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A de®eloped model predicts local gas fraction and bubble-size distributions for turbu-
( )lent gas dispersion in a stirred ®essel, based on the population balance equations PBE ,

with relations taken from literature for bubble coalescence and breakup deri®ed from
isotropic turbulence theory. The transport of bubbles throughout the ®essel is simulated
by a scaled single-phase flow field obtained by CFD simulations. Model predictions for
the gas fractions in pseudoplastic Xanthan solutions are compared with local measure-
ments and agree well qualitati®ely. This formulation o®ercomes the necessity of choos-
ing a constant bubble size throughout the domain, as is done in two-fluid models and is,
therefore, more reliable in mass-transfer calculations.

Introduction

Stirred vessels are widely used, among other things, in pro-
Ž .cess industries for bio chemical reactions involving more than

one phase. Equipped with an impeller revolving at high speed
and operated in the turbulent flow regime, stirred vessels are
generally considered useful devices for creating a large inter-
facial contact area between the phases, thereby promoting
mass transfer. Nowadays, however, awareness is growing
among chemical engineers that, under conditions typical of
commercial operation, ‘‘intensity’’ and ‘‘quality’’ of flow, tur-
bulent kinetic energy, turbulent eddies, volume fractions of
phases, concentrations of species, and interfacial contact area
are never uniformly distributed throughout the vessel. Large
values of velocities, kinetic energy, and energy dissipation rate
are found in the impeller region, while, near the walls and
the top of the vessel, the flow is often more quiescent. As a
result, in the case of multiple-phase reactors, the spatial dis-
tribution of the phases may be very uneven; the same applies
to bubble and droplet sizes in aerated stirred vessels and in
agitated liquid-liquid dispersion, respectively. Overall reactor
efficiency might increase if, in the more quiescent regions of
a stirred vessel, a larger part of the interfacial mass transfer
could be effected.
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Current methods for designing and improving multiphase
reactors, however, are predominantly based on empirical cor-
relations for overall quantities such as power consumption
and mixing times. These correlations have several drawbacks:
they do not reflect the details of the physics involved in mass
transfer and are only applicable in the narrow range of oper-
ating conditions for which they were determined. A new de-
sign tool can be found in the use of computational fluid dy-

Ž .namics CFD techniques. The improvements attained over
the last three decades in the areas of turbulence modeling,
grid-meshing, and numerical methods now make it possible

Ž .to perform reliable three-dimensional 3-D simulations, even
for a difficult system as a stirred vessel.

In the case of multiphase flow, the situation is more com-
plex. Transport equations for mass, momentum, and turbu-
lence properties have to be solved for each individual phase.
These equations, however, suffer from a lack of universal
agreement as to a generally valid formulation of the interfa-
cial transfer terms. In addition, turbulence of multiphase
flows is an area hardly covered by fundamental studies as to
its dynamics. As the pertinent transport equations are highly
coupled and nonlinear, an efficient, yet robust, solution tech-
nique for the resulting large sets of algebraic equations is not

Žreadily available Lathouwers and van den Akker, 1996; van
.Santen et al., 1996 .

In general, the continuum phase is treated by an Eulerian
approach. For the dispersed phase, two options are available.
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Ž .In case of very small loadings, the dispersed phase may be
represented by a finite number of particles the motion of
which is tracked in a Lagrangian manner. For high loading or
if particle-particle interactions are dominant, the Eulerian

Žapproach is preferred, based on the two-fluid model Ishii,
.1975 . Examples of the latter approach for the simulation of

two-phase stirred reactors can be found in Issa and Gosman
Ž . Ž . Ž .1981 , Gosman et al. 1992 , Morud and Hjertager 1996 ,

Ž . Ž .Djebbar et al. 1996 , and Jenne and Reuss 1997 . An alter-
native method, introduced by Bakker and van den Akker
Ž . Ž .1994 see also Bakker, 1992 , exploited a slip velocity model
and an effective coalescence-redispersion model with a view
to deriving a spatial gas fraction distribution from the single-
phase flow field obtained via a CFD simulation. A common
feature of all these models is the use of a single bubble size.
While this may be a reasonable approach for noncoalescing
media, in general this may limit the application of all these
models.

The objective of the present work is to develop a model
which is possible to obtain local bubble-size distributions, and,
hence, local gas fractions and mass-transfer rates in an aer-
ated stirred vessel. The model is formulated in terms of pop-

Ž .ulation balance equations PBEs and has been implemented
Ž .by Venneker 1999 in the in-house code DAWN. Breakup

and coalescence of bubbles is modeled in a fundamental way
using isotropic turbulence theory. One of the assumptions
made in the model is that gas bubbles do not significantly
alter the flow field. Given a prediction of the single-phase
flow field, the flow field in gassed conditions can be obtained

Žby a scaling of the single-phase flow field with only the ex-
.perimentally determined drop in power-consumption as a

parameter. We will call this 1.5-way coupling. This limits the
Ž .application of this model to low gas loadings 0]5% , but it

offers a more accurate method to predict mass-transfer rates
than the present two-fluid models.

General Formulation of the Model
Population balance equations

The key reason why fluid-particle systems may be modeled
Ž .in terms of population balance equations PBEs is the dy-

namics of the particle-size distribution of interest. The dy-
namics may only be due to processes by which particles grad-

Žually increase andror decrease in size such as in response to
.variations in the chemical composition in the liquid phase ,

but also due to processes involving continuous interactions
Žbetween individual particles such as agglomeration, coales-

.cence, and breakup . Rather than following individual parti-
cles, as is done in particle tracking, a continuum approach
based on particle statistics is pursued. The concept of PBE,

Ž .which was first presented by Hulburt and Katz 1964 , is now
being used in many applications, particularly in the field of
crystallization, including the production of margarine. Fur-
ther references on PBE can be found in the general review of

Ž .Ramkrishna 1985 , as well as in the review of the application
of population balances to chemical reactors due to Ritchie

Ž .and Togby 1978 . The combination of PBEs and CFD is rel-
atively new.

In general, the PBE is a balance equation of the number
density probability of some particle property. In the present
application, the particle property x is the number density

probability of particles with bubble size d, but one can also
think of the particle age as a modeled property in order to
determine the residence time distribution.

The PBE in its most general form is given by Ramkrishna
Ž .1985 as

­ n x , r , tŽ .
q= ? xn x , r , t q= ? © n x , r , tŽ . Ž .˙x r p­ t

s B x , r , Y , t y D x , r , Y , t 1Ž . Ž . Ž .

Ž .in which n x, r, t is the number density probability of the
property under consideration as function of the property vec-
tor x, the physical position of the particle r and time t. x is˙
the growth rate of the particle due to processes other than
interaction with other particles, and © is the velocity of thep
particle. The continuous phase variables which may affect the

Ž .particle property, are represented by the vector Y r, t .
Ž .On the righthand side of Eq. 1, B x, r, Y, t represents the

Ž . Ž .rate of production birth and D x, r, Y, t the rate of de-
Ž . Ž .struction death of particles of a particular state x, r at

time t. In the case of bubble size as the particle property,
bubbles of a certain diameter d are continuously formed by
either breakage of larger bubbles or coalescence of smaller
bubbles. Similarly, bubbles of diameter d are continuously
destroyed by breakage into smaller bubbles, and by coales-
cence into larger ones. The functions that describe these
breakup and coalescence processes have to be specified fur-
ther. Their specific form may vary for different particle-fluid
systems and for the particle property under consideration.

Gas-Dispersion Modeling. In the case of gas-dispersion
modeling where the bubble diameter is the most important
bubble property, the following forms have been adopted for

Ž .the birth and death functions Tsouris and Tavlarides, 1994

1 d Y X Y X Y X XB d , t s p d , d h d , d n d , t n d , t d dŽ . Ž . Ž . Ž . Ž .H2 0

`
X X X X Xq h d , d n d g d n d , t d d 2Ž . Ž . Ž . Ž . Ž .H

d

Y Ž 3 X 3.1r3in which d s d y d , and

`
X X X XD d , t s n d , t p d , d h d , d n d , t d dŽ . Ž . Ž . Ž . Ž .H

0

q g d n d , t 3Ž . Ž . Ž .

Note that the dependency on r and Y has been dropped for
brevity only. The various parameters in Eqs. 2 and 3 relate to
the following physical mechanisms:

Ž X.h d, d : effective swept volume rate of bubbles of diame-
X w 3 xter d colliding with bubbles of diameter d m rs

Ž X.p d, d : coalescence efficiency after collision between
X w xbubbles of diameter d and d }

Ž . w xg d : breakage frequency of bubbles of diameter d 1rs
Ž X. w xh d, d : daughter probability distribution 1rm
Ž X.n d : number of bubbles formed from the breakage of a

X w xbubble diameter d }
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( )Figure 1. Three steps of coalescence: a approach of
( ) ( )bubbles; b thinning of liquid film; c film

rupture.

Equations 2 and 3 are general mathematical formulations
of the coalescence and breakup processes. The integrals ex-
press that bubbles of diameter d can break up into bubbles
of any size dX as long as dX - d, and that they can coalesce
with any other bubble of diameter dX. As a result, the
bubble-size distribution is a continuous function. In most
cases, analytical solutions of Eq. 1 do not exist, and it has to
be solved numerically. In the remainder of this section, the
different processes are treated in more detail and the effects
of the physical properties of the fluid and the flow on the
various functions are discussed.

Coalescence
Ž .The process by which two or more bubbles coalesce, es-

sentially consists of three successive steps that are drawn in
Figure 1. First, bubbles have to collide, trapping a small
amount of liquid between them. The second step involves the
drainage of liquid out of the film between the adjacent bub-
ble surfaces, while the third and final step is the rupture of
the film leading to coalescence. We assume that collisions of
bubbles occur due to turbulent transport only. Alternatively,
one may include other collision mechanisms such as buoy-
ancy-driven, that is, collisions due to the difference in rise
velocities of bubbles of different size, and collisions due to

Ž .laminar shear Prince and Blanch, 1990 . In the present
model, rather than the actual collision frequency, the volume
swept by a moving bubble is calculated, from which the num-
ber of other bubbles that are hit by this moving bubble can
be indirectly determined.

( X)Effecti®e Swept Volume Rate h d, d . The volume rate
which is swept by a bubble of diameter d is modeled on the
analogy of kinetic gas theory. Consider a bubble in an eddy,
moving with a relative speed c with respect to other bubbles.
In a time D t, the bubble sweeps a ‘‘collision tube’’ with

Ž X.2 Xcross-sectional area p dq d r4, in which d is the diameter
Ž .of the other bubbles Figure 2 . The effective swept volume

rate is then given by

p 2X Xh d , d s dq d c 4Ž . Ž . Ž .
4

Figure 2. Collision tube of a bubble moving with a rela-
tive speed c.

An estimate for the relative speed c can be given using the
classical theory on isotropic turbulence due to Kolmogorov
Ž .1941 . It states that, if the distance l between two points in
the flow field is much smaller than the turbulence macroscale
L, but much larger than the Kolmogorov microscale l , thed
relative velocity is only a function of the energy dissipation
rate e and the magnitude of the length l

2r32 2c s ® l sC e l 5Ž . Ž . Ž .

According to one of Kolmogorov’s assumptions, eddies much
2Ž .larger than l may contribute little to ® l . Two bubbles in

such a large eddy may be advected together without ap-
proaching each other. An analysis of grid turbulence due to

Ž .Batchelor 1951 and measurements in stirred vessels and
Ž .pipes of colliding drops by Kuboi et al. 1972 suggest that

the constant C equals 2.0. Using further the radii of the col-
liding bubbles as a measure for l, we have

2r3 2r3X X2 2r3 2r3® s2.0e r q r s1.26e dq d 6Ž . Ž . Ž .

Hence, the effective swept volume rate in terms of bubble
diameters is given by

p 7r3X X1r3'h d , d s 1.26 e dq d 7Ž . Ž . Ž .
4

( X)Coalescence Efficiency p d, d . The second step in bubble
coalescence is the drainage of the liquid from between the
bubbles until the liquid film, separating the bubbles, reaches
a critical thickness. At this point, film rupture occurs, result-
ing in coalescence. The bubbles have to be in contact for a
certain period of time, sufficient for the liquid film to reach
the critical thickness. If the bubbles are separated by an in-
coming eddy before this thickness is reached, no coalescence
occurs. On the one hand, turbulence promotes collisions of
bubbles, while on the other hand, it decreases the coales-
cence efficiency. As a measure for the collision efficiency
Ž X.p d, d , usually the ratio between the average drainage time

Žt and the average contact time t is taken Prince and Blanch,
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.1990

t
Xp d , d sexp y 8Ž . Ž .

t

Figure 1b shows the drainage of the liquid film between
two bubbles, which are trapped in an eddy with lifetime t .

Depending on the viscosities of the two phases and the
presence of surfactants, the drainage of the liquid film be-
tween two bubbles is modeled in different ways. A useful,
more precise conceptual picture is that, when two bubbles
approach one another, the interfaces flatten and give rise to
a circular disc-like film of liquid in between. The liquid has
to drain from this disc when the flat interfaces get closer. For
an aqueous-air system, the bubble interfaces are deformable
and fully mobile. Film drainage is controlled by inertia and

Ž .surface tension forces if Chesters, 1975

4m
<1 9Ž .

rVr

in which V is the approach velocity of the two bubbles.
A relation for the film thickness h can then be derived by

Žsolving Bernoulli’s equation for the disc Kirkpatrick and
.Lockett, 1974

s
hs h exp y4 t 10Ž .0 2( r a Rc eq

in which R is the equivalent bubble radius, given byeq

2
R s 11Ž .Xeq 1rr q1rr

for the coalescence between two unequally sized bubbles with
radii r and rX. To calculate the drainage time, we need esti-
mates for the initial film thickness h , for the radius of the0
thinning disc a, and for the critical thickness h at which thec
film ruptures.

Ž .Chesters 1975 gives an estimate for h , assuming that the0
pressure generated between approaching spherical bubbles
becomes sufficiently high to cause substantial deformation

r V 2R2
c eq

h s 12Ž .0 4s

Alternatively, a single value may be used for h irrespective0
Ž .of bubble radius. For example, Kirkpatrick and Lockett 1974

used h s0.1 mm in all cases, which is considerably smaller0
than predicted by Eq. 12.

The radius a actually is a function of time, which compli-
cates the drainage equations substantially. Most authors,
therefore, assume that deformation of the bubble surface oc-
curs instantaneously and poses a relation for a. We used a

Ž .relation due to Chesters 1991

1r41r2 2r V RWe c eq
as R s R 13Ž .eq eqž / ž /2 2s

This relation is based on the relative increase in surface area,
and, hence, on the surface free energy. The approach velocity
V may be set equal to ® given by Eq. 6.

Finally, for the critical film thickness h , an approach duec
Ž .to Chesters 1991 is adopted that leads to the expression

1r3AReq
h s 14Ž .c ž /8ps

with A the Hamaker constant.
The drainage time in the case of deformable, fully mobile

interfaces is then given by

1 h0
t s ln 15Ž .mob s ž /hc4 2( r a Rc eq

Ž .The average contact time t is given by Levich 1962 as

2r3Xdq dŽ .
t s 16Ž .1r3e

So, the coalescence efficiency is obtained by substituting Eq.
15 and 16 into 8.

Breakup
Breakup of bubbles in a turbulent flow is caused by turbu-

lent eddies bombing the bubble surface. If the energy of the
incoming eddy is sufficiently high to overcome the surface
energy, deformation of the surface is the result, which can
finally lead to the formation of two or more daughter bub-
bles. For bubble breakup to occur, the sizes of the bombard-
ing eddies have to be smaller than or equal to the bubble
size, since larger eddies only transport the bubble.

In order to model the breakup process, the following sim-
Ž .plifications are generally made Luo and Svendsen, 1996 :

Ž .1 The turbulence is isotropic.
Ž . Ž .2 Only binary breakage of a bubble is considered n s2 .
Ž .3 The breakage volume ratio is a stochastic variable.
Ž .4 The occurrence of breakup is determined by the en-

ergy level of the arriving eddy.
Ž .5 Only eddies of a size smaller than or equal to the bub-

ble diameter can cause bubble breakup.
The second and third simplification are supported by ex-

perimental observations on bubble breakage by Hesketh et
Ž .al. 1991 .

( )Breakage Frequency g d . As stated above, for a bubble to
Ž .break up, the colliding eddies must have 1 sufficient energy

Ž .to overcome the increase in surface energy, and 2 a size of
the order of the bubble diameter. As a result, breakage fre-
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Figure 3. Collision frequency between bubble and ed-
dies.

quency may be thought of as the product of an eddy-bubble
collision rate and a breakage efficiency, which both depend

Ž .on eddy size Luo and Svendsen, 1996

d
g d s v d , l p d , l d l 17Ž . Ž . Ž . Ž .H b

lmin

The eddy-bubble collision rate is modeled in the same way as
bubble-bubble collisions

v d , l s h d , l n 18Ž . Ž . Ž .˙ l

in which n is the number density probability of eddies withl

Ž .size l, and h d, l is again the swept volume rate now calcu-
Žlated using both a bubble diameter and an eddy size see

.Figure 3

p 2h d , l s dq l u 19Ž . Ž . Ž .l4

in which the relative velocity between an eddy and a bubble
Žu may be estimated, on the basis of turbulence theory Luol

.and Svendsen, 1996

1.70
2 2r3 2r3u s e l 20Ž .l 2r32pŽ .

The number density probability of the eddies n may bel

estimated with the help of the turbulent energy spectrum
Ž .E k , that is, from

1 p
3 2n l u d ls E k 1y a d k 21Ž .Ž . Ž .l l2 6

in which the gas holdup a is used to take into account that
Ž .only a fraction 1y a of the swept volume is occupied by

Ž .liquid. Substituting Eq. 20 and using, from Hinze 1975 , an
Ž .expression for E k yields

12 1y aŽ .
n s 22Ž .l 4pl

The final equation for the collision rate is obtained by substi-
tuting Eqs. 19, 20, and 22 into Eq. 18

'p 1.70 12 1y aŽ .2 1r3
v d , l s dq l el 23Ž . Ž . Ž . Ž .1r3 44 pl2pŽ .

( )Breakage Efficiency p d, l . When a bubble is hit by anb
eddy, the probability of breakage not only depends on the
energy of the incoming eddy, but also on the cohesive forces
which act on the bubble surface. The ratio of disruptive and
cohesive forces is expressed by the Weber number

r u2dc b
Wes 24Ž .

s

A critical Weber number can be assigned to the situation
where cohesive and disruptive forces balance, resulting in a
maximum stable bubble size. According to Prince and Blanch
Ž .1990 , the critical Weber number is 2.3 for air bubbles in
water. Here it is assumed that this value also holds for pseu-
doplastic fluids. As a result, the critical eddy velocity to break
a bubble of size d isb

1r2s
u s1.52 25Ž .c ž /d rb c

2 2An exponential relation between u and u is assumed forc l

the breakage efficiency, just as for the coalescence efficiency;
Ž .p d, l then becomesb

2r32u 2p 2.3sŽ .c
p d , l sexp y sexp y 26Ž . Ž .b 2r3 2r32 ž /ž / 1.70e l du bl

In order to determine the breakage frequency, a lower limit
for the eddy size must be set in Eq. 17. Since the y5r3 law
was used for the eddy velocities, the lower limit is set at the
end of the inertial subrange. In terms of wave numbers this
equals 0.55 k , with k as the Kolmogorov wave numberd d
Ž .Tennekes and Lumley, 1972 . The minimum eddy size then
is 11.4 l .d

( X)Daughter Bubble Distribution h d, d . For calculating the
sizes of the daughter bubbles after breakage, it is assumed
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that the energy required for the creation of new surface area
is the key parameter. It is also assumed that a minimum bub-
ble size exists for the daughter bubbles; otherwise, the proba-
bility at the extremes of the distribution would be infinity.
Let e be the kinetic energy needed to create the smallestmin
and largest bubbles, and e be the energy needed to createmax
two equally sized bubbles; then, the daughter bubble proba-
bility density function for the breakage of a bubble of size dX

Ž .is written as Tsouris and Tavlarides, 1994

e q e y e dŽ .min maxXh d , d s 27Ž . Ž .
`

e q e y e d d dw xŽ .H min max
0

Discretization of the PBEs
In practical situations, one is generally not interested in

the number density probability n, but rather in the number
density N }the number of bubbles of a particular class peri
unit volume}itself. This number density is defined as

diq1N t s n d , t d d 28Ž . Ž . Ž .Hi
d i

Ž .in which n d, t follows from Eqs. 2 and 3, convective and
dispersive terms being ignored}for the time being}for the
sake of simplicity.

The result of the integration is a balance equation for the
Ž .number densities N , in terms of the unknown number den-i

Ž .sity probability n d, t and is, hence, still unsolvable. To
overcome this problem, the bubbles are assumed to be con-
centrated at a representative size x although N is the totali i
number of bubbles with sizes between d and d . With thisi iq1
assumption, the discretized number density probability can
be expressed in terms of the number density

M

n d , t s N t d dy x 29Ž . Ž . Ž .Ž .Ý i i
is1

with M the total number of bubble classes. Substituting Eq.
29 into Eq. 1 with neglection of the convection and diffusion
terms finally gives the general form of the discretized popula-
tion balance equation

d N t 1Ž .i
s p x , x h x , x N t N tŽ . Ž . Ž . Ž .Ý j k j k j kd t 2 j ,k

Ž .® F ® q ® F ®i j k iq1

q N t h x , x n x g xŽ . Ž . Ž . Ž .Ý k i k i k
k ) i

M y1

y N t p x , x h x , x N tŽ . Ž . Ž . Ž .Ýi i k i k k
k s1

y N t g x 30Ž . Ž . Ž .i i

ŽGenerally, the population balance Eq. 30 with additional
. Žinput and output terms are solved for the agitated vessel or

.any other process equipment as a whole. See the work of
ŽTavlarides and coworkers Coulaloglou and Tavlarides, 1977;

.Lewalle et al., 1987; Tsouris and Tavlarides, 1994 on liquid-
liquid dispersions in stirred tanks, and that of Prince and

Ž .Blanch 1990 for bubble columns. The underlying assump-
tion in doing this is that conditions are homogeneous. The
average dissipation rate}which is used in the specific func-
tions for the breakage and coalescence}is calculated from
the power input.

From real life and from single-phase flow simulations, we
know that conditions in a stirred vessel vary greatly from one
point to another. In the impeller domain, the conditions in
the turbulent regime are mainly such that breakup is domi-
nating, whereas in the more quiescent regions in the upper
part of the vessel, coalescence is dominating. The number
density of bubbles, their size distribution, and, hence, holdup,
is therefore also likely to vary throughout the vessel. There-
fore, a more realistic view of multiphase systems can be ob-
tained by solving the M balance equations for each computa-
tional grid point. This further has the advantage that bubble
velocities, which affect the local values of the number densi-
ties, can be taken into account as well. A more systematic
approach is then available to study the differences between
aqueous systems and more viscous of even non-Newtonian
systems.

Bubble Sizes. In order to cover a broad range in bubble
volume, the bubble classes are chosen in such a way that the
bubble volume in class i is twice that in class iy1. Further-
more, it is assumed that only two bubbles are involved in the
coalescence process, and that bubbles break up into two bub-
bles only. The smallest bubbles do not break up and the
largest bubbles are not involved in the coalescence process.

Ž .The formation of a bubble of size d in size range x , xi iq1
due to breakup or coalescence is represented by assigning

Ž . Ž .fractions f d, x and f d, x to bubble populations at x1 i 2 iq1 i
and x , respectively. This is necessary because not all coa-iq1
lescence and breakages result in a bubble which has a legiti-
mate size. Consider, for example, three classes of bubbles with
volumes 1®, 2®, and 4®. The coalescence of a bubble with
volume 1® with a bubble of size 2® will result in a bubble
with a volume of 3®. Clearly, we have to distribute this new
bubble in fractions f and f over the two neighboring classes,1 2
in this case 2® and 4®. To determine these two fractions, we
need two equations. Of course, the first equation relates to
the total volume of the two bubbles, to ensure mass conserva-
tion. The second conservation equation is taken here as the

Ž .conservation of bubble surface a d , since the total bubbleb
surface is important for mass transfer. Alternatively, one may
choose to use conservation of the number of bubbles involved
in the breakage and coalescence process

f d , x ? ® q f d , x ? ® s ® dŽ .Ž . Ž .1 i b , i 2 iq1 b , iq1 b

f d , x ? a q f d , x ? a s a d 31Ž . Ž .Ž . Ž .1 i b , i 2 iq1 b , iq1 b

Both fractions f and f need to be considered in the birth1 2
and death processes in Eq. 30. The discretized version of the
population balance equation, without convective and disper-
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sive terms, is then written as

dN t 1Ž .i
s f d , x p x , x h x , xŽ . Ž .Ž .Ý 1 i j k j kd t 2 j ,k

Ž .® F ® q ® F ®b , i b , j b ,k b , iq1

1
= N t N t q f d , x p x , xŽ . Ž . Ž .Ž .Ýj k 2 i j k2 j ,k

Ž .® F ® q ® F ®b , iy1 b , j b ,k b , i

= h x , x N t N t q f d , xŽ . Ž . Ž . Ž .Ýj k j k 1 i
j ,k

Ž .® F ® y ® F ®b , i b ,k b , j b , iq1

=h x , x n x g x N tŽ . Ž . Ž . Ž .i k k k k

iy1

q f d , x h x , x n x g x N tŽ . Ž . Ž . Ž .Ž .Ý 2 i i k k k k
k s1

M y1

y N t p x , x h x , x N t y N t g x 32Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ýi i k i k k i i
k s1

Bubble ©elocity and shape
In the gas dispersion code DAWN, bubble velocities are

calculated as the sum of the liquid velocity and the slip veloc-
ity between the two phases

U sU qU 33Ž .g l , g s

in which U denotes the liquid velocity under gassed condi-l, g
tions. The slip velocity U can be calculated from a force bal-s
ance on a bubble

W 2 1 pl , g 2< <D r g® zy r ® rsC r U U d 34Ž .ˆ ˆb c b D c s sr 2 4

in which ® denotes the bubble volume, r is the unit vector inˆb
the radial direction, z is the unit vector in the axial direction,ˆ
and W is the tangential component of U . The force in thel, g l, g
radial direction is the centrifugal force on the bubbles and is
optional in the code. The force in the vertical direction is the
buoyancy force.

The drag coefficient C is a function of the ReynoldsD
number. With only bubble diameters initially given, both CD
and Re are unknown. In the case of Newtonian fluids, two
methods are available to obtain values for the drag coeffi-
cient and Reynolds number: an iterative method with a given
relationship between C and Re, or using a unique relationD
between d and U with the bubble diameter as independents
variable, from which C and Re can be calculated. The sec-D
ond method is preferred, because it makes iterations redun-
dant. Several correlations can be used for various two-phase

Ž .systems Wallis, 1974; Grace et al., 1976 ; the experimental
data at the basis of these correlations, however, relate to
Newtonian fluids only. As similar correlations for non-Newto-
nian fluids are not available, the first method has to be used.

In the literature, limited experimental data is available for
Ž .the terminal rise or fall velocity to drops and bubbles in

pseudoplastic fluids. For pseudoplastic liquids, the Reynolds

Figure 4. Experimental data for drag coefficient C ofD
bubbles in pseudoplastic fluids.

Ž .Experimental data due to: Barnett et al. 1966 , Haque et al.
Ž . Ž .1988 , and Tsukada et al. 1990 .

number comprises the flow index

r u2yndn
c s

Re s 35Ž .p K

ŽThe C y Re data are plotted in Figure 4. All data exceptD p
.ns0.81 : D lay quite close to the experimental drag curve of

bubbles in contaminated water, although no data is available
for Reynolds numbers higher than 100.

In DAWN, the following iterative procedure is used to cal-
culate the drag coefficient. First, C is calculated using ap-D
proximate correlations for the experimental drag curve of
bubbles in contaminated water and an initial estimate of the
slip velocity. Secondly, the new slip velocity is calculated, us-
ing the obtained value of C withD

4D r gd
u s 36Ž .s ( 3rCD

The iteration is repeated until the difference between the
guessed and calculated velocity is smaller than 1%. This slip
velocity is then compared with the velocity calculated by the

Ž .wave theory of Mendelson 1967

2.14s
u s q0.505gd 37Ž .s ( r d

The constants in Eq. 37 have been proposed by Clift et al.
Ž .1978 . The actual slip velocity used in DAWN is the smallest
of the two. It turned out to be necessary to also use the rela-
tionship of Mendelson, because the largest bubbles in the
simulations could otherwise have slip velocities as high as 40

Ž .cmrs. Equation 37 was also used by Tsukada et al. 1990 for
the upper limit of slip velocities.

One of the options in DAWN is to correct the bubble ve-
locity for the local void fraction a . This is done according to
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Ž .Richardson and Zaki 1954

us qy1s 1y a 38Ž . Ž .
u`

in which q is a function of the Reynolds number Re .p
Bubble Shapes. Important for the mass transfer}and in-

directly for C }is an accurate description of the surface areaD
of a bubble. At low Reynolds and Eotvos numbers, interfacial¨ ¨
tension and viscous forces are much more important than in-
ertia forces, and the bubble has a spherical shape. At higher
Reynolds and Eotvos numbers, the bubbles are more ellip-¨ ¨

Ž . Ž .soidal with varying width a over height b ratio. The Eotvos¨ ¨
number is defined as

g r d2
e

Eos 39Ž .
s

in which d is the diameter of a volume-equivalent sphere.e
ŽThe transition sphericalrellipsoidal see Figure 2.5 in Clift et

Ž ..al. 1978 is approximated by

w xlog Res1.205 ?exp y1.631 log Eo 40Ž .

The width to height ratio arb of an ellipse is calculated from
Ž .a plot presented by Harmathy 1960 . No special treatment

was introduced for spherical cap bubbles that will occur if
Eo)40.

Mass transfer
The mass-transfer coefficient k is calculated on the basisl

Ž .of the surface renewal concept of Kawase et al. 1987 . This
Ž .concept is based on Higbie’s penetration theory Higbie, 1935
Ž .and the surface renewal model of Danckwerts 1951 . In the

model, turbulence brings elements of bulk fluid up to the
free surface of a bubble, where unsteady mass transfer occurs
for a time t , after which the element returns to the bulk ande

Ž .is replaced by another. k is then given by Higbie, 1935l

2 DD
k s 41Ž .l (' tp e

The exposure time t is further modeled according to thee
periodic transitional sublayer model of Pinczewski and Side-

Ž . Žman 1974 . For power-law fluids, t is written as Kawasee
.and Ulbrecht, 1983

1rnKrrŽ .
q2t sT 42Ž .e 2rnn 0

in which Tq is a dimensionless bursting time period, and n 0
Ž .is a friction velocity, given by Metkin and Sokolov 1982 as

Ž .1r2 1q nK
nr2Ž1qn.n s2e 43Ž .0 ž /r

Substitution of Eqs. 42 and 43 into Eq. 41 yields

Ž .y1r2 1q n4 1 K
1rn 1r2 1r2Ž1qn.k s 2 DD e 44Ž .l q ž /' T rp

where the factor 4 is included to account for the reduced
exposure time at a free surface compared to a rigid surface,

q Žand the value of T is taken as 15.0 Kawase and Ulbrecht,
.1983 . For Newtonian fluids, Eq. 44 reduces to

1r4y1r2k s3.01Sc en 45Ž . Ž .l

Ž .which was also used by Bakker and van den Akker 1994 in
their gas dispersion model GHOST!.

The local volumetric mass-transfer coefficient k a is calcu-l
lated when the surface area a of each bubble in a grid cell isb
known. In the case of ellipsoidal bubbles, the surface area is
given by

2 2'ln arbq a rb y1b ž /2a s2p a 1q 46Ž .b 2 2a 'a rb y1

The summation of all the bubbles in each class then gives the
local k al

M

k as k N a 47Ž .Ýl l i b , i
is1

Integration of the local values of k a over the entire vessell
gives the overall mass-transfer coefficient. In the output of
DAWN, both the overall value of k a and the local valuesl
are reported. This makes it possible to identify the regions
where the highest mass-transfer rates occur.

Experimental Setup
Global and local measurements of the gas fraction in a

stirred vessel have been performed to validate the predic-
tions by the PBE model. The diameter T of the baffled ves-
sel was 0.441 m, a six-blade Rushton type impeller was used

Ž .with diameter Ds0.147 m Figure 5 . The working fluid was
Ž .a 0.075 wt. % solution of Xanthan gum trade name Keltrol .

Its rheological behavior could well be described with the fol-
lowing power-law parameters: K s0.0367 kg s2ynrm and ns
0.65. The solution had a surface tension of s s0.0672 Nrm.

A ring sparger was placed midway between the flat vessel
bottom and the impeller disc. The diameter of the sparger
was the same as the impeller disc diameter. In all cases, air
was used as the disperse phase. In the experiments, a gas-flow
rate of Q s0.85 Lrs was used. The impeller speed was Nsg
5.0 revrs, giving a power input of P s0.29 Wrkg. With theseg
experimental conditions, the gas was completely dispersed.

The power drawn was calculated from measuring the rota-
tional speed of the impeller and the torque exerted by the
impeller. The overall gas holdup was visually determined by
reading the liquid level. Local measurements of the gas frac-

Žtion were determined with an optical fiber probe Venneker,
.1999 .
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Figure 5. Geometry and dimensions of the baffled
stirred vessel, equipped with a six-blade disc
turbine and a ring sparger.

Numerical Procedure
Single-phase simulation

The starting point of the PBE calculations is a converged
single-phase simulation which in our case is obtained with

Ž .the commercial CFD-package FLUENT version 4.40 . In
these simulations, the interaction of the rotating impeller with
the surrounding liquid is modeled using a black-box ap-
proach, that is, experimentally determined velocities, kinetic
energy, and viscous dissipation rates are presented at the im-
peller tip. Turbulence is modeled with the anisotropic
Reynolds stress model. In Venneker and van den Akker
Ž . Ž .1997 and Venneker 1999 the single-phase predictions are

Ž .compared with laser Doppler anemometry LDA measure-
ments. Overall, the predictions are qualitatively correct, at
least for the mean velocity field and with some room for im-
provement of the kinetic energy and energy dissipation. Also,
due to the followed black-box approach, the predictions in
the impeller region are not reliable.

Velocity field under gassed conditions
Before the gas dispersion model can be used, some consid-

erations about the velocity field under gassed conditions must
first be made. The presence of gas bubbles may affect the
velocity field in several ways. In the wake of a bubble, some
amount of liquid may be carried away along with the bubble.

Ž .In regions with a positive upward directed axial velocity this
effect may increase the axial velocity, while in regions with a
downward directed flow, the absolute axial velocity is de-
creased. The velocity field under gassed conditions can be
altered also by the gas cavities behind the impeller blades.
The decrease in power input caused by these cavities de-
creases the pumping effect of the impeller and, thereby, the
radial velocities in the discharge jet.

To obtain a reliable solution of the gas dispersion, the sin-
gle-phase flow solution must therefore be corrected. The liq-
uid flow field is altered here in a global way to account for

the presence of gas bubbles. Based on the work of Rousarˇ
Ž .and van den Akker 1994 , the power drop in gassed condi-

tions is used to obtain the new flow field. The following cor-
relations were used

0.65PgU UU sU ?g ž /P

0.4PgU UV sV ?g ž /P

0.65PgU UW sW ?g ž /P

PgU Uk s k ?g ž /P

2r3PgU Ue se ? 48Ž .g ž /P

Ž .where ) denotes dimensionless variables with V .tip
The scaling of the energy dissipation rate is slightly differ-

ent. First, any discrepancy between single-phase simulation
and the experiment is removed by assigning 18% of the power

Žinput to the impeller region see the Large Eddy Simulations
Ž ..of Derksen and van den Akker 1998 . Next, the e values in

the bulk are corrected with the difference between single-
phase simulation and experiment. Only then, the scaling to
the gassed conditions is made according to Eq. 48.

Sol©ing the PBEs
Given a converged 3-D single-phase flow solution, a 2-D

field is obtained by averaging the results over the tangential
direction. This is done to limit the computational time and
memory. The calculated flow field is then corrected for any
difference in power drawn between simulation and theory.
Finally, the scaling to gassed conditions is made according to
Eq. 48.

With the gas dispersion model, the startup of stirred vessel
aeration is simulated. So the simulation starts with initially

Žno gas in the tank, and as an inlet condition at the sparger
.position a prescribed gas-flow rate of bubbles with a fixed

size. After all the PBEs have been solved at the new time
step, the local and overall holdup values are calculated by
summing up the volume occupied by each bubble class. A
check is made whether the solution is converged or not, and
whether somewhere the local holdup exceeds 100%. The so-
lution is converged if the difference between the amount of
gas leaving the vessel at the top and the amount of gas that
enters the vessel is less than 0.1%.

Results of the PBE Model
In this section, results are presented for the simulation of

the aerated Xanthan gum solution and compared where pos-
sible with measurements. The number of bubble classes in
the simulation was taken as Ms25, with the smallest bubble
size d s0.125 mm, and the largest d s32 mm. The next1 25
sizes are twice as large in volume as the previous size. The
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Figure 6. PBE simulation results of 0.075% Keltrol.
Ž . w x Ž .a Local gas fraction % in experiment; b predicted local

Ž . w x Ž .gas fraction; c predicted Sauter mean diameter m ; d
w xpredicted mass transfer coefficient 1rs . Overall holdup ex-

periment: 3.6%"0.2; simulation: 3.08%. Overall db s 5.1932
mm; Overall k as 0.0147 1rs.l

limits were determined by examining the bubble-size distri-
bution in each computational cell and making sure that the
amount of bubbles in the first and last class are practically
zero. Finally, a time step of 0.01 s was used.

In Figures 6a and 6b, contour plots of the experimentally
and computationally determined local holdup values are
shown. The measurements were performed at the intersec-
tion of the drawn lines. The red areas in the figure denote
regions with gas fractions higher than 10%.

This figure clearly shows the potential strength of CFD in
general and of DAWN in particular; the internal distribution
of gas inside a stirred vessel can now be calculated and is
with this first attempt using population balance equations
quite comparable with experiments. The model is capable of
predicting the essential features of this particular flow regime:
high gas fractions above the sparger and in the impeller out-
flow; the concentration of gas in the upper part of the vessel;
the accumulation of gas in the lower part of the vessel near
the vessel wall; and the absence of gas beneath the sparger.

The reason why the two contour plots in Figure 6 are not
identical can be contributed to more than one fact. First, the
simulations are for an averaged 2-D field, whereas the mea-
surements were performed in the plane between the baffles.
Second, the errors in the gas fraction are to a large extent
caused by errors in the calculated single-phase flow field and
the subsequent scaling. With the solution strategy of DAWN,

Ž .improvements in the scaling of single-phase flow field are
easily extended to improvements in the gas fraction field.
Also, in the formulation of DAWN, there is room for im-
provement. Eventually, a two-way coupling between the liq-
uid and the gas is necessary. At present however, the theory
on multiphase flow modeling is far from that point.

To perceive which future improvements are necessary, the
simulation is now analyzed in more detail. The experiment
shows a clear meandering of the gas fraction field in the up-
per part of the vessel. This meandering is caused by a small
liquid recirculation loop near the wall in the top of the ves-
sel. This effect can also be seen in the drawing of the bulk
flow patterns in an aerated stirred vessel of Nienow et al.
Ž .1977 . The meandering is absent in the simulation, which is
not surprising because the secondary recirculation loop is also
not present in the single-phase calculation. Clearly, a sub-
stantial change in flow direction due to the presence of gas
cannot be predicted with this model.

ŽA striking fact are the higher gas fractions compared to
.experiments in the bulk of the vessel. This can also be seen

in Figure 7, where a-profiles are shown for different heights.
The overall holdup in the simulation was, however, lower than
obtained experimentally. The most plausible reason for this
contradiction is the fact that not all bubbles were detected by
the glass fiber probe. Bubbles smaller than 1 mm are not
pierced at all by the probe, while larger bubbles are not de-
tected when their approach direction is not in line with the
probe tip.

Bubble Size and Mass-Transfer Predictions. As a final re-
sult, contour plots of the local Sauter mean bubble diameter
db and the local mass-transfer coefficient k a are pre-32 l

Ž .sented see Figures 6c and d . In Figure 6c, it can be seen
that the smallest bubbles are localized in the lower part of
the vessel, and not as one would expect, in the impeller re-
gion. This is caused for the following reason. Small bubbles
are formed in the impeller region where turbulence intensity
is highest. In that region, not all bubbles are broken; as a
consequence, the minimum local value of db is not found32
in the impeller outflow. At the height where the impeller out-
flow reaches the vessel wall, the flow is divided into two cir-
culation loops. The largest bubbly are mainly carried away
with the upper loop, while small bubbles can be found in
either loop. In the circulation loops, turbulence intensity is
low. With increasing height, db increases because of coales-32
cence. This occurs in both loops, which explains the relatively
high bubble sizes in the lower corner of the vessel near the
wall. From this latter region, only the smallest bubbles are
taken away towards the impeller, while the larger bubbles
have a sufficiently high slip velocity to escape and rise along
the vessel wall. As a consequence, the region with the lowest
db is found in the lower corner near the symmetry axis,32
which is a region with low gas fraction.

Bubble-size distributions in four characteristic positions in
Ž .the vessel see Figure 6c are shown in Figure 8. Comparing
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Figure 7. Measurements and predictions of the local
gas fraction at several heights in 0.075% Kel-
trol.
Experimental conditions: N s 5.0 revrs, Q s1.0 Lrs, P sg g
0.275 Wrkg.

points A, close to the impeller tip, and B, close to the wall,
we see at point B that more smaller bubbles are present and
the class with the maximum number of bubbles has shifted
from 17 to 16. The region with the highest fraction of small-
est bubbles is found just above the vessel bottom, and point
C shows a typical bubble-size distribution. Finally, point D
shows the distribution in the quiescent region in the upper
part of the tank where large bubbles are formed by coales-
cence.

The bubble-size histograms can serve as a third validation
method, next to measurements of the overall and local values
of the gas fraction, of the model. Experimentally determined
bubble-size distributions can, for example, be obtained by a

Ž .suction probe Greaves and Barigou, 1988 or photographi-
Ž .cally Takahashi and Nienow, 1993 .

The ability of predicting local bubble-size distributions is
the major advantage of the PBE formulation over two-fluid
modeling. It offers the possibility of investigating the internal

Figure 8. Bubble-size distribution as predicted by
DAWN at characteristic positions in the ves-
sel.

gas-liquid structure and can be used to improve the mass-
transfer process.

The contour plot of k a shows that mass transfer is farl
from uniform throughout the vessel, although the flow regime
is completely dispersed. The highest values of k a are foundl
below the impeller disc and in the outflow of the impeller. It
must be noted that in reality the bubble sizes directly be-
neath the impeller disc are not as small as predicted by the
model. The specific area a is thus overpredicted there, mean-
ing that the majority of the mass transfer occurs in the im-
peller outflow. Given this irregular distribution of k a, it isl
obvious why multiple impellers are used in practical situa-
tions.

Conclusions
A model has been presented based on the use of popula-

tion balance equations to simulate the behavior of bubbles
with different sizes in a turbulently agitated vessel. The inter-
action between liquid and gas was assumed to be 1.5 way
coupled, and the liquid flow field is obtained from a single-
phase flow simulation. With the model, local values of gas
holdup, bubble size, number densities, and mass-transfer co-
efficients in an aerated stirred tank can be calculated. The
model predictions concerning local gas holdup are compara-
ble with experiments and are encouraging enough to con-
clude that the use of population balance equations is a
promising technique to study dispersed flows. The main ad-
vantage of using PBEs is that bubble-bubble interactions are
explicitly taken into account. Hence, research on mass trans-
fer in dispersed flows can be carried out more accurately than
with models with only one bubble size. In future work, the
methodology as discussed in this article will be applied to
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3-D, transient simulations of stirred tanks to realistically pre-
dict gas dispersion.
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Notation
asheigh of ellipse, m
asradius of thinning disc, m
astotal specific bubble area, my1

a ssurface area of bubble, m2
b

AsHamaker constant, kg ?m2 ? sy2

bswidth of ellipse, m
Bsbirth function, my4 ? sy1

csrelative speed of a bubble, m ? sy1

dsbubble diameter, m
db sSauter mean bubble diameter, m32

d sdiameter of a volume-equivalent sphere, me
Dsdeath function, my4 ? sy1

DDsdiffusion coefficient, m2 ? sy1

esenergy of an eddy, kg ?m2 ? sy2

essurface energy, kg ?m2 ? sy2

Esthree-dimensional energy spectrum, m3? sy2

f , f sfraction1 2
g sbreakage frequency, sy1

hseffective swept volume rate, m3? sy1

hsfilm thickness, m
h scritical film thickness at rupture, mc
h sinitial film thickness, m0
kskinetic energy of turbulence per unit of mass, m2 ? sy2

kswave number, my1

k smass-transfer coefficient, m ? sy1
l

K sconsistency, kg ? sny 2 ?my1

l sKolmogorov length micro scale, md
m smass of an eddy, kgl

Msnumber of bubble classes
nsnumber density probability, my4

n snumber density probability of eddies, my4
l

nsflow index
Nsimpeller rotational speed, sy1

Nsnumber density, my3

pscoalescence efficiency
p sbreakage efficiencyb
P spower draw impeller, W ?kgy1

Q sgas-flow rate, m3? sy1
g
r sbubble radius, m
r sradial co-ordinate, m

R sequivalent bubble radius, meq
tstime, s
tsdrainage time, s

t sexposure time, se
t sdrainage time for deformable fully mobile interfaces, smob

T stank diameter, m
Tqsdimensionless bursting time

usbubble velocity, m ? sy1

u scritical eddy velocity, m ? sy1
c

u sgas velocity, m ? sy1
g

u seddy velocity as function of wave number, m ? sy1
k

u sliquid velocity under gassed conditions, m ? sy1
l, g
u sbubble slip velocity, m ? sy1

s
u seddy velocity as function of eddy size, m ? sy1

l

Usmean axial velocity, m ? sy1

®scharacteristic velocity, m ? sy1

V sapproach velocity between bubbles, m ? sy1

V smean radial velocity, m ? sy1

W smean tangential velocity, m ? sy1

xsbubble diameter, m
zsheight co-ordinate, m

Greek letters
a sgas fraction
e sdissipation rate of turbulent kinetic energy, m2 ? sy3

hsdaughter probability distribution, my1

Ž .lseddy size s kr2p , m
n snumber of bubbles formed by breakage

n sfriction velocity, m ? sy1
0

r sdensity of continuous phase, kg ?my3
c

s ssurface tension, kg ? sy2

t seddy turnover time, s
v seddy-bubble collision rate, my1 sy1

Subscripts
bsbubble related variable
g sgassed condition

i, j, jsclass index
lseddy related variable

Dimensionless groups
C sdrag coefficient, 4D r gdr3ru2

d s
EosEotvos number, g r d2rs¨ ¨ c e

Re sbubble Reynolds number, r u2y ndnrKb c s
ScsSchmidt number, nrDD

WesWeber number, r u2drsc
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