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Abstract— In recent years there has been a growing interest
in studying evolutionary algorithms for dynamic optimizat ion
problems due to its importance in real world applications.
Several approaches, such as the memory and multiple pop-
ulation schemes, have been developed for evolutionary algo-
rithms to address dynamic problems. This paper investigates
the application of the memory scheme for population-based
incremental learning (PBIL) algorithms, a class of evolutionary
algorithms, for dynamic optimization problems. A PBIL-specific
associative memory scheme, which stores best solutions as well
as corresponding environmental information in the memory, is
investigated to improve its adaptability in dynamic environments.
In this paper, the interactions between the memory scheme
and random immigrants, multi-population, and restart schemes
for PBILs in dynamic environments are investigated. In order
to better test the performance of memory schemes for PBILs
and other evolutionary algorithms in dynamic environments,
this paper also proposes a dynamic environment generator that
can systematically generate dynamic environments of different
difficulty with respect to memory schemes. Using this generator
a series of dynamic environments are generated and experiments
are carried out to compare the performance of investigated algo-
rithms. The experimental results show that the proposed memory
scheme is efficient for PBILs in dynamic environments and also
indicate that different interactions exist between the memory
scheme and random immigrants, multi-population schemes for
PBILs in different dynamic environments.

Index Terms— Population-based incremental learning, dy-
namic optimization problems, associative memory scheme, multi-
population scheme, random immigrants, memory-enhanced ge-
netic algorithm, immune system based genetic algorithm.

I. I NTRODUCTION

EVOLUTIONARY algorithms (EAs) are a class of meta-
heuristic algorithms inspired by principles of natural evo-

lution, such as selection and population genetics. Traditionally,
research on EAs has been focused on stationary optimization
problems, where problems are precisely given in advance and
keep fixed during the evolutionary progress. Due to their
ease of use and good performance, EAs have been widely
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applied for solving many stationary optimization problems[1],
[23], [48]. However, the environments of many real world
problems are often dynamic [8], [18], [19], [28]. For these
dynamic optimization problems (DOPs), the fitness function,
design variables, and environmental conditions may change
over time due to such factors as the stochastic arrival of new
tasks, machine faults and degradation, climatic change, market
fluctuation, and economic and financial factors.

Usually, for stationary optimization problems the aim is
to design EAs that can quickly and precisely locate the
optimum solution(s) in the search space. However, for DOPs
the situation is quite different. For DOPs, fast and preciseEAs
are not sufficient and in fact in some cases perform worse than
their slower and less precise peer EAs due to the convergence
problem. For traditional (fast and precise) EAs when the envi-
ronment changes the population may have converged to some
optimum solutions or areas and hence is trapped there and
cannot perform well further in the new environment. Hence,
for DOPs what is more important is to develop algorithms that
can track and adapt to the changing environment. Though this
poses great challenges to traditional EAs, EAs with proper
enhancement can also be good solvers for DOPs due to their
intrinsic inspiration from natural evolution, which is itself
always subject to an ever-changing environment.

In recent years, studying EAs for DOPs has attracted a
growing interest due to its importance in EA’s real world
applications. The simplest way of addressing DOPs is to
restart EAs from scratch whenever an environment change is
detected. Though the restart scheme really works for some
cases [41], for many DOPs it is more efficient to develop other
approaches that make use of knowledge gathered from old
environments. Several approaches have been developed into
EAs to address DOPs. These approaches include maintaining
and reintroducing diversity during the run [9], [16], [27],[35],
memory schemes [6], memory and diversity hybrid schemes
[33], [43], [46], and multi-population schemes [7].

Population-based incremental learning (PBIL) algorithms
were first proposed by Baluja [2] as an abstraction of genetic
algorithms (GAs), which explicitly maintain the statistics
contained in a GA’s population [3]. As a class of EAs, PBILs
have proved to be very successful on numerous stationary
benchmark and real-world problems [21]. Recently, Yang and
Yao [41] have investigated PBILs for DOPs by introducing du-
alism and a scheme similar to the random immigrants method
[16] to improve their performance in dynamic environments.
And in [42] a memory scheme has been introduced into PBILs
for DOPs with some preliminary results.
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In this paper, the PBIL-specific explicit memory scheme
introduced in [42] is further investigated to improve its adapt-
ability in dynamic environments. With this memory scheme,
the best sample created by the working probability vector
together with the probability vector are stored in the memory
in a certain time and space pattern. When the environmental
change is detected, the probability vector associated withthe
memory sample that is re-evaluated to be the best in the
new environment is retrieved to compete with the current
working probability vector for further iterations. This paper
also investigates the interactions between the memory scheme
and random immigrants, multi-population and restart schemes
for PBILs in dynamic environments.

In order to test the investigated PBILs for DOPs, a DOP
generator that aims to systematically construct dynamic en-
vironments for testing EAs, especially EAs with memory
schemes, is also proposed in this paper. Based on this gen-
erator a series of DOPs are constructed from three stationary
functions as the dynamic test environments and experimental
study is carried out to compare the performance of investigated
PBILs and two state-of-the-art memory-enhanced GAs: the
memory/search GA by Branke [6] and an immune system
based GA recently developed in [44].

The rest of this paper is organized as follows. The next sec-
tion reviews existing memory approaches for EAs in dynamic
environments. Section III details several EAs investigated in
this paper, including our memory-enhanced PBILs. Section IV
first briefly reviews existing DOP generators, then presentsour
proposed dynamic environment generator for testing memory
schemes for EAs, and finally describes the dynamic test
environments constructed for the experimental study of this
paper. The basic experimental results and analysis regarding
the proposed memory scheme and random immigrants for
PBILs are presented in Section V. Section VI studies the
effect of multi-population and restart schemes on the memory
scheme for PBILs in dynamic environments. Finally, Section
VII concludes this paper with discussions on future work.

II. M EMORY SCHEMES FOREVOLUTIONARY ALGORITHMS

IN DYNAMIC ENVIRONMENTS

The application of memory schemes has proved to be
able to enhance EA’s performance in dynamic environments,
especially when the environment changes cyclicly in the
search space1. The basic principle of memory schemes is to
store information, such as good solutions, from the current
environment and reuse it later in new environments. This
useful information can be stored in two ways: by implicit
memory mechanisms and by explicit memory mechanisms [6].

A. Implicit Memory Schemes

For implicit memory schemes, EAs use genotype repre-
sentations that contain redundant information to store good

1For the convenience of description, we differentiate the environmental
changing periodicality in time and space by wordingperiodical and cyclic
respectively. The environment is said to beperiodical if it changes in a fixed
time interval, e.g., every certain EA generations, and is said to becyclic if it
visits several fixed states in the search space in a certain order repeatedly.

(partial) solutions to be reused later. Here, the redundant
representation acts as memory, which is implicit for the EA
to use appropriately. Typical examples of implicit memory
schemes are genetic algorithms based on diploidy or multi-
ploidy representations. Goldberg and Smith [14] first extended
the simple haploid GA to a diploid GA with a tri-allelic
dominance scheme. Thereafter, Ng and Wong [30] proposed
a dominance scheme with four alleles for a diploidy based
GA. Lewis et al. [22] further investigated an additive diploidy
scheme where a gene becomes 1 if the addition of all alleles
exceeds a certain threshold, and 0 otherwise. Recently, Uyar
and Harmanci [38] proposed an adaptive dominance change
mechanism for diploid GAs where the dominance character-
istics for each locus is dynamically adapted through feedback
from the current population.

In addition to multiploidy GAs, Dasgupta and McGregor
[11] proposed a quite different implicit memory scheme in
the so called structured GA, which is haploid based but has a
multi-levelled structure. In this representation, high level genes
can regulate the activation of a set of low level genes. The set
of low level genes can memorize good (partial) solutions in
old environments that can be re-activated by high level genes
in new environments. Similar to diploid GAs, recently Yang
and Yao [41] proposed a dual PBIL for dynamic problems
inspired by the principle of dualism in nature.

B. Explicit Memory Schemes

While implicit memory schemes for EAs in dynamic envi-
ronments depend on redundant representations to store useful
information for EAs to exploit during the run, explicit memory
schemes make use of precise representations but split an extra
storage space where useful information from the current gener-
ation can be explicitly stored and reused in later generations or
environments. Explicit memory schemes mainly involve three
concerns: what to store in the memory, how to organize and
update the memory, and how to retrieve the memory.

For the first concern, a natural choice is to store good solu-
tions and reuse them when the environment change is detected.
This can be calleddirect memory scheme. For example, Louis
and Xu [24] studied the open shop re-scheduling problem.
They used a memory to store best individuals during a run.
Whenever a change (in a known pattern) occurs, the GA is
restarted from a population with partial (5-10%) individuals
retrieved from the memory corresponding to the previous run
while the rest is initialized randomly. The authors reported
significant improvements of their GA over the GA with totally
random restart scheme. Instead of storing good solutions
only, information that associates good solutions with their
environments can also be stored with good solutions. This
information can be used for similarity measure to associate
a new environment with certain stored good solutions and
then reuse these associated solutions more efficiently. This
can be calledindirect memory scheme or associative memory
scheme. For example, Ramsey and Grefenstette [31] studied
a GA for a robot control problem, where good candidate
solutions are stored in a permanent memory together with
information about the robot’s current environment. When the
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robot incurs a new environment that is similar to a stored
environment instance, the associated stored controller solution
is re-activated. This scheme was reported to yield significant
improvements. Recently, an associative memory scheme has
been developed for PBILs for DOPs [42] with some promising
preliminary results, which will be further investigated inthis
paper and will be described in details in Section III.B.

The memory space or size is usually limited (and fixed)
for computational and searching efficiency. This leads to
the second concern of explicit memory schemes: memory
organization and updating mechanisms. As to the memory
organization, there exist two mechanisms:local mechanism
where the memory is individual-oriented andglobal mecha-
nism where the memory is population-oriented. Trojanowski
and Michalewicz [36], [37] introduced a local memory ap-
proach, where for each individual the memory stores a number
of its ancestors. When the environment changes, the current
individual and its ancestors are re-evaluated and compete
together with the best becoming the active individual whilethe
others stored in the memory. The global memory mechanism
is more natural and popular, see [6], [25]. In these global
memory mechanisms, the best individual of the population is
stored in the memory every certain generations while deleting
one individual from the memory according to some measure.

As to the memory updating mechanism, a general principle
is to select one memory individual to be removed for or
updated by the best individual from the population in order
to make the stored individuals to be of above average fitness,
not too old, and distributed across several promising areasof
the search space. Branke [6] has discussed several memory
replacement strategies: 1). replacing the least importantone
with the importance value of individuals being the linear
combination of age, contribution to diversity, and fitness;
2). replacing the one with least contribution to memory vari-
ance; 3). replacing the most similar one if the new individual
is better; and 4). replacing the less fit of a pair of memory
individuals that has the minimum distance among all pairs. The
third strategy seems the most practical one and will be used
in this paper. In addition to replacing memory point, Bendtsen
and Krink [5] proposed a different memory updating scheme
where the memory individual closest to the best population
individual is, instead of being removed from the memory,
moved toward the best population individual.

For the third concern on explicit memory, i.e., how to
retrieve the memory, a natural idea is to retrieve the best
memory individual(s) to replace the worst individual(s) inthe
population. This can be done every generation or only when a
change occurs. The memory retrieval is sort of coupled with
the above two concerns. For example, for the direct memory
scheme the whole memory individuals may enter the new pop-
ulation as in [24] or compete with the population individuals
for the new population as in [6], while for the associative
memory scheme only associated memory individual(s) may
enter the new population [31]. And for the local memory
organization scheme the best ancestor of an active individual
competes with it to become active in the population [36], while
for the global memory scheme best memory individual(s) may
compete with all individuals in the main population.

t := 0 and initialize probability vector~P (0) := ~0.5

generate a setS(0) of n samples by~P (0)
repeat

evaluate samples inS(t)

if random immigrants used then // for SPBILi
replaceri ∗ n worst samples inS(t) by random ones

learn ~P (t) toward best sample~B(t) in S(t) by Eq. (1)
mutate ~P (t) by Eq. (2)
generate a setS(t) of n samples by~P (t)

until termination condition holds // e.g., t > tmax

Fig. 1. Pseudo-code of the standard PBIL without random immigrants
(SPBIL) and the PBIL with random immigrants (SPBILi).

The memory retrieval has also been combined with diversity
schemes to improve the performance of GAs for DOPs, which
shows promising results. For example, Simões and Costa [33],
[34] have proposed an immune system based GA for DOPs,
where new individuals are cloned from selected memory
solutions and replaced into the population. Recently, Yang
has developed a memory-based immigrants scheme for GAs
in dynamic environments [43], [46], where the best memory
solution is retrieved every generation as the base to createnew
individuals via a normal bit flip mutation operation to replace
worst individuals in the main population.

III. D ESCRIPTION OFALGORITHMS INVESTIGATED

A. Standard Population-Based Incremental Learning

The PBIL algorithm is a combination of evolutionary opti-
mization and competitive learning [2]. PBIL aims to generate
a real-valued probability vector~P = {P1, . . . , Pl} (l is the
binary-encoding length), which creates high quality solutions
with high probability when sampled2. The pseudo-code for the
standard PBIL, denotedSPBIL, is shown in Fig. 1.

The standard PBIL starts from a probability vector that has
a value of 0.5 for each bit location. This probability vectoris
called thecentral probability vector since it falls in the central
point of the search space. Sampling this initial probability
vector creates random solutions because the probability of
generating a 1 or 0 on each locus is equal. At iterationt, a set
S(t) of n solutions are sampled from the probability vector
~P (t). The samples are evaluated using the problem-specific
fitness function. Then the probability vector is learnt towards
the best solution~B(t) of the setS(t) as follows.

Pi(t+1) := (1−α)∗Pi(t)+α ∗Bi(t), i = {1, . . . , l}, (1)

whereα is the learning rate, which determines the distance
the probability vector is pushed for each iteration.

After the probability vector is updated toward the best
sample, in order to keep the diversity of sampling, it may
undergo a bitwise mutation process [4]. Mutation is appliedto

2A solution is sampled from a probability vector~P as follows: for each
locus i, if a randomly created numberr = rand(0.0, 1.0) < Pi, it is set to
1; otherwise, it is set to 0.
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PBILs studied in this paper and the mutation operation always
changes the probability vector toward the central probability
vector, i.e., the central point in the search space. The mutation
operation is carried out as follows. For each locusi =
{1, . . . , l}, if a random numberr = rand(0.0, 1.0) < pm

(pm is the mutation probability), then mutatePi using the
following formula:

P ′
i =







Pi ∗ (1.0 − δm), Pi > 0.5
Pi, Pi = 0.5
Pi ∗ (1.0 − δm) + δm, Pi < 0.5,

(2)

where δm is the mutation shift that controls the amount a
mutation operation alters the value in each bit position. After
the mutation operation, a new set of samples is generated by
the new probability vector and this cycle is repeated.

As the search progresses, the elements in the probability
vector move away from their initial settings of 0.5 towards
either 0.0 or 1.0, representing high evaluation solutions.The
search progress stops when some termination condition is
satisfied, e.g., the maximum allowable number of iterations
tmax is reached or the probability vector is converged to either
0.0 or 1.0 for each bit position.

In this paper, we also investigate the effect of random
immigrants on the performance of PBILs in dynamic envi-
ronments. In [41], a technique similar to random immigrants
is used for PBILs for DOPs by adding a sub-population that
is sampled by the central probability vector. In this paper
we use an equivalent but more direct random immigrants
scheme for PBILs. With this random immigrants scheme, for
each iteration after the probability vector is sampled, a set
of worst samples are selected and replaced with randomly
created samples. The pseudo-code for the PBIL with random
immigrants, denotedSPBILi, is also shown in Fig. 1, whereri

is the ratio of random immigrants to the total population size.

B. Memory-Enhanced PBILs

As reviewed in Section II, several memory schemes have
been developed for EAs to deal with dynamic optimization
problems. In [41], Yang and Yao proposed a dualism based
PBIL for dynamic problems where a dual probability vector,
which is symmetric to the main probability vector with respect
to the central point in the search space, is associated and
compete with the main probability vector to generate samples.
The dual PBIL has proved successful in dynamic environments
where significant changes exist in the genotypic space.

In this paper we investigate a new explicit associative mem-
ory scheme for PBILs in dynamic environments. The key idea
is to store good solutions as well as associated environmental
information in the memory for PBIL to reuse. Since PBILs
aim to evolve a probability vector toward the intrinsic allele
distribution of the current environment, the evolved probability
vector can be taken as the natural representation of the current
environmental information and can be stored together with the
best sample generated from it in the memory.

The pseudo-code for the memory-enhanced PBILs without
and with random immigrants, denotedMPBIL and MPBILi
respectively, is shown in Fig. 2, wheren is the total number

t := 0 and tM := rand(5, 10)

initialize prob. vector~P (0) := ~0.5 and memoryM(0) := φ

generate a setS(0) of n − m samples by~P (0)
repeat

evaluate samples inS(t) andM(t)

denote the best memory sample by~BM (t) and its
associated prob. vector by~PM (t)

if random immigrants used then // for MPBILi
replaceri ∗ n worst samples inS(t) by random ones

denote the best sample inS(t) by ~B(t)
if t = tM then // time to update memory

tM := t + rand(5, 10)

if memory not full then store ~B(t), ~P (t) into M(t)

elsefind the memory sample~CM (t) closest to~B(t)

and its associated prob. vector~PC(t)

if f( ~B(t)) > f(~CM (t)) then
~CM (t) := ~B(t) and ~PC(t) := ~P (t)

if environmental change detected then
if f( ~BM (t)) > f( ~B(t)) then ~P (t) := ~PM (t)

else learn ~P (t) toward ~B(t) by Eq. (1)

mutate~P (t) by Eq. (2)
generate a setS(t) of n − m samples by~P (t)

until termination condition holds // e.g., t > tmax

Fig. 2. Pseudo-code of the memory-enhanced PBILs: without random
immigrants (MPBIL) and with random immigrants (MPBILi).

of samples per iteration including the memory samples and
f(X) denotes the fitness of individualX . Within MPBIL
and MPBILi, a memory of sizem = 0.1 ∗ n is used to
store samples and probability vectors. Each memory point
consists of a pair: a sample and its associated probability
vector. The most similar measure, as discussed in [6], is used
as the memory replacement strategy. That is, when the memory
is due to update, we first find the memory point with its
sample ~BM (t) closest to the best population sample~B(t)
in terms of Hamming distance. If the best population sample
has higher fitness than this memory sample, it is replaced by
the best population sample; otherwise, the memory remains
unchanged. When a best population sample~B(t) is stored in
the memory, the current working probability vector~P (t) that
generates~B(t) is also stored in the memory and is associated
with ~B(t). Similarly, when replacing a memory point, both
the sample and the associated probability vector within the
memory point are replaced by the best population sample and
the working probability vector respectively.

Instead of updating the memory in a fixed time interval as
in other memory-enhanced EAs in the literature, the memory
in MPBIL and MPBILi and other memory-enhanced EAs
studied in this paper is updated using a stochastic time pattern
as follows. After each memory updating, a random integer
R ∈ [5, 10] is generated to determine the next memory
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updating timetM . For example, suppose a memory updating
happens at generationt, then the next memory updating
time is tM = t + R = t + rand(5, 10). This stochastic
time pattern has two advantages over a fixed time pattern in
terms of fairly comparing EAs with memory schemes. First,
different memory-enhanced EAs may favour different fixed
memory updating intervals. The stochastic time pattern can
smooth away this potential effect. Second, the environmental
change period is unknown before an EA is running or may
be faulty to detect. Different fixed updating intervals will
have different effect even for the same memory-enhanced
EA. It would be ideal that the environmental change period
coincides with the memory updating period, e.g., the memory
is updated just before the environment changes. However,
for a fair comparison among EAs with and without memory,
this potential effect should be smoothed away, which can be
achieved by the stochastic memory updating time pattern.

The memory in the memory-enhanced PBILs is re-evaluated
every iteration. If any memory sample has its fitness changed,
the environment is detected to be changed. Then the memory
probability vector associated with the best re-evaluated mem-
ory sample will replace the current working probability vector
if the best memory sample is fitter than the best sample created
by the current working probability vector. If no environmental
change is detected, MPBIL and MPBILi progress just as the
standard PBIL does.

From the above description it can be seen that the proposed
memory scheme for PBILs uses similar idea as the memory
scheme devised by Ramsey and Grefenstette [31] for GAs, i.e.,
storing environmental information in the memory. However,
the stored environmental information is reused in a different
way. For MPBIL and MPBILi the stored environmental infor-
mation, the probability vector, is used to directly re-activate an
old environment it represents for MPBIL and MPBILi, which
may be similar to the newly changed problem environment.
And the stored solutions, besides their role as environmental
change detectors and memory replacement locators, are usedto
indicate which associated environment should be re-activated.

C. Immune System Based Genetic Algorithm

The human immune system protects our body against poten-
tially harmful pathogens, calledantigens. Our body maintains
a large number of immune cells. Some belong to the adaptive
immune system, calledlymphocytes, which circulate through
the body. There are two types of lymphocytes, namelyT-cells
and B-cells, which cooperate in the immune response with
different roles [20].

When a pathogen invades the body for the first time, a few
B-cells can recognize its peptides and will be activated to
response as follows. When a B-cell is activated, it proliferates
and produces many short-lived clones through cell division. B-
cell cloning is subject to a form of mutation termedsomatic
hypermutation. The mutated B-cell clones will undergo a
differentiation process. Those clones that have low affinity to
the antigen will die while those with high affinity will survive
and differentiate intoplasma or memory B-cells. Plasma B-
cells secrete antibodies that can bind to the antigen and destroy

or neutralize it. This process is called theprimary response.
Meanwhile memory B-cells will retain in the circulation. If
the same pathogen attacks the body again, the memory B-cells
can respond immediately. This is called thesecond response,
which is much faster and more efficient than the primary
response. The immune system can recognize a large number of
antigens because it has a gene library that aggregates modular
chunks of genes or gene segments. These gene segments can
be recombined to build up diverse antibodies.

The mechanisms of memory and diversity in the human
immune system have been applied into GAs for DOPs, see
[12], [13]. Simões and Costa [33], [34] proposed an immune
system based GA for DOPs. The basic idea is to view the
environment as the antigen and environmental changes as the
appearance of different antigens. Their GA maintains two
populations: the first one consists of plasma B-cell individuals
while the second consists of memory B-cell individuals. The
first population is the main one and evolves as follows: the
individuals with the best matches to the optimum (antigen)
are selected and cloned into the next generation. At times, the
best plasma B-cell individual is stored in the second population
(and hence becomes a memory B-cell individual) and is
attached a value of the average fitness of the first population,
which is used as the affinity measurement to match memory
B-cells to a new environment. The degradation of population
average fitness is taken as the environmental change detection
mechanism. When a change is detected, the most proximal
memory B-cell3 is then activated, cloned and reintroduced into
the first population, replacing the worst individuals.

Simões and Costa used a set of gene libraries, each con-
taining a set of fixed length gene segments. The libraries are
randomly initialized and then kept constant during the running
of the GA. They are used in the cloning process. During the
cloning, every individual, be it a plasma or memory B-cell,
is subject to atransformation modification with a probability
pt. Transformation, proposed by Simões and Costa in [32], is
similar to the somatic hypermutation of B-cells. An individual
is transformed as below. First, one gene segment is randomly
selected from one randomly chosen gene library. Then, a ran-
dom transformation locus is chosen in the individual. Finally,
the chosen gene segment is incorporated into the individual,
replacing the genes after the transformation locus.

In [44], a variant of Simões and Costa’s immune system
based GA was proposed, which is studied as a peer GA in
this paper and denotedISGA. ISGA significantly outperforms
Simões and Costa’s GA according to the experiments [44].
The pseudo-code of ISGA is shown in Fig. 3. ISGA differs
from Simões and Costa’s GA in four aspects.

First, ISGA uses a gene pool (instead of gene libraries) to
hold a set of fixed length gene segments. The gene segments
in the gene pool are divided into two groups: random and non-
random. Both groups are randomly initialized and then updated
every generation. The gene segments in the random group are
just randomly re-initialized while those in the non-random
group are updated according to the current plasma B-cell

3The proximity is measured by the average fitness of the first population
and the value attached to each memory B-cell.
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t := 0 and tM := rand(5, 10)
initialize populationP (0) and memoryM(0) randomly
initialize gene poolG(0) randomly
repeat

evaluate populationP (t) and memoryM(t)
replace the worst member inP (t) by elite fromP (t−1)
update gene poolG(t)

if environmental change detected then
retrieve the best memory pointBM (t)
cloneri ∗ n individuals fromBM (t)
replace the worst individual inP (t) by the clones

if t = tM then // time to update memory
tM := t + rand(5, 10)
denote the best individual inP (t) by BP (t)
if still any random point in memory then

replace a random point in memory withBP (t)
elsefind the memory pointCM (t) closest toBP (t)

if f(BP (t)) > f(CM (t)) then CM (t) := BP (t)

P ′(t) :=selectForReproduction(P (t))
clone(P ′(t), G(t), pt) // pt is the transformation prob.
mutate(P ′(t), pm) // pm is the mutation prob.

until termination condition holds // e.g., t > tmax

Fig. 3. Pseudo-code of the investigated ISGA with aligned transformation.

population using a binary tournament selection as follows.For
each gene segment in the non-random group, we first randomly
select two individuals from the plasma B-cell population and
then from the fitter individual we select a contiguous segment
of genes of fixed length from a random locus as the new gene
segment and the starting locus is recorded and associated with
the new gene segment.

Second, ISGA uses analigned transformation scheme.
When cloning an individual, we first randomly select a gene
segment from the gene pool. If it is from the random group,
it will be replaced into the individual from a random locus;
otherwise, it will be replaced into the individual from the
recorded starting locus.

Third, in ISGA the memory is updated similarly as in
MPBIL and is re-evaluated every generation to detect en-
vironmental changes. If an change is detected, the memory
individual with the highest re-evaluated fitness is retrieved to
cloneri ∗ n (ri is the clone immigrants ratio) individuals and
replace the worst ones in the plasma B-cell population.

Fourth, in Simões and Costa’s GA, mutation was not
used. In ISGA, mutation is switched on, which gives better
performance according to our preliminary experiments.

IV. CONSTRUCTINGDYNAMIC TEST ENVIRONMENTS

A. General Dynamic Environment Generators

Over the years in parallel with developing approaches into
EAs for dynamic problems, researchers have also developed
a number of dynamic problem generators to create dynamic
test environments to compare the performance of developed

approaches. Generally speaking, existing generators can be
roughly divided into three types.

The first type of dynamic environment generators is quite
simple and just switches between two or more stationary
problems (or states of a problem). For example, the dynamic
knapsack problem where the weight capacity of the knapsack
oscillates between two or more fixed values has been fre-
quently used in the literature [11], [22], [25], [30]. Cobb and
Grefenstette [10] used a dynamic environment that oscillates
between two different fitness landscapes. For this type of gen-
erators, the environmental dynamics is mainly characterized
by the speed of change measured in EA generations.

The second type of generators construct dynamic environ-
ments by reshaping a predefined fitness landscape. Usually,
this base landscape is defined inn-dimensional real space and
consists of a number of component landscapes (e.g., cones),
see [6], [17], [36]. Each of the components can change its
own morphology independently with such parameters as peak
height, peak slope and peak location. And the center of the
peak with the highest height is taken as the optimum solution
of the landscape. For example, Morrison and De Jong [26]
defined the base landscape in then-dimensional real space as:

f(~x) = max
i=1,...,m



Hi − Ri ×

√

√

√

√

n
∑

j=1

(xj − Xij)2



 , (3)

where ~x = (x1, · · · , xn) is a point in the landscape,m
specifies the number of cones, and each conei is indepen-
dently specified by its heightHi, its slopeRi, and its center
Xi = (Xi1, · · · , Xin). These cones are blended together by
themax function. Based on this stationary landscape dynamic
problems can be created through changing the parameters of
each component.

Recently, Yang [40] proposed a dynamic environment gen-
erator based on the concept of problem difficulty justified
by Goldberg [15], claiming that the problem difficulty can
be decomposed along the lines of building block processing
into three core elements:deception, scaling, and exogenous
noise. A framework of binary decomposable trap function
was proposed as the base to construct dynamic environments
by changing the three core difficulty elements. From this
framework it is possible to systematically construct dynamic
environments of changing but bounded difficulty.

For this type of generators, the environmental dynamics
is characterized by the magnitude or step size of parameter
change and the speed of changes in EA time.

The third type of generators was proposed in [39], [41],
which can generate dynamic environments from any binary-
encoded stationary problem based on a bitwise exclusive-
or (XOR) operator. Given a stationary problemf(~x) (~x ∈
{0, 1}l wherel is the length of binary representation), dynamic
environments can be constructed from it as follows. Suppose
the environment is periodically changed everyτ generations4.
For each environmental periodk, an XORing mask~M(k) is

4The generator can be easily modified to construct non-periodical dynamic
environments whereτ varies with time instead of being a fixed value.
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first incrementally generated as follows:

~M(k) = ~M(k − 1) ⊕ ~T (k), (4)

where “⊕” is the XOR operator (i.e.,1 ⊕ 1 = 0, 1 ⊕ 0 =
1, 0 ⊕ 0 = 0) and ~T (k) is an intermediate binary template
randomly created withρ × l (ρ ∈ [0.0, 1.0]) ones inside it for
environmental periodk. Initially, ~M(0) is set to a zero vector.
Then, the individuals at generationt are evaluated using the
following formula:

f(~x, t) = f(~x ⊕ ~M(k)), (5)

wherek = ⌊t/τ⌋ is the environmental period index.
With this generator, the environmental dynamics can be

easily tuned by two parameters:τ controls the change speed
while ρ controls the severity each time the environment
changes. Bigger value ofρ means more severe environmental
change and hence greater challenge to EAs.

This XOR operator based generator can be combined with
other ones to create complex dynamic environments, as seen
in [40]. It can also be modified to construct dynamic envi-
ronments for testing specific approaches developed for EAs in
dynamic environments, e.g., the generator described belowfor
testing memory schemes.

B. An Extended DOP Generator for Testing Memory Schemes

Generally speaking, the above reviewed dynamic environ-
ment generators are usually used to construct general dynamic
environments for testing all approaches for EAs. However, in
order to better understand a certain approach, it would be better
to construct dynamic environments that pay special attention
to the exact approach. For example, for memory schemes
it would be interesting to construct dynamic environments
with tunable cyclicity5 since the effect of memory schemes
on EAs depends heavily on whether the environment changes
cyclicly or not. In this paper, based on the XOR operator based
generator described above, an extended dynamic environment
generator is proposed for testing memory schemes for EAs.
The generator is described as follows.

Given a binary-encoded stationary problemf(~x) (~x ∈
{0, 1}l where l is the length of binary representation), three
types of dynamic environments,non-cyclic, cyclic, and par-
tially cyclic, can be constructed from it using the XOR oper-
ator. The first type of dynamic environments is exactly what
the above described XOR operator generator constructs. This
type of dynamic environments is also calledrandom dynamic
environment in this paper since with respect to cyclicity the
environment moves randomly in the search space, even though
each time it may move with a fixed Hamming distance away
from the current environment. This is illustrated in Fig. 4(a),
where a non-cyclic dynamic environment is constructed froma
10-bit function withρ = 0.5 and the XORing mask is used to
represent the environmental state. Each time the environment
changes, it movesρ × l = 0.5 × 10 = 5 bits away randomly

5In the real world, there are many DOPs that are subject to cyclic or
approximately cyclic environments, which motivates the study of cyclic DOPs
in this paper. For example, the climate may change cyclically over a year and
the conditions in the traffic system may change cyclically over a day.

M(0)=0000000000

State 2

M(2)=0111010011

State 3

M(3)=1101000101

. . .
M(1)=1001011010

State 1

State 4

(Initial State)
State 0

(a)

M(2)=1111111111

Base State 2

M(1)=1001011010

(Initial State)
Base State 0

Base State 1

M(0)=0000000000

M(3)=0110100101

Base State 3

(b)

M(2)=0111111111

Base State 2

M(1)=1001011011

(Initial State)
Base State 0

Base State 1

M(0)=0000000000

M(3)=0110110101

Base State 3

Bit 1 changed
by noise

Bit 10 changed
by noise

by noise
Bit 6 changed

(c)

Fig. 4. Illustration of three kinds of dynamic environmentsconstructed from
a 10-bit encoded function withρ = 0.5: (a) non-cyclic, (b) cyclic, and (c)
cyclic with noise.

from the current state and will not guarantee to return to the
initial state represented by~M(0) = 0000000000.

Next we describe how to construct cyclic dynamic envi-
ronments. The idea is quite simple: first construct a fixed
number of states (environments), calledbase states, in the
search space randomly or in certain pattern and then move the
environment among these base states in a fixed order cyclicly.
Suppose there are2K base states, then the environment
will return to its initial state when it changes every2K
times. With the XOR operator, we can generate2K XOR-
ing masks ~M(0), ~M(1), · · · , ~M(2K − 1) as the base states.
These XORing masks form a logical ring representing the
cyclicly changing environment. Suppose the environment is
periodically changed everyτ generations, then the individuals
at generationt are evaluated using the following formula:

f(~x, t) = f(~x ⊕ ~M(It)) = f(~x ⊕ ~M(k%(2K))), (6)

wherek = ⌊t/τ⌋ is the index of the current environmental
period andIt = k%(2K) is the index of the base state the
environment is in at generationt.

The 2K XORing masks can be generated in the following
way. First, we constructK binary templates~T (0), · · · , ~T (K−
1) that form a random partition of the search space with each
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template containingρ× l = l/K bits of ones6. Let ~M(0) = ~0
denote the initial state. Then, the other XORing masks are
generated iteratively as follows:

~M(i + 1) = ~M(i) ⊕ ~T (i%K), i = 0, · · · , 2K − 1 (7)

With the above formula, the templates~T (0), · · · , ~T (K − 1)
are first used to createK masks till ~M(K) = ~1 and then
orderly reused to construct anotherK XORing masks till
~M(2K) = ~M(0) = ~0. The constructed XORing masks have

equal Hamming distance between two neighbours. That is,
if we denoted( ~M(i), ~M(j)) the Hamming distance between
~M(i) and ~M(j), we have

d( ~M(1), ~M(0)) = d( ~M(2), ~M(1)) = · · ·

= d( ~M(2K−1), ~M(2K−2))

= d( ~M(0), ~M(2K−1))
= ρ × l,

(8)

whereρ ∈ [1/l, 1.0] is the distance factor, which determines
the number of base states. For example, Fig. 4(b) shows a
cyclic dynamic environment constructed from a 10-bit function
with ρ = 0.5 and two templates~T (0) = 1001011010 and
~T (1) = 0110100101 (not shown in Fig. 4(b)).

From the above cyclic dynamic environment generator we
can construct partially cyclic dynamic environments, also
calledcyclic dynamic environments with noise, by introducing
noise to the base states7. There are two mechanisms, called
deterministic and probabilistic, of adding noise in terms of
the number of bits to be changed in the base states. For the
deterministic mechanism, each time the environment is about
to move to a next base state~M(i), a noise template~Tn with
a small portion of ones is randomly created and integrated
(XOR-ed) into ~M(i) as follows:

~M
′

(i) = ~M(i) ⊕ ~Tn, (9)

where ~M
′

(i) is the new base state. The number of ones in~Tn

can be set to be linear with the Hamming distance between
base states, i.e.,γ × ρ × l (γ ∈ (0.0, 1.0)). For example,
Fig. 4(c) illustrates a noisily cyclic dynamic environment
constructed from a 10-bit function withρ = 0.5 andγ = 0.2
where each base state has one bit changed by noise. For the
probabilistic noise mechanism, each time the environment is
about to move to a next base state~M(i), ~M(i) is bitwise
flipped with a small probability, denotedpn in this paper.

With the above generator for cyclic dynamic environments,
noisy or not, there are two run mechanisms with respect to the
base states for different runs of an algorithm on a test problem.
For the first one, a set of2K base states is first created and then
used as the common base states for all runs of an algorithm.
That is, all runs of an algorithm undergo the same cyclic
dynamic environment. For the second mechanism, for each
run of an algorithm a set of2K base states is first created

6In the partition each template~T (i) (i = 0, · · · , K − 1) has randomly
but exclusively selectedρ × l = l/K bits set to 1 while other bits to 0. For
example,~T (0) = 0101 and ~T (1) = 1010 form a partition of the 4-bit search
space. Here,ρ (andK = 1/ρ) is determined such thatl/K is an integer.

7This is analogous to many dynamic environments in nature. For example,
in the natural climate environment, spring (a base state) isspring but every
spring is different.

0
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4

0 1 2 3 4
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Unitation

DUF1 Building Block
DUF2 Building Block
DUF3 Building Block

Fig. 5. The building blocks used for the three stationary DUFs.

and then used for only this run. That is, different runs of an
algorithm undergo different cyclic dynamic environments.The
second mechanism will be used in the experimental study of
this paper.

One thing to note is that for the proposed generator there
exist certain relationships between the three kinds of dynamic
environments. For example, whenγ = 0 noisy cyclic dynamic
environments become cyclic and whenρ = 1.0 noisy cyclic
dynamic environments are comparable (though not equivalent)
to non-cyclic ones withρ = 1.0−γ. And cyclic environments
with ρ = 1.0 are equivalent to non-cyclic ones withρ = 1.0.
By tuning the values ofρ and γ (or pn), we can easily tune
the cyclicity of dynamic environments and hence the level of
difficulty for memory-enhanced EAs.

C. Dynamic Test Environments for This Study

1) General Decomposable Unitation-Based Functions:
Decomposable unitation-based functions (DUFs), such as trap
and deceptive functions, have been widely studied in EA’s
community in the attempt to understand what constructs diffi-
culty problems for EAs, especially for GAs [15]. A unitation
function of a binary string returns the number of ones in the
string. In this paper, in order to compare the performance of
investigated algorithms in dynamic environments three DUFs,
denotedDUF1, DUF2 and DUF3, are selected as stationary
base functions to construct dynamic test environments.

All the three DUFs consist of 25 copies of 4-bit building
blocks. Each building block of the three DUFs is a unitation-
based function and contributes a maximum value of 4 to the
total fitness, as shown in Fig. 5. The fitness of a bit string is
the sum of contributions from all building blocks, which gives
an optimal fitness of 100 for all the three DUFs.

DUF1 is in fact anOneMax function, which aims to
maximize the number of ones in a chromosome. OneMax
functions are usually taken as easy functions for EAs since
low-order building blocks inside the functions clearly lead to
high-order building blocks. For DUF2, in the search space
of the 4-bit building block, the unique optimal solution is
surrounded by only 4 sub-optimal solutions while all the
other 11 solutions form a wide plateau with zero fitness.
The existence of this wide gap makes EA’s searching on
DUF2 much harder than on DUF1. And for DUF3, it is a
fully deceptive function [15]. Fully deceptive functions are
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usually considered hard problems for EAs because the low-
order building blocks inside the functions do not combine
to form the higher-order optimal building block: instead they
combine into deceptive sub-optimal building block [47].

Generally speaking, the three DUFs form an increasing
difficulty for EAs in the order from DUF1 to DUF2 to DUF3.

2) Constructing Dynamic DUFs (DDUFs): Dynamic test
environments for this study are constructed from the three
stationary DUFs, denotedDDUF1, DDUF2 and DDUF3 re-
spectively. From each DUF, three kinds of dynamic DUFs,
cyclic, cyclic with noise and random, are constructed by the
aforementioned dynamic problem generator.

For each constructed dynamic problem, the fitness landscape
is periodically changed everyτ generations during the run of
algorithms. In order to test the effect of environmental change
speed on the performance of algorithms,τ is set to 10 and
25 respectively. The environmental change severity parameter
ρ is set to 0.1, 0.2, 0.5, and 1.0 for all DDUFs. With this
setting ofρ, for cyclic dynamic problems, with and without
noise, the environment cycles among 2, 4, 10, and 20 bases
states respectively. For cyclic dynamic problems with noise,
the probabilistic mechanism of adding noise is used with the
probability of flipping the base statespn = 0.05.

Totally, a series of 24 dynamic problems, 2 values ofτ
combined with 4 values ofρ under 3 types of environments,
are constructed from each stationary DUF.

V. EXPERIMENTAL STUDY ON PBILS WITH MEMORY AND

RANDOM IMMIGRANTS SCHEMES

A. Experimental Design and Results

Experiments were carried out to compare the performance
of algorithms on the dynamic test environments constructed
above. All algorithms have the following common parameters:
total population size is set ton = 100, which includes the
memory sizem = 0.1 ∗ n = 10 if memory is used, and
ri = 0.2 for algorithms with random immigrants, including
ISGA. For all PBILs, the parameters are set to typical values
without tuning as follows: the learning rateα = 0.25 for
all working probability vectors and the mutation probability
pm = 0.02 with the mutation shiftδm = 0.05. For ISGA,
parameters are set as follows: the transformation probability
pt = 0.9 (according to our preliminary experiments), the
bit flip mutation probabilitypm = 0.02, and elitism of size
1 without re-evaluating the elite. The gene pool contains
200 gene segments of fixed length 5, of which the random
group contains 60 gene segments while the non-random group
contains 140.

For each experiment of an algorithm on a DDUF, 50
independent runs were executed with the same set of random
seeds. For each run 5000 generations were allowed, which are
equivalent to 500 and 200 environmental changes forτ = 10
and 25 respectively. For each run the best-of-generation fitness
was recorded every generation. The overall performance of an
algorithm on a DOP is defined as:

FBOG =
1

G

G
∑

i=1

(
1

N

N
∑

j=1

FBOGij
), (10)

whereG = 5000 is the total number of generations for a run,
N = 50 is the total number of runs, andFBOGij

is the best-
of-generation fitness of generationi of run j. FBOG is the off-
line performance, i.e., the best-of-generation fitness averaged
across the 50 runs and then over the data gathering period.

In order to understand the effect of memory and random
immigrants scheme on the population diversity during the
running of an algorithm, we also recorded the diversity of the
population every generation. The diversity of the population
at time t in the k-th run of an EA on a DOP is defined as:

Div(k, t) =
1

ln(n − 1)

n
∑

i=1

n
∑

j 6=i

HD(i, j), (11)

wherel is the encoding length,n is the population size, and
HD(i, j) is the Hamming distance between thei-th andj-th
individuals in the population. The mean population diversity
of an EA on a DOP at timet over 50 runs is calculated as
below:

Div(t) =
1

50

50
∑

k=1

Div(k, t)) (12)

The experimental results of algorithms on DDUFs withτ =
10 andτ = 25 are given in Fig. 6 and Fig. 7 respectively. The
statistical results of comparing algorithms by one-tailedt-test
with 98 degrees of freedom at a 0.05 level of significance
are given in Table I. In Table I, thet-test result regarding
Alg. 1−Alg. 2 is shown as “+”, “ −”, “ s+” and “s−” when
Alg. 1 is insignificantly better than, insignificantly worse than,
significantly better than, and significantly worse thanAlg. 2
respectively.

In order to better understand the behaviour of algorithms in
dynamic environments, their dynamic performance regarding
the best-of-generation fitness against generations on DDUFs
with τ = 25 andρ = 0.2 is plotted in Fig. 8. In Fig. 8, the last
10 environmental changes (i.e., 250 generations) are shown,
which corresponds to one cycle of environmental changes for
cyclic DDUFs, and the data were averaged over 50 runs. The
dynamic population diversity of algorithms against generations
on DDUF2 and DDUF3 withτ = 25 andρ = 0.2 is plotted
in Fig. 9 for the last 10 environ- mental changes, where the
data were averaged over 50 runs.

From Fig. 6 to Fig. 9 and Table I, several results and
phenomena can be observed and are analyzed below from
two aspects: regarding the comparison between investigated
algorithms and regarding the effect of environmental dynamics
on the performance of algorithms in general.

B. Experimental Analysis Regarding Algorithm Comparisons

Comparing the performance of algorithms on the DDUFs,
several results can be observed and are analysed as follows.

First, a prominent result is that both the memory-enhanced
PBILs, MPBIL and MPBILi, perform significantly better than
SPBIL, on most dynamic test problems. This validates the
efficiency of introducing the memory scheme into PBILs.
The effect of the memory scheme can be clearly seen in
the dynamic performance of MPBIL and MPBILi shown in
Fig. 8. For cyclic DDUFs, when the environment changes
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Fig. 6. Experimental results of ISGA, SPBIL, SPBILi, MPBIL,and MPBILi on DDUFs withτ = 10.

TABLE I

THE t-TEST RESULTS OF COMPARINGISGA, SPBIL, SPBILI , MPBIL AND MPBIL I ON DDUFS.

t-test Result DDUF1 DDUF2 DDUF3

Environment Dynamics τ = 10 τ = 25 τ = 10 τ = 25 τ = 10 τ = 25

Cyclic, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
SPBILi − SPBIL s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s+ s+ s+ s+ s+ s+ − − s+ s+ s+ −
MPBIL − SPBIL s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
SPBIL − ISGA s− s− s− s− s+ s− s− s− s− s− s− s− s− s− s− s− s− s− s− s+ s− s− s− s+
MPBIL − ISGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s− s+ s+ − s− s+ s+ s+ s+ s+ s+ s+ s+

MPBIL − SPBILi s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MPBILi − MPBIL s+ s+ s+ s+ + s+ s+ s+ s+ s+ s+ s+ − s+ s+ s+ + s+ + − − + s+ +

MPBILi − ISGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

Cyclic with Noise,ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
SPBILi − SPBIL s+ s+ s+ s+ − s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +

MPBIL − SPBIL s+ s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s− s− s+ s+ s−
SPBIL − ISGA s− s− s− s− s+ s− s− s− s− s− s− s− s− s− s− s− s− s− s− s+ s− s− s− s+
MPBIL − ISGA s− s− s− s+ s+ s− s+ s+ s− s− s− s− s− s− + s+ s− s− s− s+ s− s− s+ s+

MPBIL − SPBILi s− s− s− s+ s− s− − s+ s− s− s− s+ s− s− s− s+ s− s− s− s− s− s− s− s−
MPBILi − MPBIL s+ s+ s+ s+ + s+ s+ + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +

MPBILi − ISGA s− s+ s+ s+ s+ s+ s+ s+ s− + s+ s+ s− s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

Random,ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
SPBILi − SPBIL s+ s+ s+ s+ + s+ s+ s+ s+ s+ s+ s− + s+ s+ s+ s+ s+ s+ − − s+ s+ −
MPBIL − SPBIL s− s+ s+ s+ s− s− s+ s+ s− s+ s+ s+ s− s− s+ s+ s− s+ s+ s+ s− + s+ s+
SPBIL − ISGA s+ s− s− s− s+ s+ s− s− s− s− s− s− s+ s− s− s− s− s− s− s+ s+ s− s− s+
MPBIL − ISGA s+ s− s− s+ s+ s+ s− s+ s− s− s− s− s+ s− s− s− s− s− s− s+ s+ s− s− s+

MPBIL − SPBILi s− s− s− s+ s− s− s− s+ s− s− s− s+ s− s− s− s+ s− s− s− s+ s− s− s− s+
MPBILi − MPBIL s+ s+ s+ s+ − s+ s+ s+ s+ s+ s+ s+ − s+ s+ s+ s+ s+ s+ + + s+ s+ +

MPBILi − ISGA s+ s+ s+ s+ s+ s+ s+ s+ s− s− s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

the performance of MPBIL and MPBILi drops. And then
the memory scheme rapidly brings the performance back to
a high fitness level. For example, on DDUF2 withτ = 25
and ρ = 0.2, when a change occurs at generation 4800, the

performance of MPBIL drops from 95.9 to 77.5 at generation
4801 and then jumps up back to 80.7 at generation 4802. This
performance jumping is due to the newly re-activated memory
probability vector.
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Fig. 7. Experimental results of ISGA, SPBIL, SPBILi, MPBIL,and MPBILi on DDUFs withτ = 25.

Both MPBIL and MPBILi achieve better performance im-
provement over SPBIL on cyclic environments than on cyclic
environments with noise and non-cyclic environments. For
example, whenτ = 10 and ρ = 0.2, FBOG(MPBIL) −
FBOG(SPBIL) = 90.5 − 55.9 = 34.6 for cyclic DDUF1,
FBOG(MPBIL) − FBOG(SPBIL) = 64.8 − 57.2 =
7.6 for cyclic DDUF1 with noise, andFBOG(MPBIL) −
FBOG(SPBIL) = 66.1 − 65.9 = 0.2 for random DDUF1.
This result means that the effect of the memory scheme
depends on the cyclicity of environments.

Second, the addition of the random immigrants scheme
improves the performance of SPBIL and MPBIL on almost all
DDUFs, see thet-test results regarding SPBILi – SPBIL and
MPBILi – MPBIL. Random immigrants improve the popula-
tion diversity, see Fig. 9 for the population diversity dynamics.
Meanwhile, by replacing worst individuals in the population,
random immigrants help improve the average fitness level of
the population.

Comparing memory against random immigrants, it can be
seen that the effect of the memory scheme is significantly
greater (better) than the random immigrants scheme for all
cyclic DDUFs, see thet-test results regarding MPBIL –
SPBILi in Table I. However, for cyclic with noise and ran-
dom DDUFs, the random immigrants scheme outperforms
the memory scheme on most DDUFs. This happens because
for these DDUFs, the environment is less likely to return

precisely to those memorized environments and hence random
immigrants may track the new environment more efficient than
memory samples.

When examining the effect of the memory scheme on PBIL
with random immigrants, it can be seen that MPBILi outper-
forms SPBILi on most cyclic DDUFs, with or without noise.
However, MPBILi is beaten by SPBILi for many random
DDUFs. That is, when the random immigrants scheme is used,
the addition of the memory scheme may have a negative effect
in random dynamic environments.

Third, comparing the performance of ISGA with PBILs, it
can be seen that ISGA outperforms SPBIL on most DDUFs
and outperforms MPBIL on most random DDUFs and cyclic
DDUFs with noise, see thet-test results regarding SPBIL –
ISGA and MPBIL – ISGA respectively. The memory and
diversity hybrid scheme (i.e., memory-based cloning) inside
ISGA gives it an advantage over SPBIL totally and over
MPBIL on random and cyclic with noise environments. In
fact, Fig. 9 shows that ISGA maintains the highest level of
population diversity.

However, ISGA is significantly beaten by MPBIL on cyclic
DDUFs and by MPBILi on almost all DDUFs, see the relevant
t-test results. This happens due to two factors. The first
factor lies in that PBILs have better search capacity than
ISGA and this factor contributes to the fact that even SPBIL
outperforms ISGA on several slightly changing DDUFs. This



12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO.X, MONTH 200X

 50

 60

 70

 80

 90

 100

500049504900485048004750

B
e

s
t-

O
f-

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

Generation

Cyclic DDUF1

ISGA
SPBIL

SPBILi
MPBIL

MPBILi
 55

 60

 65

 70

 75

 80

 85

500049504900485048004750

B
e

s
t-

O
f-

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

Generation

Cyclic DDUF1 with Noise

ISGA
SPBIL

SPBILi
MPBIL

MPBILi
 65

 70

 75

 80

 85

500049504900485048004750

B
e

s
t-

O
f-

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

Generation

Random DDUF1

ISGA
SPBIL

SPBILi
MPBIL

MPBILi

 30

 40

 50

 60

 70

 80

 90

 100

500049504900485048004750

B
e

s
t-

O
f-

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

Generation

Cyclic DDUF2

ISGA
SPBIL

SPBILi
MPBIL

MPBILi

 30

 35

 40

 45

 50

 55

 60

 65

 70

500049504900485048004750

B
e

s
t-

O
f-

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

Generation

Cyclic DDUF2 with Noise

ISGA
SPBIL

SPBILi
MPBIL

MPBILi

 30

 35

 40

 45

 50

 55

 60

 65

500049504900485048004750

B
e

s
t-

O
f-

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

Generation

Random DDUF2

ISGA
SPBIL

SPBILi
MPBIL

MPBILi

 40

 50

 60

 70

 80

 90

 100

500049504900485048004750

B
e

s
t-

O
f-

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

Generation

Cyclic DDUF3

ISGA
SPBIL

SPBILi
MPBIL

MPBILi

 40

 45

 50

 55

 60

 65

 70

500049504900485048004750

B
e

s
t-

O
f-

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

Generation

Cyclic DDUF3 with Noise

ISGA
SPBIL

SPBILi
MPBIL

MPBILi
 40

 45

 50

 55

 60

 65

 70

500049504900485048004750

B
e

s
t-

O
f-

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

Generation

Random DDUF3

ISGA
SPBIL

SPBILi
MPBIL

MPBILi

Fig. 8. Dynamic performance of algorithms for the last 10 environmental changes on DDUFs withτ = 25 andρ = 0.2.

point can be seen from Fig. 8. On almost all DDUFs, PBILs
achieve a higher fitness improvement than ISGA does during
each environmental period. The second factor is because the
memory scheme in MPBIL and MPBILi has a stronger effect
than that in ISGA. This can be clearly seen in the dynamic
performance of algorithms in Fig. 8. On cyclic DDUFs,
MPBIL and MPBILi are able to maintain a higher fitness
level than ISGA does. In order to better understand this point,
the dynamic performance of algorithms on cyclic DDUF2 and
DDUF3 with τ = 25 and ρ = 0.2 over the first two cycles
of environmental changes, i.e., 500 generations, is also shown
in Fig. 10, where the data were averaged over 50 runs. From
Fig. 10, it can be seen that after several early environmental
changes the memory scheme in MPBIL and MPBILi clearly

starts to take effect. For example, just after the first cycle
of 10 environmental changes, at generation 250 when the
environment changes the memorized probability vector brings
MPBIL and MPBILi directly to a high fitness level. On the
contrast, the effect of the memory scheme in ISGA is much
less visible from Fig. 10.

Stronger search capacity of PBIL, stronger memory scheme,
and random immigrants together lead to MPBILi’s better
performance over ISGA on almost all DDUFs.

C. Experimental Analysis Regarding Dynamic Environments

When examining the effect of dynamic environments on the
performance of algorithms investigated, the following results
can be observed.
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Fig. 9. Dynamic population diversity of algorithms for the last 10 environmental changes on DDUF2 qnd DDUF3 withτ = 25 andρ = 0.2.
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Fig. 10. Dynamic performance of algorithms for the first 20 environmental changes on (a) cyclic DDUF2 and (b) cyclic DDUF3with τ = 25 andρ = 0.2.

First, comparing Fig. 6 with Fig. 7 shows that for each
DDUF with fixedρ, the performance of algorithms rises when
the value of τ increases from 10 to 25. This is easy to
understand. When the environment changes slower, i.e.,τ is
larger, the algorithms have more time to reach higher fitness
level before the environment changes.

Second, with each fixedτ , when the value ofρ increases
from 0.1 to 0.2 to 0.5, the performance of algorithms generally

decreases. This is natural since biggerρ means more severe
environmental changes. However, on many DDUFs whenρ =
1.0 the algorithms perform better than whenρ = 0.5. This
is because whenρ = 1.0 the environment switches between
two landscapes and the algorithms may wait during one
environment for the return of the other environment to which
they converged well. For example Fig. 11 shows the dynamic
performance of algorithms on cyclic DDUF2, with and without
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Fig. 11. Dynamic performance of algorithms for the first 20 environmental changes on (a) cyclic and (b) cyclic with noise DDUF2 with τ = 25 andρ = 1.0.

noise, withτ = 25 and ρ = 1.0. From Fig. 11(a), it can be
seen that SPBIL clearly shows the waiting phenomenon during
even environment periods.

An interesting result is that on cyclic DDUFs, the perfor-
mance of MPBIL and MPBILi increases with the value ofρ,
see the top row in Fig. 6 and Fig. 7. This happens because
when the value ofρ increases, the number of base states
decreases and hence the memory probability vectors in MPBIL
and MPBILi represent the environments more precisely when
they are stored and updated. This leads to the better effect of
the memory scheme and hence the better overall performance
of MPBIL and MPBILi whenρ increases. When the cyclicity
of environments decreases, the effect of memory decreases due
to the less precise matching between memorized environments
and new environments. And biggerρ brings in more severe
changes and hence leads to worse performance for MPBIL
and MPBILi.

Third, viewing from top to down in Fig. 6 and Fig. 7, it
can be seen that given the same values forρ and τ , when
the cyclicity of dynamic environments decreases from cyclic
to cyclic with noise, the performance of algorithms degrades.
That is, cyclic environments with noise are relatively harder
than cyclic environments. The existence of noise reduces the
effect of memory or the waiting behaviour of SPBIL, see
Fig. 11(b). And it seems that algorithms perform a little better
on random environments than on cyclic environments with
noise. This means noise may over-weigh randomness with
respect to the difficulty of dynamic environments.

Finally, viewing from left to right in Fig. 6 and Fig. 7, it
can be seen the algorithms perform worse on DDUF2 prob-
lems than on corresponding DDUF1 problems with the same
environmental dynamics. This shows the difficulty of dynamic
problems for EAs not only depends on the environmental dy-
namics but also depends on the difficulty of relevant stationary
problems. And the difficulty of stationary problems seems to
be inherited to dynamic environments. This is natural since
the problem during each environment period can be taken as a
stationary problem. However, when deception exists insidethe

problem, the situation is quite different. For DDUF3 problems,
when the environment changes the deceptive building blocks
inside DUF3 will draw the population in the new environment
toward them faster than the optimal building blocks in DUF2
can do. Though deceptive attractors are not globally optimal
they are sub-optimal with relatively high fitness. This leads
to the result that algorithms perform better on most DDUF3
problems than on corresponding DDUF2 problems with the
same environmental dynamics.

This result can be clearly seen from the dynamic behaviour
of algorithms in Fig. 8. The performance of algorithms stays
at a higher fitness level on DDUF1 and DDUF3 problems than
on DDUF2 problems with the same environmental dynamics.
And the existence of deception in DDUF3 problems makes the
fitness fluctuation of algorithms less significantly over time on
DDUF3 problems than on corresponding DDUF2 problems.

VI. EXPERIMENTAL STUDY ON PBILS WITH MEMORY

AND MULTI -POPULATION SCHEMES

Other than memory schemes, multi-population schemes are
another kind of approaches that have been integrated into
EAs to deal with dynamic environments. As discussed in
[6], [7], the multi-population scheme has two advantages.
On the one hand, using multiple but independently evolving
populations can increase the diversity in the overall population.
On the other hand, through assigning different responsibilities
to different populations the available number of individuals in
the overall population can be used more efficiently.

In this paper in order to study the effect of multi-population
on the memory scheme for PBILs in dynamic environments,
PBILs with two probability vectors are further investigated.
And a memory-enhanced GA with two populations is also
investigated as a peer EA for performance comparisons.

A. The Memory/Search Genetic Algorithm

In [6], [8], Branke proposed amemory/search GA that aims
to combine the advantages of multi-population and memory
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t := 0 and tM := rand(5, 10)
initialize memoryM(0) and populationsP1(0) andP2(0)
repeat

evaluateP1(t), P2(t) andM(t)
adjust next population sizes forP1(t) andP2(t) resp.

if environmental change detected then
P ′

1(t) :=retrieveBestMembers(P1(t), M(t))
P ′

2(t) :=re-initialize(P2(t))
else P ′

1(t) := P1(t) andP ′
2(t) := P2(t)

if t = tM then // time to update memory
tM := t + rand(5, 10)
denote best individual inP ′

1(t) andP ′
2(t) by BP (t)

if still any random points in memory then
replace a random point in memory withBP (t)

elsefind the memory pointCM (t) closest toBP (t)
if f(BP (t)) > f(CM (t)) then CM (t) := BP (t)

// normal genetic operations for P ′
1(t) and P ′

2(t) resp.
replace elite fromP1(t − 1) andP2(t − 1) into P ′

1(t)
(P ′

1(t), P
′
2(t)) := selectForReproduction(P ′

1(t), P
′
2(t))

crossover(P ′
1(t), P

′
2(t), pc) // pc is the crossover prob.

mutate(P ′
1(t), P

′
2(t), pm) // pm is the mutation prob.

until termination condition holds // e.g., t > tmax

Fig. 12. Pseudo-code for the memory-enhanced GA with two populations
and restart scheme (MEGA2r).

schemes together. In this study a similar memory-enhanced
GA with two populations, denotedMEGA2r, is also studied
as a peer EA. MEGA2r differs from Branke’s memory/search
GA in two aspects: first, the memory in MEGA2r is updated
in a stochastic time pattern; second, the population sizes in
MEGA2r are adaptively adjusted, which was applied in [41].
Fig. 12 shows the pseudo-code of MEGA2r.

In MEGA2r, the two populationsP1 andP2 evolve indepen-
dently and each has the following configuration: generational,
uniform crossover, bit flip mutation, fitness proportionate
selection with the elitist scheme. The population sizesn1 and
n2 for P1 andP2 respectively are equally initialized to0.45∗n,
where n is the total number of individuals, including the
memory. In order to give the better performed population more
chance to search, the population sizesn1 andn2 are slightly
adjusted every generation within the range of[0.3 ∗n, 0.6 ∗n]
according to their performance. The winner population gets
∆ = 0.05∗n for its size from the loser; if the two populations
tie, their sizes do not change.

As in ISGA, the memory in MEGA2r has a sizem = 0.1∗n,
is randomly initialized, and updated in a stochastic time pattern
with the most similar updating strategy. When the memory is
due to update, the best individual overP1 andP2 will replace
the closest memory solution if it is fitter than the memory
solution. The memory is re-evaluated every generation. When
an environmental change is detected, the memory is merged
with the old populationP1 and the best individuals are selected
as a new interim populationP1 with the memory unchanged.
That is, onlyP1 retrieves the memory and hence called the

t := 0 andtM := rand(5, 10)

initialize ~P1(0) := ~0.5 and ~P2(0) := ~rand(0.0, 1.0)
if memory used then // for MPBIL2 and MPBIL2r

initialize memoryM(0) := φ and tM := rand(5, 10)

S1(0) := sample(~P1(0)) andS2(0) := sample(~P2(0))
repeat

evaluateS1(t) and denote its best sample by~B1(t)

evaluateS2(t) and denote its best sample by~B2(t)

adjust next sample sizes for~P1(t) and ~P2(t)

if no memory used then // for PBIL2
learn ~P1(t) toward ~B1(t) and ~P2(t) toward ~B2(t)

else // for MPBIL2 and MPBIL2r
denote the better of~B1(t) and ~B2(t) by ~BB(t) and

its corresponding prob. vector by~PB(t)
evaluateM(t) and denote the best memory sample by

~BM (t) and its associated prob. vector by~PM (t)

if t = tM then // time to update memory
tM := t + rand(5, 10)

if memory not full then save ~BB(t), ~PB(t) in M(t)

elsefind memory sample~CM (t) closest to~BB(t)

and its associated prob. vector~PC(t)

if f( ~BB(t)) > f(~CM (t)) then
~CM (t) := ~BB(t) and ~PC(t)) := ~PB(t))

if environmental change detected then
if f( ~BM (t)) > f( ~BB(t)) then ~P1(t) := ~PM (t)

if restart used then ~P2(t) := ~0.5 // for MPBIL2r
else learn ~P1(t) toward ~B1(t) & ~P2(t) toward ~B2(t)

mutate ~P1(t) and ~P2(t)

S1(t) := sample(~P1(t)) andS2(t) := sample(~P2(t))
until termination condition holds // e.g., t > tmax

Fig. 13. Pseudo-code for PBILs with two probability vectors: without
memory (SPBIL2), with memory (MPBIL2), and with memory and restart
(MPBIL2r).

memory population. The second populationP2 is re-started
(re-initialized) in order to search new areas in the search space
and is hence called thesearch population.

B. PBILs with Multi-Population and Memory Schemes

For PBILs, the multi-population scheme can be realized
by maintaining and evolving multiple probability vectors in
parallel. Fig. 13 shows the pseudo-code of three variants of
PBILs with two probability vectors that are investigated in
this paper. The first variant, denotedSPBIL2, has no memory
while the other two are memory-enhanced, denotedMPBIL2
andMPBIL2r respectively.

In SPBIL2, MPBIL2 and MPBIL2r, the two probability
vectors work in parallel. Each one is sampled independently
and is learnt toward the best sample generated by itself. The
probability vector ~P1 is initialized to the central probability
vector while ~P2 is randomly initialized. The sample sizes
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Fig. 14. Experimental results of MEGAr, SPBIL2, MPBIL2, andMPBIL2r on DDUFs withτ = 25.

for ~P1 and ~P2 are equally initialized to0.5 ∗ n for PBIL2
and 0.45 ∗ n for MPBIL2 and MPBIL2r, wheren is the
total evaluations per iteration. For MPBIL2 and MPBIL2r,
the memory size is fixed to0.1 ∗ n. As in MEGA2r, the
sample sizes for~P1 and ~P2 are slightly adjusted within the
range of[0.3 ∗n, 0.7 ∗n] for SPBIL2 and[0.3 ∗n, 0.6 ∗n] for
MPBIL2 and MPBIL2r according to their performance. The
winner probability vector gets∆ = 0.05 ∗ n for its sample
size from the loser for the next iteration.

For MPBIL2 and MPBIL2r, both populations can store data
into the memory in a similar time and space pattern as in
MPBIL1. When it is time to update the memory the working
probability vector that creates the best overall sample, i.e., the
winner of ~P1 and ~P2, will be stored together with the best
sample in the memory if it is fitter than the closest memory
sample. The memory is re-evaluated every iteration. When an
environmental change is detected, in order to avoid that~P1

and ~P2 converge into one, only~P1 will be replaced by the best
memory probability vector if the associated memory sample
is fitter than the best sample generated by~P1.

MPBIL2 and MPBIL2r differ in that MPBIL2r uses the
restart scheme. Whenever an environmental change is detected,
~P2 in MPBIL2r is reset to the central probability vector while
nothing happens for~P2 in MPBIL2. It can be seen that
MPBIL2r uses the idea similar to the above memory/search
GA. The first probability vector~P1 is devoted to make use of

the memory while the second probability vector~P2 aims to
search through the solution space for new promising areas in
new environments.

C. Experimental Results and Analysis

Experiments are carried out to investigate the performance
of MEGA2r, SPBIL2, MPBIL2 and MPBIL2r on the same
DDUF problems as used in Section V. The experimental
settings and the parameter settings for algorithms are alsothe
same as used in Section V. MEGA2r uses uniform crossover
with pc = 0.6, the bit flip mutation with pm = 0.02,
and elitism of size 1 without re-evaluating the elite. The
experimental results of algorithms on the DDUFs withτ = 25
are presented in Fig. 14. The statistical results of comparing
algorithms by one-tailedt-test with 98 degrees of freedom
at a 0.05 level of significance are given in Table II. The
dynamic performance of algorithms on the last 10 environmen-
tal changes with respect to best-of-generation fitness against
generations on DDUF2 withτ = 25 andρ = 0.2 is plotted in
Fig. 15 and the corresponding dynamic population diversityof
algorithms is also plotted in Fig. 16. From Fig. 14 to Fig. 16
and Table II, several results can be observed and are analysed
as follows.

First, SPBIL2 significantly outperforms SPBIL1 on almost
all dynamic problems, see thet-test results regarding SPBIL2
– SPBIL1. This validates the efficiency of the multi-population
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TABLE II

THE t-TEST RESULTS OF COMPARINGMEGA2R, SPBIL2, MPBIL2AND MPBIL2R ON DDUFS.

t-test Result DDUF1 DDUF2 DDUF3

Environment Dynamics τ = 10 τ = 25 τ = 10 τ = 25 τ = 10 τ = 25

Cyclic, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
MEGA2r − ISGA s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s−
SPBIL2 − SPBIL s+ s+ s+ s+ s− + s+ s+ s+ s+ s+ s+ − s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

MPBIL2 − MPBIL s− s− + s− s− s− − s− s− s− − − s− s− − − s− s− s− s+ s− + s− s+
MPBIL2 − MEGA2r s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s− s+ s+ + s− s+ s+ s+ s+ s+ s+ s+ s+
MPBIL2r − MEGA2r s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MPBIL2r − MPBIL s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s− s− s− s+ s+ s+ s−
MPBIL2r − MPBIL2 s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ − − s+ s− s+ s+ s+ s−

Cyclic with Noise,ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
MEGA2r − ISGA s+ s+ s− s− s− − s− s− s+ s+ s+ s− s+ s+ s− s− s− s− s− s− s− s− s− s−
SPBIL2 − SPBIL s+ s+ s+ s+ s− + s+ s+ s+ s+ s+ s+ + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

MPBIL2 − MPBIL s− s− s− s− s− s− s− s− − s− s− s− − s− s− s− s+ s+ s+ s+ s+ s+ s− s+
MPBIL2 − MEGA2r s− s− s− s+ s+ s− s+ s+ s− s− s− s− s− s− s− s+ s− s− s− s+ s+ s+ s+ s+
MPBIL2r − MEGA2r s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MPBIL2r − MPBIL s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MPBIL2r − MPBIL2 s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ − s+ s+ s+ s−

Random,ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
MEGA2r − ISGA s− s+ s+ s− s− s− s+ s− s+ s+ s+ − − s+ s+ s− s− s− s− s− s− s− s− s−
SPBIL2 − SPBIL − s+ s+ s+ + − s+ s+ + s+ s+ s+ + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

MPBIL2 − MPBIL + s+ s− s− + + s− s− + s+ s− − + s+ s− + s+ s+ s− s+ s+ s+ s− s+
MPBIL2 − MEGA2r s+ s− s− s+ s+ s+ s− s+ s− s− s− s− s+ s− s− s− s+ s− s− s+ s+ s+ s− s+
MPBIL2r − MEGA2r s+ s+ s+ s+ s+ s+ s+ s+ − s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MPBIL2r − MPBIL s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s+ s+ s+ +

MPBIL2r − MPBIL2 s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s+ s+ s+ s−
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Fig. 15. Dynamic behaviour of algorithms with two populations for the last 10 environmental changes on DDUF2 withτ = 25 andρ = 0.2.
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Fig. 16. Dynamic population diversity of algorithms with two populations for the last 10 environmental changes on DDUF2with τ = 25 andρ = 0.2.

scheme on the performance of PBILs in dynamic environ-
ments. In SPBIL2, introducing an extra probability vector
increases the diversity and hence improves its adaptability in

dynamic environments. This effect can be seen by comparing
the dynamic population diversity of SPBIL2 and SPBIL1 in
Fig. 9 and Fig. 16 respectively.
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Second, SPBIL2 is still outperformed by all the memory-
enhanced PBILs including MPBIL and MPBIL2 on most
dynamic problems, especially under cyclic environments with
or without noise (thet-test results with respect to MPBIL
– SPBIL2 and MPBIL2 – SPBIL2 are not shown). This
indicates that the memory scheme has a stronger effect than the
multi-population scheme on PBIL’s performance in dynamic
environments.

Third, an interesting result is that MPBIL2 is beaten by
MPBIL on most DDUFs, see thet-test results with respect
to MPBIL2 – MPBIL. This means when the memory scheme
is used, introducing an extra probability vector~P2 may be
negative on PBIL’s performance. This happens because in
MPBIL the re-activated memory probability vector uses the
sample size resource to its full (i.e.,0.9∗n), which outweighs
the diversity introduced by~P2 in MPBIL2, comparing the
dynamic population diversity of MPBIL2 and MPBIL1 in
Fig. 9 and Fig. 16 respectively. In other words, the re-activated
memory probability vector in MPBIL is better than~P2 in
MPBIL2 for most cases. However, when the restart scheme
is used for~P2 in MPBIL2r, the situation is totally different.
MPBIL2r significantly outperforms both MPBIL and MPBIL2
on most DDUFs. The benefit of the restart scheme can be
clearly seen from the dynamic performance of MPBIL2r
shown in Fig. 15, especially on cyclic with noise DDUFs and
random DDUFs.

Fourth, examining the performance of MEGA2r, it can be
seen that ISGA significantly outperforms MEGA2r on all
cyclic DDUFs. This happens because the memory scheme
inside ISGA is stronger. However, on random and cyclic with
noise DDUF1 and DDUF2 problems, MEGA2r beats ISGA
due to the higher diversity brought in by the restart scheme,
comparing the dynamic population diversity of ISGA and
MEGA2r in Fig. 9 and Fig. 16 respectively. On all DDUF3
problems, higher diversity (not shown) may be negative due to
its property of strong deception, which leads to ISGA’s better
performance over MEGA2r.

Comparing MEGA2r with memory-enhanced PBILs, it can
be seen that MEGA2r outperforms MPBIL2 on approximately
half of the DDUFs under cyclic with noise and random
environments but is outperformed by MPBIL2 on almost
all cyclic DDUFs. This happens because under cyclic with
noise and random dynamic environments the restart scheme in
MEGA2r contributes to its advantage over MPBIL2. But under
cyclic environments the stronger memory scheme in MPBIL2
makes it win over MEGA2r significantly. When the restart
scheme is combined with the memory scheme in MPBIL2r,
MEGA2r is significantly outperformed by MPBIL2r on almost
all DDUFs.

The great effect of combining memory and restart schemes
in MPBIL2r can be clearly seen in the dynamic performance of
MPBIL2r in Fig. 15. Under cyclic dynamic environments, the
memory scheme enables MPBIL2r to maintain a quite high
fitness level across changing environments; while in cyclic
with noise and random dynamic environments, each time when
change occurs, the restart scheme brings in a high population
diversity and enables MPBIL2r to climb back to a relatively
high fitness level during each environmental period.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, an associative memory scheme is extensively
investigated for PBIL algorithms in dynamic environments.
Within this memory scheme, the working probability vector is
taken as the environmental information and is stored together
with the best sample it creates in the memory in a dynamic
time pattern. When the environment changes, the stored prob-
ability vector associated with the memory sample with the
best re-evaluated fitness in the new environment is re-activated
and directly brings PBILs into an associated old environment.
This re-activated old environment may be very close to the
newly changed environment. Hence, PBILs may reach a
high fitness level quickly when the environment changes. In
this paper, we also investigated the interactions between the
memory scheme and several other approaches, e.g., random
immigrants, multi-population, and restart schemes, for PBILs
in dynamic environments.

In order to test the performance of EAs, as another key
contribution, this paper also proposes a DOP generator thatcan
construct dynamic environments with tunable difficulty. With
this generator, it is easy to construct cyclic, cyclic with noise,
and random dynamic environments from any binary-encoded
stationary problem. Hence, we can more thoroughly test and
analyse memory schemes in particular and other approaches
in general for EAs in dynamic environments.

Using the proposed DOP generator, a series of dynamic
test problems are systematically constructed and experiments
were carried out to compare the performance of investigated
algorithms. From the experimental results several conclusions
can be drawn on the dynamic test environments.

First, the investigated memory scheme is efficient for im-
proving PBIL’s performance for DOPs, especially in cyclic
dynamic environments.

Second, the interaction between memory and random im-
migrants depends on the dynamic environments. The addition
of random immigrants improves the performance of memory-
enhanced PBILs on most dynamic problems. However, when
the random immigrants scheme is used, the effect of adding the
memory scheme may be positive on PBIL’s performance on
cyclic DOPs and negative in random dynamic environments.

Third, there exist different interactions between memory and
multi-population schemes for PBILs. When memory is used,
simply introducing an extra probability vector may be negative
to PBIL’s performance. However, when restart is combined
with the multi-population scheme, PBIL’s performance can be
significantly improved in different kinds of dynamic environ-
ments.

Fourth, the studied memory scheme for PBILs has stronger
effect than the memory scheme for GAs. This is because when
a change occurs the re-activated probability vector in memory-
enhanced PBILs can trigger an old environment more directly
than the solutions in the memory in memory-enhanced GAs
can do.

Fifth, the difficulty of DOPs depends on the environmental
dynamics, including cyclicity, severity and speed of changes,
and the difficulty of the base stationary problems. As to the
difficulty of environmental dynamics, the existence of noise
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on the cyclicity may over-weigh randomness. The existence
of deception in the base stationary problem may be beneficial
to EA’s performance in dynamic environments.

Generally speaking, the experimental results indicate that
PBIL with the hybrid scheme of memory and multi-population
with restart can be a good EA optimizer for dynamic problems.

There are several future works relevant to this paper. A
straightforward work is to extend the idea of associative
memory scheme to other EAs. For example, extending the
idea to the GA has shown some promising result [45]. We
believe the proposed memory scheme should also improve the
performance of those EAs based on probabilistic models in
dynamic environments, such as the estimation of distribution
algorithms [21], [29], of which PBILs are a sub-class of EAs.
Devising other memory management and retrieval mechanisms
and hybrid memory schemes would be another interesting
future work for PBILs and other EAs in dynamic environ-
ments. The third future work would be formally analyzing the
behaviour of PBILs and other EAs, with or without memory,
under dynamic environments systematically constructed bythe
generator proposed in this paper. Finally, a comprehensive
comparison of memory enhanced EAs, including associative
memory, direct memory, implicit memory [30], [38], and
hybrid memory schemes [43], [46], is now under investigation.
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Ed., San Mateo, CA: Morgan Kaufmann Publishers, 1997, pp. 299-306.

[26] R. W. Morrison and K. A. De Jong, “A test problem generator for non-
stationary environments,”Proc. of the 1999 Congress on Evolutionary
Computation, 1999, vol. 3, pp. 2047-2053.

[27] R. W. Morrison and K. A. De Jong, “Triggered hypermutation revisited,”
in Proc. of the 2000 Congress on Evolutionary Computation, 2000,
pp. 1025-1032.

[28] R. W. Morrison,Designing Evolutionary Algorithms for Dynamic Envi-
ronments, Springer-Verlag, 2004.

[29] H. Mühlenbein and G. Paaß, “From recombination of genes to the
estimation of distributions I. binary parameters,” inProc. of the 4th Int.
Conf. on Parallel Problem Solving from Nature, H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, Eds., 1996, pp. 178-187.

[30] K. P. Ng and K. C. Wong, “A new diploid scheme and dominance change
mechanism for non-stationary function optimisation,” inProc. of the 6th
Int. Conf. on Genetic Algorithms, L. J. Eshelman, Ed., San Mateo, CA:
Morgan Kaufmann Publishers, 1995.

[31] C. L. Ramsey and J. J. Grefenstette, “Case-based initialization of genetic
algorithms,” in Proc. of the 5th Int. Conf. on Genetic Algorithms, San
Mateo, CA: Morgan Kaufmann Publishers, 1993.

[32] A. Simões and E. Costa, “On biologically inspired genetic operators:
Using transformation in the standard genetic algorithm,” in Proc. of the
2001 Genetic and Evolutionary Computation Conference, 2001, pp. 584-
591.

[33] A. Simões and E. Costa, “An immune system-based genetic algorithm
to deal with dynamic environments: diversity and memory,” in Proc. of
the 6th Int. Conf. on Neural Networks and Genetic Algorithms, 2003,
pp. 168-174.



20 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO.X, MONTH 200X

[34] A. Simões and E. Costa, “Improving the genetic algorithm’s performance
when using transformation,” inProc. of the 6th Int. Conf. on Neural
Networks and Genetic Algorithms, 2003, pp. 175-181.

[35] R. Tinos and S. Yang. “A self-organizing random immigrants genetic
algorithm for dynamic optimization problems,”Genetic Programming
and Evolvable Machines, vol. 8, no. 3, pp. 255-286, September 2007.

[36] T. Trojanowski and Z. Michalewicz, “Searching for optima in non-
stationary environments,” inProc. of the 1999 Congress on Evolutionary
Computation, 1999, pp. 1843-1850.

[37] K. Trojanowski and Z. Michalewicz, “Evolutionary Optimization in
Non-Stationary Environments,”Journal of Computer Science and Tech-
nology, vol. 1, no. 2, pp. 93-124, 2000.
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