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Population coding in neuronal systems with correlated noise
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Neuronal representations of external events are often distributed across large populations of cells. We study
the effect of correlated noise on the accuracy of these neuronal population codes. Our main question is whether
the inherent error in the population code can be suppressed by increasing the size of the populationN in the
presence of correlated noise. We address this issue using a model of a population of neurons that are broadly
tuned to an angular variable in two dimensions. The fluctuations in the neuronal activities are modeled as
Gaussian noises with pairwise correlations that decay exponentially with the difference between the preferred
angles of the correlated cells. We assume that the system is broadly tuned, which means that both the
correlation length and the width of the tuning curves of the mean responses span a substantial fraction of the
entire system length. The performance of the system is measured by the Fisher information~FI!, which bounds
its estimation error. By calculating the FI in the limit of a largeN, we show that positive correlations decrease
the estimation capability of the network, relative to the uncorrelated population. The information capacity
saturates to a finite value as the number of cells in the population grows. In contrast, negative correlations
substantially increase the information capacity of the neuronal population. These results are supplemented by
the effect of correlations on the mutual information of the system. Our analysis provides an estimate of the
effective number of statistically independent degrees of freedom, denotedNeff , that a large correlated system
can have. According to our theoryNeff remains finite in the limit of a largeN. Estimating the parameters of the
correlations and tuning curves from experimental data in some cortical areas that code for angles, we predict
that the number of effective degrees of freedom embedded in localized populations in these areas is less than
or of the order of'102.

DOI: 10.1103/PhysRevE.64.051904 PACS number~s!: 87.18.Sn
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I. INTRODUCTION

In many neural systems, information regarding sens
inputs or~intended! motor outputs is distributed across larg
populations of neurons@1–6#. It is generally believed tha
one of the main features of neuronal population codes is t
redundancy@7–9#, and that this redundancy serves to co
pensate for the inherent noise caused by the stochastici
the neuronal responses. The ability to overcome neuro
noise by pooling a large number of responses generally h
for an ensemble of neurons whose variabilities are stat
cally independent. This is far from obvious in situatio
where the ‘‘noisy’’ part of the neuronal activity is correlate
within the population.

Naively it seems reasonable to assume that when
noise is correlated, population averaging would not be eff
tive in suppressing the noise, hence the information capa
of the population should be limited even when the numbe
participating cells is large. This intuition has been suppor
by recent studies which found that averaging the respon
of a uniformly correlated population does not suppress
inherent error@10#. On the other hand, a recent analytic
investigation by Abbott and Dayan@11# showed that uniform
positive correlations increase the information capacity of
population. They further concluded that more generally, e
if the information is not enhanced compared to the unco
lated situation, it still increases linearly with the size of t
population, so that pooling a large population is effective
improving the accuracy of the extracted information even
the presence of correlations. Other studies based on sim
tions have also found that positive correlations enhance
1063-651X/2001/64~5!/051904~11!/$20.00 64 0519
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accuracy of the population codes@12#. Since cross correla
tions in neuronal activity are frequently observed in sens
and motor cortical areas@13–15#, understanding the effect o
noise correlation in biologically relevant situations is of gre
importance.

In this paper we present an analytical study of the eff
of noise correlations on the population coding of a pool
cells that encode a single variable, which for convenienc
taken to represent an angle, such as the orientation of a v
stimulus or the direction of an arm movement in a plane. W
assume that the correlation in the noisy activity of the n
rons follows the multivariate Gaussian distribution. As w
be shown, the effect of correlations depends crucially
their spatial dependence. Here, we will assume that the
relations between a pair of neurons decay exponentially
the difference between their functional spatial coordina
increases. In the present case, the functional coordinate
neuron is its preferred angle, which is the angle that elic
the strongest mean response. We investigate the accura
the information in the population in biologically relevant p
rameter regimes, using the frameworks of the Fisher inf
mation ~FI! and the Shannon mutual information~MI !.

The paper is organized as follows: We begin by analyz
a simple example in Sec. II that clarifies the special case
uniform correlations, a topic that has been discussed ex
sively in the literature@10,11,16#. To relate directly to some
of the previous treatments of this problem, we will consid
the task of discrimination between two values of a signal
a linear rule, rather than the problem of general stimu
estimation that will be the focus of the rest of the paper.
Sec. III we describe the main model investigated in t
©2001 The American Physical Society04-1
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work. This model consists of neurons coding an angle w
spatially dependent correlations. The properties of the F
this system in various parameter regimes are studied in
IV. In Sec. V we present the results for the effect of cor
lations on the MI of the system. Discussion of the results a
their implications for concrete experimental systems is giv
in Sec. VI.

Partial preliminary results of this work have been repor
elsewhere@17#.

II. UNIFORM NOISE CORRELATIONS

A. Linear discrimination

We begin our analysis of the effect of correlations
considering the problem of discriminating two stimuli on t
basis of noisy responses of a correlated pool ofN neurons.
We assume that each neuron fires on average at a ratef i

1 ,
( i 51,2, . . . ,N), for one stimulus, and atf i

2 for the other.
We further assume uniform pairwise correlations amo
neurons in the pool, namely,

Ci j 5a@d i j 1c~12d i j !#, ~1!

wherea is the variance of the responses of each neuron
c is the correlation coefficient of the pairwise fluctuation
Assuming Gaussian statistics, the probability distribution
an activity profile of the population is

P~r u6 !5Z21 expS 2
1

2 (
i j

~r i2 f i
6!Ci j

21~r j2 f j
6! D ,

~2!

wherer5$r 1 ,r 2 , . . . ,r N%, r i is the response of thei th neu-
ron, andZ is a normalization constant.

A simple discrimination rule is based on a linear reado

LW~r !5(
i 51

N

Wir i . ~3!

The distribution of this quantity consists of a mixture of tw
Gaussians with equal variance and meansLW(f6),

LW~ f6!5(
i 51

N

Wi f i
6 , ~4!

whereLW(f6) corresponds to the case of a1 and2 stimu-
lus, respectively. A maximum likelihood discrimination ru
based onLW(r ) makes a1 decision if LW(r ) is closer to
LW(f1). Otherwise, the inputs are classified as2. Note that
we have assumed that the correlations are independent o
stimulus, hence the distributions ofLW(r ) have the same
variance for both stimuli. The error of this decision rule,Pe ,
for a case where the stimulus was1 is given by

Pe5E
AS

` dx

A2p
e2(x2/2), ~5!

whereS is the ~squared! signal to noise ratio~SNR!,
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S5
@LW~ f1!2LW~ f2!#2

^@LW~r !2LW~ f1!#2&
, ~6!

where ^•••& denotes the average over fluctuations, in t
case, with respect toP(r u1), Eq. ~2!. This SNR is the vari-
ance of the signal divided by the variance of the noise.
identical result holds for the SNR in the case of a2 stimu-
lus. The average over fluctuations, which is a Gaussian i
gration, can be performed easily,

^@LW~r !2LW~ f1!#2&5(
i j

WiWj^~r i2 f i
1!~r j2 f j

1!&,

5(
i j

WiWjCi j . ~7!

Ci j of Eq. ~1! gives

S5
1

a

S (
i

giWi D 2

~12c!(
i

Wi
21cS (

i
Wi D 2 , ~8!

where

gi5 f i
12 f i

2 . ~9!

B. Uniform pooling

A simple majority rule is a uniform pooling in which

Wi5W ~10!

for all i. In this case, Eq.~8! reduces to

S5
N

~12c!1cN
S0 , ~11!

where S0 denotes the SNR per neuron in an independ
population, which is

S05
ḡ2

a
, ~12!

wherex̄ represents an average ofxi over the population, i.e.
x̄[1/N( i 51

N xi . Equation~11! predicts thatS saturates to a
finite value in large systems,

S.
S0

c
, N@

1

c
. ~13!

A linear increase ofS with N will be seen when the correla
tions are weak in the regime of a smallN,

S.S0N, 1!N!
1

c
~14!
4-2
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C. Optimal linear readout

Next we consider a linear readout with weights that
optimized to maximize the accuracy of its discrimination. B
differentiating SNR with respect to$W% it can be shown tha
the following vectorW maximizes the SNR@18#.

Wi}(
j 51

N

Ci j
21gj , ~15!

}gi2
cN

~12c!1cN
ḡ. ~16!

Note thatWi changes fromgi to gi2ḡ asN increases beyond
NC51/c unlessc50. For the optimal linear readout th
SNR becomes

S5N
ḡ2

a F11cS 211N
~12c!~12k!

12c~12Nk! D G
21

, ~17!

wherek, 0,k,1, defined by

k5
ḡ22ḡ2

ḡ2
, ~18!

represents the inhomogeneity of the population. The dep
dence of Eq.~17! on N is very different from that of the
uniform pooling, Eq.~11!. Most importantly unlessk50, S
does not saturate for a largeN, but diverges linearly withN
as

S.S k

12cDNS0 , N@
12c

ck
. ~19!

Thus, for a largeN, S increases faster thanNS0 if c.12k,
which means that for sufficiently strong uniform correl
tions, the performance of the optimal linear readout in a la
population is superior to the independent case. Finally,
weak positive correlations (0,c!1), there is another linea
regime forS, which is given by

S.S0N, 1!N!
1

c
, ~20!

as in the uniform pooling case. These properties are show
Fig. 1.

This analysis clarifies some of the apparently conflict
conclusions drawn previously with regard to the effect
uniform positive correlations. We show here that in the pr
ence of a substantial inhomogeneity of the mean respon
accurate information can be extracted from a large uniform
correlated ensemble. However, a simple majority rule is
capable of extracting this information.

Naively, we would expect that the behavior exhibited
the case of uniform correlations should be indicative of
more general case. In particular, we would expect that e
if the correlations are not uniform but rather decay in spa
an optimal readout will be able to extract the informati
from the system with an accuracy that increases linearly w
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N. This in fact is not the case, as is shown in the analy
below. Nevertheless, the simple example discussed in
section illustrates one of the important features in correla
populations: the interplay between the correlation of the fl
tuation, which in this example is denoted byc, and the ho-
mogeneity or diversity of the response characteristics of
neurons in the population, which in the present case is r
resented by the parameterk.

III. MODEL: ESTIMATION OF AN ANGULAR VARIABLE

The remainder of this paper deals with a population oN
neurons that responds to a stimulus characterized by an a
u, where2p,u<p. The activity of each neuron is agai
assumed to be Gaussian with a meanf i(u) that represents its
tuning curve, and a uniform variancea. The noise is assume
to be pairwise-correlated throughout the population. He
the activity profile of the whole population,r5$r 1 ,
r 2 ,•••,r N%, given a stimulusu, follows the following multi-
variate Gaussian distribution

P~r uu!5
1

Z
expS 2

1

2 (
i , j

@r i2 f i~u!#Ci j
21@r j2 f j~u!# D ,

~21!

whereZ is a normalization constant.
The tuning curves of all the neurons are assumed to

unimodal and identical in form but peaked at differe
angles, i.e.,

f i~u!5 f ~u2f i !. ~22!

Here the angles at peaks or preferred anglesf i are distrib-
uted uniformly from 2p to p, that is, f j52p(N11)/N
1 j v, j 51, . . . ,N. The lattice spacing,v, between two
neighboring preferred angles is

v52p/N. ~23!

FIG. 1. Squared signal to noise ratio as a function of the num
of neuronsN that are uniformly correlated withc50.1. The dashed
line represents the signal to noise Ratio of the independent pop
tion. The topmost curve is fork51, and from the bottomk50 and
k50.4.
4-3
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SOMPOLINSKY, YOON, KANG, AND SHAMIR PHYSICAL REVIEW E64 051904
For concreteness, we use the following tuning curve:

f ~u!5~ f max2 f ref!exp„~cosu21!/s2
…1 f ref , ~24!

for our numerical calculations. Heres is the tuning width.
The correlations are assumed to be independent of the st
lus, but dependent on the angular coordinates,

Ci j 5a@d i j 1C~f i2f j !~12d i j !#. ~25!

We assume thatC(f i2f j ) decreases with a decay lengthr
as the difference in the preferred angles of the correlated
increases. A decrease in the magnitude of neuronal cor
tions with the dissimilarity in the preferred angles is oft
observed in cortical areas@10,14,19,20#. A concrete example
is

C~f i2f j !5c expS 2
if i2f j i

r D for iÞ j , ~26!

whereif12f2i is the relative angle difference betweenf1
and f2, hence its range is from 0 top. The coefficientc
measures the correlations between neighboring cells.
positive-definiteness of the correlation matrixCi j implies the
following bounds onc:

2
1

N

p/r

12e2p/r
,c,1. ~27!

This equation implies that stability puts strong limits on t
magnitude of broadly tuned negative correlations in a la
population. In the present context, it implies that for a giv
strengthucu of negative correlations, the population size ca
not be larger thanO(1/ucu). Unless otherwise stated, we wi
assume thatc is positive.

The properties of the system for a largeN are crucially
dependent on the way in which the distance constants~in
angular space! scale withN. In this paper we focus on a
broadly tuned system that we believe is the most relev
case in biology. We define broad tuning to mean that
distance constants span a substantial fraction of the
range of the system. In our model the distance constants
the tuning widths and the correlation lengthr. We thus
assume that a given stimulus generates a response in a
stantial fraction of the whole population, and that a giv
neuron is correlated with a substantial fraction of the po
lation. Mathematically, this means that as we take the la
N limit, the parameterss and r stay finite. In addition, we
assume thatf (u) andC(f) are smooth, differentiable func
tions.

IV. THE FISHER INFORMATION

A useful way of measuring the efficiency of the popu
tion coding is the FI@9,11,17#,

J~u!5K 2
]2

]u2
ln P~r uu!L . ~28!

For the Gaussian ensemble, Eq.~21!, the FI reads
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J~u!5(
i j

f i8~u!@C21# i j f j8~u!, ~29!

where f i8(u)5] f i(u)/]u. Diagonalizing this quadratic form
yields

J~u!5N(
n

ugnu2

Cn
, ~30!

where $Cn% are the eigenvalues of the covariance matr
Note that the eigenvectors of the correlation matrixC de-
fined in Eqs.~25! and~26! have the form of harmonic func
tions,e2 inf i. Hence,Cn is one of the Fourier components o
C(if i 2f j i).

Cn[a~12c!1a(
j 51

N

exp@2 in~f i2f j !# C~f i2f j !,

~31!

gn is the Fourier transform of the derivative off j (u), defined
by

gn5
1

N (
j 51

N

e2 inf j f j8~u!. ~32!

The mode indexn is an integer running from2(N21)/2 to
(N21)/2 ~for odd N). In the case of an uncorrelated pop
lation (c50), the FI is given by

J5NJ0 , J05(
n

ugnu2

a
. ~33!

It should be noted that in the uncorrelated case, the FI
neuronJ0 is of the order of one, since the particular norma
ization for ugnu2, Eq. ~32!, ensures that(ugnu2;O(1). The
FI is a local measure of the sensitivity of the response pr
ability of the population to small changes in the stimul
value, and may therefore depend on the stimulus va
However, in our case the isotropy of the system ensures
J is the same for allu.

Figure 2 displays the FI of the above model for vario
values ofc as a function ofr. The number of neuronsN is
1000 and Eq.~24! is used for the tuning curves. The resu
clearly demonstrate several distinct regimes forJ as we vary
the correlation lengthr, as explained below.

A. The Fisher information for a system with broadly
tuned correlations

The behavior ofJ, Eq. ~29!, for a largeN depends on the
range of correlations and the width of the tuning curv
Obviously, if the correlations are short ranged so that e
neuron is correlated with only a few of its neighbors, t
amount of information in the system will still grow linearl
with N. Here we analyze the biologically interesting limit o
broadly tuned systems. The broad tuning off implies that
ugnu2 decays rapidly asn increases beyond a characteris
value, which is proportional to the inverse of the tunin
width s so that the signal resides in the first few Four
4-4
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POPULATION CODING IN NEURONAL SYSTEMS WITH . . . PHYSICAL REVIEW E64 051904
modes. At the same time, the broad tuning ofC implies that
the noise, namely, the variance of these modes,Cn , are of
orderN, resulting in the FI, which is of order unity@see Eq.
~36! below#. To illustrate this important point, we evalua
Cn , for the example of Eq.~26!, assuming a largeN andr
;O(1), andobtain ~see Appendix A!

J5N (
n

ugnu2

a F11
N

Nn
G21

, ~34!

where

Nn5
pr

c

r221n2

12~21!ne2p/r
. ~35!

B. Positive correlations

In the case of positivec, Nn is positive and can be inter
preted as representing the number of degrees of freedo
each mode in thenth term~see below!. The largeN limit can
be taken in Eq.~34! for N@1/c, yielding

J5(
n

ugnu2

a
Nn , ~36!

which is O(1). Hence the FI of the entire population do
not scale linearly with the population sizeN but saturates to
a size-independent finite limit~see Fig. 3, withc50.1).

It is useful to introduceNeff as the effective number o
independent degrees of freedom in the correlated system
general, it can be defined as the ratio between the FI of
system and the FI per neuron in the absence of correlat

Neff5
J

J0
. ~37!

FIG. 2. Normalized Fisher information as a function of corre
tion lengthr. The correlation coefficient varies fromc50.820.1
with a uniform spacing of 0.1 from top to bottom whenr is large.
Equation~24! was used for the tuning curves, withs5p/4, f max

525, andf re f55. The number of neuronsN is 1000. The ratioJ/J0

does not depend on the variance of the cells,a.
05190
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In our case for a largeN we obtain thatNeff is finite and is
equal to

Neff5^Nn&n , ~38!

where^•••&n is defined as a weighted average

^Xn&n[

(
n

ugnu2Xn

(
n

ugnu2
. ~39!

While it is easy to see from Eq.~35! that Neff is inversely
proportional toc, the dependence ofNeff on r is slightly
more complicated. This is shown in Fig. 4. As a function
r, Neff has a minimum aroundr;1.

-
FIG. 3. Fisher information of the population as a function of t

number of neuronsN in the pool. The linear curve~dashed line!
representsJ0 for an independent population.J with negative corre-
lations lies aboveJ0, whereasJ with positive correlations lies be
low. For all cases,r51, a515, s5p/4, f max525, andf re f55.

FIG. 4. Neff and Nlin as a function of the correlation lengthr.
N51000 andc50.1. Equation~24! was used for the tuning curve
with s5p/4, f max525, andf re f55.
4-5
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SOMPOLINSKY, YOON, KANG, AND SHAMIR PHYSICAL REVIEW E64 051904
C. Negative correlations

Whenc,0, J is larger thanJ0N becauseNn,0 @see Eq.
~34!#. As mentioned above, the lower bound ofc @Eq. ~27!#
implies that when the correlations are negative andr is of
order of one there is an upper limit on the size of the po
lation. As N increases and approaches this limit the syst
reaches an instability that increases its sensitivity to sm
changes in the stimulus. Consequently,J diverges in this
limit, as shown in Fig. 3, withc520.005.

D. Weak correlations

When the magnitude ofc is small there is an intermediat
regime whereN@1 but nevertheless,J increases linearly
with N. In this case, the FI can be approximated as

J'NJ0 . ~40!

From Eq.~34! it is readily seen that this behavior occurs f
1!N!Nlin , where

1

Nlin
5 K 1

uNnu L
n

. ~41!

This holds for both positive and negative correlations. T
dependence ofNlin on the correlation length constantr is
shown in Fig. 4.

E. The effect of correlations on the population vector

Equation~30! can be interpreted as the FI of the collecti
modes of the system, which in our case are

zn5
1

N (
i 51

N

einf i r i .

Since these modes are statistically independent~given a
stimulus!, the entire FI is simply the sum of the FI of each
them. Each mode contributes a term which is its SNR, wh
the signal of thenth mode isugnu2 and its noise, i.e., its
variance isCn . According to our analysis above, because
the broad tuning off i only a few of these modes contribu
significantly to J. On the other hand, because of the lo
range of the correlations, the contributions of these mo
are of order unity, leading to the saturations ofJ.

Of particular interest is the accuracy of an estimation t
is based on the first mode,z1. This component can be writte
as a two-dimensional vector

zW5
1

N ( wW i r i , ~42!

wherewW i is a unit vector along the preferred angle of thei th
neuron. The vectorzW is the well-known population vecto
introduced originally for the decoding of the direction
reaching arm movement in two dimensions@21#. The accu-
racy of the population vector depends on the details of h
exactly an angle estimation is constructed from it. Followi
Seung and Sompolinsky@9#, a useful bound on the squar
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error of the population vector is provided by the FI ofzW. In
our model this quantity is simply the first term in Eq.~34!
which is

J@zW#52N
u f 1u2

a F11S cN

p D S 11e2p/r

r211r
D G21

, ~43!

where f 1, the first Fourier transform off j (u), equals
2 ig1 . Thus, the effect of the correlations onJ@zW# is quali-
tatively similar to their effect on the full FI, which is illus
trated in Fig. 3.

V. THE MUTUAL INFORMATION OF A CORRELATED
POPULATION

In this section we analyze the effect of noise correlatio
on the MI of the system, which can be written as

I ~r ,u!5E drE du P~r uu!p~u!log2H P~r uu!

P~r ! J , ~44!

wherep(u) is the prior density of the stimuli and

P~r !5E du P~r uu!p~u!. ~45!

The MI measures the statistical dependence ofr and u.
Whenr andu are independent of each other, that is,P(r uu)
is the same for different values ofu, the MI is zero. In the
case of a statistically independent population coding fo
continuous stimulus, the MI of a large system is related
the log of the FI~@22–24# and see below!. Such a relation
does not exist, in general, in the presence of correlatio
Nevertheless, below we derive useful analytical results
garding the MI in a correlated population in special limits

The analytical study of the MI is complicated even
cases whereP(r uu) has a simple form. The reason is th
evaluating the average over the marginal distribution,P(r )
in Eq. ~45! is difficult to perform in general. The evaluatio
of the MI is facilitated by the use of the replica method@25#.
As has been shown previously@24,26,27#, the replica method
is useful in analytical calculations of mutual information
model systems. In the present case, it enables us to per
the average overr in Eq. ~44! before the averaging overu,
which is inherent to the definition ofP(r ). Using this
method, we show in Appendix B that

I 52@ ln 2#21 lim
n→0

]

]nE du p~u!E )
a51

n

dua p~ua!

3expH (
aÞb

n

Gu~ua ,ub!J , ~46!

where
4-6
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Gu~c,f!5
1

2 (
i , j 51

N

d f i~c!@C21# i j d f j~f! ~47!

d f i~c!5 f i~u!2 f i~c!.

Note thatGu vanishes if the rates are not tuned, namely, iff i
is independent ofu, as expected. Equation~47! has the gen-
eral structure of Eq.~29!. The main difference between th
two is that the FI depends on the local sensitivity of the me
responses, namely, their derivatives with respect tou,
whereas the MI depends on a global sensitivity meas
which is average ofd f . However, the effect of correlations i
qualitatively the same in both expressions. Thus, it follo
from our previous analysis that in the case of broadly tun
positive correlations,Gu approaches a finite value asN→`.
Unfortunately, this means that Eq.~46! cannot be evaluated
by a saddle point method. Below we evaluate the MI in
two separate limits.

A. The mutual information for weak correlations

In this section we study the limit in which the strength
the correlationsc is small. Formally, we first take theN
→` limit and then the limitc→0. In the largeN limit Gu is
proportional to 1/c @see, e.g., Eqs.~35! and ~36!#. Therefore
in the limit of smallc, the integrals overua are determined
by their saddle point value. The saddle point equations of
~46! are

2
]

]ua
Gu~ua ,ua!1 (

b51

n
]

]ua
G~ua ,ub!50, ~48!

the solution of which is

ua* 5u, a51, . . . ,n. ~49!

ExpandingGu(ua ,ub) around this saddle point yields

Gu~ua ,ub!5
J~u!

2
dua dub , ~50!

whereJ(u) is the FI @Eq. ~29!#, and in our case isO(1/c).
Substituting in Eq.~46! yields

I .2@ ln 2#21 lim
n→0

]

]nE du p~u!E )
a51

n

dua

3expH 2
J~u!

2 (
aÞb

dua dub1n ln p~u!J .

Evaluating the Gaussian integrals over$ua% yields

I .Hu2
1

2E du p~u!log2F 2pe

J~u!G ,
where Hu52*du p(u)log2 p(u), which is the continuum
‘‘entropy’’ of u. This result extends the log relation betwe
the MI and the FI in the independent case to the case of w
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broad correlations. In our particular case of a large isotro
system coding for an angle,J(u)5J is independent ofu, and
is given by Eq.~34!, hence,

I .Hu1
1

2
log2S (

n

ugnu2

a
NnD 2

1

2
log2~2pe!. ~51!

This relation betweenI and the log ofJ is in agreement with
previous results that have been derived for large indep
dent, as well as for certain weakly correlated, populatio
@22–24#. Here we have shown that it is valid in the prese
case as long asc is small, i.e., that theNns @Eq. ~35!# are
large. Equation~51! implies that broadly tuned positive cor
relations saturate the MI so thatI does not grow logarithmi-
cally with N as in the case of independent populations,
reaches a finite level asN→`. This value represents th
maximum information aboutu that a system with this archi
tecture can carry.

B. The mutual information for a noisy system

Another useful limit where the MI of a correlated pop
lation can be calculated is the case where the total amoun
information in the system is small, namely, that the tuning
the responses to the stimulus is weak. In this case, we
expand the argument of the exponent in Eq.~46! in powers
of Gu . Retaining only the first order term inGu yields

I .
1

2 ln 2
^Gu~c,f!&u,c,f

5
1

2 ln 2 (
i , j

^d f i~u!@C21# i j d f j~u!&u , ~52!

where ^•••&u5*du p(u)•••, and d f i(u)5^d f i(c)&c
5 f i(u)2^ f i(c)&c . Note that Eq.~52! is similar in form to
Eq. ~29! for the FI. Besides the 1/2 prefactor, the differen
between the two expressions is that the signals in the FI
the derivative off i , f i8(u), whereas in the MI they are thei
global modulations,d f i(u) . Diagonalization of Eq.~52!, and
taking the largeN limit leads to

I .
1

2 ln 2 (
nÞ0

u f nu2

a
Nn , ~53!

where we have used the fact that the Fourier transform
d f i(u) are equal to those off i(u) for nÞ0. This result holds
as long asI !1, which means thatd f i are small. Note that
Eq. ~53! can be interpreted as a sum of the MI of the sta
tically independent Fourier modes of the population
sponses. In general, the MI of an independent variable
linear with the number of variables in a regime whereI !1.
Comparison of Eq.~53! and ~36! reveals that the MI is less
sensitive to the higher modes of the tuning curve, sincef n
52 ign /n. This reflects the fact that the FI is a local me
sure of efficiency but the MI is not. Our high noise resu
hold for a general case where the stimulus modulation of
4-7
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responses is weak. A special case in which the low mod
tion is caused by low firing rates has been studied by Pan
et al. @28#.

VI. DISCUSSION

A. Summary of the results

In this paper we analyzed the effect of noise correlatio
on the performance of neural population codes. We h
shown that whereas negative correlations improve the pe
mance of these codes, positive correlations of the noise
have a drastic detrimental effect on their performance.
cases where both the mean responses and the correlation
broadly tuned, the noise generates global fluctuations in
response profile of the population that may result in a la
error in the estimation of the stimulus. Because these fl
tuations are correlated across the population, increasing
size of the sampled population may reduce the error so
what but not suppress it completely even in large popu
tions. We reached these conclusions by analyzing the FI
correlated Gaussian population. We have shown that un
the assumptions of broadly tuned system the FI reach
saturation level given by Eq.~36!. We also studied the MI of
this system and showed that it saturates to a finite valu
well. We derived the saturation value of the MI in the case
weak positive correlations, Eq.~51!, and in the limit of high
noise, Eq.~53!. In addition, we showed that the case of un
form positive correlations is special in that the noise is
stricted to a single collective mode~i.e., the uniform mode!
whereas the remaining nonuniform modes carry most of
signal. Thus, in this case, the overall performance impro
with increasingN, and can also be enhanced relative to
independent case. However, it can be shown that as lon
the correlation lengthr is smaller thanO(AN) @note that we
are using normalization such that the total length of the s
tem is O(1)] behavior is similar to the case ofr;O(1)
considered above.

To illustrate the effect of correlated noise on the syst
we simulated the responses of our model population for th
cases~see Fig. 5!. The first corresponds to decaying corre
tions with r51.18, and the second to uniform correlation
r→`. We also show a typical profile of responses for
independent population (c50). The data are generated a
cording to Eq.~21! with a stimulus angleu50°. For the
purpose of illustration, strong correlation coefficientc50.9
has been used in this simulation. To assess the error
duced by these patterns, we assume a maximum-likelih
estimation. To show the performance of a ML estimator ofu,
tuning curves centered atuML were compared with the re
sponse profiles of the populations. As is clear from Fig. 5
the case of the uniform correlations the overall deviation
the data from the tuning curve centered atu50° can be very
large. However, the deviation of the response profile
mostly in its amplitude. In fact, the deviation along the ‘‘im
portant’’ direction is actually significantly smaller than th
independent case. In contrast, in the case wherer51.18, the
lateral fluctuation is large due to the rough equality of tw
length scales, the correlation decay length and the tun
width. This results in a noisy firing pattern that looks
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though the whole response profile had been shifted to the
~in this particular noise realization! relative to the ideal pro-
file.

B. Application to cortical populations

In order to assess the relevance of our theoretical res
to cortical population codes, we consider the experimen
values from Zoharyet al. @10#, who recorded the response
of pairs of neurons in the middle temporal visual area
monkeys to moving random dot patterns. Neurons in t
area have a substantial degree of selectivity to the direc
of movement of visual patterns. Since there were only 1
pairs of neurons and a limited number of repetitions~10 to
40 times!, the data were averaged over different stimu
conditions. Then the pairs were divided into two groups d
pending on whether their preferred angles differed by l
than 90° or not. The average correlation coefficient of
group with the similar preferred angles was 0.18 and
other was 0.04, with an overall average of 0.12. Although
precise dependence of the correlations on the difference
tween the preferred angles was not measured, the abov
sults are consistent with smoothly decaying correlations.
ting our model of exponentially decaying correlations, E
~26! to the average numbers quoted above yields the follo
ing parameter values:

c50.38, ~54!

r51. ~55!

In addition, we adopt the following values for our mod
tuning curve parameters, Eq.~24!,

FIG. 5. Typical data generated according to Eq.~21! for a sys-
tem withN5100 neurons. Exponentially decaying correlations, E
~26!, were used with:~a! r51.18, ~b! r→` — uniform correla-
tions, and~c! r50 — independent population. Each circle repr
sents the number of spikes of a single neuron in the populat
during a 500 msec time interval. The thick lines showf (uML

2f i), whereuML is the maximum likelihood estimate ofu. The
thin lines are the true mean responses of the neurons. Note th
~b! and ~c! the thick and thin lines overlap. The parameters for t
tuning curves aref max525, f ref55, ands5p/4. The variancea
was taken to be 15.
4-8
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POPULATION CODING IN NEURONAL SYSTEMS WITH . . . PHYSICAL REVIEW E64 051904
f max;25 spikes, ~56!

f ref;5 spikes, ~57!

s;45°. ~58!

These parameters are typical for the cortical mean respon
assuming a time window ofT5500 msec. Similarly, an es
timate of the mean variance in the single neuron respon
yields

a;15 spikes2. ~59!

Another system of interest is the primary visual cort
~V1!. Neurons in V1 are broadly tuned to the orientation o
bar or a grating in their receptive field. A substantial fracti
of these neurons show positive correlations that are stro
in amplitude for neurons with similar preferred orientation
The above parameter range also represents a reasonab
timate for the properties of neuronal ensembles in V1. Ma
neurons in motor cortex are sensitive to the direction of a
movement@14,21#. In this area the tuning curves of man
cells are well approximated by a cosine function, which c
responds tos.90°. However, the degree of dependence
the correlations on the preferred angles of the neurons is
unclear.

Using the above parameters, we simulated the per
mance of a maximum-likelihood~ML ! estimator in our
model. The responses are generated randomly accordin
Eq. ~21! with u50°. Then the mean squared errordu
5uML2u is obtained by averagingidui2 over many repeti-
tions with different random realizations of the responses. T
standard deviation of the ML error is plotted against t
number of neuronsN in the pool in Fig. 6. The points rep
resent averages over 4000 runs. We also present the Cra´r-
Rao bound of the error, which is simply the square root
the inverse of the FI calculated in Sec. IV. As shown in F

FIG. 6. Average error of the ML estimator and the Crame´r-Rao
bound as a function of the number of neuronsN in the pool. The
error of the ML estimator is nicely shown to saturate the bou
The error is represented in degrees. The parameters of the tu
curves aref max525, f ref55, and s5p/4, for the correlationsa
515, c50.38, andr51. The lower line corresponds to the error
the ML estimator for an independent population.
05190
es,

es

er
.
es-

y

-
f
till

r-

to

e

e
f
.

6, the ML error closely follows the Crame´r-Rao bound. Both
saturate at a value around 5°. For reference,Du is around 5°
for independent populations withN'30. Thus, we conclude
that the number of effective degrees of freedom in the c
related population cannot increase beyondNeff'30. This is
indeed confirmed by evaluating Eq.~37! with the above pa-
rameters. Changing slightly the parameter values, one
obtain slightly larger values ofNeff , but Neff<100 seems to
be a reasonable bound for this system. Finally, for comp
son we also show the results for an uncorrelated populat
which yields an error that decreases as 1/AN, as expected.

C. Extensions of the present study

In conclusion, we briefly discuss some of the restrictio
of the present model. We have focused here on systems
broadly tuned correlations. This means that a single neu
is significantly correlated with a fraction of the populatio
In the notation of our model, Eq.~26!, we assumed that the
correlation lengthr is of order unity @whereas the entire
length of the system is alsoO(1), in our case, 2p]. Short-
range correlations correspond to the limit ofr5O(1/N), as
studied by Abbott and Dayan@11# who show that the infor-
mation is still extensive. This is consistent with the resu
shown in Fig. 2 where for fixedN and smallr, the Fisher
information is the same as in the uncorrelated case. Ind
unlike the long-range case, in the limit ofr5O(1/N) each
neuron is correlated with a finite number of neighbo
hence, the effective number of statistically independent
grees of freedom is proportional toN, and the information
remains extensive.

We assumed in our study that the shape of the single-
tuning curves is identical, but their peaks are displaced al
the axis of the preferred angles. Adding inhomogeneity
the shapes of the tuning curves will not affect the qualitat
behavior of the system, provided this inhomogeneity var
smoothly, namely, its space constant is of order unity. On
other hand, if the tuning curves of different neurons va
randomly across different neurons, the behavior may be q
different. The reason is that in such a case, all the mo
including those with high Fourier wave numbers carry t
signal, whereas the correlations~assuming they are not ran
dom! only concentrate in the long wavelength channels. T
case will be analogous to the example of uniform corre
tions with inhomogeneous responses studied in Sec.
above. However, a realistic model should include rando
ness both in the tuning and in the correlations. Investigat
the information content of such a system and the resou
required for reading out this information is beyond the sco
of this paper.

Throughout this paper, multivariate Gaussian statis
was assumed for the neuronal responses. The most com
candidate for neuronal responses are spike counts that o
ously cannot be strictly Gaussian. It would be useful to e
tend the current study to other distributions, e.g., Pois
neurons. However, it is hard to generalize other single n
ron statistical models to a correlated population, except
special cases, such as uniform positive correlations. This
portant issue deserves further study.

.
ing
4-9
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Finally, in this work we have analyzed examples of
positive or all negative correlations. In reality, correlatio
within a population may vary both in magnitude and in sig
However, reliable estimates of the distribution of corre
tions in cortical networks are hard to obtain. Another imp
tant restriction on the present work is our assumption that
correlations do not depend onu. If the correlations depend
on the stimulus, one must take into account not only
modification of the noise statistics by the correlations
also the additional information about the stimulus carried
them. This topic is investigated elsewhere@29#.
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APPENDIX A: THE EIGENVALUES OF THE
CORRELATION MATRIX

We calculate here the eigenvalues ofC, as defined by Eq.
~26!. Denotingv52p/N, the lattice spacing, we can write

Cn5
1

N (
jk

ein(f j 2fk)Cjk

5aH 12c1
c

N (
jk

3expF inv~ j 2k!2
v

r
i j 2ki G J , ~A1!

where i j 2ki ranges from 0 to (N21)/2 for oddN. Sum-
ming the geometric series yields
Cn5aH 112c
2l21l cos~nv!1~21!nl~N21!/2 cos~~nv!/2!@l21#

11l222l cos~nv!
J , ~A2!
g

wherel5e2v/r andn52(N21)/2, . . . ,(N21)/2. Taking
the largeN limit we expand to leading order inv and obtain

Cn5aH 11
cN

pr

12~21!ne2p/r

r221n2 J
5aS 11

N

Nn
D ,

Nn5
pr

c

r221n2

12~21!ne2p/r
. ~A3!

APPENDIX B: REPLICA CALCULATION OF THE
MUTUAL INFORMATION

The replica trick is to calculate the average of the log
rithm of a random variable using the following identity:

^ ln x&5
]

]n
^x&nU

n50

. ~B1!

The MI defined in Eq.~44! can be written in the following
way:
-

I 5
1

ln 2 KK ln
P~r uu!

P~r ! L
r uu
L

u

, ~B2!

52
1

ln 2
^Šln^exp~Xu1u!&u1

‹r uu&u , ~B3!

Xu1u5 ln P~r uu1!2 ln P~r uu!

52
1

2 (
i j

d f i~u1!@C21# i j d f j~u1!

2(
i j

d f i~u1!@C21# i j @r i2 f i~u!#, ~B4!

where^•••&u5*du P(u)••• and ^•••& r uu5*dr P(r uu)•••.
d f i(u1) is f i(u)2 f i(u1).

After applying the replica trick, we obtain the followin
form:

I 52
1

ln 2

]

]n
^Š^exp~Xu1u!&u1

n
‹r uu&uU

n50

, ~B5!

52
1

ln 2

]

]nE du p~u! )
a51

n

dua p~ua!

3K expS (
a

XuauD L
r uu
U

n50

, ~B6!
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(
a

Xuau52(
a

Gu~ua ,ua!2(
a

(
i j

d f i~ua!@C21# i j

3@r i2 f i~u!#, ~B7!

whereGu(ua ,ub)5 1
2 ( i j d f i(ua)@C21# i j d f i(ub).

Note that the average overr i , ^•••& r uu in Eq. ~B6! is easy
to perform because(aXuau is linear with respect tor i . Per-

forming the average overr i yields
nc

a

.A

u

D

05190
I 52
1

ln 2

]

]nE du p~u! )
a51

n

dua p~ua!

3expF (
aÞb

Gu~ua ,ub!GU
n50

, ~B8!

where(aÞb stands for summation overa51, . . . ,n andb
51, . . . ,n, with the restrictionaÞb. This completes the
derivation of Eq.~46!.
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