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Abstract

Deep sequencing of the gut microbiomes of 1,135 participants from a Dutch population-based 

cohort shows relations between the microbiome and 126 exogenous and intrinsic host factors, 

including 31 intrinsic factors, 12 diseases, 19 drug groups, 4 smoking categories, and 60 dietary 

factors. These factors collectively explain 18.7% of the variation seen in the inter-individual 

distance of microbial composition. We could associate 110 factors to 125 species and observed 

that fecal Chromogranin A (CgA), a protein secreted by enteroendocrine cells, was exclusively 

associated with 61 microbial species whose abundance collectively accounted for 53% of 

microbial composition. Low CgA levels were seen in individuals with a more diverse microbiome. 

These results are an important step towards better understanding of environment-diet-microbe-host 

interactions.

One Sentence Summary

126 factors collectively explain 18.7% of the variation in human gut microbiome composition, 

with strongest effect observed for the fecal level of Chromogranin A.

The human gut microbiome plays a major role in the production of vitamins, enzymes, and 

other compounds that digest and metabolize food and regulate our immune system (1). It can 

be considered as an extra organ, with remarkable dynamics and a major impact on our 

physiology. The composition of the gut microbiome can be considered as a complex trait, 

with the quantitative variation in the microbiome affected by a large number of host and 

environmental factors, each of which may have only a small additive effect, making it 

difficult to identify the association for each separate item. In this study, we present a 

systematic metagenomic association analysis on 207 intrinsic and exogenous factors from 

the LifeLines-DEEP cohort, a Dutch population-based study (2, 3). Our study reveals 

covariates in the microbiome and, more importantly, provides a list of factors that correlate 

with shifts in the microbiome composition and functionality.

This study includes stool samples from 1,179 LifeLines-DEEP participants from the general 

population of the northern part of the Netherlands (2). The cohort comprised predominantly 
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Dutch participants; 93.7% had both parents born in the Netherlands. The gut microbiome 

was analyzed using paired-end metagenomic shotgun sequencing (MGS) on a HiSeq2000, 

generating an average of 3.0 Gb of data (about 32.3 million reads) per sample (4). After 

excluding 44 samples with low read counts, 1,135 participants (474 males and 661 females) 

remained for further analysis. We tested 207 factors with respect to the microbiomes of these 

participants: 41 intrinsic factors of various physiological and biomedical measures, 39 self-

reported diseases, 44 categories of drugs, 5 categories of smoking status and 78 dietary 

factors (fig. S1 and table S1). These factors cover dietary habits, life-style, medication use, 

and health parameters. Most of the factors showed a low or modest inter-correlation (table 

S2A–C, 2A–D); many are highly variable, including, as expected in the Dutch population, 

the high consumption of milk products and low use of antibiotics. Antibiotic use in the 

Netherlands is the lowest in the Europe, at a level half that of the UK and one-third that of 

Belgium. To cover health-domain factors relevant to the host immune system and gut health, 

we collected cell counts for eight different blood cell types, measured blood cytokine levels, 

assessed stool frequency and stool type by Bristol Stool Score, and measured fecal levels of 

several secreted proteins including calprotectin as a marker for the immune system 

activation, human-β-defensin-2 (HBD-2) as a marker for defense against invading microbes 

and chromogranin A (CgA) as a marker for neuroendocrine system activation.

After quality control and removal of sequence reads mapping to the human genome, the 

microbiome sequence reads were mapped to approximately 1 million microbial-taxonomy-

specific marker genes using MetaPhlAn 2.0 (5) to predict the abundance of microorganisms 

(fig. S3A). For each participant, we predicted the abundance levels for 1,649 microbial 

taxonomic clades ranging from four different domains to 632 species (Fig 1A). The majority 

of the reads (97.6%) came from Bacteria, 2.2% from Archaea, 0.2% from Viruses and 

<0.01% from Eukaryotes. Comparison to previous taxonomic profiles of the same subjects 

by 16S rRNA gene sequencing (Fig. 1B) showed MGS predicted more microbial species but 

fewer families and genera. At the phylum level, the abundance of dominant bacterial phyla 

Firmicutes (63.7%) and Bacteroidetes (8.1%) were similar to estimates based on 16S rRNA 

gene sequencing, but the abundance of Actinobacteria was higher in MGS (22.3%) than 16S 

(12.3%) (fig. S4). The microbiome quality control project has recently suggested that 

microbial composition estimates may not be comparable between studies if sample 

preparation and data analysis are not done in the same way (6). For instance, compared to 

the composition reported in other studies of a similar size that used different methods (7, 8), 

our study detected a higher abundance of Actinobacteria but a lower abundance of 

Bacteroidetes. Importantly, all samples in our study were isolated and processed using the 

same pipeline, ensuring low technical variation and high analysis power to access the 

association of multiple factors with the microbiome.

The high inter-individual variation reflects the community composition (fig. S5) and is 

clearly driven by the abundance of the dominant phyla (fig. 2A). Our further analysis of 

microbial composition was confined to the 632 unique species (table S3). For the functional 

profiling, the abundance of 568,874 UniRef gene families were grouped into clusters of 

orthologous groups (COG) based on the EggNOG database and MetaCyc pathways (fig. 

S3A). Although the distribution of diversity, genes, and COG richness showed high inter-

variability (Fig. 2B–D), functional profiles based on 23 non-redundant, gene ontology 
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molecular function categories remained stable (fig. S6) within our cohort, similar to previous 

reports (9).

We correlated 207 factors to the inter-individual variation in microbial composition, 

diversity, richness of genes, and COGs (fig. S3B). At false discovery rate (FDR) <0.1 level, 

126 factors were associated with inter-individual distance of microbial composition (Bray-

Curtis distance) (Fig 3, table S4), of which 90% could be replicated in 16S rRNA data from 

the same subjects (table S5, fig. S7), together explaining 18.7% of the variation in 

composition distance (fig. S8A). A total of 35 factors were associated with Shannon’s 

diversity index of microbial composition (together explaining 13.7% variation, table S6, fig. 

S8A), of which 80% were replicated in 16S rRNA data from the same subjects (table S7); 31 

factors were associated with gene richness (together explaining 16.7% variation, table S8) 

and 34 factors with COG richness (explaining 18.8% variation) (table S9, fig. S8A, for 

replication rates see table S10). We saw a large overlap between different diversity and 

richness analyses, and most of them were also associated with composition distance (fig. 

S8B).

We performed multivariate association analyses between each factor with 170 abundant 

species (>0.01% of total microbial composition and present in at least 10 individuals) and 

215 MetaCyc pathways (fig. S3C). When corrected for age, gender, and sequence depth, we 

found 485 associations at FDR<0.1 between 110 factors and 125 species (table S11) and 524 

associations between 71 factors and 176 MetaCyc pathways (table S12). By correcting the 

correlation structures among all 207 factors, the number of associations was reduced to 128 

independent associations with species (table S13) and 215 associations with pathways (table 

S14).

Our data confirmed some previous findings and also yielded novel associations. In our study, 

age and gender were correlated not only with microbial composition distance and diversity 

but also with functional richness. Women showed higher COG richness than men (adjusted 

P=0.03), and COG richness increased with age (adjusted P=0.002) (fig. S9). Multiple 

intrinsic parameters, such as blood cell counts and lipid levels, were associated to 

composition and function levels as well. For example, a higher level of hemoglobin was 

consistently associated with lower diversity and functional richness (Fig 3, table S6–S9). 

The strongest associations we found were for the fecal levels of several secreted proteins, 

including human-β-defensin-2 (HBD-2), calprotectin (10, 11), and chromogranin A (CgA), 

with microbial composition, diversity, and functional richness (Fig. 3, Fig. 4A), as well as 

with specific species (table S11) and pathways (table S12). Among these associations, CgA 

showed the strongest association with composition distance (adonis R2=0.03, adjusted 

P=0.0006), microbial diversity (Spearman r=−0.22, adjusted P=1.49×10−12), gene richness 

(Spearman r=−0.23, adjusted P=9.4×10−13), and COG richness (Spearman r=−0.285, 

adjusted P=2.53×10−20) (tables S4–S9). The association of CgA with composition distance 

was then validated in an independent cohort of 19 individuals for whom 16S rRNA gene 

sequencing data was available (P=0.0065) (fig. S10). A lower CgA level was associated with 

higher diversity, with functional richness, with high levels of high-density lipoprotein 

(HDL), and with intake of fruits and vegetables. In contrast, elevated fecal CgA was 

associated with high fecal levels of calprotectin, high blood levels of triglycerides, high stool 
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frequency, soft stool type, and self-reported irritable bowel syndrome (IBS) (Fig. 4B). After 

correcting for the confounding effect of all other factors, our analysis revealed 61 species 

exclusively associated with CgA (Fig. 4C–D, table S13) whose abundance levels collectively 

accounted for 53% of the total abundance of the microbiome on average, and with 40 

MetaCyc pathways (table S14) that accounted for 34.6% of the pathway profiles. The 

strongest association to CgA was observed for the Archaea species Methanobrevibacter 

smithii (fig. S11A), which plays an important role in the digestion of polysaccharides by 

consuming the end products of bacterial fermentation and methanogenesis (12)(fig. S11B). 

A negative association with CgA abundance was observed for 24 out of 36 species from 

phylum Bacteroidetes (Fig. 4C–D).

CgA is a member of the granine peptides, which are secreted in nervous, endocrine and 

immune cells under stress (13), and during active periods of gut-related diseases such as IBS 

and inflammatory bowel disease, although some findings are contradictory (14–16). Many 

different functions have been proposed for CgA and other granine peptides, including roles 

in neurological pathways, pain regulation, and antimicrobial activity against bacteria, fungi, 

and yeasts (17, 18). However, their mechanism of action and physiological importance need 

further detailed investigation. To test whether genetic variants that influence CHGA gene 

expression (encoding CgA) can affect fecal CgA level and the gut microbiome, we tested the 

effect of six SNPs known to regulate gene expression of CHGA on fecal CgA and 

abundances of species (table S15). No significant association was observed, suggesting that 

genetic variation in CHGA expression does not explain the variation observed in the fecal 

CgA levels and microbiome composition (table S16–S17). Our observation that CgA 

strongly correlates with microbiome composition, especially with a large number of species 

from Bacteroidetes phylum, and with diversity will hopefully encourage studies to unravel 

the role of CgA in gut health.

We also observed associations (FDR<0.1) between 63 dietary factors and inter-individual 

distances in microbiota composition, including energy (kcal), intake of carbohydrates, 

proteins and fats, and of specific food items such as bread and soft drinks (Fig. 3, table S4). 

Drinking buttermilk (sour milk with a low fat content) was associated with high diversity, 

while drinking high-fat (whole) milk (3.5% fat content) was associated with lower diversity 

(table S6). Two of the species most strongly associated with drinking buttermilk are 

Leuconostoc mesenteroides (q=9.1×10−46) and Lactococcus lactis (q=2.5×10−8), both used 

as a starter culture for industrial fermentation (table S11). The abundance of dairy-

fermentation-related bacteria increased with increasing dairy consumption, indicating 

potential for the use of probiotic drinks to augment and alter the gut microbiome 

composition. Consumption of alcohol-containing products, coffee, tea, and sugar-sweetened 

drinks were also correlated with microbial composition. Consumption of sugar-sweetened 

soda had a negative effect on microbial diversity (adjusted P=5×10−4), whereas consumption 

of coffee, tea and red wine, which all have a high polyphenol content, was associated with 

increased diversity (19–21). Red wine consumption correlated with F. prausnitzii abundance, 

which has anti-inflammatory properties, correlates negatively with inflammatory bowel 

disease (22), and shows higher abundance in high-richness microbiota (23). Apart from the 

negative associations between sugar-sweetened soda and bacterial diversity, other features of 

a Western-style diet, such as higher intake of total energy, snacking, and high-fat (whole) 
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milk, were also associated with lower microbiota diversity (Fig. 3). A higher amount of 

carbohydrates in the diet was associated with lower microbiome diversity. Total 

carbohydrate intake was positively associated with Bifidobacteria, but negatively with 

Lactobacillus, Streptococcus, and Roseburia species. A low carbohydrate diet consistently 

showed opposite directions for these species. We did not observe an association of 

carbohydrate intake to prevotella species, as has been described previously (24).

As expected, the use of antibiotics was significantly associated with microbiome 

composition, in particular with strong and significant decreases in two species from the 

genus Bifidobacterium (Actinobacteria phylum) (table S11), in line with previous studies 

(25). Several other drug categories, such as proton pump inhibitors (PPI) (95 users), 

metformin (15 users), statins (56 users), and laxatives (21 users) also had a strong effect on 

the gut microbiome. PPI users were found to have profound changes in 33 bacterial 

pathways (table S12). The most significant positive correlation of PPIs was observed with 

the pathway of 2,3-butanediol biosynthesis (q=5.3×10−14). We also observed overlap 

between species and pathways associated to PPI and with calprotectin levels, particularly for 

bacteria typical of the oral microbiome (table S2A–C, table S11, fig. S12). This is in line 

with the correlations of PPI with calprotectin levels reported in the literature (26). Even after 

excluding the 95 PPI users from our analysis, the positive correlation of calprotectin to most 

oral bacteria remained significant, indicating this association is not due to the confounding 

effect of PPI (fig. S12). Furthermore, the levels of calprotectin were positively correlated 

with age and metabolic phenotypes (body mass index (BMI), diabetes, use of statins and 

metformin, HBAc1, and systolic blood pressure), but negatively correlated with the 

consumption of vegetables, plant proteins, chocolate, and breads. Multivariate analysis 

correcting for all factors revealed 14 species (table S13) and 114 bacterial metabolic 

pathways (table S14) exclusively associated with calprotectin, suggesting calprotectin is 

robustly associated with gut microbiome.

Metformin is commonly used to control blood sugar levels for treating type 2 diabetes, but 

can cause gastrointestinal intolerance (27). In 15 metformin users, we observed an increased 

abundance of Escherichia coli (E. coli) and a positive correlation with specific pathways, 

including the degradation and utilization of D-glucarate and D-galactarate and pyruvate 

fermentation pathways. Previous studies in C. elegans indicated the specific drug-bacteria 

interaction of metformin and E. coli (28). Our results are in line with recent observations in 

humans (29) that suggest that metformin can impact the microbiome through short-chain 

fatty acid (SCFA) production. To confirm this observation, we profiled acetate, propionate 

and butyrate in 24 type 2 diabetes patients in our cohort: 9 non-metformin users and 15 users 

(4), and found that SCFA levels were consistently higher in metformin-users, especially for 

propionate (Wilcoxon test P=0.035) (fig. S13).

We assessed the effect of current smoking status, smoking history, parental smoking, and 

maternal smoking during pregnancy on the gut microbiome. These parameters were 

associated with Bray-Curtis distance, albeit with very modest effect. We did not detect 

significant associations for individual species or at pathways. In this study we included 39 

self-reported diseases, for which participants had reported at least five cases. IBS was 

reported by 9.9% of participants (n=112, table S1) and was associated with changes in the 
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gut microbiome and a lower microbial diversity (adjusted P=0.05) (table S6). Species from 

the Eggerthella and Coprobacillus genera were positively associated with medication and 

food allergies, respectively. Individuals who had suffered a heart attack (n=10) in the past 

had a significantly lower abundance of Eubacterium eligens bacterium, even after correcting 

for all other factors (q=4.6×10−4).

Linking the deep-sequenced MGS data to various intrinsic and exogenous factors from the 

same individual not only allowed us to detect associations at species level, but also provided 

new insights into the interaction between the host, microbiota, and environmental factors, 

including diet. For instance, we have replicated and expanded our association of BMI and 

blood lipid levels with the gut microbiota based on 16S rRNA gene sequencing data (30) by 

showing associations with four specific species of the family Rikenellaceae. We previously 

associated this family with BMI and triglycerides in 16S rRNA data. In the current study we 

observed higher BMI was associated with lower level of two species from the family 

Rikenellaceae, Alistipes finegoldii, and Alistipes senegalensis, while blood lipids were 

associated with other two species, Alistipes shahii and Alistipes putredinis (table S11). 

Strikingly, these species were also associated to certain dietary factors and drugs. For 

instance, a high level of Alistipes shahii, which was associated to low TG levels, was linked 

to higher fruit intake (q= 0.00027). Individuals with a higher abundance level of Alistipes 

shahii had a higher number of different species in the gut (species richness) (Spearman 

r=0.2, adjusted p=3.96×10−11), suggesting a beneficial effect on the microbial ecosystem 

(table S18). Correlations with the number of different species were also found for other 

bacteria including Roseburia hominis, Coprococcus catus, and Barnesiella intestinihominis 

and unclassified species from genus Anaerotruncus that also showed correlation both with 

fruit, vegetable, and nut consumption and with intrinsic phenotypes like HDL, triglycerides 

and quality of life. Based on this data, it would be interesting to explore the potential to 

modulate disease-associated species through medication or diet, although we still need to 

address the causality and underlying mechanism.

Conclusions

Our study revealed significant associations between the gut microbiome and various 

intrinsic, environmental, dietary and medication parameters, and disease phenotypes, with a 

high replication rate between MGS and 16S rRNA gene sequencing data from the same 

subjects. Moreover, our study provides many new intrinsic and exogenous factors that 

correlate with shifts in the microbiome composition and functionality that can be potentially 

be manipulated to improve microbiome-related health and we hope our results will inspire 

further experiments to explore the biological relevance of associated factors. While most of 

the factors we assessed exerted a very modest effect, fecal levels of Chromogranin A showed 

a high potential as a biomarker for gut health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The taxonomic tree of microbial taxonomies predicted by MGS and 16S rRNA gene 
sequencing
(A) Taxonomic tree based on MGS shotgun sequencing data. (B) Taxonomic tree based 

on16S rRNA gene sequencing data. Each dot represents a taxonomic entity. From the inner 

to outer circles, the taxonomic levels range from domains to species. Different colors of dots 

indicate different taxonomy levels according to the color key shown. Numbers in brackets 

indicate the total number of unique taxonomies detected at each level.
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Fig. 2. The inter-individual variation of microbial composition and function profile
(A) Principal coordinates plots of Bray-Curtis distance of microbial composition. The 

composition was driven by the most dominant phyla: Firmicutes, Actinobacteria, and 

Bacteroidetes. Each dot represents one individual. Color indicates the relative abundance of 

each phylum. (B) Distribution of Shannon’s diversity index. (C) Distribution of the gene 

richness. (D) Distribution of the clusters of orthologous groups (COG) richness.
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Fig. 3. Factors associated with inter-individual variation of gut microbiome
A total of 126 factors (FDR<0.1) were associated with inter-individual variation of the gut 

microbiome. The bar plot indicates the explained variation of each factor in the inter-

individual variation of microbial composition (Bray-Curtis distance). The heatmap under the 

bar plot shows the correlation coefficients of each factor with Shannon’s index of diversity, 

gene richness, and COG richness, respectively. Color key for correlation is shown.
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Fig. 4. The association of fecal level of Chromogranin A
(A) Principal coordinate plots of Bray-Curtis distance of microbial composition. Each dot 

represents one individual and its color is based on the abundance level of CgA: warm colors 

indicate high abundance and cool colors low abundance. The red arrow indicates the 

association direction of CgA, while the directions of the CgA-associated phyla are shown as 

black arrows. (B) Correlation between CgA and other factors at FDR<0.1. (C) Taxonomic 

tree of 170 species, of which 61 species were exclusively associated with CgA level. Each 

dot represents a taxonomic entity. Red dots indicate positively associated species. Blue dots 
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indicate negatively associated species. (D) Taxonomic tree of the 61 species exclusively 

associated with CgA level. The branches are colored to show phylum levels as shown in the 

color key. Species in red show increased abundance associated with higher CgA levels. 

Species in blue show lower abundance associated with higher CgA levels.
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