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Abstract—In recent years there has been a growing interest applied for solving many stationary optimization problditls

in studying evolutionary algorithms for dynamic optimization
problems due to its importance in real world applications.
Several approaches, such as the memory and multiple pop-
ulation schemes, have been developed for evolutionary algo
rithms to address dynamic problems. This paper investigate
the application of the memory scheme for population-based
incremental learning (PBIL) algorithms, a class of evolutonary
algorithms, for dynamic optimization problems. A PBIL-specific
associative memory scheme, which stores best solutions aglw
as corresponding environmental information in the memory, is
investigated to improve its adaptability in dynamic environments.
In this paper, the interactions between the memory scheme
and random immigrants, multi-population, and restart schemes
for PBILs in dynamic environments are investigated. In orde
to better test the performance of memory schemes for PBILs
and other evolutionary algorithms in dynamic environments
this paper also proposes a dynamic environment generator &t
can systematically generate dynamic environments of diffent
difficulty with respect to memory schemes. Using this genetar
a series of dynamic environments are generated and experimes
are carried out to compare the performance of investigated kgo-
rithms. The experimental results show that the proposed meiory
scheme is efficient for PBILs in dynamic environments and als
indicate that different interactions exist between the merory
scheme and random immigrants, multi-population schemes fo
PBILs in different dynamic environments.

Index Terms— Population-based incremental learning, dy-
namic optimization problems, associative memory scheme, uiti-
population scheme, random immigrants, memory-enhanced ge
netic algorithm, immune system based genetic algorithm.

. INTRODUCTION
VOLUTIONARY algorithms (EAs) are a class of meta

heuristic algorithms inspired by principles of natural evo

lution, such as selection and population genetics. Tiatklly,

[23], [48]. However, the environments of many real world
problems are often dynamic [8], [18], [19], [28]. For these
dynamic optimization problems (DOPs), the fitness funcgtion
design variables, and environmental conditions may change
over time due to such factors as the stochastic arrival of new
tasks, machine faults and degradation, climatic changekeha
fluctuation, and economic and financial factors.

Usually, for stationary optimization problems the aim is
to design EAs that can quickly and precisely locate the
optimum solution(s) in the search space. However, for DOPs
the situation is quite different. For DOPs, fast and preEiés
are not sufficient and in fact in some cases perform worse than
their slower and less precise peer EAs due to the convergence
problem. For traditional (fast and precise) EAs when thé-env
ronment changes the population may have converged to some
optimum solutions or areas and hence is trapped there and
cannot perform well further in the new environment. Hence,
for DOPs what is more important is to develop algorithms that
can track and adapt to the changing environment. Though this
poses great challenges to traditional EAs, EAs with proper
enhancement can also be good solvers for DOPs due to their
intrinsic inspiration from natural evolution, which is éié
always subject to an ever-changing environment.

In recent years, studying EAs for DOPs has attracted a
growing interest due to its importance in EAs real world
applications. The simplest way of addressing DOPs is to
restart EAs from scratch whenever an environment change is
detected. Though the restart scheme really works for some
cases [41], for many DOPs it is more efficient to develop other

approaches that make use of knowledge gathered from old
environments. Several approaches have been developed into
EAs to address DOPs. These approaches include maintaining

research on EAs has been focused on stationary optimization

problems, where problems are precisely given in advance an

keep fixed during the evolutionary progress. Due to th

ease of use and good performance, EAs have been wid
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al’(l]d reintroducing diversity during the run [9], [16], [2T35],
emory schemes [6], memory and diversity hybrid schemes
3], [43], [46], and multi-population schemes [7].
)ﬁ’opulation—based incremental learning (PBIL) algorithms
were first proposed by Baluja [2] as an abstraction of genetic
algorithms (GAs), which explicitly maintain the statistic
contained in a GA's population [3]. As a class of EAs, PBILs
have proved to be very successful on numerous stationary
benchmark and real-world problems [21]. Recently, Yang and
Yao [41] have investigated PBILs for DOPs by introducing du-
alism and a scheme similar to the random immigrants method
[16] to improve their performance in dynamic environments.
And in [42] a memory scheme has been introduced into PBILs
for DOPs with some preliminary results.

m
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In this paper, the PBIL-specific explicit memory schemépartial) solutions to be reused later. Here, the redundant
introduced in [42] is further investigated to improve itsaptt representation acts as memory, which is implicit for the EA
ability in dynamic environments. With this memory schemep use appropriately. Typical examples of implicit memory
the best sample created by the working probability vectechemes are genetic algorithms based on diploidy or multi-
together with the probability vector are stored in the mgmoploidy representations. Goldberg and Smith [14] first edizh
in a certain time and space pattern. When the environmertte¢ simple haploid GA to a diploid GA with a tri-allelic
change is detected, the probability vector associated twith dominance scheme. Thereafter, Ng and Wong [30] proposed
memory sample that is re-evaluated to be the best in thedominance scheme with four alleles for a diploidy based
new environment is retrieved to compete with the curre@A. Lewiset al. [22] further investigated an additive diploidy
working probability vector for further iterations. This p&r scheme where a gene becomes 1 if the addition of all alleles
also investigates the interactions between the memoryrsgheexceeds a certain threshold, and 0 otherwise. Recently, Uya
and random immigrants, multi-population and restart sasemand Harmanci [38] proposed an adaptive dominance change
for PBILs in dynamic environments. mechanism for diploid GAs where the dominance character-

In order to test the investigated PBILs for DOPs, a DORtics for each locus is dynamically adapted through feekiba
generator that aims to systematically construct dynamic €nom the current population.
vironments for testing EAs, especially EAs with memory In addition to multiploidy GAs, Dasgupta and McGregor
schemes, is also proposed in this paper. Based on this gdri] proposed a quite different implicit memory scheme in
erator a series of DOPs are constructed from three stagiontive so called structured GA, which is haploid based but has a
functions as the dynamic test environments and experirhemaulti-levelled structure. In this representation, higihelegenes
study is carried out to compare the performance of invelg@ya can regulate the activation of a set of low level genes. The se
PBILs and two state-of-the-art memory-enhanced GAs: tloé low level genes can memorize good (partial) solutions in
memory/search GA by Branke [6] and an immune systeoid environments that can be re-activated by high level gene
based GA recently developed in [44]. in new environments. Similar to diploid GAs, recently Yang

The rest of this paper is organized as follows. The next sesmd Yao [41] proposed a dual PBIL for dynamic problems
tion reviews existing memory approaches for EAs in dynaminspired by the principle of dualism in nature.
environments. Section Il details several EAs investidate
this paper, including our memory-enhanced PBILs. Sectbn | -
first briefly reviews existing DOP generators, then preseuts B. Explicit Memory Schemes
proposed dynamic environment generator for testing memoryWhile implicit memory schemes for EAs in dynamic envi-
schemes for EAs, and finally describes the dynamic testnments depend on redundant representations to stongl usef
environments constructed for the experimental study of tHiformation for EAs to exploit during the run, explicit menyo
paper. The basic experimental results and analysis regardichemes make use of precise representations but split @n ext
the proposed memory scheme and random immigrants &iprage space where useful information from the currengigen
PBILs are presented in Section V. Section VI studies traion can be explicitly stored and reused in later genaratio
effect of multi-population and restart schemes on the mgmagnvironments. Explicit memory schemes mainly involve ¢hre
scheme for PBILs in dynamic environments. Finally, Sectiotoncerns: what to store in the memory, how to organize and
VIl concludes this paper with discussions on future work. update the memory, and how to retrieve the memory.

For the first concern, a natural choice is to store good solu-
Il. MEMORY SCHEMES FOREVOLUTIONARY ALGORITHMs tions and reuse them when the environment change is detected
IN DYNAMIC ENVIRONMENTS This can be calledirect memory scheme. For example, Louis

Th licati f h h dt and Xu [24] studied the open shop re-scheduling problem.
€ appiication 9 memory schemes has proved 1o ey used a memory to store best individuals during a run.

able to enhance EAs performance in dynamic envwonmen{ﬁmeneVer a change (in a known pattern) occurs, the GA is

especially when the _envw_on_ment changes - cyclicly n tr‘P%started from a population with partial (5-10%) indivitkia
search spade The basic principle of memory schemes is t

Petrieved from the memory corresponding to the previous run

store information, such as good solutions, from the Curre\%ile the rest is initialized randomly. The authors repdrte

enV|ron.ment "”?d reuse it later In new envwo.nmen.ts. Thé?gnificant improvements of their GA over the GA with totally

useful |nformat|o-n can be storeq in two ways: by |.mpI|C| ndom restart scheme. Instead of storing good solutions

memory mechanisms and by explicit memory mechanisms [ ly, information that associates good solutions with rthei
environments can also be stored with good solutions. This

A. Implicit Memory Schemes information can be used for similarity measure to associate
For implicit memory schemes, EAs use genotype repré-New environment with certain stored good solutions and

sentations that contain redundant information to storedgof'en reuse these associated solutions more efficientlys Thi
can be calledndirect memory scheme or associative memory
IFor the convenience of description, we differentiate theirenmental scheme. For example, Ramsey and Grefenstette [31] studied
changing periodicality in time and space by wordipgiodical and cyclic 5 GA for a robot control problem, where gOOd candidate
respectively. The environment is said to fiodical if it changes in a fixed . . .
time interval, e.g., every certain EA generations, and id &abecyclic if it solutions are stored in a permanent memory together with
visits several fixed states in the search space in a certdir cepeatedly.  information about the robot’s current environment. Whea th
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robot incurs a new environment that is similar to a stored o . = -
environment instance, the associated stored controlletiso t:= 0 and initialize probability vectgP(O) =05
is re-activated. This scheme was reported to yield sigmifica 9enerate a sef(0) of n samples byP(0)
improvements. Recently, an associative memory scheme hd§Peat .
been developed for PBILs for DOPs [42] with some promisilg  evaluate samples ifi(¢)
preliminary results, which will be further investigated tims if random immigrants used then I/ for SPBILi
paper and will be described in details in Section 111.B. replacer; * n worst samples irf(t) by random ones
The memory space or size is usually limited (and fixed) - -
for computational and searching efficiency. This leads fo 'earnP(t) toward best samplés(t) in S(t) by Eq. (1)
the second concern of explicit memory schemes: memgry MmutateP(t) by Eq. (2) -
organization and updating mechanisms. As to the memary generate a sef(t) of n samples byP(t)
organization, there exist two mechanisnhgcal mechanism until termination condition holds Il eg., t > tmax
where the memory is individual-oriented agtbbal mecha-
nism where the memory is population-oriented. Trojanowski ) o
. . - Fig. 1.  Pseudo-code of the standard PBIL without random ignamits
and Michalewicz [36], [37] introduced a local memory ap(SPBIL) and the PBIL with random immigrants (SPBILI).
proach, where for each individual the memory stores a number
of its ancestors. When the environment changes, the current
individual and its ancestors are re-evaluated and competérhe memory retrieval has also been combined with diversity
together with the best becoming the active individual wiiile  schemes to improve the performance of GAs for DOPs, which
others stored in the memory. The global memory mechanisiows promising results. For example, Simdes and Cos}a [33
is more natural and popular, see [6], [25]. In these globf#4] have proposed an immune system based GA for DOPs,
memory mechanisms, the best individual of the populationyghere new individuals are cloned from selected memory
stored in the memory every certain generations while deetisolutions and replaced into the population. Recently, Yang
one individual from the memory according to some measuiigas developed a memory-based immigrants scheme for GAs
As to the memory updating mechanism, a general princigle dynamic environments [43], [46], where the best memory
is to select one memory individual to be removed for agolution is retrieved every generation as the base to cneate
updated by the best individual from the population in ordéndividuals via a normal bit flip mutation operation to repga
to make the stored individuals to be of above average fitneggrst individuals in the main population.
not too old, and distributed across several promising anéas
the search space. Branke [6] has discussed several memory|||. D ESCRIPTION OFALGORITHMS INVESTIGATED
replacemgnt strategies: 1). repl_aci_n 9 the Iea;t impoua_at A. Sandard Population-Based Incremental Learning
with the importance value of individuals being the linear i . o ) )
combination of age, contribution to diversity, and fitness; "€ PBIL algorithm is a combination of evolutionary opti-
2). replacing the one with least contribution to memory var[Nization and competitive learning [2]. PBIL aims to generat
ance: 3). replacing the most similar one if the new individu& "eal-valued probability vectaP = {P,.... R} (Lis the
is better; and 4). replacing the less fit of a pair of memofginary-encoding length), which creates high quality sohg
individuals that has the minimum distance among all paine T With high probability when samplédThe pseudo-code for the

third strategy seems the most practical one and will be useigndard PBIL, denote8PBIL, is shown in Fig. 1.

in this paper. In addition to replacing memory point, Berdts The standard PBIL starts from a propab|llty vector th‘f’lt has
and Krink [5] proposed a different memory updating schenfkValue of 0.5 for each.t.nt Iocatlon.. Th|§ probgblhty vector
where the memory individual closest to the best populati&"i"_'ed thecentral probability vector since it falls in the central

individual is, instead of being removed from the memorPOint of the search space. Sampling this initial probabilit
moved toward the best population individual. vector creates random solutions because the probability of

For the third concermn on explicit memory, i.e., how t@enerating a 1_or0 on each locus is equal. At itergt_i(mset
retrieve the memory, a natural idea is to retrieve the beaf!) Of n solutions are sampled from the probability vector
memory individual(s) to replace the worst individual(stie £ (¢)- The samples are evaluated using the problem-specific
population. This can be done every generation or only wher{i§€ss function. Then the probability vector is learnt todea
change occurs. The memory retrieval is sort of coupled witie best solution5(¢) of the setS(¢) as follows.
the above two concerns. For example, for the direct memory, ;1 1) := (1— )« P;(t) + axB;(t), i={1,...,1}, (1)
scheme the whole memory individuals may enter the new pop- . . . . .
ulation as in [24] or compete with the population individualWherea is the learning rate, which determines the distance
for the new population as in [6], while for the associativé€ probability vector is pushed for each iteration.
memory scheme only associated memory individual(s) mayAfter the probability vector is updated toward the best
enter the new population [31]. And for the local memorgample, in order to keep the diversity of sampling, it may
organization scheme the best ancestor of an active individ&ndergo a bitwise mutation process [4]. Mutation is appled
competes with it to become active in the population [36],levhi o . "
for the global memory scheme best memory individual(s) m A §o'lut|0n is sampled from a probability vectd? as follows: for each
or g : . .y_ . - Yy ) @®tusi, if a randomly created number= rand(0.0, 1.0) < P;, it is set to
compete with all individuals in the main population. 1; otherwise, it is set to 0.
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PBILs studied in this paper and the mutation operation adway

T P t:=0andty := rand(5,10)
changes the probability vector toward the central profgbil| . . i b B(0) — 0% and AL(O) e
vector, i.e., the central point in the search space. Thetioota initialize prob. vectorP(0) := 0.5 an memory. 0):=¢
operation is carried out as follows. For each locus= | 9enerate a set(0) of n —m samples byP(0)

{1,...,1}, if a random number = rand(0.0,1.0) < p,, | "ePeat _

(pm is the mutation probability), then mutat® using the evaluate samples ifi(1) and M (t)

following formula: denote the best memory sainple By, (t) and its
Py (1.0 — 6,), P> 05 associated prob. vector by (t)

P ={ P, P, =05 2) if random immigrants used then // for MPBILI

Pix (1.0 —6,) + 0m, P <0.5, replacer; « n worst samples ir6(t) by random ones

where 6,, is the mutation shift that controls the amount a denote the best sample B(t) by B(t)

mutation operation alters the value in each bit positiorteAf | if ¢ = tas then /I time to update memory

the mutation operation, a new set of samples is generated by  tar := t + rand(5,10)

the new probability vector and this cycle is repeated. if memory not full then store B(t), P(t) into M (t)

As the search progresses, the elements in the probability elsefind the memory sampl€(t) closest toB(t)

vector move away from their initial settings of 0.5 towards and its associated prob. vectBy:(t)

either 0.0 or 1.0, representing high evaluqtlon squUd’r’rg? _ i f(ﬁ(t)) > f(éM(t)) then

search progress stops when some termination condition| is Chi(t) = B(t) and Po(t) :== B(t)

satisfied, e.g., the maximum allowable number of iterations

tmaz is reached or the probability vector is converged to either if environmental change detected then

0.0 or 1.0 for each bit position. if f(Ba(t)) > f(B(t)) then P(t) := Py(t)
In this paper, we also investigate the effect of random else learn P(t) toward B(t) by Eq. (1)

immigrants on the performance of PBILs in dynamic envj- _

ronments. In [41], a technique similar to random immigrants mutate P’(1) by Eq. (2) -

is used for PBILs for DOPs by adding a sub-population that 9enerate a sef(t) of n —m samples byP(t)

is sampled by the central probability vector. In this paperntil termination condition holds Il €g., t > tmaq

we use an equivalent but more direct random immigrarnts

scheme for PBILs. With this random immigrants scheme, fng-fg. 2. Pseudo-code of the memory-enhanced PBILs: withaatdam

each iteration after the probability vector is sampled, & Semigrants (MPBIL) and with random immigrants (MPBILI).

of worst samples are selected and replaced with randomly

created samples. The pseudo-code for the PBIL with random

immigrants, denote8PBILi, is also shown in Fig. 1, wheng

is the ratio of random immigrants to the total populatioresiz

of samples per iteration including the memory samples and
f(X) denotes the fitness of individual. Within MPBIL
and MPBILi, a memory of sizen = 0.1 *x n is used to
B. Memory-Enhanced PBILs store samples and probability vectors. Each memory point

As reviewed in Section II, several memory schemes ha¢@nsists of a pair: a sample and its associated probability
been developed for EAs to deal with dynamic optimizatio\ﬁecmr- The most similar measure, as dlscgssed in [6], id use
problems. In [41], Yang and Yao proposed a dualism bas@d the memory replacem.ent strategy. That s, whenthe memory
PBIL for dynamic problems where a dual probability vectofS due to update, we first find the memory point with its
which is symmetric to the main probability vector with respe Sample By (t) closest to the best population samplt)
to the central point in the search space, is associated dphderms of Hamming distance. If the best population sample
compete with the main probability vector to generate samplé'@s higher fitness than this memory sample, it is replaced by
The dual PBIL has proved successful in dynamic environmerf§ best population sample; otherwise, the memory remains
where significant changes exist in the genotypic space. ~ Unchanged. When a best population sami(¢) is stored in

In this paper we investigate a new explicit associative merf{l® memory, the current working probability vectB¢) that
ory scheme for PBILs in dynamic environments. The key idéigherates3(t) is also stored in the memory and is associated
is to store good solutions as well as associated enviroraheftith B(t). Similarly, when replacing a memory point, both
information in the memory for PBIL to reuse. Since PBIL§he sample and the associated probability vector within the
aim to evolve a probability vector toward the intrinsic &lle Memory point are replaced by the best population sample and
distribution of the current environment, the evolved piaiiy ~ the working probability vector respectively.
vector can be taken as the natural representation of therdurr Instead of updating the memory in a fixed time interval as
environmental information and can be stored together \high tin other memory-enhanced EAs in the literature, the memory
best sample generated from it in the memory. in MPBIL and MPBILi and other memory-enhanced EAs

The pseudo-code for the memory-enhanced PBILs withostuudied in this paper is updated using a stochastic timenpatt
and with random immigrants, denotédPBIL and MPBILi as follows. After each memory updating, a random integer
respectively, is shown in Fig. 2, whereis the total number R € [5,10] is generated to determine the next memory
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updating timet,,. For example, suppose a memory updatingr neutralize it. This process is called thamary response.
happens at generatiofy then the next memory updatingMeanwhile memory B-cells will retain in the circulation. If
time istyy = t+ R = t + rand(5,10). This stochastic the same pathogen attacks the body again, the memory B-cells
time pattern has two advantages over a fixed time patterncan respond immediately. This is called teeond response,
terms of fairly comparing EAs with memory schemes. Firstyhich is much faster and more efficient than the primary
different memory-enhanced EAs may favour different fixetesponse. The immune system can recognize a large number of
memory updating intervals. The stochastic time pattern cantigens because it has a gene library that aggregates anodul
smooth away this potential effect. Second, the environaienthunks of genes or gene segments. These gene segments car
change period is unknown before an EA is running or maye recombined to build up diverse antibodies.

be faulty to detect. Different fixed updating intervals will The mechanisms of memory and diversity in the human
have different effect even for the same memory-enhancesimune system have been applied into GAs for DOPs, see
EA. It would be ideal that the environmental change periqd2], [13]. Simdes and Costa [33], [34] proposed an immune
coincides with the memory updating period, e.g., the memosystem based GA for DOPs. The basic idea is to view the
is updated just before the environment changes. Howevenvironment as the antigen and environmental changes as the
for a fair comparison among EAs with and without memongppearance of different antigens. Their GA maintains two
this potential effect should be smoothed away, which can pepulations: the first one consists of plasma B-cell indigid
achieved by the stochastic memory updating time pattern. while the second consists of memory B-cell individuals. The

The memory in the memory-enhanced PBILs is re-evaluatfist population is the main one and evolves as follows: the
every iteration. If any memory sample has its fitness changéadividuals with the best matches to the optimum (antigen)
the environment is detected to be changed. Then the memarg selected and cloned into the next generation. At tinhes, t
probability vector associated with the best re-evaluatedhm best plasma B-cell individual is stored in the second pdjmria
ory sample will replace the current working probability t@c (and hence becomes a memory B-cell individual) and is
if the best memory sample is fitter than the best sample ateatgtached a value of the average fithess of the first population
by the current working probability vector. If no environnteh which is used as the affinity measurement to match memory
change is detected, MPBIL and MPBILi progress just as thgcells to a new environment. The degradation of population
standard PBIL does. average fitness is taken as the environmental change detecti

From the above description it can be seen that the proposedchanism. When a change is detected, the most proximal
memory scheme for PBILs uses similar idea as the memanemory B-ceff is then activated, cloned and reintroduced into
scheme devised by Ramsey and Grefenstette [31] for GAs, itbe first population, replacing the worst individuals.
storing environmental information in the memory. However, Simdes and Costa used a set of gene libraries, each con-
the stored environmental information is reused in a difieretaining a set of fixed length gene segments. The libraries are
way. For MPBIL and MPBILi the stored environmental inforrandomly initialized and then kept constant during the fagn
mation, the probability vector, is used to directly re-gate an of the GA. They are used in the cloning process. During the
old environment it represents for MPBIL and MPBILi, whichcloning, every individual, be it a plasma or memory B-cell,
may be similar to the newly changed problem environmeris. subject to aransformation modification with a probability
And the stored solutions, besides their role as environahens,. Transformation, proposed by Simdes and Costa in [32], is
change detectors and memory replacement locators, aréaisesimilar to the somatic hypermutation of B-cells. An indival
indicate which associated environment should be re-detiva is transformed as below. First, one gene segment is randomly
selected from one randomly chosen gene library. Then, a ran-
C. Immune System Based Genetic Algorithm dom transformation locus is_ chosen in the i_ndividual_. F{'y)_al

the chosen gene segment is incorporated into the individual

The human immune system protects our body against potegplacing the genes after the transformation locus.
tially harmful pathogens, calleahtigens. Our body maintains  |n [44], a variant of Simdes and Costa’s immune system
a large number of immune cells. Some belong to the adaptiygsed GA was proposed, which is studied as a peer GA in
immune system, calletymphocytes, which circulate through this paper and denotd@GA. ISGA significantly outperforms
the body. There are two types of lymphocytes, nanfetglls  Simges and Costa’s GA according to the experiments [44].
and B-cells, which cooperate in the immune response witlthe pseudo-code of ISGA is shown in Fig. 3. ISGA differs
different roles [20]. o from Simdes and Costa’s GA in four aspects.

When a pathogen invades the body for the first time, a fewFirst, ISGA uses a gene pool (instead of gene libraries) to
B-cells can recognize its peptides and will be activated py|d a set of fixed length gene segments. The gene segments
response as follows. When a B-cell is activated, it prodifes i the gene pool are divided into two groups: random and non-
and produces many short-lived clones through cell divisn random. Both groups are randomly initialized and then ugiat
cell cloning is subject to a form of mutation termeomatic  every generation. The gene segments in the random group are
hypermutation. The mutated B-cell clones will undergo gyst randomly re-initialized while those in the non-random

the antigen will die while those with high affinity will sume

and diﬁerentiate. int(Plasma or memory B-cells. -Plasma B- sthe proximity is measured by the average fitness of the firptlation
cells secrete antibodies that can bind to the antigen arttbgles and the value attached to each memory B-cell.
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approaches. Generally speaking, existing generators ean b
roughly divided into three types.

The first type of dynamic environment generators is quite
simple and just switches between two or more stationary
problems (or states of a problem). For example, the dynamic
knapsack problem where the weight capacity of the knapsack
oscillates between two or more fixed values has been fre-
qguently used in the literature [11], [22], [25], [30]. Cobhda

t:= 0 andty, := rand(5,10)
initialize populationP(0) and memoryM (0) randomly
initialize gene poolG(0) randomly
repeat
evaluate populatio(¢) and memoryM (t)
replace the worst member iR() by elite from P(—1)
update gene podF(¢)

if environmental change detected then Grefenstette [10] used a dynamic environment that osedllat
retrieve the best memory poitit,, (t) between two different fitness landscapes. For this type of ge
cloner; x n individuals from By, (1) erators, the environmental dynamics is mainly charaadriz
replace the worst individual i(¢) by the clones by the speed of change measured in EA generations.
if + =t then /I time to update memory The second type of generators construct dynamic environ-
tar ==t + rand(5, 10) ments by reshaping a predefined fithess landscape. Usually,
denote the best individual i (t) by Bp(t) this base landscape is definedardimensional real space and
if still any random point in memory then consists of a number of component landscapes (e.g., cones),
replace a random point in memory wifRp () see [6], [17], [36]. Each of the components can change its
elsefind the memory pointy;(¢) closest toBp(t) own morphology independently W|tr_1 such parameters as peak
it f(Bp(t)) > f(Ca(t)) then Ciy(t) := Bp(t) height, _peak slqpe and peak_ location. And the_ center of _the
) peak with the highest height is taken as the optimum solution
P'(t) :=selectForReproductigi(t)) of the landscape. For example, Morrison and De Jong [26]

clone(P'(t), G(t),p:) /I p: is the transformation prob. | defined the base landscape in thelimensional real space as:
mutaté P’ (t), pm ) Il p,, is the mutation prob.

until termination condition holds Ileg., t > tnas
f(@ = max 3)
1=1,....m
Fig. 3. Pseudo-code of the investigated ISGA with aligneessformation.
where ¥ = (x1,---,2,) IS @ point in the landscapen

specifies the number of cones, and each coig indepen-

opulation using a binary tournament selection as folldves. . ) . ) .
Pop 9 y tly specified by its heightd;, its slopeR;, and its center

each gene segmentin the non-random group, we first rando

select two individuals from the plasma B-cell populatiomlan’* — ()iil"i.' ’Xg)' Tdheseth(_:on(tast_are bl?endded togedther by
then from the fitter individual we select a contiguous segme €max Tunction. Based on this stationary landscape dynamic

of genes of fixed length from a random locus as the new gep]%)blems can be created through changing the parameters of

segment and the starting locus is recorded and associatied ch component. ) )
the new gene segment. Recently, Yang [40] proposed a dynamic environment gen-

Second, ISGA uses aaligned transformation scheme. erator based on the concept of problem difficulty justified

When cloning an individual, we first randomly select a gerfy Goldberg [15], claiming that the problem difficulty can

segment from the gene pool. If it is from the random grouﬁ,e decomposed along the lines of building block processing

it will be replaced into the individual from a random locus!Nto three core elementsleception, scaling, and exogenous

otherwise, it will be replaced into the individual from theoise. A framework of binary decomposable trap function
recorded starting locus.

was proposed as the base to construct dynamic environments

Third, in ISGA the memory is updated similarly as inby changin_g_the th(ee core difficul_ty elements. From this
MPBIL and is re-evaluated every generation to detect efamework it is possible to systematically construct dyf@am
vironmental changes. If an change is detected, the memg@monments of changing but bounded Q|ﬁ|culty. )
individual with the highest re-evaluated fitness is regibwo  FOr this type of generators, the environmental dynamics
cloner; *n (r; is the clone immigrants ratio) individuals andS characterized by the magnitude or step size of parameter
replace the worst ones in the plasma B-cell population. ~ change and the speed of changes in EA time.

Fourth, in Simdes and Costa’s GA, mutation was not The third type of generators was proposed in [39], [41],
used. In ISGA, mutation is switched on, which gives betté¥hich can generate dynamic environments from any binary-
performance according to our preliminary experiments. ~ €ncoded stationary problem based on a bitwise exclusive-

or (XOR) operator. Given a stationary problefi¥) (¥ €

IV. CONSTRUCTINGDYNAMIC TESTENVIRONMENTS {0, 1}! wherel is the length of binary representation), dynamic
environments can be constructed from it as follows. Suppose
the environment is periodically changed evergeneratiorns

Over the years in parallel with developing approaches infpr each environmental peridd an XORing maskZ\Z/(k) is
EAs for dynamic problems, researchers have also developed
a number of dynamic problem generators to create dynami@rne generator can be easily modified to construct non-piesibdynamic
test environments to compare the performance of develop@dironments where varies with time instead of being a fixed value.

A. General Dynamic Environment Generators
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first incrementally generated as follows:
M(k) = M(k—1)® T(k), )

where ‘©” is the XOR operator (i.e.l ®1 =0,100 =
1,080 = 0) and T“(k) is an intermediate binary template
randomly created with x [ (p € [0.0,1.0]) ones inside it for
environmental period. Initially, ]\7[(0) is set to a zero vector.
Then, the individuals at generatignare evaluated using the
following formula:

State 1

M(1)=1001011010

State 4 - - -

State O
(Initial State)
M(3)=110100010
State 3

M(2)=011101001

State 2

(@)

Base State 1

M(1)=1001011010

\ Base State 2

M(2)=111111111

/

M(3)=011010010

Base State 3

F(@,t) = f(F® M(k)), (5)

wherek = [t/7] is the environmental period index.

With this generator, the environmental dynamics can be
easily tuned by two parameters:controls the change speed
while p controls the severity each time the environment
changes. Bigger value ¢f means more severe environmental
change and hence greater challenge to EAs.

This XOR operator based generator can be combined with (b)
other ones to create complex dynamic environments, as seen Base State 1
in [40]. It can also be modified to construct dynamic envi- M(1)=10010110f]
ronments for testing specific approaches developed for BAS i
dynamic environments, e.g., the generator described bielow
testing memory schemes.

Base State 0
(Initial State)

M(0)=0000000000

Base State 0
(Initial State)

M(0)=0000000000

Bit 10 changed \ Base State 2

by noise
M(2)=p11111111

Bit 1 changed

Bit 6 changed
by noise

B. An Extended DOP Generator for Testing Memory Schemes

i i i i M(3)=011011010 by noise
Generally speaking, the above reviewed dynamic environ-
ment generators are usually used to construct general dgnam ©

environments for testing all approaches for EAs. However, i
order to better understand a certain approach, it would therbeFig. 4. lllustration of three kinds of dynamic environmentsstructed from
to construct dynamic environments that pay special atigntia 10-bit encoded function witp = 0.5: (a) non-cyclic, (b) cyclic, and (c)
to the exact approach. For example, for memory schenf¥glic with noise.
it would be interesting to construct dynamic environments
with tunable cyclicity since the effect of memory schemes
on EAs depends heavily on whether the environment chandédn the current state and will not guarantee to return to the
cyclicly or not. In this paper, based on the XOR operator Bas#litial state represented hy/(0) = 0000000000.
generator described above, an extended dynamic envirdnmerext we describe how to construct cyclic dynamic envi-
generator is proposed for testing memory schemes for EAgnments. The idea is quite simple: first construct a fixed
The generator is described as follows. number of states (environments), callbdse states, in the
Given a binary-encoded stationary problefiiz) (z € search space randomly or in certain pattern and then move the
{0,1} wherel is the length of binary representation), thre€nvironment among these base states in a fixed order cyclicly
types of dynamic environmentapn-cyclic, cyclic, and par- Suppose there ar@ K base states, then the environment
tially cyclic, can be constructed from it using the XOR opemill return to its initial state when it changes eveRy
ator. The first type of dynamic environments is exactly whaitmes. With the XOR operator, we can generat€ XOR-
the above described XOR operator generator constructs. Tihig masksM (0), M (1),---,M(2K — 1) as the base states.
type of dynamic environments is also callehdom dynamic These XORing masks form a logical ring representing the
environment in this paper since with respect to cyclicitg thcyclicly changing environment. Suppose the environment is
environment moves randomly in the search space, even thopgiiodically changed every generations, then the individuals
each time it may move with a fixed Hamming distance awat generatiort are evaluated using the following formula:
from the current environment. This is illustrated in Figa}(
where a non-cyclic dynamic environment is constructed feom
10-bit function withp = 0.5 and the XORing mask is used to
represent the environmental state. Each time the envirnohmeherek = [t/7] is the index of the current environmental
changes, it movep x [ = 0.5 x 10 = 5 bits away randomly period andl; = £%(2K) is the index of the base state the
environment is in at generatian
The 2K XORing masks can be generated in the following
way. First, we construck’ binary templateq’(0), - - -, T'(K —
1) that form a random partition of the search space with each

f(@t) = f(@® M(L)) = (& ® M(k%(2K))), ()

5In the real world, there are many DOPs that are subject toiccy
approximately cyclic environments, which motivates thelgtof cyclic DOPs
in this paper. For example, the climate may change cydficaler a year and
the conditions in the traffic system may change cyclicallgroa day.
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template containing x | = /K bits of one8. Let M (0) = 0 4 —
denote the initial state. Then, the other XORing masks are DUF2 Building Block o~
generated iteratively as follows: 3. DUFS Building Black X
M(i+1) = M) @ T(%K),i =0, 2K =1 (7) I S

With the above formula, the templaté0), - -, T(K — 1) nl T
are first used to creat& masks till M(K) = 1 and then
orderly reused to construct anothé&f XORing masks {ill 0k ° ;” . "
M(2K) = M(0) = 0. The constructed XORing masks have ° Unitation 3

equal Hamming distance between two neighbours. That is,

ifﬂw_e denoged’(M(i), M(J)) the Hamming distance betWeer-'Fig. 5. The building blocks used for the three stationary BUF
M(#) and M(j5), we have

d(N (1), M (0)) = d(M (2), M (1)) = - - | -
= d(M(2K —1), M(2K —2)) and then used for only this run. That is, different runs of an
Vi v (8) algorithm undergo different cyclic dynamic environmefitse
=d(M(0),M(2K—1))
; pxl ’ second mechanism will be used in the experimental study of

this paper.

wherep € [1/1,1.0] is the distance factor, which determines One thing to note is that for the proposed generator there

the number of base states. For example, Fig. 4(b) shows:st certain relationships between the three kinds of thjoa

cyclic dynamic environment constructed from a 10-bit fimet  environments. For example, when= 0 noisy cyclic dynamic

with p = 0.5 and two template§’(0) = 1001011010 and environments become cyclic and whgn= 1.0 noisy cyclic

T'(1) = 0110100101 (not shown in Fig. 4(b)). dynamic environments are comparable (though not equitjalen
From the above cyclic dynamic environment generator we non-cyclic ones withp = 1.0 —~. And cyclic environments

can construct partially cyclic dynamic environments, als@ith p = 1.0 are equivalent to non-cyclic ones wigh= 1.0.

calledcyclic dynamic environments with noise, by introducing By tuning the values op and~ (or p,), we can easily tune

noise to the base stafesThere are two mechanisms, calledhe cyclicity of dynamic environments and hence the level of

deterministic and probabilistic, of adding noise in terms of difficulty for memory-enhanced EAs.

the number of bits to be changed in the base states. For the

deterministic mechanism, each time the environment is abou

to move to a next base stald (1), a noise templat@n with C. Dynamic Test Environments for This Sudy

a small portion of ones is randomly created and mtegratedl) General Decomposable Unitation-B Functions

(XOR-ed) into M (i) as follows: Decomposable unitation-based functions (DUFs), suchags tr
M (i) = M(i) & Ty, (9) and deceptive functions, have been widely studied in EAs

o . community in the attempt to understand what constructs- diffi

where M (i) is the new base state. The number of one$,in cyity problems for EAs, especially for GAs [15]. A unitation
can be set to be linear with the Hamming distance betweglhction of a binary string returns the number of ones in the
base states, i.ey x p x I (y € (0.0,1.0)). For example, string. In this paper, in order to compare the performance of

Fig. 4(c) illustrates a noisily cyclic dynamic environmenfnyestigated algorithms in dynamic environments three BUF

constructed from a 10-bit function with= 0.5 andy = 0.2 genotedDUF1, DUF2 and DUF3, are selected as stationary

where each base state has one bit changed by noise. Forgfge functions to construct dynamic test environments.

probabilistic noise mechanism, each time the environm@nt i A the three DUFs consist of 25 copies of 4-bit building
about to move to a next base staté(i), M(i) is bitwise pjocks. Each building block of the three DUFs is a unitation-
flipped with a small probability, denoted, in this paper.  paseq function and contributes a maximum value of 4 to the
With the above generator for cyclic dynamic environmentgy) fitness, as shown in Fig. 5. The fitness of a bit string is

noisy or not, there are two run mechanisms with respect to &, sum of contributions from all building blocks, which g/
base states for different runs of an algorithm on a test prabl 5, optimal fitness of 100 for all the three DUFs.

For the first one, a set @K base states is first created and then DUF1 is in fact anOneMaz function, which aims to

used as the common base states for all runs of an algorithﬂhximize the number of ones in a chromosome. OneMax
That IS, all runs of an algorithm undergo the Same YClifnctions are usually taken as easy functions for EAs since
dynamic envwopment. For the second mechan!sm, for €a6\l-order building blocks inside the functions clearly deto

run of an algorithm a set oK base states is first Createqwigh-order building blocks. For DUF2, in the search space

6In the partition each templa@(i) (i = 0, -+, K — 1) has randomly of the 4-bit building block, the_ unique o_ptlmal splu'uon is
but exclusively selecteg x | = I/K bits set to 1 while other bits to 0. For surrounded by only 4 sub-optimal solutions while all the
example,I’(0) = 0101 andT'(1) = 1010 form a partition of the 4-bit search other 11 solutions form a wide plateau with zero fitness.
sp7ace. Herep (and K = 1/p) is determined such thdy K is an integer. The existence of this wide gap makes EA's searching on
This is analogous to many dynamic environments in nature ekample, o
in the natural climate environment, spring (a base statspigg but every DUF2 much harder than on DUF1. And for DUF3, it is a

spring is different. fully deceptive function [15]. Fully deceptive functionsea
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usually considered hard problems for EAs because the lowhereG = 5000 is the total number of generations for a run,

order building blocks inside the functions do not combin& = 50 is the total number of runs, anfizog,; is the best-

to form the higher-order optimal building block: insteagyh of-generation fitness of generationf run j. F zo¢ is the off-

combine into deceptive sub-optimal building block [47]. line performance, i.e., the best-of-generation fithessamex
Generally speaking, the three DUFs form an increasimgross the 50 runs and then over the data gathering period.

difficulty for EAs in the order from DUF1 to DUF2 to DUF3. In order to understand the effect of memory and random
2) Constructing Dynamic DUFs (DDUFs): Dynamic test immigrants scheme on the population diversity during the

environments for this study are constructed from the threenning of an algorithm, we also recorded the diversity @ th

stationary DUFs, denoteDDUF1, DDUF2 and DDUF3 re- population every generation. The diversity of the popolati

spectively. From each DUF, three kinds of dynamic DUFst timet in the k-th run of an EA on a DOP is defined as:

cyclic, cyclic with noise and random, are constructed by the 1 n n

aforementioned dynamic problem generator. Div(k,t) = ——— Z ZHD(i,j), (11)
For each constructed dynamic problem, the fithess landscape in(n —1) i=1 j#i

s periodically changed every generations dyring the run OfWherel is the encoding lengthy is the population size, and

algorithms. In order to test the effect of environmentalraiea HD(,j) is the Hamming distance between théh andj-th

;gerigpc;r::tf\r/];yp?l’rrfg?r?\;:f(()encrgeilg?grglz ssee\jetrci)tylg and eindividuals in the population. The mean population divgrsi
. ’ _E“E" '%f an EA on a DOP at time over 50 runs is calculated as
p is set to 0.1, 0.2, 0.5, and 1.0 for all DDUFs. With thi I v unst )

Delow:
setting of p, for cyclic dynamic problems, with and without elow

50
. . —_ 1
noise, the environment cycles among 2, 4, 10, and 20 bases Div(t) = 0 ZDiv(k,t)) (12)
states respectively. For cyclic dynamic problems with @pis k=1

the probabilistic mechanism of adding noise is used with theTpe experimental results of algorithms on DDUFs with-
probability of flipping the base statgs, = 0.05. 10 andr = 25 are given in Fig. 6 and Fig. 7 respectively. The

Totally, a series of 24 dynamic problems, 2 valuesTof statistical results of comparing algorithms by one-tailedst
combined with 4 values op under 3 types of environments,yith 98 degrees of freedom at a 0.05 level of significance

are constructed from each stationary DUF. are given in Table I. In Table I, thetest result regarding
Alg. 1— Alg. 2'is shown as 4", “ =", “s+" and “s—" when
V. EXPERIMENTAL STUDY ON PBILS WITH MEMORY AND  Ajg. 1 is insignificantly better than, insignificantly worse than,
RANDOM IMMIGRANTS SCHEMES significantly better than, and significantly worse thahy. 2
A. Experimental Design and Results respectively.

Experiments were carried out to compare the performancén order to better understand the behaviour of algorithms in
of algorithms on the dynamic test environments constructdynamic enwronme_nts, _the|r dynamlc performgnce reggrdin
above. All algorithms have the following common parameter§1€ best-of-generation fitness against generations on BDUF

total population size is set ta — 100, which includes the With 7= 25andp = 0.2is plotted in Fig. 8. In Fig. 8, the last
memory sizem — 0.1 #n = 10 if memory is used, and 10 environmental changes (i.e., 250 generations) are shown

r; = 0.2 for algorithms with random immigrants, includingWh'Ch corresponds to one cycle of environmental changes for

ISGA. For all PBILs, the parameters are set to typical valu&¥C/ic DDUFs, and the data were averaged over 50 runs. The
without tuning as follows: the learning rate = 0.25 for dynamic population diversity of algorithms against getierss

all working probability vectors and the mutation probaili ©" PDUF2 and DDUF3 withr = 25 and p = 0.2 is plotted

pm = 0.02 with the mutation shifts,, = 0.05. For ISGA, N Fig. 9 for the last 10 environ- mental changes, where the
parameters are set as follows: the transformation prababidat@ were averaged over 50 runs.

p. = 0.9 (according to our preliminary experiments), the From Fig. 6 to Fig. 9 and Table I, several results and
bit flip mutation probabilityp,, = 0.02, and elitism of size Phenomena can be observed and are analyzed below from

1 without re-evaluating the elite. The gene pool contaif@©® @spects: regarding the comparison between investigate

200 gene segments of fixed length 5, of which the rando(ﬁlgorithms and regarding the_effect_of environmental dyicam
group contains 60 gene segments while the non-random grélipthe performance of algorithms in general.
contains 140.

For each experiment of an algorithm on a DDUF, 58. Experimental Analysis Regarding Algorithm Comparisons

independent runs were executed with the same set of randorﬁ:omparing the performance of algorithms on the DDUFs
seeds. For each run 5000 generations were allowed, which 8&Ge ) results can be observed and are analysed as follows.
equivalent to 500 and 200 environmental changesrfer10 gt 4 prominent result is that both the memory-enhanced
and 25 respectively. For each run the best-of-generatioesit pg)| 5 ‘\pBIL and MPBILI, perform significantly better than
was recorded every genergnon. The overall performance Of§PBIL, on most dynamic test problems. This validates the
algorithm on a DOP is defined as: efficiency of introducing the memory scheme into PBILs.
a N The effect of the memory scheme can be clearly seen in
Fpog = éZ(% ZFBOG”), (10) the dynamic performance of MPBIL and MPBILi shown in
i=1 =1 Fig. 8. For cyclic DDUFs, when the environment changes
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Cyclic DDUF1 Cyclic DDUF2 Cyclic DDUF3
= 100 T T ISGA --&---
90 |- —g‘-’- SPBIL -- & --
. - SPBILI -
808, = MPEIL —
" " . MPBILi -
8 4 4
i 7O _ iL i
6ot 1 50 |- .
TB e = R il
50 L L 40 L L
0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
P P
Cyclic DDUF1 with Noise Cyclic DDUF2 with Noise Cyclic DDUF3 with Noise
100 T T 100 T T 100 T T coA A
90 [~ o0 |- i SPBIL --&F--
90 |- 80 - SPBILi -l
e || wpBLL -0
@ 80 @ 70 9 MPBILi -- -®-- -
w w w
P P
Random DDUF3
100 I I 100 I I coA A
SPBIL --LF--
o0 SPBILi -l
MPBIL —--©--
P P P MPBIL -- -®-- -
2 2 2
i i i
Fig. 6. Experimental results of ISGA, SPBIL, SPBILi, MPBland MPBILi on DDUFs withr = 10.
TABLE |
THEt-TEST RESULTS OF COMPARINGSGA, SPBIL, SPBIL, MPBIL AND MPBILIoN DDUFs.
t-test Result I DDUF1 1] DDUF2 1] DDUF3
Environment Dynamics || T =10 [ T=25 1] T =10 [ T =25 1] =10 [ T =25
Cyclic, p = 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0
SPBILi— SPBIL s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s— s+ s+ s+ s+ s+ s+ — — s+ s+ s+ —
MPBIL — SPBIL s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
SPBIL — ISGA S— §— S§— S— s+ s— s— s— §S— §— S— S— §— S§— §— S— s— s— s5— s+ s— s5— s— s+
MPBIL — ISGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s— s— s+ s+ — s— s+ s+ s+ s+ s+ s+ s+ s+
MPBIL — SPBILi s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MPBILi — MPBIL s+ s+ s+ s+ + s+ s+ s+ s+ s+ s+ s+ — s+ s+ s+ + s+ + - — 4+ s+ +
MPBIL: — ISGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
Cyclic with Noise,p = 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0
SPBILi— SPBIL s+ s+ s+ s+ — s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +
MPBIL — SPBIL s+ s+ s+ s+ s— s+ s+ s+ s+ s+ s+ s+ s— s+ s+ s+ s+ s+ s+ s— s— s+ s+ s—
SPBIL — ISGA S— §— S§— S— s+ s— s— s— §S— §— S— S— §— S§— §— S— s— s— s5— s+ s— s5— s— s+
MPBIL — ISGA S— S— S— S+ s+ s— s+ s+ S§— S— S— S§— s— s— —+ s+ s— 8s— s— s+ s— 8— s+ s+
MPBIL — SPBILi S— S— S— S+ s— s— — s+ S— S— S— S+ sS— s— S— s+ §— S— S— S— §— 8— S— S8—
MPBILi — MPBIL s+ s+ s+ s+ + s+ s+ + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +
MPBIL: — ISGA s— s+ s+ s+ s+ s+ s+ s+ s— + s+ s+ s— s— s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
Random,p = 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0
SPBILi— SPBIL s+ s+ s+ s+ + s+ s+ s+ s+ s+ s+ s— + s+ s+ s+ s+ s+ s+ — — s+ s+ —
MPBIL — SPBIL s— s+ s+ s+ s— s— s+ s+ s— s+ s+ s+ s— s— s+ s+ s— s+ s+ s+ s— + s+ s+
SPBIL — ISGA s+ s— s— s— s+ s+ s— s— S— §— S— S— s+ s— s— s— s— s— s5— s+ s+ s— s— s+
MPBIL — ISGA s+ s— s— s+ s+ s+ s— s+ S§— S— S— S§— S+ s— s— s— s— s— s— s+ s+ s— s— s+
MPBIL — SPBILi S— S— S— S+ S— Ss— S— S+ S— S— S— S+ sS— Ss— S— S+ s— s— s— s+ s— 8§— S— S+
MPBILi — MPBIL s+ s+ s+ s+ — s+ s+ s+ s+ s+ s+ s+ — s+ s+ s+ s+ s+ s+ + + s+ s+ +
MPBIL: — ISGA s+ s+ s+ s+ s+ s+ s+ s+ s— s— s+ s+ s+ s— s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

the performance of MPBIL and MPBILi drops. And therperformance of MPBIL drops from 95.9 to 77.5 at generation

the memory scheme rapidly brings the performance back 4801 and then jumps up back to 80.7 at generation 4802. This
a high fitness level. For example, on DDUF2 with= 25 performance jumping is due to the newly re-activated memory
and p = 0.2, when a change occurs at generation 4800, tipeobability vector.
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Fig. 7. Experimental results of ISGA, SPBIL, SPBILi, MPBland MPBILi on DDUFs withr = 25.

Both MPBIL and MPBILi achieve better performance imprecisely to those memorized environments and hence random
provement over SPBIL on cyclic environments than on cyclimmigrants may track the new environment more efficient than
environments with noise and non-cyclic environments. Fonemory samples.
example, whenr = 10 andp = 0.2, Fgog(MPBIL) —  \When examining the effect of the memory scheme on PBIL
Fpoc(SPBIL) = 90.5 — 55.9 = 34.6 for cyclic DDUFL, \ith random immigrants, it can be seen that MPBILi outper-
Fpog(MPBIL) — Fpog(SPBIL) = 648 — 57.2 = forms SPBILi on most cyclic DDUFs, with or without noise.
7.6 for cyclic DDUF1 with noise, and”"soc(MPBIL) —  However, MPBILi is beaten by SPBILi for many random
Fpoc(SPBIL) = 66.1 - 65.9 = 0.2 for random DDUFL. ppyFs. That is, when the random immigrants scheme is used,
This result means that the effect of the memory schemgs addition of the memory scheme may have a negative effect
depends on the cyclicity of environments. in random dynamic environments.

Second, the addition of the random immigrants schemeThird, comparing the performance of ISGA with PBILs, it
improves the performance of SPBIL and MPBIL on almost ajan be seen that ISGA outperforms SPBIL on most DDUFs
DDUFs, see the-test results regarding SPBILi — SPBIL andand outperforms MPBIL on most random DDUFs and cyclic
MPBILi — MPBIL. Random immigrants improve the populaDDUFs with noise, see thetest results regarding SPBIL —
tion diversity, see Fig. 9 for the population diversity dymies. |SGA and MPBIL — ISGA respectively. The memory and
Meanwhile, by replacing worst individuals in the populatio diversity hybrid scheme (i.e., memory-based cloning)dasi
random immigrants help improve the average fitness level GA gives it an advantage over SPBIL totally and over
the population. MPBIL on random and cyclic with noise environments. In

Comparing memory against random immigrants, it can B&ct: Fig. 9 shows that ISGA maintains the highest level of
seen that the effect of the memory scheme is significanfigPulation diversity.
greater (better) than the random immigrants scheme for allHowever, ISGA is significantly beaten by MPBIL on cyclic
cyclic DDUFs, see thet-test results regarding MPBIL — DDUFs and by MPBILi on almost all DDUFs, see the relevant
SPBILi in Table I. However, for cyclic with noise and ran-t-test results. This happens due to two factors. The first
dom DDUFs, the random immigrants scheme outperforrfector lies in that PBILs have better search capacity than
the memory scheme on most DDUFs. This happens becalS8EA and this factor contributes to the fact that even SPBIL
for these DDUFs, the environment is less likely to returautperforms ISGA on several slightly changing DDUFs. This
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Fig. 8. Dynamic performance of algorithms for the last 10iemmental changes on DDUFs with= 25 andp = 0.2.

point can be seen from Fig. 8. On almost all DDUFs, PBlLstarts to take effect. For example, just after the first cycle
achieve a higher fitness improvement than ISGA does durinf 10 environmental changes, at generation 250 when the
each environmental period. The second factor is because émgironment changes the memorized probability vectorgsrin
memory scheme in MPBIL and MPBILi has a stronger effedfiPBIL and MPBILi directly to a high fitness level. On the
than that in ISGA. This can be clearly seen in the dynam@mntrast, the effect of the memory scheme in ISGA is much
performance of algorithms in Fig. 8. On cyclic DDUFs|ess visible from Fig. 10.

MPBIL and MPBILi are able to maintain a higher fithess Stronger search capacity of PBIL, stronger memory scheme,
level than ISGA does. In order to better understand thistpoimnd random immigrants together lead to MPBILi's better
the dynamic performance of algorithms on cyclic DDUF2 anplerformance over ISGA on almost all DDUFs.

DDUF3 with 7 = 25 and p = 0.2 over the first two cycles

of environmental changes, i.e., 500 generations, is alsash C. Experimental Analysis Regarding Dynamic Environments

in Fig. 10, where the data were averaged over 50 runs. From o ] ]
Fig. 10, it can be seen that after several early environrhentaVhen examining the effect of dynamic environments on the

changes the memory scheme in MPBIL and MPBIL] C|ear|9erformance of algorithms investigated, the followingutes
can be observed.
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First, comparing Fig. 6 with Fig. 7 shows that for eacklecreases. This is natural since biggemeans more severe
DDUF with fixed p, the performance of algorithms rises whe®nvironmental changes. However, on many DDUFs when
the value ofr increases from 10 to 25. This is easy td.0 the algorithms perform better than when= 0.5. This

understand. When the environment changes slower,ri.&, is because whep = 1.0 the environment switches between
larger, the algorithms have more time to reach higher fitnetsgo landscapes and the algorithms may wait during one
level before the environment changes. environment for the return of the other environment to which
) ] _ they converged well. For example Fig. 11 shows the dynamic

Second, with each fixed, when the value op increases performance of algorithms on cyclic DDUF2, with and without

from 0.1 to 0.2 to 0.5, the performance of algorithms gemeral
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Fig. 11. Dynamic performance of algorithms for the first 20immmental changes on (a) cyclic and (b) cyclic with noideUF2 with - = 25 andp = 1.0.

noise, witht = 25 andp = 1.0. From Fig. 11(a), it can be problem, the situation is quite different. For DDUF3 prahke
seen that SPBIL clearly shows the waiting phenomenon durindpen the environment changes the deceptive building blocks
even environment periods. inside DUF3 will draw the population in the new environment

An interesting result is that on cyclic DDUFs, the perfortoward them faster than the optimal building blocks in DUF2
mance of MPBIL and MPBILi increases with the value®f can do. Though deceptive attractors are not globally optima
see the top row in Fig. 6 and Fig. 7. This happens becaubey are sub-optimal with relatively high fithess. This lgad
when the value ofp increases, the number of base statée the result that algorithms perform better on most DDUF3
decreases and hence the memory probability vectors in MPBitoblems than on corresponding DDUF2 problems with the
and MPBILi represent the environments more precisely wheame environmental dynamics.
they are stored and updated. This leads to the better effect oThis result can be clearly seen from the dynamic behaviour
the memory scheme and hence the better overall performan€algorithms in Fig. 8. The performance of algorithms stays
of MPBIL and MPBILi whenp increases. When the cyclicity at a higher fithess level on DDUF1 and DDUF3 problems than
of environments decreases, the effect of memory decreaseson DDUF2 problems with the same environmental dynamics.
to the less precise matching between memorized enviroramefthd the existence of deception in DDUF3 problems makes the
and new environments. And biggerbrings in more severe fitness fluctuation of algorithms less significantly overdion
changes and hence leads to worse performance for MPBIDUF3 problems than on corresponding DDUF2 problems.
and MPBILi.

Third, viewing from top to down in Fig. 6 and Fig. 7, it V|. EXPERIMENTAL STUDY ON PBILS WITH MEMORY
can be seen that given the same valuesgand 7, when AND MULTI-POPULATION SCHEMES

the cyclicity of dynamic environments decreases from cycli Other than memory schemes, multi-population schemes are
to cyclic with noise, the performance of algorithms degeade, ,ior ying of approaches th,at have been integrated into
That is, cyclic environments with noise are relatively reard As to deal with dynamic environments. As discussed in
than cyclic environments. Tht_—:‘.existence_of noise reduces @], [7], the multi-population scheme has two advantages.
effect of memory or the waiting _behawour of SF_)B“" S€®n the one hand, using multiple but independently evolving
Fig. 11(b). And it seems that algorithms perform a littletbet opulations can increase the diversity in the overall pafa.

on random environments than on cyclic environments wi n the other hand, through assigning different resporitaés
noise. This means noise may qver-wggh randomness Wf@different populations the available number of indivitiuia
respect to t.he _d|ff|culty of dynal_”nlc environments. .. the overall population can be used more efficiently.

Finally, viewing from_ left to right in Fig. 6 and Fig. 7, it In this paper in order to study the effect of multi-populatio
can be seen the algorlthms perform worse on D_DUF2 progr-] the memory scheme for PBILs in dynamic environments,
Iem§ than on corresppndmg_ DDUFL probl_ems with the SABBILs with two probability vectors are further investigate
environmental dynamics. This shows the difficulty of dynaamlAnd a memory-enhanced GA with two populations is also

problems for EAs not only depends on the environmental d?’ﬁvestigated as a peer EA for performance comparisons.
namics but also depends on the difficulty of relevant statipn

problems. And the difficulty of stationary problems seems to . ]

be inherited to dynamic environments. This is natural sinée The Memory/Search Genetic Algorithm

the problem during each environment period can be taken as #n [6], [8], Branke proposed aemory/search GA that aims
stationary problem. However, when deception exists ingide to combine the advantages of multi-population and memory
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t:= 0 andtys := rand(5,10) t:= 0 andtys := rand(5, 10)

initialize memoryM (0) and populations?; (0) and P (0) initialize P, (0) := 0.5 and P,(0) := rand(0.0,1.0)

repeat if memory used then /I for MPBIL2 and MPBIL2r
evaluateP (t), P»(t) and M (t) initialize memoryM (0) := ¢ andty; := rand(5, 10)

adjust next population sizes fd? (¢) and Pz (t) resp. ~ .
_ ) S51(0) := sampléP;(0)) and S2(0) := sampléP»(0))
if environmental change detected then repeat
Pli(t) :=retrieveBestMembe(# (), M (t)) evaluateS; (t) and denote its best sample B ()
elsiQ(l?’ :;r'e_"r]];t'il)'zgﬁg)i) = Po(t) evaluateS, () and denote its best sample b (t)
1(8) = P () = Pal adjust next sample sizes fdt (¢) and P, (t)

if ¢ =tn then 1 t)ime to update memory if o ry used then // for PBIL2
ty =t + rand(5, 10 - ~ S .
denote best individual it} (t) and P,(t) by Bp(t) learn P () toward B, () and P(t) toward By (t)
if still any random points in memory then else _ /I 'for MPBIL2 and MPBIL2r
replace a random point in rgu)emory Withp(t)( | de_r;ote the bettz.r oBl(t)band ?2(’5&;)&1)33(75) and
elsefind the memory pointCy, (t) closest toBp(t IS corresponding prob. vector yg
if f(Bp(t)) > f(Ca(t)) then Cp(t) := Bp(t) evaluateM (¢) and denote the best memory samplg by

/1 normal genetic operations for P(¢) and P(t) resp. By (t) and its associated prob. vector By (¢)

replace elite fromP, (¢t — 1) and P,(¢t — 1) into Pj(t) if t =ty then /I time to update memory
(P (t), Pj(t)) := selectForReproducti@®®;(t), Py (t)) tar :=t+ rand(5,10)
crossovefP](t), Py(t),p.) Il pe is the crossover prob. if memory not full then save Bp(t), Pg(t) in M(t)
mutaté P; (t), Py(t),pm) /I pm is the mutation prob. elsefind memory sample&y; (t) closest toBp(t)
until termination condition holds Ileg., t > tmaa and its associated prob. vecté@(t)
it f(Bp(t)) > f(Cu(t)) then
Fig. 12. Pseudo-code for the memory-enhanced GA with twailatipns C(t) := Bp(t) and Po(t)) := Pg(t))

and restart scheme (MEGAZr). . .
if environmental change detected then

if f(Bum(t)) > f(BBjt)) then Py (t) := Py (¢)
schemes together. In this study a similar memory-enhanced if restart used then P (t) := 0.5 // for MPBIL2r
GA with two populations, denoteMEGAZr, is also studied elselearn P, (¢) toward B, (t) & P (t) toward By(t)
as a peer EA. MEGAZr differs from Branke’s memory/search . R
GA in two aspects: first, the memory in MEGAZr is updated Mutatey (t) and Ps(t) B
in a stochastic time pattern; second, the population sizes|i Si(t) := sampléP;(t)) andSy(t) := sampléPx(t))
MEGAZ2r are adaptively adjusted, which was applied in [41].until termination condition holds Il €g., t > tmax
Fig. 12 shows the pseudo-code of MEGAZ2r.
In MEGAZr, the two DOpUIatlc.m§1 anC.iPQ eV.ONe mdepel_'l- Fig. 13.  Pseudo-code for PBILs with two probability vectovsithout
dently and each has the following configuration: generalionmemory (SPBIL2), with memory (MPBIL2), and with memory arestart
uniform crossover, bit flip mutation, fithess proportionatéPBIL2r).
selection with the elitist scheme. The population sizesand
no for P, and P, respectively are equally initialized t45xn, , , )
where n is the total number of individuals, including theMemory population. The second populatio®?, is re-started
memory. In order to give the better performed popuIationenope"r_"t'a“ze‘j) in order to search Newareas in the seapaltes
chance to search, the population sizgsandny are slightly and is hence called theearch population.
adjusted every generation within the rangd®8 * n, 0.6 x n] _ _ )
according to their performance. The winner population gels PBILs with Multi-Population and Memory Schemes
A = 0.05xn for its size from the loser; if the two populations For PBILs, the multi-population scheme can be realized
tie, their sizes do not change. by maintaining and evolving multiple probability vectors i
As in ISGA, the memory in MEGA2r has a size = 0.1xn, parallel. Fig. 13 shows the pseudo-code of three variants of
is randomly initialized, and updated in a stochastic timigggga  PBILs with two probability vectors that are investigated in
with the most similar updating strategy. When the memory ikis paper. The first variant, denot&8#BIL2, has no memory
due to update, the best individual over and P, will replace while the other two are memory-enhanced, dendBIL2
the closest memory solution if it is fitter than the memorgnd MPBIL2r respectively.
solution. The memory is re-evaluated every generation.Whe In SPBIL2, MPBIL2 and MPBIL2r, the two probability
an environmental change is detected, the memory is mergettors work in parallel. Each one is sampled independently
with the old populatior; and the best individuals are selecte@nd is learnt toward the best sample generated by itself. The
as a new interim populatio®; with the memory unchanged.probability vectorP; is initialized to the central probability
That is, only P; retrieves the memory and hence called theector while P, is randomly initialized. The sample sizes
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Fig. 14. Experimental results of MEGAr, SPBIL2, MPBIL2, amPBIL2r on DDUFs withT = 25.

for P, and P, are equally initialized td).5 x n for PBIL2 the memory while the second probability vectBr aims to

and 0.45 x n for MPBIL2 and MPBIL2r, wheren is the search through the solution space for new promising areas in
total evaluations per iteration. For MPBIL2 and MPBIL2rnew environments.

the memory size is fixed t@.1 x n. As in MEGAZ2r, the
sample sizes fo?, and P, are slightly adjusted within the
range of[0.3 xn, 0.7 x n] for SPBIL2 and[0.3 xn, 0.6 = n] for

MPBIL2 and MPBIL2r according to their performance. The Experiments are carried out to investigate the performance
winner probability vector geté = 0.05 « n for its sample Of MEGAZ2r, SPBIL2, MPBIL2 and MPBIL2r on the same

size from the loser for the next iteration. DDUF problems as used in Section V. The experimental
, settings and the parameter settings for algorithms arethéso
For MPBIL2 and MPBIL2r, both populations can store dat

i ) e . game as used in Section V. MEGAZ2r uses uniform crossover
into the memory in a similar time and space pattern as Whth p. = 0.6, the bit flip mutation withp,, — 0.02
C - Uy m - . ]

MPBIL1. When it is time to update the memory the working,, ejitism of size 1 without re-evaluating the elite. The
probability vector that creates the best overall sampde, the experimental results of algorithms on the DDUFs with- 25

winner qf Py and P, W'," ,b(? stlored together with the bestare presented in Fig. 14. The statistical results of compari
sample in the memory if it is fitter than the closest memory

. i : orithms by one-tailed-test with 98 degrees of freedom
sample. The memory is re-evaluated every iteration. When gﬂ

\ | eh < di q " a 0.05 level of significance are given in Table Il. The
environmental change is detected, in order to avoid fat 4y namic performance of algorithms on the last 10 environmen
and P, converge into one, only’; will be replaced by the best

o . . al changes with respect to best-of-generation fithessnagai
memory probability vector if the associated memory sample, o ations on DDUF2 with — 25 andp — 0.2 is plotted in
is fitter than the best sample generatediyy

Fig. 15 and the corresponding dynamic population divesity
MPBIL2 and MPBIL2r differ in that MPBIL2r uses the algorithms is also plotted in Fig. 16. From Fig. 14 to Fig. 16
restart scheme. Whenever an environmental change is éétecand Table I, several results can be observed and are adalyse

P, in MPBIL2r is reset to the central probability vector whileas follows.

nothing happens for?, in MPBIL2. It can be seen that First, SPBIL2 significantly outperforms SPBIL1 on almost
MPBIL2r uses the idea similar to the above memory/seareli dynamic problems, see theest results regarding SPBIL2
GA. The first probability vectol, is devoted to make use of— SPBIL1. This validates the efficiency of the multi-popidat

C. Experimental Results and Analysis
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TABLE 1l
THE t-TEST RESULTS OF COMPARINGMEGAZ2R, SPBIL2, MPBIL2AND MPBIL2R ONDDUFs.
t-test Result 1] DDUF1 I DDUF2 I DDUF3
Environment Dynamics ] T =10 [ T =25 I T =10 [ T =25 I T =10 [ T =25
Cyclic, p = 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0
MEGA2r — ISGA s§— S§— S— S— §— S— §— S— §— S— §— S— s§— S— S— S— §— 8— §— S— s§— S§— S— S—
SPBIL2 — SPBIL s+ s+ s+ s+ s— + s+ s+ s+ s+ s+ s+ — s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MPBIL2 — MPBIL s$— §— + s— §— 8§— — 8— §— 8§— — — §— §— — — s— 8§— S— S+ s— + s— s+
MPBIL2 — MEGA2r s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s— s— s+ s+ + s— s+ s+ s+ s+ s+ s+ s+ s+
MPBIL2r — MEGA2r s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MPBIL2r — MPBIL s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ §— 8§— S— S§— s+ s+ s+ s—
MPBIL2r — MPBIL2 s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ — — s+ s— s+ s+ s+ s—
Cyclic with Noise,p = 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0
MEGA2r — ISGA s+ s+ s— s— s— — 8§— S— s+ s+ s+ s— s+ s+ s— s— §— §— S§— S— S— §— S— S—
SPBIL2 — SPBIL s+ s+ s+ s+ s— + s+ s+ s+ s+ s+ s+ + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MPBIL2 — MPBIL §— §— S§— S§— §— 8— S— S8— — §— S§— §— — 85— S§— S§— s+ s+ s+ s+ s+ s+ s— s+
MPBIL2 — MEGA2r S— §— S— S+ s+ s— s+ s+ S— S— S— S— S— S— S— S+ s— 8§— S— S+ s+ s+ s+ s+
MPBIL2r — MEGA2r s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MPBIL2r — MPBIL s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
MPBIL2r — MPBIL2 s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ — s+ s+ s+ s—
Random,p = 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0 0.1 0.2 05 1.0
MEGA2r — ISGA s— s+ s+ s— s— s5— s+ s— s+ s+ s+ — — s+ s+ s— §— §— S§— S— S— §— S— S—
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scheme on the performance of PBILs in dynamic enviroaynamic environments. This effect can be seen by comparing
ments. In SPBIL2, introducing an extra probability vectothe dynamic population diversity of SPBIL2 and SPBIL1 in
increases the diversity and hence improves its adaptabilit Fig. 9 and Fig. 16 respectively.



18 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NOX, MONTH 200X

Second, SPBIL?2 is still outperformed by all the memaory- VII. CONCLUSIONS AND FUTURE WORK
enhanced PBILs including MPBIL and MPBIL2 on most

dynamic problems, especially under cyclic environmenth wi. In this paper, an associat?ve memory sch_eme is_ extensively
or without noise (thet-test results with respect to MPBILmvesUgated for PBIL algorithms in dynamic environments.

— SPBIL2 and MPBIL2 — SPBIL2 are not shown). This\Nithin this memory scheme, the working probability vect®r i

indicates that the memory scheme has a stronger effecthlbantf"ken as the environmental information and is stored tageth

multi-population scheme on PBILs performance in dynami\e’Ith the best sample it cre_ates in the memory in a dynamic
environments. time pattern. When the environment changes, the stored prob

Third, an interesting result is that MPBIL2 is beaten b bility vector associated with the memory sample with the

MPBIL on most DDUFs, see thetest results with respect est re-evaluated fitness in the new environment is reatetiv
to MPBIL2 — MPBIL. This means when the memory schem@nd directly brings PBILs into an associated old environmen
is used, introducing' an extra probability vectss may be This re-activated old environment may be very close to the

negative on PBILs performance. This happens because qﬁwly changed environment. Hence, PBILs may reach a

MPBIL the re-activated memory probability vector uses th |gh fitness level qu_ickly v_vhen the environment changes. In
sample size resource to its full (i..9 +n), which outweighs this paper, we also investigated the interactions betwken t

the diversity introduced byP, in MPBIL2, comparing the memory scheme and several other approaches, e.g., random

dynamic population diversity of MPBIL2 and MPBIL1 in?mmigrants, multi-population, and restart schemes, folLBB

Fig. 9 and Fig. 16 respectively. In other words, the re-attiu in dynamic environments.
memory probability vector in MPBIL is better thal, in In order to test the performance of EAs, as another key

MPBIL2 for most cases. However, when the restart scherfi@ntribution, this paper also proposes a DOP generatocémat
is used forP, in MPBIL2r, the situation is totally different. CONstruct dynamic environments with tunable difficulty.twi
MPBIL2r significantly outperforms both MPBIL and MPBiL2 thiS generator, it is easy to construct cyclic, cyclic witiise,

on most DDUFs. The benefit of the restart scheme can §&d random dynamic environments from any binary-encoded
clearly seen from the dynamic performance of MPBIL2stationary problem. Hence, we can more thoroughly test and

shown in Fig. 15, especially on cyclic with noise DDUFs angnalyseé memory schemes in particular and other approaches
random DDUFs. in general for EAs in dynamic environments.

Fourth, examining the performance of MEGAZr, it can be USINg the proposed DOP generator, a series of dynamic
seen that ISGA significantly outperforms MEGA2r on alfest problems are systematically constructed and expatsne
cyclic DDUFs. This happens because the memory SChemgre.carned out to compare the performance of mvgsﬂgated
inside ISGA is stronger. However, on random and cyclic witlgerithms. From the experimental results several cofmhss
noise DDUF1 and DDUF2 problems, MEGA2r beats 1ISGA@n be drawn on the dynamic test environments.
due to the higher diversity brought in by the restart scheme,First. the investigated memory scheme is efficient for im-
comparing the dynamic population diversity of ISGA an@roving PBIL's performance for DOPs, especially in cyclic
MEGAZ2r in Fig. 9 and Fig. 16 respectively. On all DDUF3dynamic environments.
problems, higher diversity (not shown) may be negative due t Second, the interaction between memory and random im-
its property of strong deception, which leads to ISGA's d&ett migrants depends on the dynamic environments. The addition
performance over MEGAZ2r. of random immigrants improves the performance of memory-

Comparing MEGA2r with memory-enhanced PBILs, it cagnhanced PBILs on most dynamic problems. However, when
be seen that MEGA2r outperforms MPBIL2 on approximateii€ random immigrants scheme is used, the effect of addeng th
half of the DDUFs under cyclic with noise and randonfemory scheme may be positive on PBIL's performance on
environments but is outperformed by MPBIL2 on almogtyclic DOPs and negative in random dynamic environments.
all cyclic DDUFs. This happens because under cyclic with Third, there exist different interactions between memany a
noise and random dynamic environments the restart scheméulti-population schemes for PBILs. When memory is used,
MEGA?2r contributes to its advantage over MPBIL2. But undegimply introducing an extra probability vector may be negat
cyclic environments the stronger memory scheme in MPBIL2 PBIL's performance. However, when restart is combined
makes it win over MEGA2r significantly. When the restarwith the multi-population scheme, PBIL's performance can b
scheme is combined with the memory scheme in MPBIL2significantly improved in different kinds of dynamic enwviro
MEGAZ2r is significantly outperformed by MPBIL2r on almostments.
all DDUFs. Fourth, the studied memory scheme for PBILs has stronger

The great effect of combining memory and restart schemefect than the memory scheme for GAs. This is because when
in MPBIL2r can be clearly seen in the dynamic performance afchange occurs the re-activated probability vector in nigmo
MPBIL2r in Fig. 15. Under cyclic dynamic environments, thenhanced PBILs can trigger an old environment more directly
memory scheme enables MPBIL2r to maintain a quite highan the solutions in the memory in memory-enhanced GAs
fitness level across changing environments; while in cycli@n do.
with noise and random dynamic environments, each time wherFifth, the difficulty of DOPs depends on the environmental
change occurs, the restart scheme brings in a high populatitynamics, including cyclicity, severity and speed of ctes)g
diversity and enables MPBIL2r to climb back to a relativeland the difficulty of the base stationary problems. As to the
high fitness level during each environmental period. difficulty of environmental dynamics, the existence of mois
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on the cyclicity may over-weigh randomness. The existeng@] D. Dasgupta and D. McGregor, “Nonstationary functioptimization
of deception in the base Stationary problem may be beneficial Using the structured genetic algorithm,” Rroc. of the 2nd Int. Conf.
to EAs performance in dynamic environments.

PBIL with the hybrid scheme of memory and multi-population
with restart can be a good EA optimizer for dynamic problemﬁ3
There are several future works relevant to this paper. A
straightforward work is to extend the idea of associative
memory scheme to other EAs. For example, extending t 8l
idea to the GA has shown some promising result [45]. We

believe the proposed memory scheme should also improve the

performance of those EAs based on probabilistic models [f?]
dynamic environments, such as the estimation of distiiuti [
algorithms [21], [29], of which PBILs are a sub-class of EAs.

Devising other memory management and retrieval mechanis
and hybrid memory schemes would be another interesti

ﬁg’ﬁa

future work for PBILs and other EAs in dynamic environ-

ments. The third future work would be formally analyzing thé'8l
behaviour of PBILs and other EAs, with or without memory,

under dynamic environments systematically constructeith®y [19]
generator proposed in this paper. Finally, a comprehensive
comparison of memory enhanced EAs, including associative
memory, direct memory, implicit memory [30], [38], and20]

hybrid memory schemes [43], [46], is now under investigatio[21

22
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