
METHODOLOGIES AND APPLICATION

Population-based Tabu search with evolutionary strategies
for permutation flow shop scheduling problems under effects
of position-dependent learning and linear deterioration

Oğuzhan Ahmet Arık1,2

Published online: 7 August 2020

� The Author(s) 2020

Abstract

This paper investigates permutation flow shop scheduling (PFSS) problems under the effects of position-dependent

learning and linear deterioration. In a PFSS problem, there are n jobs and m machines in series. Jobs are separated into

operations on m different machines in series, and jobs have to follow the same machine order with the same sequence. The

PFSS problem under the effects of learning and deterioration is introduced with a mixed-integer nonlinear programming

model. The time requirement for solving large-scale problems type of PFSS problem is exceedingly high. Therefore, well-

known metaheuristic methods for the PFSS problem without learning and deterioration effects such as iterated greedy

algorithms and discrete differential evolution algorithm are adapted for the problem with learning and deterioration effects

in order to find a faster and near-optimal or optimal solution for the problem. Furthermore, this paper proposes a hybrid

solution algorithm that is called population-based Tabu search algorithm (TSPOP) with evolutionary strategies such as

crossover and mutation. The search algorithm is built on the basic structure of Tabu search and it searches for the best

candidate from a solution population instead of improving the current best candidate at each iteration. Furthermore, the

performances of these methods in view of solution quality are discussed in this paper by using test problems for 20, 50, and

100 jobs with 5, 10, 20 machines. Experimental results show that the proposed TSPOP algorithm outperforms the other

existing algorithms in view of solution quality.

Keywords Permutation flow shop scheduling � Learning effect � Deterioration effect � Iterated greedy � Discrete differential
equation � Makespan � Tabu search � Evolutionary strategy

1 Introduction

In a PFSS problem, there are n jobs having m different

operations on m serial machines. These jobs have to follow

the same machine order (1?2 ? 3…. ? m) with the same

sequence. There are n! possible job sequences in a PFSS

problem. Figure 1 illustrates a solution to a PFSS problem

instance consisting of 4 jobs and 4 machines. In this study, the

PFSS problem is under the effects of learning and deterio-

ration, and the performance criterion is to minimize make-

span. The time requirement for solving large-scale PFSS

problems is exceedingly high. Therefore, three well-known

metaheuristic methods and a hybrid method that is called

population-based Tabu search algorithm (TSPOP) with evo-

lutionary strategies are proposed. Taillard’s (1993) problem

sets of 20, 50, and 100 jobs with 5, 10, and 20 machines are

chosen to test performances of proposed methods.

The phenomenon of learning effect denotes a decrease

in initially determined processing times because of the

experience and expertise obtained via continuous repetition

of similar tasks on machines or the system. On the con-

trary, the phenomenon of deterioration effect denotes an

increase in initially determined processing times while jobs

are waiting in the queue or are being processed on

machines. Both of these effects have been widely studied

for more than 15 years in scheduling problems. In most of

Communicated by V. Loia.

& Oğuzhan Ahmet Arık

oaarik@nny.edu.tr; o.a.arik@utwente.nl

1 Industrial Engineering Department, Engineering Faculty,

Nuh Naci Yazgan University, 38180 Kayseri, Turkey

2 Industrial Engineering & Business Information Systems,

Faculty of Behavioural, Management and Social Sciences,

University of Twente, 7522 NB Enschede, The Netherlands

123

Soft Computing (2021) 25:1501–1518

https://doi.org/10.1007/s00500-020-05234-7 (0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7088-2104
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-05234-7&domain=pdf
https://doi.org/10.1007/s00500-020-05234-7

the scheduling problems, processing times are considered

constant and researchers assume that the processing time of a

job is not dependent on internal factors of the workplace such

as learning or deterioration. Getting experience and the ability

to learn from the current task can increase a worker’s per-

formance for similar tasks by applying new methods to new

same or similar tasks. On the contrary, predetermined and

assumed constant task duration can take longer because of

deterioration. Gupta and Gupta (1988) presented a well-un-

derstood example of deterioration effect. In this example, the

temperature of ingots that are to be processed in a rolling

machine must be higher at a certain level and if the temper-

ature of any ingot drops below to that certain level, then this

ingot must be drawn back in order to be reheated up to that

certain temperature level. This reheating process is an

example of the deterioration effect.

Biskup (1999) introduced how position-dependent

learning effect can be considered in scheduling problems.

Let Pr be basic processing time of the job assigned at

position r in the sequence and its actual processing time

P½r� can be calculated as follows:

P½r� ¼ Prr
a; ð1Þ

where a is learning effect coefficient for scheduling envi-

ronment ð�1\a\0Þ. Mosheiov (1991) showed the actual

processing time P½r� of a job depends on its starting time

and P½r� increases when starting time of that job increases

under linear job deterioration effect. Let S½r� be starting

time of the job at position r, P½r� can be calculated as

follows:

P½r� ¼ Pr þ BS½r�; ð2Þ

where B is the linear deterioration effect coefficient for

scheduling problems ð0\B\1Þ. Both of these effects can

be used in scheduling problems simultaneously as follows:

P½r� ¼ Pr þ BS½r�
� �

ra: ð3Þ

For some of single machine scheduling problems under

effects of learning and deterioration, the existing of poly-

nomial algorithms such as the shortest processing time and

the earliest due-date dispatching rules are proven by

researchers (Wang and Wang 2011; Wang 2007; Wang

et al. 2008b; Cheng et al. 2008; Gordon et al. 2008; Yang

and Kuo 2010). Even for some flow shop scheduling

problems with some special cases, the existing of polyno-

mial algorithms are proven by researchers (Wang et al.

2008a, b; Wang 2006). These special cases in flow shop

scheduling problem are increasing series of dominating

machines, 2-machine environment, equal job processing

times and a fixed job in the first position of the first

machine. Without these special cases, the complexity of the

PFSS problem under the effects of learning and deterio-

ration is still NP-Hard.

In this paper, we integrate two strong metaheuristics for

combinatorial optimization problems and apply our pro-

posed solution approach to the PFSS problem where jobs

are under the effects of learning and deterioration. The

proposed algorithm uses the basic structure of Tabu search,

and it searches for the best candidate from a solution

population instead of improving the current best candidate

at each iteration. It also uses some evolutionary strategies

such as crossover and mutation operators to escape and

renew the solution population. Most of the hybrid algo-

rithms including TS and evolutionary strategies use the

genetic algorithm (GA) as the main framework and use TS

as a solution improvement tool. On the contrary to papers

in the literature, we use evolutionary strategies to escape

from local optima. Furthermore, we compare our proposed

algorithm with some existing algorithms for PFSS

problems.

2 Literature review

The PFSS problems with makespan minimization have

been interested among researchers for more than 40 years.

There are some review papers in the literature. Some of

these review papers are Fernandez-Viagas et al. (2017),

Yenisey and Yagmahan (2014), Reza Hejazi and Saghafian

(2005) and Framinan et al. (2002, 2004). Due to the

complexity of the problem, the PFSS problem is one of the

most studied problems in the operations research literature.

The PFSS problem under learning and deterioration effects

is expressed as Fm prmu; LE;DEj jCmax with the notation of

Graham et al. (1979). As far as we known, the best

effective algorithms for PFSS without learning and dete-

rioration effects have been variants of iterated greedy (IG)

algorithm.

Ruiz and Stützle (2007) proposed an iterated greedy

algorithm (IG_RS) that applies two phases iteratively. In

their algorithm, the first phase named destruction elimi-

nates some jobs from the incumbent solution, and the

second phase named construction reinserts the eliminated

jobs into the sequence by using the NEH construction

Fig. 1 Permutation flow shop scheduling problem consisting of 4 jobs

and 4 machines

1502 O. A. Arık

123

heuristic. They also proposed using a local search tech-

nique in their IG_RS. Experimental results in their study

show that their proposed IG with local search (IG_RSLS)

outperforms the state-of-art algorithms published for the

PFSS problem until then. They also presented some new

optimum and best solutions for Taillard benchmark

instances. Ruiz and Stützle (2008) proposed two iterated

greedy algorithms for PFSS problems with sequence-de-

pendent setup times for minimizing the makespan and total

weighted tardiness. Another variant of the IG algorithm

named IGRIS for the problem was proposed by Pan et al.

(2008). This variant of IG uses a new local search named

reference insertion schema (RIS) instead of LS proposed by

Ruiz and Stützle (2007) and Taillard (1990). The RIS uses

the reference permutation obtained from the NEH algo-

rithm, and it removes/reinserts jobs from that referenced

list one by one to find better solutions. The RIS and LS use

Taillard’s speed-up schema to calculate the makespan or

flowtime of the solution. The proposed IGRIS of Pan et al.

(2008) outperformed so far existing metaheuristics in the

literature. Pan et al. (2008) also proposed a discrete dif-

ferential evolution (DDERLS) algorithm with RIS for PFSS

problems with the makespan criterion. While finding a

position for a removed job in the local search phase, there

can be lots of partial solutions (ties) having the same

objective function value. These ties may lead the algorithm

in a cycle. Therefore, these ties must be broken with a

tiebreaking mechanism to increase solution quality. Kal-

czynski and Kamburowski (2008), Dong et al. (2008),

Fernandez-Viagas and Framinan (2014), and Vasiljevic

and Danilovic (2015) proposed new tiebreaking mecha-

nisms for the problem. Fernandez-Viagas and Framinan

(2014) presented a tiebreaking mechanism (TBFF) for

NEH, IGRIS, and IG_RSLS algorithms. Their experimental

study revealed that these algorithms with TBFF outperform

their original versions. Rossi et al. (2016) developed a new

heuristic named as Gx by combining their new heuristic

with different tiebreaking and initial orders procedures

found in the literature. Dubois-Lacoste et al. (2017) sug-

gested optimizing the partial solution after the destruction

phase of the classical IG algorithm. Their new variant of

the IG algorithm outperformed the existing IG algorithms.

Fernandez-Viagas et al. (2017) used their proposed TBFF

within lots of different heuristics and different meta-

heuristics. They compared those algorithms with each other

for the same performance criterion. Their experimental

study revealed that IGRIS and IG_RSLS with TBFF outper-

form other existing and promising metaheuristics. They

also proved that their proposed TBFF and Taillard’s speed-

up schema increase the solution quality of the algorithms.

Fernandez-Viagas and Framinan (2019) proposed a best-

of-breed (IGBOB) combination of recent variants of IG

algorithms and their components. In their proposed IG

variant, they inspired by algorithms of Benavides and Ritt

(2018), Dubois-Lacoste et al. (2017), and Fernandez-Via-

gas and Framinan (2014). Their experimental study

revealed that their proposed IGBOB is the best-so-far

algorithm for the problem. Their IGBOB combines initial

solution of Benavides and Ritt (2018), the local search

procedure of Benavides and Ritt (2018) and local search

for partial solution proposed by Dubois-Lacoste et al.

(2017) with their existing TBFF.

Janiak and Portmann (1998) presented a genetic algo-

rithm for PFSS problems with resource allocation for

constrained resources such as energy, catalyzer, and raw

materials in order to find a schedule that minimizing the

makespan. Rajkumar and Shahabudeen (2009) proposed an

improved GA including multi-crossover, multi-mutation,

and hypermutation operators in order to solve PFSS

problems with the makespan performance criterion.

Nagano et al. (2008) proposed a constructive GA of which

parameters are calibrated design of experiment and their

proposed GA uses Nawaz–Enscore–Ham (NEH) and local

search heuristic to define fitness values of solutions.

Pasupathy et al. (2006) studied multi-objective PFSS

problems with their proposed GA in order to find a pareto-

optimal solution for makespan and total flowtime perfor-

mance criteria. Their proposed algorithm makes use of the

principle of non-dominated sorting, coupled with the use of

a metric for crowding distance being used as a secondary

criterion. This approach is intended to alleviate the prob-

lem of genetic drift in GA methodology. Chen et al. (2012)

presented self-guided GA with a novel strategy that com-

bines global statistical information collected previous

solutions and location information about individual solu-

tions. One of the most prominent papers using simulated

annealing (SA) in PFSS problems in order to minimize the

makespan belongs to Osman and Potts (1989). Xiao et al.

(2012) studied SA in PFSS problems with order acceptance

and weighted tardiness when the objective is to maximize

the total net profit with weighted tardiness penalties. Suresh

and Mohanasundaram (2004) proposed an SA with a per-

turbation mechanism called segment random insertion that

is used to generate the neighborhood of a given sequence in

PFSS problems with makespan and total flowtime perfor-

mance criteria. Hybrid algorithms which are designed by

using the best parts of well-known metaheuristics or

heuristics have been also studied in PFSS problems. Sun

et al. (2015) proposed a GA based on SA in order to escape

local optima and increase searching efficiency. Lin et al.

(2015) used a hybrid algorithm depending on an evolu-

tionary algorithm named as backtracking search algorithm

(BSA) in order to solve PFSS problems with makespan

minimization. Their hybrid BSA includes crossover/muta-

tion strategies and SA mechanism. Laha and Chakraborty

(2009) investigated PFSS problems with the makespan

Population-based Tabu search with evolutionary strategies for permutation flow shop… 1503

123

criterion and presented a new hybrid heuristic algorithm

that is designed by combining elements from SA, NEH,

and their previously published composed heuristic. Li et al.

(2008) considered a multi-objective PFSS problem by

proposing a hybrid algorithm based on particle swarm

optimization (PSO), NEH, and SA algorithms. In their

proposed hybrid algorithm, different well-known heuristics

are used to create better evolutionary search results and to

evaluate these search results’ fitness. Haq et al. (2010)

compared two heuristics that are dependent on the artificial

neural network (ANN) and GA for a PFSS problem where

the objective is to minimize makespan. One of their algo-

rithms is ANN–GA starting with random population. The

second algorithm is also ANN–GA, but this algorithm uses

the random insertion perturbation scheme (RIPS) and they

named this algorithm as ANN–GA–RIPS. They showed

that ANN–GA–RIPS outperforms ANN–GA. Zobolas et al.

(2009) proposed a hybrid metaheuristic for a PFSS problem

with makespan minimization. Their proposed algorithm

consisted of three heuristics. These are a greedy random-

ized constructive heuristic for initial population generation,

a GA for solution evaluation and a variable neighborhood

search (VNS) to improve the population. Tseng and Lin

(2010) considered a PFSS problem where the objective is

to minimize total flow time of the schedule, and they

proposed a hybrid metaheuristic including GA for global

search and a Tabu search (TS) for local search.

The learning effect has been a hot topic among

scheduling researchers for more than 15 years. However,

there has been a smaller number of papers focusing on

PFSS problems with learning effect consideration. He

(2016) considered a PFSS problem with a general expo-

nential learning effect when the objective is to minimize

maximum lateness by proposing several heuristic methods.

Lee and Chung (2013) proposed a branch-and-bound

algorithm and two heuristic methods to find an optimum or

near-optimum solution when the objective is to minimize

total tardiness of a PFSS problem under learning effect.

Chung and Tong (2012) considered a machine-based

learning effect in the PFSS problem when the objective is

to minimize the weighted sum of total completion time and

makespan. For an optimum solution, they proposed a

branch-and-bound algorithm and for a near-optimum

solution, they proposed two heuristic methods. In another

study of Chung and Tong (2011), they considered learning

effect in the PFSS problem with makespan minimization

by proposing a dominance theorem and a lower bound to

accelerate the branch-and-bound algorithm seeking an

optimal solution. Another study using a branch-and-bound

algorithm to solve the PFSS problem with learning con-

sideration was conducted by Wang and Zhang (2015). Qin

et al. (2016) studied position-dependent learning effect in

the PFSS problem for different performance criterions such

as makespan, total completion time, total weighted com-

pletion time, and maximum lateness by proposing GA and

quantum differential evolutionary algorithm. Toksarı and

Arık (2017) addressed some performance criteria such as

makespan, the sum of completion times, and the sum of

weighted completion times on single machine under fuzzy

learning effect with fuzzy processing times. They proposed

a credibility-based chance-constrained programming

approach for their proposed MINLP and they proved that

these problems can be solvable in polynomial time. Shiau

et al. (2015) proposed a branch-and-bound algorithm and

several GA algorithms in order to obtain feasible solutions

for a two-agent scheduling problem in a two-machine

permutation flow shop with learning effects. Xu et al.

(2016) investigated re-entrant permutation flow shop

scheduling with a position-based learning effect to mini-

mize the total completion time. They developed some

heuristics and a GA to search for approximate solutions.

Mustu and Eren (2018) proposed GA, the kangaroo, and

the variable neighborhood search algorithms for PFSS

under position-dependent learning effect. Shi and Wang

(2019) investigated two-machine no-wait PFSS with

common due window assignment, learning effect, and

resource allocation. Geng et al. (2019) addressed the no-

wait flow shop scheduling problem with simultaneous

consideration of common due-date assignment, convex

resource allocation, and learning effect in a two-machine

setting. Wang et al. (2019a, b) investigated PFSS problems

with a truncated exponential sum of logarithm processing

time-based and position-based learning effects. Wang et al.

(2019a) investigated position-weighted learning effect and

job release dates on single machine environment, and they

proposed a branch-and-bound algorithm and heuristics for

the problem.

The deterioration effect has been also studied by

researchers in scheduling literature. Yin and Kang (2015)

studied the makespan performance criterion in the PFSS

problem with proportional deterioration. Furthermore, they

showed the problem can be polynomially solvable for some

special cases of the problem. Lee et al. (2014) investigated

total tardiness minimization in PFSS problem with deteri-

oration consideration. They proposed a branch-and-bound

algorithm and two metaheuristic methods that are particle

swarm optimization and SA. Wang and Wang (2013)

considered three-machine PFSS problem with deteriorating

jobs in order to minimize makespan, and they solved their

problem by using a branch-and-bound algorithm of which

efficiency is increased with two heuristic methods. Bank

et al. (2012) investigated a PFSS problem with deterio-

rating jobs and they solved their problem with two different

methods. These are particle swarm optimization with local

search and SA. They showed that particle swarm opti-

mization with local search outperforms SA in terms of

1504 O. A. Arık

123

solution quality but SA takes less time to find a solution.

Lee et al. (2009) addressed total completion time mini-

mization in the PFSS problem, and they tested several

well-known heuristics for their problem with several

deterioration patterns by proposing a dominance rule and

efficient lover bound to increase search efficiency. Sun

et al. (2019) investigated PFSS problems with simple linear

deterioration where the objectives are to minimize the

logarithm of the makespan, total logarithm of the com-

pletion time, the total weighted logarithm of the comple-

tion time, and the sum of the quadratic job logarithms of

the completion times. They proposed branch-and-bound

algorithms for the problems. Wang and Liang (2019)

considered a single machine group scheduling problem

with deteriorating jobs and resource allocation.

There are some papers investigating learning and dete-

rioration effects simultaneously. As far as we know, the

first paper that investigated these effects simultaneously

was proposed by Wang (2006). Wang (2007, 2009)

investigated some performance criteria for single machine

scheduling problems under both effects, and they showed

the existence of polynomial algorithms for these problems

with/without some special cases. Toksarı and Güner (2008)

proposed a MINLP for parallel machine scheduling prob-

lem under the effects of deterioration and learning where

the objective is to minimize earliness/tardiness costs.

Toksarı and Güner (2010) investigated a parallel machine

scheduling problem under learning and deterioration

effects with sequence-dependent setup times and a com-

mon due date. They proved that the optimal solution is

V-shaped. Arık and Toksarı (2018) investigated a multi-

objective fuzzy parallel machine scheduling problem

where the objectives are to minimize earliness cost, to

minimize tardiness cost and to minimize the cost of setting

due dates. In their study, all parameters such as processing

times, coefficients of learning and deterioration, and deci-

sion variables except binary decision variables are in form

of fuzzy numbers. They proposed a local search algorithm

to solve their problem, and they compared their method

with fuzzy mathematical programming methods in the lit-

erature. Arık and Toksarı (2019) proposed a MINLP model

for a fuzzy parallel machine scheduling problem under

fuzzy job deterioration and learning effects with fuzzy

processing times in order to minimize fuzzy makespan by

using possibilistic distributions of fuzzy parameters and

possibilistic linear programming approaches. Lu (2016)

considered no-idle permutation flow shop scheduling

problems with time-dependent learning effect and deteri-

orating jobs where the objectives are to minimize the

makespan and the total completion time.

For combinatorial optimization problems, the

hybridization of two or more metaheuristics is a common

approach to use specific advantages of those algorithms.

For instance, while GA presents a population-based

stochastic search to except from local optima and TS uses a

deterministic search with restricting the feasible neigh-

borhood by neighbors that are excluded. There are some

valuable hybrid approaches including GA and TA at the

same time. Glover et al. (1995) used TS as a strategic

oscillation in GA to allow effective transitions between

feasible and infeasible regions. Abdinnour-Helm (1998)

integrated TS into GA for uncapacitated hub location

problem. Liaw (2000) integrated TS into GA for the open

shop scheduling problem where the objective is to mini-

mize the makespan. Li et al. (2003) used TS in a classical

GA for assembly process planning problem. Jat and Yang

(2011) proposed a two-phase hybrid algorithm for post-

enrollment course timetabling. In their proposed method,

GA is used in the first phase to improve the solution

population, and TS is used in the second phase to improve

the solution quality of the best solution found by GA.

Meeran and Morshed (2012) proposed a hybrid algorithm

including GA and TS for job shop scheduling problems.

Zhang et al. (2013) proposed a hybrid algorithm including

GA and TS for a multi-objective dynamic job shop

scheduling problem with random job arrivals and machine

breakdowns. Palacios et al. (2015) proposed a genetic Tabu

search algorithm for fuzzy flexible job shop scheduling

problem where the objective is to minimize the makespan.

In their algorithm, the TS algorithm is applied to all

solutions in the population after GS operations. Li and Gao

(2016) proposed a hybrid solution approach including GA

and TS for flexible job shop scheduling problem. In their

algorithm, the TS algorithm is applied to all solutions in the

population after GS operations.

The PFSS problems need a single job sequence from

n! possible alternative sequences for all machines. Exact

solution algorithms may not always solve these problems

in polynomial time because number of input does not

increase polynomially. In this study, IG_RSLS, IGRIS,

DDERLS, and TSPOP methods are proposed in order to

find approximate and faster solutions. Each of the

investigated algorithms has advantages for solving com-

binatorial optimization problems. Each of the proposed

solution techniques is executed for Taillard’s (1993) test

problems consisting of 20, 50, and 100 jobs with 5, 10,

and 20 machines. For most of Taillard’s (1993) test

problems without learning and/or deterioration effects,

the best makespans or upper bounds of makespans are

known. Since there are no published upper bounds for

the PFSS problem under the effects of learning and

deterioration, we solved some of the test problems of

Taillard’s (1993) with a commercial solver. The results

of the proposed algorithms are compared with upper

bounds found by us in the section of numerical

examples.

Population-based Tabu search with evolutionary strategies for permutation flow shop… 1505

123

3 Mathematical model

In this section, a MINLP model is introduced for permu-

tation flow shop scheduling problems under the effects of

learning and deterioration when the objective function is to

minimize the makespan.

Indices

i: job index; i ¼ 1. . .:n

j:machine index; j ¼ 1. . .:m

r: common position index in all machines r ¼ 1. . .:n

Parameters

Pi;j: basic processing time of job i on machine j

a: learning effect coefficent

B: deterioration effect coefficent

Decision variables

Xi;r: if job i is assigned on position r of

all machines; then it’s 1; otherwise 0

P½r�;j: actual processing time of the job

assigned on position r in machine j

C½r�;j: completion time of the job assigned

on position r in machine j

S½r�;j: starting time of the job assigned

on position r in machine j

Cmax:makespan of the schedule

Model

Min z ¼ Cmax ð4Þ

s.t.:

Cmax �C½n�;m 8r; j
ð5Þ

X

n

i

Xi;r ¼ 1 8r ð6Þ

X

n

r

Xi;r ¼ 1 8i ð7Þ

C½r�;j � S½r�;j þ P½r�;j 8r; j ð8Þ

S½r�;j �C½r�;j�1 8r; j ¼ 2; . . .;m ð9Þ

S½r�;j �C½r�1�;j 8j; r ¼ 2; . . .;m ð10Þ

P½r�;j ¼
X

n

i

Xi;r � Pi;j

 !

þ B � S½r�;j

 !

� ra ð11Þ

C½0�;1 ¼ 0 ð12Þ

Cmax � 0 ð13Þ

C½r�;j;P½r�;j; S½r�;j � 0 ð14Þ

Xi;r 2 f0; 1g: ð15Þ

The objective function (4) is to minimize the makespan

value of the schedule. Constraint (5) assures that the

makespan is the maximum completion time of all jobs.

Constraint (6) assures that position number r for all

machines is used for only one job. Constraint (7) assures

that a job is assigned on only a position number r of all

machines. Constraint (8) shows that the completion time of

the job assigned on a common position r in all machines is

equal to or greater than the sum of its starting time and

actual processing time. Constraint (9) shows that the

starting time of the job on position r in j machine is greater

than or equal to the completion time of the job in the same

position of the previous machine. Constraint (10) shows

that the starting time of the job on position r in j machine is

greater than or equal to the completion time of the job of

the previous position in the same machine. Constraint (11)

shows the calculation of the actual processing time of the

job assigned on position r in machine j. It is required to

determine which job is assigned to which position of which

machine. Therefore, transitions among job positions and

jobs are required. Since transition among the processing

time of a job in position r ðP½r�;j) and jobs’ processing times

(Pi;j) makes the problem nonlinear, the proposed mathe-

matical model is a mixed-integer nonlinear mathematical

model. These transitions are made by Constraint (11).

Constraint (12) shows that all jobs are ready to be pro-

cessed at the beginning. Constraints (13–14) show that

starting times, actual processing times, and completion

times are greater than or equal to zero. Constraint (15)

shows that the decision variable Xi;r is binary.

4 Population-based Tabu search
with evolutionary strategies

The Tabu search algorithm was introduced by Glover

(1989, 1990) to present a search strategy for solving

combinatorial optimization problems whose applications

range from graph theory and matroid settings to general

pure and mixed-integer programming problems. Tabu

search is a deterministic search algorithm to prevent

cyclical solutions by transforming only one solution into

another. In order to avoid cycling, the TS stays away

from certain moves that create undesired neighborhoods.

These moves or undesired solutions are listed in a short-

term memory named as Tabu list. Although Tabu search

was originally designed for a single current solution to

create better solutions by avoiding cycling, this paper

proposes a Tabu search with a population-based search

1506 O. A. Arık

123

and evolutionary strategies. There are so many possible

and feasible solutions in the solution space, and most of

them can be reached by simple moves among solutions.

This proposed search method uses a solution population

and searches for best candidates by locally searching the

population’s individuals. Then, the proposed algorithm

holds and forbids the current solution with the help of a

Tabu list to create better solutions. If the solution is

trapped in a local area and the solution population starts

to be ineffective for improving the solution, then some

evolutionary strategies such as crossover and mutation

take place to create a new solution population that helps

to improve the current solution. The hybrid algorithms

(Zhang et al. 2013; Palacios et al. 2015; Li and Gao

2016) including GA and TS in the literature use gener-

ally the main framework of GA such as evaluation,

selection, crossover, and mutation operators; then, they

use TS algorithm to improve the best solution obtained

from GA operators. In this paper, we use the main

framework of the TS algorithm to improve the solution

quality of individuals in the population and use evolu-

tionary strategies such as crossover and mutation to

escape the local optima. Algorithm 1 shows the general

schema for the proposed population-based Tabu search

with evolutionary strategies (TSPOP).

The Initial_Population procedure in Algorithm 1 is

designed to produce a solution population that may be

expandable to a global optimal schedule. Algorithm 2

produces n solutions. Then, the number of solutions in the

population is decreased or increased to 60 solutions. The

first position of the job orders in these solutions start with

each possible solution. That means the first job of the first

solution in the population has job#1, and the first job of the

second solution in the population has job#2. Thus, each job

is assigned to first positions of solutions. Then, find and

assign the best job to the second position of the job orders

that minimize the total idle times of machines for second

position. For instance, if there are 5 jobs j ¼ 1; 2; 3; 4; 5f g
and 3 machines k ¼ 1; 2; 3f g, so we can produce 5 solu-

tions for the population. These solutions are

p1 ¼ 1; ?; ?; ?; ?f g, p2 ¼ 2; ?; ?; ?; ?f g, p3 ¼ 3; ?; ?; ?; ?f g,
p4 ¼ 4; ?; ?; ?; ?f g and p5 ¼ 5; ?; ?; ?; ?f g. The first posi-

tions of solutions are fulfilled, and now the second posi-

tions of job orders of solutions are selected from

unassigned jobs to minimize the total idle time of

machines. For solution#1 p1 ¼ 1; ?; ?; ?; ?f g, the unas-

signed jobs are {2, 3, 4, 5}, and we can select a job that

minimizes the total idle time of machines. In that situation,

if job#3 assures the minimum total idle time, then

p1 ¼ 1; 3; ?; ?; ?f g. This goes on until there are no unas-

signed job remains for each solution in the population. This

procedure depends on the profile fitting procedure proposed

by McCormick et al. (1989). The profile fitting heuristic

was originally proposed for minimizing the cycle time of

serial workstations in an assembly line with the blocking

constraint. We used that heuristic for creating an initial

solution population. Each job is assigned to the first posi-

tion of each solution, then a search is made for determining

the job for the second position by considering the total idle

times of machines. This goes on until there is no unas-

signed job remaining. After creating initial population, the

solutions ordered in an increasing order of their makespan

values. Then, the number of solution in the initial popu-

lation is increased or decreased to 60 by selecting best 60

solutions from the initial solution. If the population size is

20, then these 20 solutions are directly placed in 60 solu-

tions. For remaining 40 solutions, randomly generated new

solutions are placed in the population. On the contrary, if

the population size is 100, then the first best 60 solutions

are directly placed in the population.

Population-based Tabu search with evolutionary strategies for permutation flow shop… 1507

123

After creating the first population, the same

Local_Search_Population procedure in Algorithm 1 is

designed to improve solution quality for the first B solu-

tions in the population. Then, these solutions are individ-

ually sent to Local_Search operator of the proposed

algorithm. The basic idea of the proposed

Local_Search_Population is to produce better neighbor-

hoods that have a chance to be the best current candidate.

The Local_Search_Population and Local_Search proce-

dures are given in Algorithms 3 and 4.

After creating the first population, the same Local_-

Search procedure in Algorithm 3 is designed to improve

the incumbent solution. The basic idea of the proposed

local search is to produce new neighborhoods that have a

chance to be the best current candidate. To produce new

neighborhoods of a solution, three different search opera-

tions are used C (predetermined number of local search

iterations) times by selecting a random job from the current

solution. Insertions, swapping, and double-swapping

operations are applied, respectively, to the current solution.

If the candidate solution is not in the Tabu list and if the

makespan value is less than or equal to the incumbent

solution’s makespan, then the incumbent solution is

replaced with this new candidate solution. Insertion local

search is one of the most used search operators for PFSS

problems. In this study, the proposed Local_Search pro-

cedure uses the insertion search by selecting a random job

from the incumbent, and it tries to find a better solution by

inserting that job to possible all positions. The swapping

operation in this study uses a randomly selected job from

the incumbent solution, and it swaps that job’s position

with all possible jobs in the solution. The double-swapping

operator selects a random position r. Then, the operator

removes the jobs in positions r and r þ 1 from the solution

and tries to find a better solution by inserting them to all

possible positions again. After inserting these two jobs in

the solution, these jobs are also swapped to find a better

solution. The length of the Tabu list is 100. If a new best

makespan is found, then this makespan and its schedule are

added to the Tabu list. In Local_Search procedure, the

solutions are replaced with their neighborhoods, so to avoid

turn back to previous solutions, the new better solution

value is added in the Tabu list by using Check_Tabu_List

operator that is given in Algorithm 5. If the number of

solutions in the Tabu list exceeds 100, then the oldest

solution in the Tabu list is removed. The Local_Search

algorithm is given in Algorithm 4.

1508 O. A. Arık

123

Population-based Tabu search with evolutionary strategies for permutation flow shop… 1509

123

Evolutionary strategies take place when the number of

forbidden solutions and the number of iterations with no

improvement exceeds a certain number K as seen in

Algorithm 1. This step is to escape local optima and pro-

duce a new solution population that may include new

candidate solutions. In order to produce a new population,

the previous population, the best solution found so far and

the incumbent solution (the best solution in the current

population) are used as seen Algorithm 6. The crossover

operator in this study is a two-point crossover and the

mutation operator is a swap-mutation. The encoding of the

solution is permutation encoding, and each substring is

defined with job indices. The other evolutionary operations

such as evaluation and selection are not necessary because

they increase the time requirement for obtaining a solution.

Therefore, the crossover operation takes place for pairs of

solutions in the order of {(p1; p2), (p3; p4), …, (p59; p60 }

with a probability pc by selecting randomly two crossover

points. Figure 2 shows a two-point crossover and repair

operation for a solution pair. The mutation operator selects

randomly two jobs in the solution and inverses the sub-

string between these two randomly selected jobs with a

probability pm as seen in Fig. 3. The counter for local

searches with non-improvement k is set as zero, and the

new solution population is obtained by using the best

solution in the memory and the incumbent solution with

crossover and mutation operator. TSPOP algorithm runs

until a predetermined stopping condition exists. In this

study, the stopping condition for the TSPOP is the total

elapsed time in milliseconds.

5 Numerical examples

Taillard’s (1993) test problems consisting of 20, 50, and

100 jobs with 5, 10, and 20 machines are used in order to

show the performance of metaheuristic methods. For all

problems, the learning effect coefficient and deterioration

Fig. 2 Two-point crossover and repair operations

Fig. 3 The mutation operation

1510 O. A. Arık

123

effect coefficient are - 0.8 and 0.1, respectively. While

trying to find an optimum solution for a combinatorial

problem; if time requirement for finding an optimum is

exceedingly high, if the solver does not improve the

solution and if the optimality gap is being reduced very

slowly, then limiting execution time and optimality

requirement by using metaheuristic methods can be rea-

sonable. Metaheuristic methods try to find optimal solu-

tions, but mostly they yield near-optimum ones. Therefore,

parameter design in any metaheuristic is so significant.

There are seven parameters for the proposed TSPOP algo-

rithm, these are B (the predetermined number of solutions

that will be used in the Local_Search_Population proce-

dure), C (the predetermined number of local search itera-

tions in the Local_Search procedure), the length of the

Tabu list, K (a predetermined number of the maximum

allowable iterations with no improvement in Algorithm 1),

the crossover probability pc and the mutation probability

pm. In our first experiments, we used lots of combinations

of these parameters. We determined these parameters as

B = 5, C = 5, the length of Tabu size is 100, K = 10,

pc = 0.85 and pc = 0.15.

As rivals of the proposed TSPOP, we used two IG

algorithms and a DDE algorithm for PFSS problems under

the effects of learning and deterioration. IG algorithm for

PFSS problems was firstly proposed by Ruiz and Stützle

(2007). The IG algorithm is a single-solution metaheuristic

method. In the IG algorithm for PFSS, the initial solution is

obtained by using the well NEH heuristic. The IG algo-

rithm (IG_RS) for PFSS problems applies two phases

iteratively. These phases are names as destruction and

construction. In the destruction phase of the algorithm,

some jobs are removed from the incumbent solution. After

the destruction phase of the algorithm, the removed jobs

are reinserted into the partial solution to construct a com-

plete solution again (the incumbent solution). Every time a

removed job is inserted into the partial solution, a greedy

selection among all possible positions that jobs can be

inserted in the partial solution. In each iteration, a constant

number (d) jobs are removed and reinserted. When a

candidate solution has been completed, an acceptance cri-

terion decides whether the new solution will replace the

incumbent solution. IG_RS uses a simulated annealing like

acceptance criterion with a constant temperature. This

constant temperature is calculated as follows:

Tempreature ¼ T �

Pn
i

Pm
j pij

n � m � 10
ð16Þ

where T is the second parameter of IG_RS to be adjusted

for the temperature of simulated annealing like acceptance

criterion. After the destruction and construction phase of

the algorithm, an optional insertion-based local search (LS)

can be adapted to increase the efficiency of the IG_RS

algorithm. The LS operator randomly removes a job from

the complete solution and reinserts it to all possible posi-

tions of the partial solution. If the LS operator finds better

objective function value while inserting the removed job in

different positions, the job is inserted into that position.

This is repeated for another job. The process terminates

when all jobs have been placed in all possible positions

without improvements. The complexity of calculating

makespan or flow time of a solution is O(nm), and if there

are k possible positions after removing a job, this com-

plexity increases to O(n2m). Taillard (1990) proposed a

mechanism named Taillard’s acceleration in the following,

so the evaluation of the k subsequences can be done in

O(nm) thus reducing the overall complexity of the heuristic

to O(n2m). Taillard’s acceleration can be used in any phase

of IG algorithms such as NEH, destruction/construction,

and local search. Of course, this acceleration schema works

when the performance criterion is the minimization of the

makespan or flowtime of a schedule when there is no effect

such as learning and/or deterioration. This variant of the IG

algorithm was named as IG_RSLS. There are two param-

eters (d and T) of IG_RSLS. Ruiz and Stützle (2007) sug-

gested these parameters as d = 4 and T = 0.4 according to

their parameter tuning. Another variant of the IG algorithm

was proposed by Pan et al. (2008). This variant named as

IGRIS uses a referenced insertion schema (RIS) instead of

LS proposed by Ruiz and Stützle (2007). This version of

the local search operator uses a referenced solution

obtained from a heuristic like NEH and to determine which

jobs will be selected and removed from the complete

solution. In RIS operator, jobs are not extracted randomly

but in the order given by a referenced permutation. Pan

et al. (2008) also suggested the same parameter setting

(d = 4 and T = 0.4) for IGRIS as Ruiz and Stützle (2007).

The essential difference between IG_RSLS and IGRIS is

using different local search procedure for the solution. If

the IG uses the LS operator for the PFSS problem under

learning and deterioration effects, it is IG_RSLS. When it

uses the RIS operator for the problem, it is IGRIS.

Differential equation algorithm is a population-based

solution method for the continuous optimization problem.

Due to the discrete structure of the PFSS problem, Pan

et al. (2008) proposed a DDE algorithm for the problem. In

the DDE algorithm, the target individual is represented by

a permutation of jobs. The previous generation’s best

solution in the target population is perturbed in order to

obtain the mutant individual and achieve the differential

variation. DDE algorithm uses a referenced local search

(RLS) operator of the RIS for local search of individuals of

the population. Pan et al. (2008) proposed the parameters

of DDERLS as d = 4, population size is 10, pc = 0.80 and

pc = 0.20. The IG and DDE algorithms used in this study is

not different from the original algorithms proposed by Ruiz

Population-based Tabu search with evolutionary strategies for permutation flow shop… 1511

123

and Stützle (2007) and Pan et al. (2008). The only differ-

ence of the algorithms in this paper is that the algorithms

do not use Taillard’s acceleration schema for calculation of

maximum completion time because of processing times

under the effects of learning and deterioration.

In the literature for comparison of algorithms for PFSS

problems, the time limitation (in milliseconds) of execution

of algorithms is determined with the formula of t � n � m=2
where t is constant, n is the number of jobs and m is the

number of machines. In this study, we used three different t

values where t 2 30; 60; 90f g for comparison. Since there

are no published upper bounds for the PFSS problem under

the effects of learning and deterioration, we solved some of

the test problems of Taillard’s (1993) with a commercial

solver. For the first 90 test instances (from 20 jobs with 5

machines to 100 jobs with 20 machines) of Taillard’s

(1993) benchmark problems, Commercial solver software,

AIMMS, is used to solve test instances by using the

MINLP model introduced in Sect. 3. While solving these

problems in AIMMS, the execution of each problem is

limited until 1000 s or reaching the solution’s optimality

gap to 0.0002. All metaheuristic algorithms (by using their

original parameters) were coded with a standard desktop

computer having an Intel i5 CPU and 8 GB RAM by using

C# programming language with MS Access database. The

well-known performance measure used to evaluate a

solution method’s performance for flow shop scheduling

problems is the average relative percentage deviation

(ARPD) as follows:

X

R

i¼1

ðfi � fbestÞ100

fbest

� �

=R ð17Þ

where fi is the objective function value of the proposed

heuristic or metaheuristic method in ith independent run,

fbest is the best-known solution (optimum or upper bound of

optimum) for the problem, and R is the number of inde-

pendent runs of the solution approach. R value was set as 5

for all test problems. In this study, we used the solutions

obtained by using AIMMS solver as fbest values for test

instances. These solutions of the first 90 problems of

Taillard’s (1993) benchmark problems and all results

obtained from compared metaheuristics are available upon

request for the readers. Table 1 shows ARPD values of

compared algorithms when t value set as 30 for time lim-

itation. Tables 2 and 3 show ARPD values of compared

Table 1 ARPD values of compared algorithms where t = 30

#of jobs #of machines IG_RSLS IGRIS DDERLS TSPOP

20 5 0.00043 0.00038 0.00087 0.00037

20 10 0.00009 0.00007 0.00017 0.00003

20 20 0.00000 0.00000 0.01403 0.00000

50 5 0.00927 0.00666 0.01221 0.00473

50 10 0.00187 0.00173 0.00304 0.00114

50 20 0.00000 0.00000 0.00003 0.00000

100 5 0.02217 0.01687 0.03641 0.01165

100 10 0.01157 0.00796 0.01959 0.00233

100 20 0.00000 0.00000 0.00052 0.00000

Average 0.00504 0.00374 0.00965 0.00225

Table 2 ARPD values of compared algorithms where t = 60

#of jobs #of machines IG_RSLS IGRIS DDERLS TSPOP

20 5 0.00046 0.00028 0.00077 0.00027

20 10 0.00003 0.00002 0.00041 0.00002

20 20 0.00000 0.00000 0.01403 0.00000

50 5 0.00779 0.00554 0.00891 0.00332

50 10 0.00193 0.00117 0.00184 0.00087

50 20 0.00000 0.00000 0.00000 0.00000

100 5 0.01745 0.01121 0.02933 0.00838

100 10 0.00823 0.00630 0.01348 0.00210

100 20 0.00000 0.00000 0.00004 0.00000

Average 0.00399 0.00273 0.00765 0.00166

Table 3 ARPD values of compared algorithms where t = 90

#of jobs #of machines IG_RSLS IGRIS DDERLS TSPOP

20 5 0.00035 0.00016 0.00081 0.00017

20 10 0.00003 0.00002 0.00063 0.00002

20 20 0.00000 0.00000 0.01403 0.00000

50 5 0.00689 0.00509 0.00882 0.00311

50 10 0.00161 0.00072 0.00180 0.00052

50 20 0.00000 0.00002 0.00004 0.00000

100 5 0.01639 0.00856 0.02717 0.00927

100 10 0.00822 0.00584 0.01019 0.00158

100 20 0.00000 0.00000 0.00001 0.00000

Average 0.00372 0.00227 0.00706 0.00163

1512 O. A. Arık

123

algorithms where t = 60 and t = 90 for time limitation,

respectively.

The best ARPD values are marked with bold font in

Tables 1, 2 and 3 for each combination of #of jobs and #of

machines. As seen from Tables 1, 2 and 3, the TSPOP
algorithm has almost all of the best ARPD values for test

instances. Since TSPOP algorithm has a mechanism to avoid

cycling solutions in each execution of the problem, we

checked how many times the proposed algorithm disables a

cycling solution for all test instances within the experiment

with t ¼ 30. The average ratio for avoiding cycling solu-

tions per problem is 9.73%. Thus, TSPOP does not use these

solutions that were already found and improved in previous

iterations. Furthermore, TSPOP generates new solutions that

have chances to be new better solutions by escaping from

cycling solutions. For better comparison, an ANOVA test

was made with 95% confidence level for performance

comparison. We tested the following factors: (1) the

number of jobs (n), tested at three values: 20, 50, and 100.

(2) The number of machines (m), tested at three values: 5,

10, and 20. (3) Type of methods, tested at four variants:

IG_RSLS, IGRIS, DDERLS, and TSPOP. (4) Predetermined

stopping criteria, tested at three variants: t = 30, t = 60 and

t = 90. The detail of ANOVA test is given in Table 4. As

seen from Table 4, all factors except predetermined stop-

ping criteria (t � n � m=2) have a significant difference with

95% confidence level because these factors’ p values are

less than 0.05.

The ANOVA results in Table 4 show that there is a

significant difference between solution methods. For a

more detailed comparison, the interval plot of ARPD val-

ues in Fig. 4 shows that the TSPOP algorithm presents less

ARPD values comparing other algorithms. If we consider

ARPD values for each t value where t 2 30; 60; 90f g, the

interval plot in Fig. 5. For ARPD values of each algorithm

for each t value show that the TSPOP algorithm outperforms

other algorithms for each t value.

Table 4 Anova results of for comparison of solution methods

Source df Adj SS Adj MS F value p value

n 2 0.010861 0.005431 24.06 0.000

m 2 0.009938 0.004969 22.02 0.000

t�n�m/2 2 0.000448 0.000224 0.99 0.371

Method 3 0.006081 0.002027 8.98 0.000

Error 1070 0.241590 0.000226

Total 1079 0.268818

Fig. 4 Interval plot of ARPD

values obtained by solution

approaches

Population-based Tabu search with evolutionary strategies for permutation flow shop… 1513

123

For a more detailed comparison, Wilcoxon signed-rank

tests with a 95% confidence were done between the pro-

posed TSPOP algorithm and other algorithms considering

all t values (t 2 {30, 60, 90}). The results of Wilcoxon

signed-rank tests are given in Table 5. As seen in Table 5,

all p values are less than 0.05. There are significant dif-

ferences between TSPOP and any of the other algorithms

for each t value. Therefore, we say that the proposed

TSPOP algorithm outperforms extremely IG_RSLS, IGRIS,

and DDERLS algorithms in all predetermined stopping

criteria for PFSS problems under the effects of learning and

deterioration.

6 Conclusion

In this study, PFSS problems under the effects of position-

dependent learning and linear deterioration are studied

when the objective function is to minimize the makespan.

A hybrid solution algorithm called population-based Tabu

search algorithm (TSPOP) and well-known heuristic meth-

ods (IG_RSLS, IGRIS, and DDERLS) are used to solve PFSS

problems under the effects of dependent learning and linear

deterioration. For comparison of solution approaches, some

of Taillard’s (1993) benchmark problems under the effects

of learning and deterioration are solved with a commercial

solver. These solutions are used in the comparison of the

algorithms as upper bounds of the problems. The experi-

mental results show that the proposed TSPOP outperforms

other existing algorithms, then the problem’s objective is to

minimize the makespan with jobs under learning and

deterioration effects. For future research, the results in this

study can be used for benchmarks of other metaheuristic

methods for PFSS problems under the effects of position-

dependent learning and linear deterioration. Furthermore,

Fig. 5 Interval plot of ARPD

values obtained by solution

approaches for each t value

Table 5 Results of Wilcoxon signed-rank tests

Comparison t = 30 t = 60 t = 90

IG_RSLS - TSPOP 0.000 0.000 0.000

IGRIS - TSPOP 0.000 0.000 0.000

DDERLS - TSPOP 0.000 0.000 0.000

1514 O. A. Arık

123

the proposed TSPOP algorithm can be used for sequence-

dependent or flexible flow shop scheduling problems.

Compliance with ethical standards

Conflict of interest The author declares that there is no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Appendix

See Table 6.

Table 6 Results and solution times of problems obtained from the commercial solver

n m Problem Upper

bound

Solution

time (s)

n m Problem Upper

bound

Solution

time (s)

n m Problem Upper

bound

Solution

time (s)

20 5 TL001 400.162 0.26 50 5 TL031 475.827 904.06 100 5 TL061 534.778 1000.17

TL002 446.704 0.28 TL032 447.998 358.26 TL062 567.550 1000.06

TL003 413.841 4.21 TL033 424.271 1000.73 TL063 545.323 1005.08

TL004 501.343 1.36 TL034 497.741 5.27 TL064 536.274 1000.29

TL005 373.668 0.58 TL035 521.461 51.70 TL065 496.074 1000.23

TL006 364.707 0.59 TL036 468.034 247.81 TL066 558.454 1000.12

TL007 386.540 0.50 TL037 468.171 600.76 TL067 558.454 1000.98

TL008 388.484 2.62 TL038 454.817 994.76 TL068 510.884 1000.20

TL009 404.511 0.56 TL039 451.537 380.72 TL069 528.090 1001.82

TL010 422.124 1.53 TL040 517.320 253.91 TL070 498.522 1001.04

20 10 TL011 961.889 0.28 50 10 TL041 1066.433 0.58 100 10 TL071 1207.515 3.14

TL012 1097.729 0.53 TL042 1099.947 1.03 TL072 1040.739 853.03

TL013 762.317 0.94 TL043 944.896 2.39 TL073 1123.721 15.99

TL014 928.712 0.55 TL044 933.516 2.37 TL074 1083.033 15.38

TL015 706.059 0.30 TL045 1012.559 1.86 TL075 1078.742 12.96

TL016 764.093 0.11 TL046 1043.195 1.19 TL076 1152.094 13.09

TL017 682.976 1.19 TL047 1102.802 6.80 TL077 987.159 1000.15

TL018 886.098 1.72 TL048 940.027 99.17 TL078 1246.743 5.14

TL019 889.479 0.50 TL049 680.305 1000.06 TL079 1143.643 28.89

TL020 797.371 0.33 TL050 1117.525 1.15 TL080 1165.318 1000.48

20 20 TL021 3419.424 1.51 50 20 TL051 3815.445 1.68 100 20 TL081 3484.915 5.29

TL022 3205.702 0.36 TL052 2944.699 1.75 TL082 4325.104 5.18

TL023 3239.994 0.45 TL053 3071.987 1.58 TL083 4145.950 4.98

TL024 3028.056 1.15 TL054 3432.194 1.11 TL084 4114.610 6.24

TL025 3085.065 0.53 TL055 3411.574 1.51 TL085 3454.885 5.47

TL026 3332.718 0.86 TL056 3292.718 1.05 TL086 3852.578 6.16

TL027 3464.890 0.42 TL057 3378.442 2.25 TL087 3888.146 4.63

TL028 3258.712 0.86 TL058 3661.708 1.58 TL088 4217.352 4.73

TL029 3474.546 1.67 TL059 3708.572 1.68 TL089 3972.387 5.57

TL030 3080.797 1.06 TL060 3708.914 1.61 TL090 3895.830 5.80

Population-based Tabu search with evolutionary strategies for permutation flow shop… 1515

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

References

Abdinnour-Helm S (1998) A hybrid heuristic for the uncapacitated

hub location problem. Eur J Oper Res 106:489–499. https://doi.

org/10.1016/S0377-2217(97)00286-5

Arık OA, Toksarı MD (2018) Multi-objective fuzzy parallel machine

scheduling problems under fuzzy job deterioration and learning

effects. Int J Prod Res 56:2488–2505. https://doi.org/10.1080/

00207543.2017.1388932

Arık OA, Toksarı MD (2019) Fuzzy parallel machine scheduling

problem under fuzzy job deterioration and learning effects with

fuzzy processing times. In: Ram M (ed) Advanced fuzzy logic

approaches in engineering science. IGI Global, Pennsylvania,

pp 49–67

Bank M, Fatemi Ghomi SMT, Jolai F, Behnamian J (2012)

Application of particle swarm optimization and simulated

annealing algorithms in flow shop scheduling problem under

linear deterioration. Adv Eng Softw 47:1–6. https://doi.org/10.

1016/j.advengsoft.2011.12.001

Benavides AJ, Ritt M (2018) Fast heuristics for minimizing the

makespan in non-permutation flow shops. Comput Oper Res

100:230–243. https://doi.org/10.1016/j.cor.2018.07.017

Biskup D (1999) Single-machine scheduling with learning consider-

ations. Eur J Oper Res 115:173–178. https://doi.org/10.1016/

S0377-2217(98)00246-X

Chen S-H, Chang P-C, Cheng TCE, Zhang Q (2012) A self-guided

genetic algorithm for permutation flowshop scheduling prob-

lems. Comput Oper Res 39:1450–1457. https://doi.org/10.1016/j.

cor.2011.08.016

Cheng TCE, Wu CC, Lee WC (2008) Some scheduling problems with

deteriorating jobs and learning effects. Comput Ind Eng

54:972–982. https://doi.org/10.1016/j.cie.2009.06.016

Chung Y-H, Tong L-I (2011) Makespan minimization for m-machine

permutation flowshop scheduling problem with learning consid-

erations. Int J Adv Manuf Technol 56:355–367. https://doi.org/

10.1007/s00170-011-3172-2

Chung Y-H, Tong L-I (2012) Bi-criteria minimization for the

permutation flowshop scheduling problem with machine-based

learning effects. Comput Ind Eng 63:302–312. https://doi.org/10.

1016/j.cie.2012.03.009

Dong X, Huang H, Chen P (2008) An improved NEH-based heuristic

for the permutation flowshop problem. Comput Oper Res

35:3962–3968. https://doi.org/10.1016/j.cor.2007.05.005

Dubois-Lacoste J, Pagnozzi F, Stützle T (2017) An iterated greedy

algorithm with optimization of partial solutions for the makespan

permutation flowshop problem. Comput Oper Res 81:160–166.

https://doi.org/10.1016/j.cor.2016.12.021

Fernandez-Viagas V, Framinan JM (2014) On insertion tie-breaking

rules in heuristics for the permutation flowshop scheduling

problem. Comput Oper Res 45:60–67. https://doi.org/10.1016/j.

cor.2013.12.012

Fernandez-Viagas V, Framinan JM (2019) A best-of-breed iterated

greedy for the permutation flowshop scheduling problem with

makespan objective. Comput Oper Res 112:104767. https://doi.

org/10.1016/j.cor.2019.104767

Fernandez-Viagas V, Ruiz R, Framinan JM (2017) A new vision of

approximate methods for the permutation flowshop to minimise

makespan: state-of-the-art and computational evaluation. Eur J

Oper Res 257:707–721. https://doi.org/10.1016/j.ejor.2016.09.

055

Framinan JM, Leisten R, Ruiz-Usano R (2002) Efficient heuristics for

flowshop sequencing with the objectives of makespan and

flowtime minimisation. Eur J Oper Res 141:559–569. https://doi.

org/10.1016/S0377-2217(01)00278-8

Framinan JM, Gupta JND, Leisten R (2004) A review and classifi-

cation of heuristics for permutation flow-shop scheduling with

makespan objective. J Oper Res Soc 55:1243–1255. https://doi.

org/10.1057/palgrave.jors.2601784

Geng X-N, Wang J-B, Bai D (2019) Common due date assignment

scheduling for a no-wait flowshop with convex resource

allocation and learning effect. Eng Optim 51:1301–1323.

https://doi.org/10.1080/0305215X.2018.1521397

Glover F (1989) Tabu search—part I. ORSA J Comput 1:190–206

Glover F (1990) Tabu search—part II. ORSA J Comput 2:4–32

Glover F, Kelly JP, Laguna M (1995) Genetic algorithms and Tabu

search: hybrids for optimization. Comput Oper Res 22:111–134.

https://doi.org/10.1016/0305-0548(93)E0023-M

Gordon VS, Potts CN, Strusevich VA, Whitehead JD (2008) Single

machine scheduling models with deterioration and learning:

handling precedence constraints via priority generation. J Sched

11:357–370. https://doi.org/10.1007/s10951-008-0064-x

Graham RL, Lawler EL, Lenstra JK, Kan R (1979) Optimization and

approximation in deterministic sequencing and scheduling: a

survey. Ann Discrete Math 5:287–326. https://doi.org/10.1016/

S0167-5060(08)70356-X

Gupta JND, Gupta SK (1988) Single facility scheduling with

nonlinear processing times. Comput Ind Eng 14:387–393

Haq AN, Ramanan TR, Shashikant KS, Sridharan R (2010) A hybrid

neural network–genetic algorithm approach for permutation flow

shop scheduling. Int J Prod Res 48:4217–4231. https://doi.org/

10.1080/00207540802404364

He H (2016) Minimization of maximum lateness in an m-machine

permutation flow shop with a general exponential learning effect.

Comput Ind Eng 97:73–83. https://doi.org/10.1016/j.cie.2016.04.

010

Janiak A, Portmann M-C (1998) Genetic algorithm for the permu-

tation flow-shop scheduling problem with linear models of

operations. Ann Oper Res 83:95–114

Jat SN, Yang S (2011) A hybrid genetic algorithm and Tabu search

approach for post enrolment course timetabling. J Sched

14:617–637. https://doi.org/10.1007/s10951-010-0202-0

Kalczynski PJ, Kamburowski J (2008) An improved NEH heuristic to

minimize makespan in permutation flow shops. Comput Oper

Res 35:3001–3008. https://doi.org/10.1016/j.cor.2007.01.020

Laha D, Chakraborty UK (2009) An efficient hybrid heuristic for

makespan minimization in permutation flow shop scheduling. Int

J Adv Manuf Technol 44:559–569. https://doi.org/10.1007/

s00170-008-1845-2

Lee W-C, Chung Y-H (2013) Permutation flowshop scheduling to

minimize the total tardiness with learning effects. Int J Prod

Econ 141:327–334. https://doi.org/10.1016/j.ijpe.2012.08.014

Lee W-C, Wu C-C, Chung Y-H, Liu H-C (2009) Minimizing the total

completion time in permutation flow shop with machine-

dependent job deterioration rates. Comput Oper Res

36:2111–2121. https://doi.org/10.1016/j.cor.2008.07.008

Lee W-C, Yeh W-C, Chung Y-H (2014) Total tardiness minimization

in permutation flowshop with deterioration consideration. Appl

Math Model 38:3081–3092. https://doi.org/10.1016/j.apm.2013.

11.031

Li X, Gao L (2016) An effective hybrid genetic algorithm and Tabu

search for flexible job shop scheduling problem. Int J Prod Econ

174:93–110. https://doi.org/10.1016/j.ijpe.2016.01.016

Li JR, Khoo LP, Tor SB (2003) A Tabu-enhanced genetic algorithm

approach for assembly process planning. J Intell Manuf

14:197–208. https://doi.org/10.1023/A:1022903514179

Li B-B, Wang L, Liu B (2008) An effective PSO-based hybrid

algorithm for multiobjective permutation flow shop scheduling.

IEEE Trans Syst Man Cybern Part A Syst Hum 38:818–831.

https://doi.org/10.1109/TSMCA.2008.923086

1516 O. A. Arık

123

https://doi.org/10.1016/S0377-2217(97)00286-5
https://doi.org/10.1016/S0377-2217(97)00286-5
https://doi.org/10.1080/00207543.2017.1388932
https://doi.org/10.1080/00207543.2017.1388932
https://doi.org/10.1016/j.advengsoft.2011.12.001
https://doi.org/10.1016/j.advengsoft.2011.12.001
https://doi.org/10.1016/j.cor.2018.07.017
https://doi.org/10.1016/S0377-2217(98)00246-X
https://doi.org/10.1016/S0377-2217(98)00246-X
https://doi.org/10.1016/j.cor.2011.08.016
https://doi.org/10.1016/j.cor.2011.08.016
https://doi.org/10.1016/j.cie.2009.06.016
https://doi.org/10.1007/s00170-011-3172-2
https://doi.org/10.1007/s00170-011-3172-2
https://doi.org/10.1016/j.cie.2012.03.009
https://doi.org/10.1016/j.cie.2012.03.009
https://doi.org/10.1016/j.cor.2007.05.005
https://doi.org/10.1016/j.cor.2016.12.021
https://doi.org/10.1016/j.cor.2013.12.012
https://doi.org/10.1016/j.cor.2013.12.012
https://doi.org/10.1016/j.cor.2019.104767
https://doi.org/10.1016/j.cor.2019.104767
https://doi.org/10.1016/j.ejor.2016.09.055
https://doi.org/10.1016/j.ejor.2016.09.055
https://doi.org/10.1016/S0377-2217(01)00278-8
https://doi.org/10.1016/S0377-2217(01)00278-8
https://doi.org/10.1057/palgrave.jors.2601784
https://doi.org/10.1057/palgrave.jors.2601784
https://doi.org/10.1080/0305215X.2018.1521397
https://doi.org/10.1016/0305-0548(93)E0023-M
https://doi.org/10.1007/s10951-008-0064-x
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1080/00207540802404364
https://doi.org/10.1080/00207540802404364
https://doi.org/10.1016/j.cie.2016.04.010
https://doi.org/10.1016/j.cie.2016.04.010
https://doi.org/10.1007/s10951-010-0202-0
https://doi.org/10.1016/j.cor.2007.01.020
https://doi.org/10.1007/s00170-008-1845-2
https://doi.org/10.1007/s00170-008-1845-2
https://doi.org/10.1016/j.ijpe.2012.08.014
https://doi.org/10.1016/j.cor.2008.07.008
https://doi.org/10.1016/j.apm.2013.11.031
https://doi.org/10.1016/j.apm.2013.11.031
https://doi.org/10.1016/j.ijpe.2016.01.016
https://doi.org/10.1023/A:1022903514179
https://doi.org/10.1109/TSMCA.2008.923086

Liaw C-F (2000) A hybrid genetic algorithm for the open shop

scheduling problem. Eur J Oper Res 124:28–42

Lin Q, Gao L, Li X, Zhang C (2015) A hybrid backtracking search

algorithm for permutation flow-shop scheduling problem. Com-

put Ind Eng 85:437–446. https://doi.org/10.1016/j.cie.2015.04.

009

Lu Y-Y (2016) Research on no-idle permutation flowshop scheduling

with time-dependent learning effect and deteriorating jobs. Appl

Math Model 40:3447–3450. https://doi.org/10.1016/j.apm.2015.

09.081

McCormick ST, Pinedo ML, Shenker S, Wolf B (1989) Sequencing in

an assembly line with blocking to minimize cycle time. Oper Res

37:925–935. https://doi.org/10.1287/opre.37.6.925

Meeran S, Morshed MS (2012) A hybrid genetic Tabu search

algorithm for solving job shop scheduling problems: a case

study. J Intell Manuf 23:1063–1078. https://doi.org/10.1007/

s10845-011-0520-x

Mosheiov G (1991) V-shaped policies for scheduling deteriorating

jobs. Oper Res 39:979–991. https://doi.org/10.1287/opre.39.6.

979

Muştu S, Eren T (2018) Maximum completion time under a learning

effect in the permutation flowshop scheduling problem. Int J Ind

Eng Theory Appl Pract 25:156–174

Nagano MS, Ruiz R, Lorena LAN (2008) A constructive genetic

algorithm for permutation flowshop scheduling. Comput Ind Eng

55:195–207. https://doi.org/10.1016/j.cie.2007.11.018

Osman I, Potts C (1989) Simulated annealing for permutation flow-

shop scheduling. Omega 17:551–557. https://doi.org/10.1016/

0305-0483(89)90059-5

Palacios JJ, González MA, Vela CR et al (2015) Genetic Tabu search

for the fuzzy flexible job shop problem. Comput Oper Res

54:74–89. https://doi.org/10.1016/j.cor.2014.08.023

Pan Q-K, Tasgetiren MF, Liang Y-C (2008) A discrete differential

evolution algorithm for the permutation flowshop scheduling

problem. Comput Ind Eng 55:795–816. https://doi.org/10.1016/j.

cie.2008.03.003

Pasupathy T, Rajendran C, Suresh RK (2006) A multi-objective

genetic algorithm for scheduling in flow shops to minimize the

makespan and total flow time of jobs. Int J Adv Manuf Technol

27:804–815. https://doi.org/10.1007/s00170-004-2249-6

Qin H, Zhang Z-H, Bai D (2016) Permutation flowshop group

scheduling with position-based learning effect. Comput Ind Eng

92:1–15. https://doi.org/10.1016/j.cie.2015.12.001

Rajkumar R, Shahabudeen P (2009) An improved genetic algorithm

for the flowshop scheduling problem. Int J Prod Res 47:233–249.

https://doi.org/10.1080/00207540701523041

Reza Hejazi S, Saghafian S (2005) Flowshop-scheduling problems

with makespan criterion: a review. Int J Prod Res 43:2895–2929.

https://doi.org/10.1080/0020754050056417

Rossi FL, Nagano MS, Neto RFT (2016) Evaluation of high

performance constructive heuristics for the flow shop with

makespan minimization. Int J Adv Manuf Technol 87:125–136

Ruiz R, Stützle T (2007) A simple and effective iterated greedy

algorithm for the permutation flowshop scheduling problem. Eur

J Oper Res 177:2033–2049. https://doi.org/10.1016/j.ejor.2005.

12.009

Ruiz R, Stützle T (2008) An iterated Greedy heuristic for the

sequence dependent setup times flowshop problem with make-

span and weighted tardiness objectives. Eur J Oper Res

187:1143–1159. https://doi.org/10.1016/j.ejor.2006.07.029

Shi H-B, Wang J-B (2019) Research on common due window

assignment flowshop scheduling with learning effect and

resource allocation. Eng Optim. https://doi.org/10.1080/

0305215X.2019.1604698

Shiau Y-R, Tsai M-S, Lee W-C, Cheng TCE (2015) Two-agent two-

machine flowshop scheduling with learning effects to minimize

the total completion time. Comput Ind Eng 87:580–589. https://

doi.org/10.1016/j.cie.2015.05.032

Sun H, Yu J, Wang H (2015) Multi-population and self-adaptive

genetic algorithm based on simulated annealing for permutation

flow shop scheduling problem. In: Deng Z, Li H (eds)

Proceedings of the 2015 Chinese intelligent automation confer-

ence. Springer, Berlin, Heidelberg, pp 11–19. https://doi.org/10.

1007/978-3-662-46466-3_2

Sun L-H, Ge C-C, Zhang W et al (2019) Permutation flowshop

scheduling with simple linear deterioration. Eng Optim

51:1281–1300. https://doi.org/10.1080/0305215X.2018.1519558

Suresh RK, Mohanasundaram KM (2004) Pareto archived simulated

annealing for permutation flow shop scheduling with multiple

objectives. In: 2004 IEEE Conference on cybernetics and

intelligent systems

Taillard E (1990) Some efficient heuristic methods for the flow shop

sequencing problem. Eur J Oper Res 47:65–74. https://doi.org/

10.1016/0377-2217(90)90090-X

Taillard E (1993) Benchmarks for basic scheduling problems. Eur J

Oper Res 64:278–285. https://doi.org/10.1016/0377-

2217(93)90182-M

Toksarı MD, Arık OA (2017) Single machine scheduling problems

under position-dependent fuzzy learning effect with fuzzy

processing times. J Manuf Syst 45:159–179. https://doi.org/10.

1016/j.jmsy.2017.08.006

Toksarı MD, Güner E (2008) Minimizing the earliness/tardiness costs

on parallel machine with learning effects and deteriorating jobs:

a mixed nonlinear integer programming approach. Int J Adv

Manuf Technol 38:801–808. https://doi.org/10.1007/s00170-

007-1128-3

Toksarı MD, Güner E (2010) Parallel machine scheduling problem to

minimize the earliness/tardiness costs with learning effect and

deteriorating jobs. J Intell Manuf 21:843–851. https://doi.org/10.

1007/s10845-009-0260-3

Tseng L-Y, Lin Y-T (2010) A genetic local search algorithm for

minimizing total flowtime in the permutation flowshop schedul-

ing problem. Int J Prod Econ 127:121–128. https://doi.org/10.

1016/j.ijpe.2010.05.003

Vasiljevic D, Danilovic M (2015) Handling ties in heuristics for the

permutation flow shop scheduling problem. J Manuf Syst

35:1–9. https://doi.org/10.1016/j.jmsy.2014.11.011

Wang J-B (2006) A note on scheduling problems with learning effect

and deteriorating jobs. Int J Syst Sci 37:827–833. https://doi.org/

10.1080/00207720600879260

Wang J-B (2007) Single-machine scheduling problems with the

effects of learning and deterioration. Omega 35:397–402. https://

doi.org/10.1016/j.omega.2005.07.008

Wang J-B (2009) Single-machine scheduling with learning effect and

deteriorating jobs. Comput Ind Eng 57:1452–1456. https://doi.

org/10.1016/j.cie.2009.07.015

Wang J-B, Liang X-X (2019) Group scheduling with deteriorating

jobs and allotted resource under limited resource availability

constraint. Eng Optim 51:231–246. https://doi.org/10.1080/

0305215X.2018.1454442

Wang J-B, Wang C (2011) Single-machine due-window assignment

problem with learning effect and deteriorating jobs. Appl Math

Model 35:4017–4022. https://doi.org/10.1016/j.apm.2011.02.023

Wang J-B, Wang M-Z (2013) Minimizing makespan in three-machine

flow shops with deteriorating jobs. Comput Oper Res

40:547–557. https://doi.org/10.1016/j.cor.2012.08.006

Wang J-J, Zhang B-H (2015) Permutation flowshop problems with bi-

criterion makespan and total completion time objective and

position-weighted learning effects. Comput Oper Res 58:24–31.

https://doi.org/10.1016/j.cor.2014.12.006

Population-based Tabu search with evolutionary strategies for permutation flow shop… 1517

123

https://doi.org/10.1016/j.cie.2015.04.009
https://doi.org/10.1016/j.cie.2015.04.009
https://doi.org/10.1016/j.apm.2015.09.081
https://doi.org/10.1016/j.apm.2015.09.081
https://doi.org/10.1287/opre.37.6.925
https://doi.org/10.1007/s10845-011-0520-x
https://doi.org/10.1007/s10845-011-0520-x
https://doi.org/10.1287/opre.39.6.979
https://doi.org/10.1287/opre.39.6.979
https://doi.org/10.1016/j.cie.2007.11.018
https://doi.org/10.1016/0305-0483(89)90059-5
https://doi.org/10.1016/0305-0483(89)90059-5
https://doi.org/10.1016/j.cor.2014.08.023
https://doi.org/10.1016/j.cie.2008.03.003
https://doi.org/10.1016/j.cie.2008.03.003
https://doi.org/10.1007/s00170-004-2249-6
https://doi.org/10.1016/j.cie.2015.12.001
https://doi.org/10.1080/00207540701523041
https://doi.org/10.1080/0020754050056417
https://doi.org/10.1016/j.ejor.2005.12.009
https://doi.org/10.1016/j.ejor.2005.12.009
https://doi.org/10.1016/j.ejor.2006.07.029
https://doi.org/10.1080/0305215X.2019.1604698
https://doi.org/10.1080/0305215X.2019.1604698
https://doi.org/10.1016/j.cie.2015.05.032
https://doi.org/10.1016/j.cie.2015.05.032
https://doi.org/10.1007/978-3-662-46466-3_2
https://doi.org/10.1007/978-3-662-46466-3_2
https://doi.org/10.1080/0305215X.2018.1519558
https://doi.org/10.1016/0377-2217(90)90090-X
https://doi.org/10.1016/0377-2217(90)90090-X
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/j.jmsy.2017.08.006
https://doi.org/10.1016/j.jmsy.2017.08.006
https://doi.org/10.1007/s00170-007-1128-3
https://doi.org/10.1007/s00170-007-1128-3
https://doi.org/10.1007/s10845-009-0260-3
https://doi.org/10.1007/s10845-009-0260-3
https://doi.org/10.1016/j.ijpe.2010.05.003
https://doi.org/10.1016/j.ijpe.2010.05.003
https://doi.org/10.1016/j.jmsy.2014.11.011
https://doi.org/10.1080/00207720600879260
https://doi.org/10.1080/00207720600879260
https://doi.org/10.1016/j.omega.2005.07.008
https://doi.org/10.1016/j.omega.2005.07.008
https://doi.org/10.1016/j.cie.2009.07.015
https://doi.org/10.1016/j.cie.2009.07.015
https://doi.org/10.1080/0305215X.2018.1454442
https://doi.org/10.1080/0305215X.2018.1454442
https://doi.org/10.1016/j.apm.2011.02.023
https://doi.org/10.1016/j.cor.2012.08.006
https://doi.org/10.1016/j.cor.2014.12.006

Wang JB, Lin L, Shan F (2008a) Flow shop scheduling with effects of

learning and deterioration. J Appl Math Comput 26:367–379.

https://doi.org/10.1007/s12190-007-0033-0

Wang JB, Ng CT, Cheng TCE, Liu LL (2008b) Single-machine

scheduling with a time-dependent learning effect. Int J Prod

Econ 111:802–811. https://doi.org/10.1016/j.ijpe.2007.03.013

Wang J-B, Gao M, Wang J-J et al (2019a) Scheduling with a position-

weighted learning effect and job release dates. Eng Optim.

https://doi.org/10.1080/0305215X.2019.1664498

Wang J-B, Liu F, Wang J-J (2019b) Research on m-machine flow

shop scheduling with truncated learning effects. Int Trans Oper

Res 26:1135–1151. https://doi.org/10.1111/itor.12323

Xiao Y-Y, Zhang R-Q, Zhao Q-H, Kaku I (2012) Permutation flow

shop scheduling with order acceptance and weighted tardiness.

Appl Math Comput 218:7911–7926. https://doi.org/10.1016/j.

amc.2012.01.073

Xu J, Lin W-C, Wu J et al (2016) Heuristic based genetic algorithms

for the re-entrant total completion time flowshop scheduling with

learning consideration. Int J Comput Intell Syst 9:1082–1100.

https://doi.org/10.1080/18756891.2016.1256572

Yang DL, Kuo WH (2010) Some scheduling problems with

deteriorating jobs and learning effects. Comput Ind Eng

58:25–28. https://doi.org/10.1016/j.cie.2009.06.016

Yenisey MM, Yagmahan B (2014) Multi-objective permutation flow

shop scheduling problem: literature review, classification and

current trends. Omega (United Kingdom) 45:119–135. https://

doi.org/10.1016/j.omega.2013.07.004

Yin N, Kang L (2015) Minimizing makespan in permutation flow

shop scheduling with proportional deterioration. Asia Pac J Oper

Res 32:15500505. https://doi.org/10.1142/S0217595915500505

Zhang L, Gao L, Li X (2013) A hybrid genetic algorithm and Tabu

search for a multi-objective dynamic job shop scheduling

problem. Int J Prod Res 51:3516–3531. https://doi.org/10.1080/

00207543.2012.751509

Zobolas GI, Tarantilis CD, Ioannou G (2009) Minimizing makespan

in permutation flow shop scheduling problems using a hybrid

metaheuristic algorithm. Comput Oper Res 36:1249–1267.

https://doi.org/10.1016/j.cor.2008.01.007

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

1518 O. A. Arık

123

https://doi.org/10.1007/s12190-007-0033-0
https://doi.org/10.1016/j.ijpe.2007.03.013
https://doi.org/10.1080/0305215X.2019.1664498
https://doi.org/10.1111/itor.12323
https://doi.org/10.1016/j.amc.2012.01.073
https://doi.org/10.1016/j.amc.2012.01.073
https://doi.org/10.1080/18756891.2016.1256572
https://doi.org/10.1016/j.cie.2009.06.016
https://doi.org/10.1016/j.omega.2013.07.004
https://doi.org/10.1016/j.omega.2013.07.004
https://doi.org/10.1142/S0217595915500505
https://doi.org/10.1080/00207543.2012.751509
https://doi.org/10.1080/00207543.2012.751509
https://doi.org/10.1016/j.cor.2008.01.007

	Population-based Tabu search with evolutionary strategies for permutation flow shop scheduling problems under effects of position-dependent learning and linear deterioration
	Abstract
	Introduction
	Literature review
	Mathematical model
	Population-based Tabu search with evolutionary strategies
	Numerical examples
	Conclusion
	Open Access
	Appendix
	References

