populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations,
the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and
B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by
differences in long-range LD ( > 10 cM).

Conclusions: Genome- and population-specific patterns of genetic differentiation and LD were discovered in the
populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of
population structure between spring and winter wheat lines can identify genomic regions harboring candidate
genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a
different impact on each wheat genome both within and among populations. The higher extent of LD in the
wheat D-genome versus the A- and B-genomes likely reflects the episodes of recent introgression and population
bottleneck accompanying the origin of hexaploid wheat. The assessment of LD and population structure in this
assembled panel of diverse lines provides critical information for the development of genetic resources for
genome-wide association mapping of agronomically important traits in wheat.
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Full list of author information is available at the end of the article
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Background
In crops, the level of genetic diversity and linkage dise-

quilibrium (LD) can be affected by various factors includ-

ing demography and inbreeding [1-6], selection for

favorable alleles [7,8], domestication [2,9,10], outcrossing

of crop cultivars with genetically distinct lines of wild

ancestors and landraces [1,11,12] and admixture [13,14].

Genetic diversity of domesticated crops is usually reduced

compared to wild ancestors [2,6,9,15,16]. In tetraploid

wheat, the population bottleneck that accompanied tetra-

ploid emmer wheat domestication about 10,000 years ago

[17] reduced nucleotide diversity by 30 to 50% in the

A- and B-genomes, depending on the study and diversity

measure used [15,18]. Diversity was further reduced in

hexaploid wheat as a consequence of the polyploidy bot-

tleneck resulting from hexaploid wheat speciation [18,19].

Different rates of gene flow from the ancestors of hexa-

ploid wheat, tetraploid wheat for the A- and B-genomes

and Aegilops tauschii for the D-genome [20,21] resulted

in different levels of diversity in hexaploid wheat genomes

[19]. While diversity levels are similar in the A- and

B-genomes, it is greatly reduced in the D-genome [18,19].

The D-genome also shows higher levels of LD than the

A- and B-genomes [19,22].

Interpreting patterns of genetic diversity in modern

crop cultivars is further complicated by strong selection

and interbreeding with landraces and genetically distant

wild relatives. Regions of the genome subjected to

recent selection or introgressions from landraces or wild

relatives were shown to have elevated LD and low

genetic diversity [7,12,23]. Factors such as inbreeding,

human- and environment-driven selection, founder

effect and gene flow influence the distribution of genetic

variation both across the genome and between popula-

tions resulting in the formation of genetically differen-

tiated groups [2-6]. Strong population structure has

been reported for many crops including wheat

[5,22,24,25]. A thorough understanding of population

structure has important implications as population

structure is one of the major reasons for false associa-

tions between phenotypes and markers in association

mapping (AM) studies [26]. Hence, the inclusion of

population structure estimates in AM is important for

reducing spurious associations [27].

On the practical level, the distribution of genetic

diversity in modern cultivars plays an important role in

the choice of specific mapping and crop improvement

strategies. In recent years, association mapping was

shown to be a powerful method for complementing the

traditional gene mapping studies based on controlled

crosses [5,28-30]. The extent of LD defines the marker

density required for genome-wide association mapping

(GWAM). GWAM experiments in human and natural

plant populations require several hundred thousand

SNPs for finding a marker allele linked to a causal

mutation [4,31]. However, the elevated level of LD in

crop populations suggests that a smaller number of

markers can provide sufficient genome coverage for

finding marker-trait associations. Indeed, in two-row

spring barley cultivars significant intra-chromosomal LD

extended up to 15 cM [3]. Analysis of LD patterns in U.

S. wheat populations showed significant LD extended to

5 cM [25] or 10 cM [22] while some populations of

durum wheat (T. turgidum) retained more than 50% of

their initial LD value at distances up to 20 cM [24]. In

theory, by selecting a set of closely related cultivars it

should be possible to increase the extent of LD and use

fewer markers for detecting associations.

Recent advances in DNA sequencing and genotyping

have enabled genome-wide studies capable of characteriz-

ing genetic variation and the extent of LD in natural and

breeding populations. Single nucleotide polymorphism

(SNP) has become the most frequently used type of

molecular marker for these analyses in many species

because of their high abundance across the genome and

the availability of cost-effective high-throughput genotyp-

ing assays [32-34]. One of the first sets of SNPs devel-

oped for polyploid wheat [19] was used in this study to

design a 1536-plex wheat oligo pool assay (wheat OPA)

to analyze the patterns of SNP variation and LD in

diverse populations of cultivated spring and winter wheat

lines from the US and CIMMYT ("Centro Internacional

de Mejoramiento de Maíz y Trigo”) breeding programs.

This knowledge is critical to the design of valid GWAM

experiments in wheat and useful for understanding the

role of selection and breeding in the distribution of

genetic variation across the wheat genome.

Methods
Plant material

The wheat lines included in our study represent diverse

cultivars utilized in 17 wheat breeding programs includ-

ing 9 winter and 8 spring wheat populations. All culti-

vars were selected to represent the current genetic and

phenotypic diversity of a specific state’s breeding pro-

gram. The phenotypic traits targeted by breeding pro-

grams include: disease resistance (leaf, stripe and stem

rusts), winter survival for winter wheat breeding pro-

grams in the Midwest, end-use quality, terminal heat

tolerance, resistance to drought stress, yield potential,

early maturity, resistance to the wheat stem sawfly and

herbicide tolerance. The complete list of lines with their

pedigrees is provided in the Additional File 1.xls. Plants

were grown in a greenhouse and DNA was extracted

from the leaves of 4-6 week old seedlings using methods

described before [35].
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SNP genotyping

The SNPs discovered in a panel of 32 lines of tetraploid

and hexaploid wheat were downloaded from the Wheat

SNP Database [36]. SNP selection and assay design were

performed according to previously described procedures

[32]. The following criteria were applied for SNP selec-

tion: no more than 2 SNPs were selected per locus, with

preference being given to SNPs present in at least two

lines in the discovery panel. Additional SNPs were dis-

covered by sequencing the transcriptomes of T. aesti-

vum cv. Chinese Spring and Jagger. Repetitive elements

were detected and masked by comparing sequences with

the TREP [37] and GIRI [38] databases. The masked

sequences were submitted to Illumina for processing by

Illumina® Assay Design Tool (ADT). The ADT generates

designability rank scores for each SNP that can vary

from 0 to 1. The SNPs with scores above 0.6 have a

high probability of being converted into a successful

genotyping assay. A total of 1536 SNPs were selected

for developing the wheat OPA (Additional File 2.xls).

Genotyping was performed at the USDA-ARS genotyp-

ing laboratory in Fargo, North Dakota according to

standard Illumina GoldenGate assay protocols [39]. Sub-

sequent genotype calling was carried out using Illumi-

na’s BeadStudio software v.3. The accuracy of the

genotype call was manually evaluated for the misclassifi-

cation of homozygous and heterozygous clusters using

the software’s clustering algorithm. This step proved cri-

tical for reducing the genotyping error rate associated

with peculiarities of clustering patterns in polyploid

wheat. Following the removal of loci with low-quality

clustering, the previously estimated genotyping error

rate for hexaploid wheat was a mere 1% [32].

Genetic diversity

Genetic diversity was evaluated by calculating the poly-

morphism information content ( PIC pi
i

n

= − ∑1
2 , where

pi is the frequency of the i-th allele [40]) for the number

of alleles across and within breeding programs using

PowerMarker software [41]. Analyses were performed

separately on four datasets: three datasets included

SNPs grouped by genome and one dataset included

complete set of SNPs.

Population structure

For analysis of population structure, the SNP dataset

was divided into the three genome-specific datasets and

one combined dataset. To reduce the effect of frequency

correlation between linked alleles, we selected SNP loci

located approximately 4 cM or farther apart from each

other. The A-genome dataset included 91 SNP loci

while the B-genome and D-genome dataset included 89

and 39 SNP loci, respectively (Additional File 3.xls). We

assumed that each individual in the population was

homozygous for all loci, and heterozygous loci were

treated as missing data. The proportion of heterozygous

loci in our dataset was 0.5%. The population structure

was inferred using the model-based Bayesian clustering

approach implemented in the program Structure [42]. A

total of 10 iterations of Gibbs sampler were run for an

admixture model with both correlated and non-corre-

lated allele frequencies [43]. Lengths of burn-in and

simulation runs of 105 and 106, respectively, were

selected based on the convergence of summary statistics

(log probability of data) among several independent

runs. Results of independent runs for the same value of

K were summarized using the CLUMPP program [44].

The number of populations (K) present in the dataset

was estimated by plotting the probability of data ln Pr

(X|K) for each value of K. The variation of ln Pr (X|K)

among independent simulation runs with the same

value of K and the rate of ln Pr (X|K) change from K-1

to K was used to select the optimal number of popula-

tions in the sample (Additional File 4.ppt). Two ad hoc

methods for estimating the correct number of K in the

sample, suggested by Pritchard et al. [42] and Evanno

et al. [45], were also tested. Population assignments for

each individual were visualized using Distruct software

[46]. Similar analyses were performed using the program

InStruct [47]. This program extends the Bayesian clus-

tering algorithm implemented in the program Structure

[42] by removing the assumption of Hardy-Weinberg

disequilibrium within inferred clusters and relying

instead on selfing rates to calculate expected genotype

frequencies [47]. The simulations were run for 100,000

steps after 50,000 burn-in iterations.

Population structure was also analyzed using the prin-

cipal component analysis (PCA) implemented in the

software EIGENSTRAT [48]. Data from 597 poly-

morphic SNPs with minor allele frequency >0.05 was

used to assess the clustering of genetic variation among

all 478 samples investigated.

The differentiation of populations was further investi-

gated by estimating FST for individual loci and the com-

ponents of variance for two levels of population

hierarchy using methods described by Weir and Cocker-

ham [49] and Weir [50] as implemented in the software

package PowerMarker [39]. FST provides a measure of

population differentiation by estimating the correlation

of alleles within the same sub-population relative to that

found in the entire population. The overall distribution

of genetic variation in the wheat cultivars was estimated

for two levels of population hierarchy: growth habit

(spring and winter wheat) and origin (breeding popula-

tions). The winter wheat population from Kansas was

excluded from the analysis due to the insufficient
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number of lines. The mean FST values in a sliding win-

dow of 5 consecutive linked SNPs were calculated to

identify genomic regions genetically differentiated

between spring and winter wheat lines. A 95% confi-

dence interval (CI) for mean FST values was estimated

by sampling 1,000 times with replacement the sets of 5

SNPs randomly selected from the 849-SNP dataset and

taking the 95th percentile of the distribution of means.

Regions of the wheat genome showing elevated FST
levels were compared with the positions of previously

mapped or cloned flowering time QTL. The sequences

of genes containing SNPs included in the wheat OPA

were compared with the sequences of gene-derived

flanking molecular markers (ESTs, cDNA) used in QTL

mapping studies. The syntenic relationship between

wheat, rice and Brachypodium genomes was used to

compare and validate map positions.

Linkage disequilibrium

For measuring LD, the locations of gene loci harboring

SNPs on the Ae. tauschii genetic map reported by Luo

et al. [51] were used. Pair-wise linkage disequilibrium

(LD) was measured using the squared allele-frequency

correlations, r2 , according to Weir [50]. In order to

reduce the variation of LD estimates generated by the

inclusion of rare alleles, only SNP alleles with minor

allele frequency (MAF) higher than 0.05 were used in

these calculations. LD levels and the rate of LD decay

were assessed by calculating r2 for pairs of SNP loci and

plotting them against genetic distance. The relationship

between LD decay and genetic distance was summarized

by fitting a locally-weighted linear regression (loess) line

to r2 data. The statistical significance of individual r2

estimates was calculated by the exact test following

Weir [50]. The false discovery rate (FDR) was estab-

lished at 0.01 using the Benjamini & Hochberg method

[52]. Chromosome specific r2 values were plotted using

the R package LDheatmap [53]. Blocks of SNPs showing

elevated levels of LD were identified using the method

described by Gabriel et al. [54] and implemented in the

program Haploview [55]. Background LD was estimated

as the 95th-percentile of the distribution of r2 values for

unlinked SNP loci [25].

Results
SNP genotyping and variation

The genotyping of 478 spring and winter wheat lines

with multiplexed 1,536 Illumina Golden Gate SNP assay

generated 734,208 genotyping data points (Table 1).

After the removal of SNPs failing to generate clear gen-

otype clustering, 1,299 SNPs with high quality genotype

calls were obtained with a 85% success of SNP conver-

sion into the working genotyping assays. Considering

these SNPS, 849 were polymorphic among the 478 lines

included in this study. Most genotypes were homozy-

gous (400,328 = 98.6%) with only a small fraction show-

ing residual heterozygocity (1,961 = 0.5%) or no

amplification (3,533 = 0.9%). Eighty-three percent of the

SNPs were polymorphic in both spring and winter

wheat populations. Among the 849 polymorphic SNPs,

only 52 and 97 SNPs were monomorphic in the panels

of 241 spring and 237 winter wheat lines, respectively

(Table 2). A high proportion of polymorphic SNPs (70%

- 85%) was recovered within populations of different ori-

gin, suggesting a high level of diversity within all U.S.

breeding populations (Table 2). After exclusion of two

winter wheat populations (KS and NY) due to their rela-

tively small sample sizes (4 and 10, respectively), the

estimates of polymorphism level (PIC) varied within a

very narrow range, between 0.14 to 0.16 among the win-

ter populations and from 0.14 to 0.18 among the spring

wheat populations.

Significant differences were detected between the dis-

tribution of MAF classes in spring and winter wheat (c2

= 50, P = 3.5 × 10-10, Figure 1). The spring varieties

showed increased proportion of medium frequency

alleles with MAF > 0.3.

Population structure of winter and spring wheat

For the analysis of population structure, the SNP geno-

typing data was organized into four datasets: three gen-

ome-specific datasets for the A- (91 loosely linked

SNPs), B- (89 loosely linked SNPs), and D- (39 loosely

linked SNPs) genomes and a combined set of 219 SNPs

covering the entire wheat genome (see Methods and the

Additional File 3.xls). The comparison of admixture

models assuming independent or correlated allele fre-

quencies suggest that a model assuming independent

allele frequencies is more appropriate than the model

with correlated allele frequencies for inferring the num-

ber of genetically homogeneous clusters in our dataset.

The appropriate choice of the model is strongly influ-

enced by the evolutionary history of populations. The

breeding populations include diverse lines subjected to

different selection regimes that can result in differen-

tiated allelic frequencies in populations adapted to vary-

ing environmental conditions. Falush et al. [43] also

pointed out that the correlated allele frequency model

may overestimate K when the allele frequencies between

populations are different. Since the models assuming

independent and correlated allele frequencies produced

similar population subdivision and classification of culti-

vars, hereafter, we describe only results from the inde-

pendent model unless otherwise noted.

First, we tested whether structure analysis assuming

K = 2 would assign winter and spring wheat cultivars

into two separate clusters. Both frequency models based

on the A- and B-genome SNP data produced similar

Chao et al. BMC Genomics 2010, 11:727
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population subdivision. The inferred population struc-

ture was consistent across multiple simulation runs. The

majority of winter and spring wheat breeding popula-

tions were assigned to separate clusters (Additional File

5.xls). Only the A-genome data in the NY winter wheat

population showed an equal proportion of ancestry in

the two clusters (Additional File 5.xls). Grouping of vari-

eties at K = 2 using the D-genome data did not result in

clear separation of spring and winter lines. Only 7 out

of 17 breeding populations derived more than 80% of

their D-genome’s genetic ancestry from only one of the

two clusters.

To identify the optimal number of K clusters in gen-

ome-specific datasets, we calculated the posterior prob-

ability Pr (K|X) [42] and ∆K [45] for each simulation

run. The posterior probability in structure runs was

constantly increasing with increasing the values of K

ranging from 2 to 21 providing little guidance in select-

ing the optimal number of clusters. The InStruct soft-

ware [47] showed a similar trend (data not shown) for

the same range of K values. These observations were

consistent with previously reported analyses of popula-

tion structure in barley and maize breeding populations

using multi-locus SNP data [56,57]. Therefore, the selec-

tion of the optimal value of K in this study was based on

the analysis of relationship between Pr (X|K), value of K

and the variation of Pr (X|K) among multiple indepen-

dent runs of Gibb’s sampler.

The probability of data for K from 2 to 5 for the

A-genome SNP dataset was consistent among multiple

independent runs of Structure (Figure 2 and Additional

File 4.ppt). For the B-genome SNP dataset, we obtained

consistent Pr (X|K) for K values varying from 2 to 4.

For values of K above 6 for the A-genome dataset and

above 5 for the B-genome dataset the simulation runs

could not converge to a single mode (Additional File 4.

ppt). The ambiguity of clustering solutions was also

accompanied by smaller increase in the mean Pr (X|K).

The cluster analysis of both the A- and B-genome data-

sets showed that the rate of change of Pr (X|K) with

Table 1 Wheat OPA evaluation.

Genome Total assayed No. failed SNPs No. good SNPs No. polymorphic SNPs (%) No. alleles detected PIC

A 642 93 549 368 (67%) 1.67 0.165

B 675 109 566 374 (66%) 1.67 0.170

D 219 35 184 107 (58%) 1.60 0.120

Total 1536 237 1299 849 (65%)

Mean 1.66 0.160

Table 2 Average estimates of minor allele frequency, number of alleles per locus, and polymorphism information

content.

Population Growth Habit Origin Number of lines Proportion of polymorphic SNPs, (%) MAF Number of alleles PIC

SD winter SD 21 79.5 0.13 1.62 0.14

NE winter NE 49 84.8 0.12 1.7 0.14

OK winter OK 40 84.8 0.14 1.7 0.16

WB winter WestBred 11 78.4 0.15 1.59 0.16

CO winter CO 30 82.7 0.13 1.64 0.15

TX winter TX 38 85 0.14 1.73 0.16

MT winter MT 34 82.6 0.12 1.65 0.14

KS winter KS 4 64.9 0.1 1.32 0.1

NY winter NY 10 70.3 0.1 1.44 0.11

Winter wheat winter 237 89.2 0.14 1.89 0.17

WB spring WestBred 30 82.4 0.14 1.66 0.16

SD spring SD 40 80.7 0.13 1.6 0.14

MT spring MT 30 85 0.17 1.71 0.18

MN spring MN 40 84.8 0.14 1.71 0.16

ID spring ID 30 83.2 0.16 1.65 0.17

WA spring WA 10 78.1 0.15 1.56 0.16

CA spring CA 30 87 0.16 1.72 0.18

CM spring CIMMYT 31 85.2 0.14 1.72 0.16

Spring wheat spring 241 89.1 0.18 1.94 0.2

Total 478 0.18 2 0.2
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increase in K reached more or less stationary value

(~200) for values of K = 4 or higher (Additional File 4.

ppt). The maximum likelihoods of clustering obtained

for correlated and uncorrelated allele frequency models

suggested different values of K for the D-genome data-

set. The likelihood of the correlated allele frequency

model for the D-genome dataset reached its maximum

at K = 9. However, the rate of likelihood gain decreased

for K values above 7. The likelihood of independent

allele frequency model showed that the improvement of

the likelihood of clustering dropped dramatically for K

above 5.

The genome-wide set of 219 SNPs was first used for

assigning each of the 17 pre-defined populations to

separate clusters. It is expected that each population

should have maximum membership in only one cluster

if the allele frequencies among populations are signifi-

cantly different. However, the clustering analysis demon-

strated that in several cases more than one population

had membership in the same cluster (Figure 3A). There

were also at least five clusters for which none of the 17

pre-defined populations showed a maximum member-

ship coefficient. The maximum values of population-

specific membership coefficients Q suggested that only

NY and OK winter wheat populations and SD, CA, CM,

MN, and MT spring wheat populations derived the

majority of their alleles from a single cluster. These

results indicated that 17 clusters exceeded the actual

Figure 1 Distribution of minor allele frequency classes in the

populations of spring and winter wheat.

Figure 2 Population structure of spring and winter wheat lines. Clustering was performed using A-, B-, D-genome and combined SNP sets.
The genotype of each line on the figure is represented by a colored line where each color reflects the membership of a cultivar in one of the K

clusters. The proportion of the colored segment indicates the proportion of the genome drawn from the K clusters.
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number of genetically distinct populations in our sam-

ple. A number of cultivars from the CA spring wheat

population share ancestry with the lines from the CIM-

MYT population and nearly all SD and MN spring culti-

vars were assigned to the same cluster. The winter

wheat populations showed lower levels of genetic differ-

entiation with the majority of cultivars in SD, NE, CO,

and MT populations having membership coefficient

above 0.5 in the same cluster. A reduction in the num-

ber of K clusters to ensure that each predefined popula-

tion has a maximum membership in only one cluster

led to the conclusion that optimal clustering can be

achieved at K = 9 (Figure 2 and Additional File 6.xls).

This value of K is also supported by the calculation of

the likelihood of data (Figure 3B).

The shared ancestry can result from the usage of

related cultivars in different breeding programs, which

sometimes can be reflected in the pedigree of lines

included in our study (Additional File 1.xls). For exam-

ple, the cultivar Express was used in the spring wheat

breeding programs of CA and WestBred, and cultivar

Milan was used in the breeding programs of CIMMYT

and CA. However, pedigree data clearly shows that only

small fraction of cultivars share common parents.

Apparently, pedigree has limited power for inferring the

level of genetic relatedness among cultivars in breeding

programs because: 1) common lines can be used only at

the very early stages of cultivar development and derived

lines may carry only small fraction of parental genotype;

2) other parents used in a breeding program can have

larger contribution to the genotype of cultivar; 3) pedi-

gree has an unknown level of error; 4) some pedigrees

may contain incomplete information.

Principal component analysis (PCA) of population

structure revealed that the first two principal compo-

nents can separate the wheat populations into 3 clusters

(Figure 4). The eigenvector 1 separated spring and win-

ter wheat populations; the eigenvector 2 separated

spring wheat populations into two clusters, with one

cluster predominantly containing lines from MN and

SD, while spring lines from CA, CM, ID, WA and WB

populations were grouped more closely together. The

spring wheat lines from MT, however, showed higher

levels of admixture and thus could not be placed within

a single cluster (Figure 4).

Genetic differentiation of populations

Analysis of molecular variance components based on the

849 SNPs showed that wheat lines within breeding

populations are more highly genetically differentiated

than wheat lines among different populations, which is

reflected by a higher proportion of variance within

breeding populations than among breeding populations

and growth habit groups (Table 3). A higher proportion

of among-subpopulation genetic variation was found in

spring wheat (17.2%) compared to that in winter wheat

(10.6%), indicating that in our panel spring wheat popu-

lations are more genetically differentiated than winter

wheat populations. Only 9.7% of genetic differentiation

among lines was explained by grouping all varieties into

spring and winter populations.

The FST estimates for individual loci between spring

and winter wheat populations inferred a high level of

heterogeneity across chromosomes (Table 4) with the

majority of SNP loci having low FST values (Additional

File 7.tif). The substantial variation in FST estimates for

Figure 3 Clustering of 17 pre-defined wheat populations. A) Proportion of membership (Q) of 17 pre-defined populations in 17 clusters

inferred using the Structure program. Maximum membership coefficients in one of the 17 clusters for each pre-defined population are indicated
by thick lines; B) The log probability of data as a function of K for genome-wide 219 SNP dataset. Means (black bars) and 95% confidence

intervals (grey bars) of log probability of data Ln Pr (X|K) for each value of K were calculated from 10 independent runs of structure with 100,000

burn-in steps and 106 simulation steps.
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single SNP loci is supported by the standard deviations

of chromosome- and genome-specific FST estimates

exceeding the values of means (Table 4). Similar obser-

vation for single-locus FST estimates was previously

noted in human populations [58]. We found that the

FST estimates for individual genomes were consistent

with the results of population structure analysis. A

lower level of genetic differentiation between the spring

and winter wheat populations was observed in the D-

genome (mean FST = 0.07) relative to the A- (mean FST
= 0.1) and B-genomes (mean FST = 0.11). Up to 50%

reduction in variation of single-locus FST estimates can

be achieved by calculating the group means of adjacent

SNP markers (Table 4). As shown in the Additional File

7.tif, the mean FST values for windows of 5 SNP loci

exhibited a lower proportion of extreme values and a

narrower distribution. However, the fact that significant

variation was still observed for window-based FST esti-

mates suggests that similar FST values are clustered

according to their genomic location.

Means of FST estimates in windows of 5 loci were

used to identify the regions of the wheat genome which

are genetically differentiated between spring and winter

wheat populations. Although this approach cannot be

considered a formal test for selection, it can be used as

a preliminary test to identify genomic regions harboring

genes controlling plant growth habit. Random permuta-

tion of genome-wide single-locus FST values was used to

estimate 95% confidence interval (CI) for window-based

FST values. The confidence interval was used as a

threshold to identify regions showing FST values higher

than the genome-wide mean. Seven regions with FST
values higher than 95% CI were detected on chromo-

somes 2A, 2B, 5A, 6B and 7B (Table 5). Comparison of

these regions with previous genetic studies of flowering

in wheat showed that three out of the seven regions

overlap with previously mapped flowering time QTL or

cloned flowering genes [59-61].

Patterns of linkage disequilibrium across the wheat

genome

A total of 394 genetically mapped SNPs were used for

estimating the extent of LD in wheat populations. Only

SNP loci having MAF ≥ 0.05 in a particular population
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Figure 4 Principal component analysis of genotyping data. A)

Clustering of winter and spring wheat lines; B) Clustering of pre-
defined breeding populations; sCA, sCM, sID, sWA, sWB, sMN, sMT

and sSD - spring wheat populations; wMT, wNE, wSD, wKS, wNY,

sCO, wOK, wTX and wWB - winter wheat populations.

Table 3 Analysis of molecular variance components.

Sample No. of growth habits No. of subpopulations Variance components (percents of variance)

Within subpopulations Among subpopulations
within growth habit

Among growth
habit

Winter 1 8 89.4% 10.6% -

Spring 1 8 82.8% 17.2% -

Combined 2 16 77.4% 12.9% 9.7%
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were used for analysis. Loci mapped to the regions of the

wheat genome known to be subjected to structural

alterations during evolution were excluded from this ana-

lysis [62]. In the spring and winter wheat populations, the

average extent of significant intra-chromosomal LD (FDR

≤ 0.01) was 20.8 cM (median 11.5 cM) and 19.2 cM

(median 10.7 cM), respectively. Significant LD was

observed for 68% (253/370) of SNP loci in spring wheat

and for 71% (247/348) of SNP loci in the winter wheat.

Significant LD was detected for 8.9% and 5.7% of

unlinked SNP loci (located on different chromosomes) in

the spring and winter wheat populations, respectively.

In the combined population of 478 lines, the mean intra-

chromosomal LD extended over 19.5 cM (median

10.7 cM) and significant associations were discovered in

8.1% of unlinked loci.

The highest extent of significant LD in the spring,

winter and combined populations was observed in the

wheat D-genome (mean 20.8 - 27.1 cM), followed by

lower LD in the A- (mean 16.7 - 19.8 cM) and B-

genomes (mean 20.4 - 21.5 cM) (Additional File 8.xls).

The estimates of median LD for significant associations

were similar among the wheat genomes and populations,

suggesting that the differences among estimates of mean

LD were driven by population- and genome-specific dif-

ferences in the long-range LD, which in most cases

exceed 10 cM.

The estimates of r2 for all pairs of linked 394 SNP loci

were used to assess the rate of LD decay with genetic

distance. The statistically significant threshold for r2 in

the spring and winter wheat populations was 0.08 and

0.02, respectively. In the A-genome, LD declined to 50%

Table 4 Means and standard deviations of single-locus FST estimates obtained for spring and winter wheat

populations.

Chromosome Mean FST Standard deviation (single-locus estimates/
5 SNP windows)

Genome Mean FST Standard deviation (single-locus estimates/
5 SNP windows)

1A 0.06 (0.08/0.04)

2A 0.11 (0.15/0.08)

3A 0.08 (0.1/0.04)

4A 0.11 (0.14/0.08)

5A 0.21 (0.27/0.16)

6A 0.05 (0.07/0.03)

7A 0.06 (0.07/0.05) A 0.10 (0.15/0.09)

1B 0.07 (0.07/0.03)

2B 0.14 (0.16/0.1)

3B 0.14 (0.14/0.05)

4B 0.03 (0.03/0.02)

5B 0.08 (0.08/0.04)

6B 0.12 (0.13/0.1)

7B 0.14 (0.16/0.09) B 0.11 (0.13/0.08)

1D 0.10 (0.11/0.04)

2D 0.06 (0.07/0.03)

3D 0.00 (0.01/NA)

4D 0.08 (0.11/NA)

5D 0.02 (0.01/)

6D 0.10 (0.13/0.03)

7D 0.03 (0.06/0.05) D 0.07 (0.1/0.05)

Table 5 Genetic map intervals that show elevated levels of FST and overlap with flowering time QTL.

Chromosome arm Interval, cM Mean FST Known genes involved in growth habit phenotype

Region 1 2AL 114-124 0.27

Region 2 2BS 76-97 0.24 Ppd-B1 [59]

Region 3 2BL 104-110 0.32

Region 4 5AL 35-46 0.30

Region 5 5AL 80-138 0.44 Vrn-A1 [60]

Region 6 6BS/6BL 72-75 0.28

Region 7 7BL 63-89 0.28 Flowering time QTL [61]
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of its initial value at about 5 cM in winter wheat

compared to 6.3 cM in spring wheat (Figure 5A). In the

D-genome, LD decayed faster in winter wheat declining

to 50% of its initial value at about 6 cM whereas in

spring wheat a similar level of LD was reached at 7 cM

(Figure 5A). Both spring and winter wheat populations

showed an identical rate of LD change in the B-genome

decaying to 50% of its initial value over 7 cM (Figure 5A).

In order to investigate population-specific recombina-

tion processes we studied the rate of LD decay within

the populations of different origin (Figure 5B and 5C).

Due to the limited number of lines, WB, KS and NY

winter wheat and WA spring wheat populations were

excluded from this analysis. As expected, compared to

LD estimates in the combined population dataset (Fig-

ure 5A), the estimates of LD within populations were

higher (Figure 5B and 5C). The level of initial LD (the

highest value of LD on Figure 5) in spring wheat popu-

lations, except for the CIMMYT population, varied from

0.43 to 0.49 (Figure 5B). The CIMMYT population had

the lowest level of initial LD (r2 = 0.35) decaying to 50%

of its value at about 10.5 cM. In the remaining spring

wheat populations LD decayed to half of its initial value

within 6-9 cM range (Figure 5B). The levels of initial

LD in the winter wheat populations were similar to

those in the spring wheat population with r2 ranging

from 0.42 to 0.49 (Figure 5C) and decaying to 50% of

these initial values within 7-9 cM.

The extent of LD varied greatly across the wheat gen-

ome even among closely linked SNP loci. Using the

method described by Gabriel et al. [54], we identified

only two genomic regions harboring 5 or more SNP loci

that show little evidence of historical recombination

events. These LD blocks shared by winter and spring

wheat populations were located on chromosomes 2A

and 3B (Figure 6). Pairs of loci with elevated LD tended

to be localized near the centromere in regions bearing

low recombination rates. The LD data for each chromo-

some in the population of 478 wheat cultivars are sum-

marized in the Additional File 9.xls.

Discussion
Genetic diversity and population structure

Our study provides an overview of genetic variation in

US and CIMMYT spring and winter wheat cultivars

using genome-wide distributed SNP markers. Here we

confirmed the utility of the wheat OPA for genotyping

large populations of hexaploid wheat lines [32]. Most of

the SNPs that were polymorphic within the complete

set of 478 cultivars were also polymorphic in all subpo-

pulations. Of the 849 polymorphic SNPs, 89% were

polymorphic in both spring and winter wheat popula-

tions and from 70% to 85% were polymorphic across

populations. Such a widespread distribution of poly-

morphic loci among populations suggests that the SNP

discovery performed in a set of genetically diverse wheat

landraces and wild emmer wheat [19,36] was successful

in recovering alleles represented in both growth habit

groups. However, the distribution of MAF showed a

higher proportion of medium frequency alleles in the

spring wheat than in the winter wheat population. Cur-

rently, it is not clear whether this observed bias is

caused by historical events, such as demography or

selection, or if it is the result of ascertainment schemes

applied during SNP discovery process. If the latter is

true, the bias is likely small given the high proportion of

Figure 5 LD decay estimated using the wheat A-, B-, and D-genome and combined SNP sets. A) Decay of r2 as a function of genetic

distance between SNP markers estimated for A-, B-, and D-genomes of the spring and winter wheat populations. B) Decay of r2 as a function of

genetic distance between SNP markers estimated for the spring wheat populations from different geographic location in US and Mexico. B)
Decay of r2 as a function of genetic distance between SNP markers estimated for the winter wheat populations from different geographic

location in US. Only populations with more than 20 wheat lines were included in these analyses.
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polymorphic SNPs shared between spring and winter

populations.

The proportion of genetic differentiation explained by

growth habit (9.7%) was only slightly lower than the

proportion of variation among subpopulations within

the growth habit groups (12.9%). Historical gene flow

between the spring and winter wheat groups during

crop improvement and breeding can potentially be

responsible for the low level of genetic differentiation

between these populations. The proportion of variance

between growth habit and among populations was sig-

nificantly lower than the within-population genetic var-

iance, indicating that each of the breeding programs

included in our study employs genetically diverse lines.

These results also indicate that the polymorphic SNPs

included in the wheat OPA are represented in most

populations and, therefore, will be useful for genotyping

diverse collections of wheat cultivars.

In spite of the high proportion of shared SNPs among

populations as well as small among-population genetic

variance components, the model-based clustering

approach was able to successfully assign cultivars to clus-

ters. The clustering analysis performed using the whole

genome SNP set produced more genetically distinct clus-

ters than clustering obtained with smaller sets of SNPs

from the A-, B- or D- genomes. Although cultivars can

Spring wheat Winter wheat

Figure 6 Pair-wise LD for the wheat chromosomes 2A and 3B. Colored rectangles represent the squared correlation r2 between a pair of

SNPs. The values of r2 are color-coded according to the color-key provided below the LD maps.
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be optimally clustered at the same value of K using the

A- and D- genome SNP sets, the proportion of genetic

ancestry of cultivars in these clusters was variable for dif-

ferent SNP sets, implying that the three wheat genomes

have different degrees of genetic differentiation among

breeding programs. This outcome may be a consequence

of inadequate representation of SNP alleles within a parti-

cular genome in different populations, or alternatively,

can reflect the different impact that demography, popula-

tion and breeding history had on genomes of wheat lines.

Strong selection for adaptation to diverse environmental

conditions, together with different founders and intro-

gression histories can modulate the differentiation of alle-

lic frequencies among breeding populations and genomes

and result in the slightly different clustering patterns

obtained here using the three genome-specific SNP sets.

A similar trend was documented for US, Australian and

UK varieties using DArT markers [63], which showed

that wheat genomes are differentiated in allelic frequency

among national breeding programs [64].

Even when the full SNP data set was used, wheat cul-

tivars in the 17 wheat populations rarely shared the

same membership coefficient in the inferred clusters

reflecting the complexity of the breeding histories of

lines included in this analysis. Most wheat lines showed

evidence of admixture with the portions of their gen-

omes assigned to 2 - 4 different inferred clusters, which

is an expected result of the frequent crosses used in

wheat breeding programs between adapted germplasm

and the donors of different traits. When the whole

population was forced to divide into two groups (K = 2),

the clusters aligned mainly by growth habit, with most

spring and winter wheat cultivars being assigned to

separate clusters. The same grouping by growth habit

was also apparent when the analyses were performed

separately for the A- and B-genome SNPs. However, the

informativeness of D-genome SNPs for the separation of

spring and winter varieties was low, likely a consequence

of low allelic frequency differentiation between these

two wheat groups as evidenced by the low inter-popula-

tion FST obtained for the D-genome.

Clustering using the combined SNP set showed that

the inferred number of clusters in our population is

smaller than the number of pre-defined breeding popu-

lations, largely due to the fact that breeding programs

from the same region tend to use cultivars of common

ancestry. The spring wheat population included cultivars

from breeding programs targeting more geographically

separated areas that were also more genetically differen-

tiated that the winter wheat population. A high level of

genetic differentiation was observed between the popula-

tions originating from two major geographical locations

one including northern states SD, MN and MT and

the other including Mexico and western states WA, ID

and CA. In contrary, the winter wheat populations lar-

gely originating from the central states showed higher

levels of admixture and a lower extent of genetic

differentiation.

Genetic differentiation of spring and winter wheat

The characterization of FST across chromosomes pro-

vided additional insights into the structure of genetic

variation between the spring and winter wheat popula-

tions. Assuming the same evolutionary processes affect

neutral loci, identifying genomic regions showing ele-

vated FST between spring and winter wheat populations

should make it possible to localize the targets of selec-

tion controlling growth habit phenotype. However, the

substantial heterogeneity of FST estimates for SNP loci

across the wheat genome make it impossible to use sin-

gle-locus FST values for detecting past selection events.

This problem was circumvented by calculating FST for a

group of sequential SNP loci which was shown to be an

efficient strategy to reduce variation in FST estimates

relative to estimates based on individual loci [58]. The

highest degree of genetic differentiation was identified

for the loci mapped to the wheat chromosome 5A,

which probably results from the presence of Vrn1 gene

locus, the major gene involved in regulation of flowering

time in wheat [60]. This locus is responsible for most of

the natural variation in the growth habit in hexaploid

wheat [65,66]. Additional regions showing unusually

high level of genetic differentiation between spring and

winter wheat lines were detected on the chromosomes

2A, 2B, 6B and 7B (Table 5). Three out of seven regions

with elevated FST were co-localized with previously

mapped genes known to be involved in flowering time

regulation. Some wheat chromosome 6B substitution

lines are known to affect flowering time in the absence

of vernalization [67], but since the responsible gene has

not been mapped, it is not possible to determine if this

gene locus overlaps with high FST region identified on

the chromosome 6B in this study. Although the distri-

bution of empirical FST estimates cannot serve as a for-

mal test for selection, this finding suggests that high FST
genomic regions can harbor genes subject to diversifying

selection providing good targets for further studies.

The genetic differentiation of some of the genomic

regions can also be due to structural rearrangements

abundant in one of the populations. For example, chro-

mosomal inversions are known to be a major barrier for

gene flow between populations due to limited recombi-

nation near the affected genomic regions and also one

of the mechanisms facilitating reproductive isolation and

species formation [68]. Previously it was demonstrated

that pericentomeric inversion polymorphisms are wide-

spread in wheat [69]. We found that one of these inver-

sions overlaps with one of the regions with elevated FST
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detected on the chromosome 6B. This structural rear-

rangement can potentially impact the frequency of allele

exchange between the spring and winter wheat popula-

tions and contribute to the genetic differentiation of this

genomic region.

Linkage disequilibrium

Using genome-wide SNP data we demonstrated the

extensive amount of LD in the populations of wheat cul-

tivars. The variation in the patterns of LD among the

populations and wheat genomes reflects the complexity

of evolutionary and breeding history of wheat [70]. The

extent of LD and LD decay estimated using SNP loci

combined from all three wheat genomes was similar in

both spring and winter wheat populations. In the ana-

lyses using the individual genomes, the differences

between spring and winter lines in LD decay to 50%

were also very small varying from no difference in

the B-genome (7 cM both) to 1.3 cM in the A-genome

(6.3 cM spring and 5 cM winter).

Analyses of LD decay by breeding population showed

similar profiles among populations except for the CIM-

MYT population, which had the lowest LD among com-

pletely linked loci and the slowest rate of LD decay.

A possible explanation for this observation is the inten-

sive usage of synthetic wheat lines in the CIMMYT

program. Synthetic wheats are generated by hybridiza-

tion of diverse tetraploid (A- and B-genomes) and

Ae. tauschii (D-genome) accessions followed by chromo-

some duplication using colchicine. The synthetic wheats

and their derivatives have greatly increased genetic

diversity in hexaploid wheat, particularly in the D-

-genome [71-73]. It is well known that the introduction

of new haplotypes from divergent populations can

increase the extent of LD [74].

Depending on the genomic location of genes control-

ling important adaptive traits, these broad crosses can

have a differential impact on LD in different genomes.

For example, because the Vrn-A1 gene has a stronger

effect than the Vrn-B1 gene, it has higher number of

widely distributed haplotypes [66] and is thus more

likely to have a stronger effect on LD. Therefore, the

divergence in the extent of LD between wheat popula-

tions is probably related to unique breeding histories

and selection pressures applied to genes located in the

different genomes during the process of cultivar

development.

A genetic bottleneck may also increase the level of LD

[2,74]. The last polyploidization event resulting in the

origin of hexaploid bread wheat approximately 8,000-

10,000 years ago had a dramatic impact on the level of

genetic diversity in the D-genome [19,75] suggestive of

strong population bottleneck. We hypothesize that the

longer extent of significant LD in the D-genome

compared to that in the A- and B-genomes in both

spring and winter wheat populations can mostly be

explained by this polyploidization event [19]. However,

the difference in LD between the D-genome, and the A-

and B-genomes in spring wheat was not as high as in

winter wheat. This result can probably be explained by

1) the larger number of breeding cycles involved in the

development of spring wheat cultivars than in the devel-

opment of winter wheat cultivars, and/or by 2) the

inclusion of synthetic-derived wheat cultivars in the

CIMMYT spring population.

Rates of LD decay varied among populations, but as

expected, individual populations showed higher overall

levels of LD than the combined datasets. These higher

LD levels were also reflected in elevated levels of long-

range LD extending above 10 cM. Interestingly, across

all populations, LD decayed to 50% of its initial value

within relatively narrow genetic intervals ranging from 6

to 9 cM. This rate of LD decay is probably associated

with the high level of genetic diversity used in the indi-

vidual breeding program. The cultivars in all of these

programs captured comparable number of recombina-

tion events resulting in fast erosion of LD. However,

each population showed variation in the extent of long

range LD which was highest in the SD winter wheat

population and WB spring wheat population. As pointed

out earlier, these differences are probably the conse-

quence of breeding history and selection specific to each

breeding program.

The comparison of the LD levels obtained in our

study with results obtained in other studies dealing with

wheat and other inbreeding crops was complicated by

the differences in the type of markers used for genotyp-

ing, and by sample size variation in the different studies.

Both factors can impact LD estimates. Previously

reported LD estimates in wheat were obtained using

more polymorphic SSR markers [22,24,25]. In a sample

of 43 U.S. spring and winter wheat cultivars it was

shown that 70 out of 123 SSR loci (57%) with significant

LD were linked at <10 cM [22]. In our study 86% of

SNP loci (211/246) showing significant LD in the com-

bined population of spring and winter wheat were

located at less than 10 cM. The larger proportion of

alleles with significant LD at less than 10 cM detected

in our study is most likely due to sample size differences

across the two studies (478 vs. 43 lines) used to estimate

significant LD. The extent of significant LD in our

population was more than 4 times higher than the SNP-

based estimates obtained for a population of 91 Eur-

opean spring and winter cultivated barley [3]. These

results suggest that the genetic diversity and number of

recombination events in European barley germplasm are

significantly higher than in the sample of U.S. and CIM-

MYT wheat cultivars. Therefore, association mapping
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studies in wheat would require a smaller number of

markers per unit of genetic distance than needed in cul-

tivated barley.

Variation in the extent of LD along the chromosome

affect the number of tagSNPs (subset of SNPs that cap-

ture a large fraction of the allelic variation of all SNP

loci [76]) required in each genomic region to ensure

that causal mutations are in LD with neighboring SNPs.

The interaction of many factors affecting the rate of LD

decay in the different parts of the genome complicates

the determination of the number of tagSNPs required to

gain sufficient power for genome-wide association map-

ping. Estimates of this number for autogamous plant

species varied from 9,600 to 29,400 SNPs for soybean

cultivars [6] to 250,000 for the more diverse Arabidopsis

natural populations [4]. LD values of 0.8 or higher have

been recommended as an acceptable threshold for

tagSNP selection [77]. In our study, for loci located

from 0.0 to 0.2 cM apart, the median LD was approxi-

mately 0.8. If markers are evenly distributed at 0.2 cM

intervals, the causative mutation would be found at

about 0.1 cM from one of the flanking markers and

have an approximate LD of 0.8. In a 3,500 cM hexaploid

wheat map, placing markers at 0.2 cM will require at

least 17,500 markers. This number would vary depend-

ing on if more liberal or conservative LD thresholds

were selected.

The evolutionary history of an allele also has a strong

impact on the probability of detecting marker-trait asso-

ciations. Alleles of loci that are involved in local adapta-

tion and subjected to recent selection can be more

readily detected using an even more sparsely distributed

set of markers. For example, marker-trait associations of

alleles involved in the regulation of flowering time in

Arabidopsis [78] and cultivated barley [3] were detected

using a relatively low number of SNP markers. Genome-

wide re-sequencing efforts similar to the ones performed

for Arabidopsis [4], rice [1] and maize [79] will be

required to provide comprehensive information for

tagSNP selection in wheat. These efforts will also need

to be complemented by assessment of the portability of

selected tagSNPs to other populations. Otherwise, inade-

quate genome coverage may result in failure to identify

critical associations [78,80]. The possibility of perform-

ing GWAM in the large polyploid wheat genome will be

tested in future using a larger panel of up to 9,000 gen-

ome-wide distributed SNP markers currently under

development.

Conclusions
Our study demonstrated a high level of genetic diver-

sity and relatively fast decay of LD within each wheat

breeding program. Extensive exchange of genetic mate-

rial between breeding programs resulted in a low level

of genetic differentiation between populations of spring

and winter wheat. The regions of the wheat genome

harboring flowering time QTL demonstrated the high-

est levels of genetic differentiation between the spring

and winter wheat populations. Breeding, selection and

founder effect had a different impact on the wheat

genomes in distinct populations, highlighting the sig-

nificance of allopolyploidy for the development of cul-

tivars adapted to a broad range of environmental

conditions. Assessment of the extent of LD and popu-

lation structure in the assembled panel provided valu-

able information for the design of GWAM experiments

in wheat.

Additional material

Additional file 1: Complete list of wheat cultivars used in the study.
The file contains the list of spring and winter wheat cultivars selected
from 17 breeding programs in US and CIMMYT. Pedigree (when
available/known) of each cultivar is also provided.

Additional file 2: SNPs and their flanking sequences used for the

design of wheat OPA. The file contains the list of SNPs and their
flanking sequences used for the design of wheat Illumina OPA. The
Illumina® Assay Design Tool was used to generate designability rank
scores for each SNP.

Additional file 3: List of 219 SNPs used for population structure

analysis. The file contains the list of 219 SNPs and their genetic map
locations. The analysis of population structure was performed using all
SNPs and SNPs separated into genome-specific sets (91 A-genome
specific SNPs, 89 B-genome specific SNPs, and 39 D-genome specific
SNPs).

Additional file 4: Relationship between the log probability of data

and the number of clusters K. The log probability of data (Ln Pr(X|K))
was plotted as a function of the number of clusters K for different SNP
datasets and structure models assuming correlated (top three graphs)
and independent (bottom three graphs) alleles frequencies. Means (black
bars) and 95% confidence intervals (grey bars) of log probability of data
Ln Pr(X|K) for each value of K were calculated from 10 independent runs
of Structure with 100,000 burn-in steps and 106 simulation steps.

Additional file 5: Membership coefficients of 17 pre-defined wheat

populations in 2 clusters (K = 2). Clustering was estimated using SNPs
mapped to the A-, B- and D-genomes. Membership coefficients were
calculated from 10 independent runs of Structure with 100,000 burn-in
steps and 106 simulation steps.

Additional file 6: Membership coefficients of 17 pre-defined wheat

populations in 9 clusters (K = 9). Membership coefficients (Q) were
estimated for 17 wheat populations assuming 9 clusters in data (K = 9).
Clustering was estimated using combined set of 219 SNPs from 10
independent runs of Structure with 100,000 burn-in steps and 106

simulation steps.

Additional file 7: Distribution of FST estimates for individual SNP

loci and windows of 5 SNPs. A) The distribution of single-locus FST
values between spring and winter wheat populations. B) The distribution
of FST values in a sliding window of 5 consecutively located SNP loci.

Additional file 8: Summary of significant LD in the spring, winter

and combined populations. The file contains mean and median
estimates of statistically significant LD in the A- B- and D-genomes of
spring, winter and combined populations. The pair-wise LD was
measured using the squared allele-frequency correlations r2 according to
Weir [50]. The statistical significance of individual r2 estimates was
calculated by the exact test following the procedure described by Weir
[50]. The false discovery rate (FDR) was established at 0.01 using the
Benjamini & Hochberg method [52].
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Additional file 9: Summary of LD estimates. The file contains the
exact test for LD, genetic distances between pairs of SNP markers and
minor allele frequencies (MAF) of alleles used for LD calculation. The pair-
wise LD was measured using the squared allele-frequency correlations r2

according to Weir [50]. The statistical significance of individual r2

estimates was calculated by the exact test following the procedure
described by Weir [50]. The false discovery rate (FDR) was established at
0.01 using the Benjamini & Hochberg method [52].
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