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ABSTRACT: The genetic structure and population connectivity of the Mediterranean endemic
speckled skate Raja polystigma were investigated in 10 population samples (N = 232) at 7 exon-
primed nuclear microsatellites and at 3 mitochondrial DNA sequence markers. The phylogeo-
graphic and population genetic analyses revealed that R. polystigma in the western and central
Mediterranean represents a near-panmictic population, with a subtle but significant mitochon-
drial divergence of the Adriatic deme. Nuclear genotypes revealed that 2.5% of the total individ-
uals exhibited an admixed ancestry with the sibling species R. montagui (spotted ray). Individuals
with admixed ancestry were detected along with purebred individuals in the Algerian, southern
Tyrrhenian, Sicilian and Adriatic R. polystigma population samples, but they were absent or rare
in Sardinian and northern Tyrrhenian ones. Since the 2 species co-occur in the southwestern
Mediterranean, we suggested that this area may act as a secondary hybrid zone.
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INTRODUCTION cies, of which approximately 20.2 % are endemic (Coll

etal. 2010). The Mediterranean Sea is also reported to

Despite representing only 0.32% of the surface of
the oceans, the Mediterranean Sea is estimated to
contain on average 6.4 % of the world's marine spe-
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be 1 of 3 regions where chondrichthyans are most
threatened (Field et al. 2009). Fifteen coastal species
of skate (Rajidae) have been identified in the Mediter-
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ranean Sea, 4 of which are considered endemic: Raja
polystigma, R. asterias, R. radula and Leucoraja meli-
tensis (Serena 2005, Cavanagh & Gibson 2007, Sere-
na et al. 2010). Incidental by-catch in mixed-species
trawl fisheries and habitat degradation are the pri-
mary threats to coastal skates in this region (Dulvy et
al. 2000, Stevens et al. 2000). Population declines and
local extinctions of skates have been reported in some
Mediterranean areas over the last 25 yr and have
been attributed to the overexploitation of demersal
resources (Jukic-Peladic et al. 2001, Dulvy & Reynolds
2002, Ferretti et al. 2013).

Inaccurate morphology-based species identifica-
tion is a significant issue for the conservation and
management of skates. The pronounced inter-spe-
cific conservatism of morphological characteristics in
closely related species and the overlap in distribution
ranges (McEachran & Dunn 1998) hampers correct
species identification (Iglésias et al. 2010). The re-
sulting lack of accurate species-specific fisheries
landing data can mask declines and/or local extinc-
tions in particular species (Dulvy et al. 2000, Iglésias
et al. 2010). Rare and poorly studied species, such as
endemic Mediterranean skates, are therefore prone
to high rates of extinction and threat (McKinney
1999) because of non-optimal reporting and sam-
pling, which reduce the power of analyses (Roberts &
Hawkins 1999, Dulvy et al. 2003).

Speckled skate R. polystigma (Regan, 1923) is a
small-sized skate (maximum total length [TL,.x] =
60 cm) predominantly found in coastal, shallow-water
areas with soft-bottom habitats (minimum depth limit
13 m; depth range 100 to 400 m; Serena 2014, Froese
& Pauly 2016). R. polystigma occurs mainly in the
western Mediterranean Sea, though it is also reported
in the Sicilian Channel and Adriatic Sea (Serena 2005,
Serena et al. 2010). Phylogenetic analyses indicate
that R. polystigma is a sister species of spotted ray R.
montagui (Fowler, 1910), with the 2 species diverging
approximately 3.5 million years (Myr) ago at the end
of the Messinian Salinity Crisis (Valsecchi et al. 2005).

R. montagui (TL,,x = 60 cm) is widespread in
inshore waters and shallow shelf areas of the north-
east Atlantic and western-central Mediterranean Sea
on sandy sediments, at depths between 100 and 500 m
(Ellis et al. 2007). Due to the high level of external
morphological similarity displayed by juveniles and
adults, R. polystigma and R. montagui should be con-
sidered cryptic siblings (sensu Bickford et al. 2007).
Specimens of R. polystigma have been frequently
misidentified as R. montagui in past Mediterranean
scientific trawl surveys (Serena 2005, 2014, Serena et
al. 2010). Mitochondrial DNA (mtDNA)-based identi-

fication of putative R. polystigma specimens col-
lected in the fish market of Annaba (Algeria), re-
vealed some specimens to be R. montagui, indicating
that the 2 species are sympatric in the southwestern
Mediterranean fishing grounds (Cannas et al. 2008).
This study highlights the need for testing for the exis-
tence of interspecific hybrids and/or introgressed
individuals, using suitable bi-parentally inherited
molecular markers.

The occurrence of inter-specific hybridization and
gene introgression has been documented in several
marine taxa (Gardner 1997), with some relevant ex-
amples recently documented in marine fish (Alva-
rado Bremer et al. 2005b, Hobbs et al. 2009, Arlyza et
al. 2013, Kimura-Kawaguchi et al. 2014, Pujolar et al.
2014). This phenomenon is less common in chon-
drichthyans than in bony fish because of additive
prezygotic barriers to hybrid formation, such as mate
choice and internal fertilization (Morgan et al. 2012).
Within elasmobranchs, detection of hybrids may be
difficult due to high levels of morphological stasis in
closely related species (Heist 2004). Genetic studies
based on nuclear molecular markers (e.g. microsatel-
lites and single nucleotide polymorphisms [SNPs]) in
sister species with overlapping distributions may
enable the extent of hybridization in this group to be
assessed (Portnoy & Heist 2012). To date, interspe-
cific hybridization has been documented in closely
related and morphologically similar carcharhinid
sharks (Morgan et al. 2012), but it has not been
reported in skates.

Previous studies on skates and rays have shown
significant genetic subdivision at global and regional
scales (Chevolot et al. 2006b, 2007, Plank et al. 2010,
Schluessel et al. 2010, Griffiths et al. 2011, Borsa et al.
2012, Frederico et al. 2012, Le Port & Lavery 2012, Li
et al. 2013, 2015, Newby et al. 2014, Sellas et al.
2015). Skate-tagging studies, including R. montagui,
conducted in the English Channel have indicated
that adults have small home ranges, with 85% of
individuals remaining within a range of 110 km
(Walker et al. 1997). Further, their small body size
and oviparous reproduction with large benthic eggs
also suggest a limited potential for dispersal. Thus,
R. montagui and R. polystigma may be expected to
exhibit a high level of structure and reduced gene
flow among populations due to their high evolution-
ary and ecological similarity.

The current study addresses 2 issues of importance
to the conservation genetics of the Mediterranean
endemic skate R. polystigma. Firstly, the population
structure and connectivity in R. polystigma will be
assessed in order to evaluate genetic diversity pat-
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terns which affect population dynamics and resili-
ence to environmental changes, including fisheries
overexploitation (Field et al. 2009). Secondly, the
reproductive and evolutionary relationships between
R. polystigma and the parapatric sibling R. montagui
will be investigated by empirically estimating the
proportion and spread of individuals with admixed
ancestry in native populations of parental species.

MATERIALS AND METHODS
Sampling

Skate tissue samples were collected from 2000 to
2010 and were handled and stored according to the
guidelines provided by Serena et al. (2010). Samples
were mainly obtained from scientific trawl surveys or
were provided by contracted commercial fishermen.
The only exceptions were the Algerian individuals,
which were collected at the Annaba fish market by

50°N )

45°

40°

35°

Farid Hemida. This market receives mainly commer-
cial landings from Algerian trawlers fishing in
national waters (F. Hemida pers. obs.). Tissues were
sampled whenever possible directly on board or
immediately after landing, and ethanol-preserved.
A total of 232 skates were collected from 9 Mediter-
ranean areas and from the western Irish Sea (Fig. 1,
Table 1). Specimens were identified based on mor-
phological characteristics (Stehmann & Burkel 1984,
Serena et al. 2010). Individuals were categorized as
(1) 'putative polystigma’ (n = 187): specimens mor-
phologically identified as Raja polystigma occurring
in the Mediterranean, including 14 specimens col-
lected in the Algerian fishing grounds and morpho-
logically identified as R. polystigma; and (2) 'putative
montagui' (n = 45): specimens morphologically iden-
tified as R. montagui including 35 individuals col-
lected in the western Irish Sea and 10 specimens
collected in the Algerian fishing grounds (Table 1
and Table S1 in Supplement 1 at www.int-res.com/
articles/suppl/m554p099_supp.pdf).

15° 20°

EI R. montagui

RM - mR. polystigma
RP 68 AD RM -
RP 7
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0 500 (km)

Fig. 1. Sampling areas and species distribution of Raja polystigma and R. montagui. Species distribution ranges are repre-

sented according to literature (Ellis et al. 2007, Serena et al. 2010, Ungaro et al. 2015). For each sampling area, the number of

individuals assigned to R. polystigma (RP) and R. montagui (RM) based on morphology is provided. Sampling locations

where molecular data indicated the occurrence of introgressed or admixed individuals are reported in italics. See Table 1 for
sampling area codes
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Table 1. Sampling of Raja polystigma and R. montagui in the Mediterranean and North Eastern Atlantic. RP: individuals
morphologically identified as R. polystigma; RM: individuals morphologically identified as R. montagui. Individual data are
detailed in Table S1

Sampling area Code Sample size RP RM Year Collection details
Adriatic Sea AD 7 7 - 2000, 2001, 2004 Scientific trawl surveys
Sicilian Strait SI 11 11 - 2001, 2008 Contracted fishermen
South Tyrrhenian ST 12 12 - 2003, 2004, 2007 Scientific trawl surveys
North Tyrrhenian NT 68 68 - 2002, 2003, 2004 Scientific trawl surveys
Eastern Sardinia ES 20 20 - 2005 Scientific trawl surveys
Northern Sardinia NS 6 6 - 2005 Scientific trawl surveys
Western Sardinia WS 36 36 - 2002, 2005 Scientific trawl surveys
Southern Sardinia SS 13 13 - 2005 Scientific trawl surveys
Algerian Coasts AL 14 14 10 2003, 2010 Annaba fish market
Western Irish Sea WI 35 - 35 2007 Scientific trawl surveys, RV ‘Celtic Voyager'
Total 232 187 45

Molecular methods

Total genomic DNA (gDNA) was extracted using a
standard cetyltrimethyl ammonium bromide (CTAB)
procedure (Winnepenninckx et al. 1993).

A panel of 7 exon-primed microsatellite loci (ElL
Nagar et al. 2010) was used to genotype 128 indi-
viduals, after identifying optimal PCR conditions for
R. polystigma and R. montagui (Table S2 in Supple-
ment 1). The amplicons were sized by a commercial
provider (Macrogen), using the GS-500LIZ internal
size standard. Alleles were sized using the Gene-
Marker® software (SoftGenetics). A total of 231 spec-
imens were analysed at 3 polymorphic mtDNA
markers, whose nucleotide polymorphism enables
discrimination between skate species and for which
primers and reference sequences for both target
species were available (Tinti et al. 2003, Valsecchi et
al. 2005, Cannas et al. 2008, Griffiths et al. 2010,
Pasolini et al. 2011, Serra-Pereira et al. 2011, Costa et
al. 2012, Knebelsberger et al. 2014, Landi et al. 2014,
Lynghammar et al. 2014). An approximately 600 bp
fragment of the cytochrome oxidase I (COI) gene was
amplified by PCR using the primer set FishF2/FishR2
(Ward et al. 2005). An approximately 240 bp hyper-
variable fragment of the 16S rDNA (16S) gene was
amplified according to a modified protocol from Tinti
et al. (2003), detailed in Supplement 2 at www.
int-res.com/articles/suppl/m554p099_supp.pdf. A mito-
chondrial control region hypervariable fragment of
approximately 360 bp (CR) was amplified according
to Valsecchi et al. (2005). PCR products were se-
quenced by a commercial sequence service provider
(Macrogen Europe).

Species identification

The morphological identification as putative
R. polystigma and R. montagui was provided by
specimen collectors using species-specific characters
reported in the available identification guidelines
and dichotomous keys (Stehmann & Biirkel 1984,
Serena et al. 2010) and individual data are reported
in Table S1. The morphological assignment of 128
individuals from the Atlantic and Mediterranean
sampling locations was verified by correspondence
analysis of nuclear genotypes as implemented in
GENETIX 4.05 (Belkhir et al. 1996-2004). Individuals
were clustered according to their microsatellite
multilocus genotypes and by reducing the multi-
dimensional allelic frequency space to a bidimen-
sional space. Subsequently, the agreement between
species identification based on morphology and that
based on the clustering of nuclear genotypes with
mtDNA clades was assessed for each specimen.

Admixture, gene introgression and hybridization

Individual multilocus genotypes of 128 individuals
were clustered using the Bayesian algorithm imple-
mented in STRUCTURE 2.3.4 (Pritchard et al. 2000,
Hubisz et al. 2009). Three different tests (Test1, Test2
and Test3) were performed with a stepwise approach
to assess evidence of hybridization and introgression
between R. polystigma and R. montagui, applying
more stringent models and priors in each test in order
to verify the robustness of the results produced. In
addition (Test4), estimates of admixture proportions
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and hybrid ancestry were inferred with NEWHY-
BRIDS (Anderson & Thompson 2002). A detailed
description of approaches and tests is provided in
Supplement 2.

Genetic diversity, phylogeographic and population
structure analyses

The allele frequencies, number of alleles and
allelic richness of population samples at the micro-
satellite loci were calculated using FSTAT v.2.9.3.2
(Goudet 2001). The observed (H,) and the expected
(H.) heterozygosity were calculated using GENETIX
4.05. Estimates of null allele frequencies for each
locus and population were computed following the
expectation maximization (EM) algorithm as imple-
mented in FreeNA (Chapuis & Estoup 2007). Devia-
tion from Hardy-Weinberg equilibrium (HWE) was
tested using the online software GENEPOP 4.2
(Rousset 2008).

The population differentiation was assessed by

al. 2013). Haplotype relationships were inferred
using a median-joining clustering algorithm (Bandelt
et al. 1999) implemented in the software PopART
(http://popart.otago.ac.nz), and Bayesian and maxi-
mum likelihood approaches using MrBayes v.3.1
(Huelsenbeck & Ronquist 2001, Ronquist & Huelsen-
beck 2003) and PhyML v.3.0 (Guindon et al. 2010),
respectively. The population differentiation was as-
sessed by estimating overall and pairwise ®gr as
implemented in Arlequin v.3.5. The interspecific
genetic distance was estimated by AMOVA, pooling
all the sampling populations bearing R. polystigma
haplotypes in 1 group and comparing them with a
group made up from the R. montagui clade. Pairwise
®Ogt between population samples were used in princi-
pal coordinates analysis (PCA) using the packages
ade4 (Dray & Dufour 2007) and ape (Paradis et al.
2004) in R environment 3.0.2 (R Core Team 2013).
Past population demography of R. polystigma was
inferred from each mtDNA marker through the coa-
lescent Bayesian skyline plot approach (Drummond
et al. 2005) as implemented in BEAST 1.75 (Drum-

estimating overall and pairwise Fsr and by analysis
of molecular variance (AMOVA) as implemented in
Arlequin v.3.5 (Excoffier & Lischer 2010). The soft-
ware STRUCTURE was also used to investigate the
presence of genetic structuring among population
samples of R. polystigma using a total of 97 multi-
locus genotypes, originating from 7 sampling loca-
tions. Settings were defined as in the first STRUC-
TURE test on the complete dataset.

Polymorphism of COI, CR, 16S, and concatenated
sequence datasets was estimated by using DNAsp
v.5 (Librado & Rozas 2009) and MEGA 6 (Tamura et

mond & Rambaut 2007). Details of the methods and
settings used in the data analysis are provided in the
Supporting Information.

RESULTS

The microsatellite dataset included 128 individual
multilocus genotypes from 8 population samples
(Table S3 in Supplement 1; Table 2). The COI,
CR and 16S datasets included 138, 180 and 193
sequences, respectively, obtained from 8 to 10 popu-

Table 2. Summary results of the analyses performed to assess evidence of hybridization and introgression between Raja poly-
stigma and R. montagui. A: purebred R. montagui individuals; B: putative purebred R. montagui individuals; C: purebred R. poly-
stigma individuals; D: putative purebred R. polystigma individuals; E: unclassified and/or admixed individuals. Classifications
were based on a threshold value of 0.90 applied to Q (in Test1 to Test3) and g, (in Test4) coefficients. See further details in supple-
mentary Table S4 for the assignment criteria and detailed result for each individual. The numbers in parentheses refer to the
individuals assigned to the categories that are supported by strict credibility intervals. See Table 1 for sampling area codes

Sample N STRUCTURE —NEWHYBRIDS —
Testl Test2 Test3 Test4

A B C D E A B C D E A B C D E A B C D E
AD 6 2(2) 4 4(3) 2 5 1 5 1
SI 7 3 33 1 2 44) 1 6 1 7
ST 11 7 4 5 2(2) 4 9 1 1 8 1 2
NT 35 35(35) 35(35) 35 35
ES 12 12(12) 12(12) 12 12
WS 12 12(12) 12(11) 12 12
AL 20 3 1(1) 11(9) 5 4(4) 10(2) 1(1) 5 5 1 12 28 5 12 1 28
WI 25 25(295) 25(24) 25 25
40ccurrence of admixed individuals
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lation samples depending on the marker (Table 3).
The combination of 16S+COI+CR was available for
95 individuals from 8 locations (Table 3). Each indi-
vidual was characterized at the microsatellite and
mitochondrial markers whenever possible.

Species identification and distribution
The clustering of individuals, obtained from the cor-

respondence analysis on nuclear loci genotypes, re-
vealed 2 groups (Fig. 2) and the distinction between

species could be mainly ascribed to the values of Axis
1. The mtDNA Clade P was largely characterized by
the group corresponding to Raja polystigma, while
the mtDNA Clade M mainly contained the group
assigned to R. montagui. Species identification based
on nuclear markers was highly concordant with the
morphological assignment. Only 2 out of the 128
genotyped individuals were not coherently assigned
to the same species (Table S1). Specimen AL31, sam-
pled in the Algerian area and classified morphologi-
cally as R. montagui, clustered within the genetic
group of R. polystigma individuals, while individual

Table 3. Mitochondrial gene polymorphism of the Raja polystigma and R. montagui population samples subdivided according

to Clades P and M. COI: cytochrome oxidase I fragment; CR: control region hypervariable fragment; 16S: 16S rDNA hyper-

variable fragment; N: number of individuals; Nh: number of haplotypes; h: haplotype diversity; m: nucleotide diversity;
SD: standard deviation; na: not analysed. See Table 1 for sampling area codes

mtDNA Location COI CR
clade N Nh h+SD n+ SD N Nh h+SD n+ SD
Clade P
AD 7 1 - - 5 1 - -
SI 10 4 0.778 £0.091 0.00195 + 0.00029 6 3 0.800+0.122 0.00453 = 0.00102
ST 10 3 0.644 =0.103 0.00263 + 0.00038 10 3 0.644 =0.101 0.00460 = 0.00067
NT 22 6 0.758 £0.060 0.00196 + 0.00027 64 14 0.765+0.045 0.00568 + 0.00080
ES 18 5 0.791 +£0.052 0.00262 + 0.00021 16 8 0.85+0.075 0.00782 +0.00172
NS na 3 2 0.667 +£0.314 0.00205 = 0.00097
WS 19 7 0.860 +0.051 0.00243 + 0.00038 24 8 0.848 £0.045 0.00547 +0.00106
SS na 8 5 0.857+0.108 0.00747 = 0.00255
AL 13 4 0.654 +0.106 0.00187 + 0.00030 11 4 0.709+0.099 0.00492 + 0.00090
Total/mean 99 11 0.848 £0.015 0.00255 +0.00013 147 19 0.781 +0.028 0.00566 + 0.00052
Clade M
AL 3 1 - - 3 1 - -
WI 30 5 0.193+0.095 0.00034 +0.00017 26 3 0.151+£0.093 0.00047 + 0.00030
Total/mean 33 0.176 + 0.078 0.00030 = 0.00015 29 3 0.135+0.085 0.00041 + 0.00026
Grand total/mean 132 16 176 22
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STO09, assigned by morphology to R. polystigma, pre-
sented the inverse pattern, grouping with the R. mon-
tagui genetic group. Both individuals displayed a
mtDNA haplotype corresponding with the morpho-
logical assignment. In addition, individual AL33, iden-
tified as R. montagui by both morphology and nuclear
data, possessed a R. polystigma mtDNA haplotype.
These 3 cases suggested that reciprocal mtDNA intro-
gression between the 2 species has occurred.

As expected, the parapatric distribution of the 2
species was confirmed, with R. polystigma wide-
spread in the western-central Mediterranean and
R. montagui in the adjacent eastern Atlantic. The lat-
ter also penetrates into the Mediterranean and co-
occurs with R. polystigma in the Algerian coastal
area (Table 1, Fig. 1).

Admixture, gene introgression and hybridization

The number of purebred, putative purebred, ad-
mixed and unclassified individuals inferred by
STRUCTURE and NEWHYBRIDS are summarized in
Table 2 and displayed as bar plots in Fig. 3 (fully
detailed results are provided in Table S4). In Test1 of
STRUCTURE, both Evanno's and Pritchard's meth-
ods indicated K = 2 as the most likely number of clus-
ters, which is coherent with the presence of 2 species
in the nDNA dataset.

Classification of individuals as purebred (Q and
g, 2 0.90, where Q is the proportion of membership

assigned by STRUCTURE to each individual and
qn is the Bayesian posterior probability assigned by
NEWHYBRIDS to each individual), putative pure-
bred (Q and g, between 0.90 and 0.80), or of
admixed ancestry (Q and g, < 0.80) was largely
comparable among tests. In particular, Testl and
Test2 indicated WI as the R. montagui 'reference
sample’, while the R. polystigma 'reference samples’
were assigned to locations NT, ES and WS, with all
individuals assigned to the purebred clusters (Table
2, Table S4, Fig. 3). In the remaining samples (AL,
ST, SI and AD), the great majority of individuals
were recognized as purebred or putative purebred,
with a maximum of 14 unclassified individuals
(Testl, Table 2, Table S4, Fig. 3). Test3, in which we
used STRUCTURE with the USEPOPINFO model,
categorized individuals AL33 and AL34 as admixed,
and specimen STO09 as unclassified (Table 2,
Table S4, Fig. 3). Similar results were obtained with
NEWHYBRIDS (Test4), in which AL34 was classified
as admixed and 3 individuals (AL30, ST09, ST10)
as unclassified. In agreement with the results of
the correspondence analysis (Fig. 2), specimen
AL31 was recognized as purebred R. polystigma
despite its ‘'montagui mtDNA' and AL33 was recog-
nized as purebred R. montagui despite its 'poly-
stigma mtDNA' (Table S4).

Both STRUCTURE (with more stringent conditions;
Test3) and NEWHYBRIDS (Test4) failed in assigning
samples to either F1 or F2 hybrid categories (Fig. 3,
Table S4).

Table 3 (continued)

16S Concatenated

N Nh h+SD m + SD N Nh h+SD m + SD

4 1 - - 4 1 - -

7 2 0.286 + 0.196 0.00241 + 0.00166 5 5 1.000 £ 0.126 0.00332 = 0.00065
10 2 0.200 = 0.154 0.00084 + 0.00065 10 4 0.711 £ 0.117 0.00286 = 0.00044
64 6 0.548 + 0.030 0.00263 + 0.00030 18 11 0.856 + 0.079 0.00289 + 0.00035
18 2 0.471 £ 0.082 0.00199 + 0.00035 14 10 0.923 + 0.060 0.00358 + 0.00059
6 4 0.800 + 0.172 0.00534 + 0.00134 na

26 5 0.668 + 0.081 0.00345 + 0.00060 9 9 1.000 + 0.052 0.00304 + 0.00040
13 4 0.679 + 0.089 0.00346 + 0.00072 na

11 1 - - 8 4 0.750 £ 0.139 0.00207 + 0.00050
159 10 0.558 + 0.035 0.00277 + 0.00024 68 34 0.937 + 0.016 0.00321 + 0.00018
3 1 - - 2 1 - -

27 1 - - 21 4 0.271 £0.124 0.00024 + 0.00012
30 1 - - 23 4 0.249 +0.116 0.00022 + 0.00011
189 11 91 38
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haplotypes. The second to fourth rows illustrate the results of the Bayesian clustering using STRUCTURE, while the fifth row
is the ancestry inference from NEWHYBRIDS (see also Table 2 for summarized results). Each vertical bar represents 1 individ-
ual. The proportion of the bar assigned to each cluster is defined by the proportion of membership to each cluster, ranging from
0 to 1. See supplementary Table S4 for the detailed results for each individual and Table 1 for sampling area codes

The 6 individuals classified as putative admixed,
introgressed or unclassified in Test3 and Test4 (AL30,
AL31, AL33, AL34, ST09 and ST10) were removed
from the datasets used in the subsequent analyses.

Genetic diversity, phylogeographic and population
structure analyses

The mean allelic richness was homogeneous across
all samples, although slightly higher in R. montagui
samples. Only 3 sample sites (R. montagui: WI;
R. polystigma: NT and ST; Table S3) showed an over-
all significant deficiency in heterozygous genotypes.
The observed deviations from equilibrium could be
only partially explained by the presence of null alle-

les, as the estimated frequency of null alleles did not
follow the same pattern of genotypic imbalance. Due
to the high frequency of missing genotypes at the
LERI50 locus, all subsequent analyses were per-
formed both including and excluding this locus, in
order to assess the influence of missing data on the
results produced. Since results obtained with 6 and
7 loci (without and with LERI50, respectively) were
largely comparable, only results obtained when
excluding the LERI50 locus are presented.

The mean interspecific genetic distance between
R. polystigma and R. montagui was very low but sig-
nificant (Fcr = 0.137, p = 0.035 + 0.006; Table S5 in
Supplement 1). However, the pairwise Fgr values
between R. polystigma and R. montagui samples
were in general low, and significant only for locations
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WI and AL (Table S6 in Supplement 1). When consid-
ering the R. polystigma samples alone, the overall
Fgr value was still significant (Fst = 0.053, p = 0; Table
S5); however, R. polystigma samples showed low and
non-significant pairwise genetic differentiation, with
the exception of sampling location AL (Table S6).
The Bayesian clustering analysis carried out with
STRUCTURE failed to identify any genetically dis-
tinct cluster within R. polystigma. In fact, Pritchard's
method indicated K =1 as the most likely number of
clusters, suggesting the presence of a near-panmictic
population within this Mediterranean endemic spe-
cies (data not shown).

A total of 191 individuals, belonging to all Mediter-
ranean samples (Table S1), showed R. polystigma
mtDNA haplotypes identified by nucleotide variation
of COI (n = 103), CR (n = 149) and 16S (n = 161)
sequence markers (Table 3). A total of 41 individuals
showed R. montagui mtDNA haplotypes (COI: n = 35;
CR: n = 31; 16S: n = 32; Table 3, Table S1) and they
included 35 individuals from WI and 6 individuals
from AL (Table S1). A complete agreement between
sequence markers in defining the mtDNA haplotypes
was obtained when multiple gene fragments were
sequenced for the same specimen.

The COI sequences gave a final alignment of
616 bp, containing 24 (3.90 %) variable sites, of which
19 (3.08 %) were parsimony informative. A total of 17
transitions and 7 transversions were recorded, in-
volving the third codon position in 22 cases and the
second codon position in 2 cases. The 16S sequences
gave a final alignment of 237 bp, containing 11
(4.64 %) variable sites of which 7 (2.95 %) were parsi-
mony informative. The CR sequences gave a final
alignment of 354 bp, containing 29 (8.25 %) variable
sites, of which 23 (6.50 %) were parsimony informa-
tive. A total of 16 COI, 22 CR and 11 16S sequence
variants were identified, with well-differentiated
species-specific variants for the 3 markers (Table 3,
Fig. 4, Tables S7-S10 in Supplement 1).

In R. polystigma, the haplotype diversity (h) was
generally high with overall values of 0.848 + 0.015,
0.781 + 0.028 and 0.558 = 0.035, at the COI, CR and
16S gene fragments, respectively (Table 3). An ex-
ception was the AD population sample, in which
unique variants were found with consequent null
polymorphism. Similarly, both the R. montagui sam-
ples (AL and WI) showed low or null haplotype diver-
sity. The nucleotide diversity (n) was extremely low
across species, population samples and sequence
markers (Table 3). The mean intraspecific sequence
divergence was low at all markers (COI: 2.5%; CR:
5.7%; 16S: 2.7 %).

The median-joining network built with each of the 3
mtDNA markers resolved the haplotypes of Clades P
and M into 2 distinct groups (Fig. 4). In Clade P, the 4
most frequent COI sequence variants (COI/02 to
COI/04 and COI/11) were found in 74.76 % of the indi-
viduals and in all sampled areas except the Adriatic
Sea, which in contrast possessed the unique and
private COI/09 variant (Fig. 4, Table S7). The most
common CR and 16S variants (CR/07 and 16S/07) were
found in 40.94 and 61.49 % of the individuals belonging
to Clade P, respectively, and in all population samples
(Fig. 4, Tables S8 & S9). The second most frequent 16S
variant (16S/09) was shared only by north Tyrrhenian
and Sardinian samples. Rare private sequence variants
of each mitochondrial marker were also found in Tyr-
rhenian and Sardinian samples (Fig. 4, Tables S7-S9).
The network of the concatenated sequences (Fig. 4D)
was more complex, with a total of 38 haplotypes. Only a
few of them were shared among populations (CM/02,
CM/03, CM/05, CM/07 and CM/13), while the majority
were private haplotypes. The 4 haplotypes of Clade M
(CM/06 and CM/36 to CM/38) were clearly distinct
from those of Clade P (Fig. 4D, Table S10).

The trees in Fig. S1 in Supplement 1, obtained with
Bayesian and maximum likelihood methods, show
the relationships among sequence variants, and con-
firm the sharp separation between the 2 clades.

The mean interspecific genetic distance between
R. polystigma and R. montagui was very high and
significant at all sequence markers (COL: @t =0.900,
p =0.035 £ 0.006; CR: &1 = 0.900, p =0.012 + 0.003;
16S: ®cr = 0.860, p = 0.016 + 0.001; Table S5). Simi-
larly, the pairwise ®gt values among R. polystigma
and R. montagui population samples were in general
high and significant (range 0.820-1; Tables S11 &
S12 in Supplement 1). When considering only the R.
polystigma samples, the overall ®gr value was mostly
significant (COI: &gy = 0.20, p = 0; CR: &gy = 0.02 NS;
16S: ®g1 = 0.120, p = 0; Table S5). However, R. poly-
stigma population samples showed low and non-
significant pairwise genetic differentiation, with the
exceptions of AD and ST, which displayed significant
COI and CR ®g7 values in the comparisons with WS
and NT (Tables S11 & S12). The PCAs based on the
Euclidean-transformed ®st matrices (Fig. S2 in Sup-
plement 1) clearly showed the relationships among
species and samples detected at each marker.

Demographic history analysis

The inferred past demography of the Mediterran-
ean R. polystigma based on COI, CR, 16S and con-
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10 samples

1 sample

© AD

Fig. 4. Median-joining network based on the mitochondrial haplotypes as detected by the sequence variation of the (A) cy-

tochrome oxidase I (COI), (B) mitochondrial control region hypervariable fragment (CR), (C) 16S and (D) concatenated markers.

Nucleotide substitutions are represented by orthogonal bars. The mtDNA variants and haplotypes belonging to Clades P and M

are numbered in black and in red, respectively. See Table 1 for sampling area codes and supplementary Tables S7-S10
for full details of the frequency of the mtDNA clades in the population samples

catenated markers revealed stable trends without
any detectable expansion or bottleneck events
(Fig. S3 in Supplement 1). Despite an apparent weak
increase in female effective population sizes with all
markers except COI (Fig. S3), the estimated values
are of the same order of magnitude throughout time,
and hence the changes are not substantial.

DISCUSSION

The current study improves the knowledge of the
population structure and connectivity of Raja poly-

stigma, a vulnerable, endemic skate of the Mediter-
ranean Sea, and of its reproductive interactions with
its sibling R. montaguli.

Species identification and distribution

Reliable taxonomic identification is a significant
issue in skate conservation, as ineffective species
identification hampers monitoring and management
(Tinti et al. 2003), and may prevent the recognition of
local reductions in abundance or extinctions (Dulvy &
Reynolds 2009, Iglésias et al. 2010). Species identifi-
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cation using molecular methods such as DNA bar-
coding has been increasingly applied to skates
(Alvarado Bremer et al. 2005a, Ward et al. 2005,
2008, Spies et al. 2006, Griffiths et al. 2010, 2013,
Iglésias et al. 2010, Serra-Pereira et al. 2011, Costa et
al. 2012, Knebelsberger et al. 2014, Landi et al. 2014,
Lynghammar et al. 2014). Further, molecular taxon-
omy methods employing both nuclear and mitochon-
drial data have proven useful in assessing relation-
ships between pairs of morphologically similar taxa
(Morgan et al. 2012, Arlyza et al. 2013).

The results of the current study confirm the impor-
tance of accurate species identification in skates, as
misidentified individuals of both species were found
by employing an integrated morphological and
molecular identification methodology. Moreover, the
Bayesian assignment to species of several individuals
based on nuclear genotypes remained ambiguous,
suggesting they were hybrid or introgressed.

Phylogeography and population structure of
Raja polystigma

R. polystigma is relatively rare and its sampling in-
volved a number of caveats. For certain areas, where
the species occurred rarely in the scientific surveys,
the samples analysed were obtained by pooling indi-
viduals collected during different years. It is important
to note that small sample sizes decrease the power of
the analyses and consequently reduce the ability to
detect significant population structure (Chevolot et al.
2006b); therefore, caution should be used in interpret-
ing the results. However, similar experimental designs
and analytical approaches have shown geographical
population structure and genetic differentiation at
multiple taxonomic levels in other skates (Chevolot et
al. 20064, Plank et al. 2010, Pasolini et al. 2011).

Analyses of microsatellite markers in R. polystigma
suggests the presence of a single, almost panmictic
population inhabiting the western-central Mediter-
ranean, with high levels of connectivity and genetic
diversity. This near-panmictic pattern was unexpected
considering the early benthic phase of skates and the
limited potential for adult migration as observed for
example in R. montagui by tagging experiments
(Walker et al. 1997). This high level of population con-
nectivity was supported by several mtDNA haplotypes
shared among samples collected over a wide geographi-
cal range in the western and central Mediterranean.

Given the behavioural preferences of R. poly-
stigma for shallow-water habitats linked to life-
history functions (i.e. breeding and sexual segrega-

tion) and the lack of a pelagic dispersal phase
(Capape et al. 1980), the major physical constraint to
dispersal in this small-sized skate may be bathyme-
try, as shown in a number of skates and rays
(Chevolot et al. 20064, b, Plank et al. 2010, Pasolini et
al. 2011, Le Port & Lavery 2012). The presence of a
continuous shelf along the north African coasts con-
nected to the Sicilian shelf by a shallow plateau
approximately ranging from 200 to 800 m in depth
(IOC, IHO & BODC 2003) provides the potential for a
certain degree of biological connectivity between the
south-western and the north-western Mediterranean
demes. The narrow shelf along the southern Tyr-
rhenian coast plausibly represents a dispersal corri-
dor, whereas the northern Tyrrhenian-western Sar-
dinian area, characterized by a continuous, shallow
shelf, might have acted as a recent centre of expan-
sion. The northern Tyrrhenian-western Sardinian
demes correspond to the areas including approxi-
mately 75 % of the total lineage diversity, thus featur-
ing the bulk of the species’ evolutionary potential. As
such, they represent important priority populations
and areas for conservation purposes, providing
potential sources for recolonization in cases of strong
bottlenecks or local extinctions.

In the present study, the mitochondrial DNA was
more informative than nuclear loci in detecting the
subtle but significant differentiation of the population
sampled in the Adriatic Sea, which possessed a
private mitochondrial haplotype characterized by a
single mutation in the COI sequence fragment (i.e. a
T > C transition at position 142 of the COI alignment).
This may be due to the small sample size rather than a
real lack of genetic differentiation in the Adriatic Sea.
However, it could be consistent with a recent popula-
tion history related to the rising sea level following the
lowstand during the Last Glacial Maximum (Kobl-
muller et al. 2015) and a partial connectivity of this
area with the bulk of the species’ range, which is
mainly located in the western-central Mediterranean.
Subtle genetic divergence in marine fish populations
with shallow evolutionary histories can be better as-
sessed by mtDNA markers than nuclear ones (Hoarau
et al. 2004). Haploid maternal inheritance of mtDNA
can lead to smaller effective population size (Birky et
al. 1989) and thus faster genetic drift.

Admixture, gene introgression and cross-species
hybridization

The identification of a number of individuals with
admixed nDNA ancestry suggests that hybridization
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has occurred between R. polystigma and R. monta-
gui. Hybridization is known for several vertebrates,
including bony fish (Dowling & Secor 1997), but it
has only recently been documented among chon-
drichthyans in 2 cases, both represented by closely
related species of Australian carcharhinid sharks
(Morgan et al. 2012) and Indo-Pacific dasyatid sting-
rays (Arlyza et al. 2013). Purebred R. montagui indi-
viduals in the Mediterranean were observed only in
the Algerian sample, although the south Tyrrhenian,
Sicilian and Adriatic R. polystigma samples were
characterized by the presence of some individuals
with nuclear contribution from R. montagui. Even
though the number and variation of microsatellite
loci used in this study cannot substantiate clear-cut
evidence of F1 or F2 interspecific hybrids, such pre-
liminary evidence of purebred individuals of both
species together with individuals of admixed ances-
try in the Algerian shelves seems to identify the
south-western Mediterranean as a bimodal hybrid
zone (Seehausen 2004), where both parental species
and hybrids coexist and purebreds outnumber
hybrids. Bimodal hybrid zones appear to be common
in nature and they have likely arisen from secondary
contact between recently diverged or incipient spe-
cies (Seehausen 2004, Arias et al. 2012). On the con-
trary, no R. polystigma individuals with admixed
ancestry were found in the north-western Mediter-
ranean samples (e.g. NT, ES and WS), which is prob-
ably linked to the distance of these demes from the
secondary hybrid zone.

Natural hybridization between R. polystigma and
R. montagui in sympatric areas may be likely over an
evolutionary time scale, considering the species’ life-
history traits and their recent divergence (<2 Myr
ago; Valsecchi et al. 2005). Therefore, their recent
splitting could have allowed the evolution of diver-
gent mitochondrial lineages, but may not yet have
led to a strong reproductive isolation between the
species. Skates typically exhibit low evolutionary
rates (McEachran & Dunn 1998), so inter-specific
reproductive barriers might take longer to develop.
However, it cannot be ruled out that the pattern
detected might be the result of incomplete lineage
sorting of the mtDNA and microsatellite gene pools
(Avise 1994, 2000). This does appear unlikely since
the signature of this process is still evident in only a
few demes of a nearly panmictic Mediterranean pop-
ulation.

Further analyses with a higher number of polymor-
phic nDNA and mtDNA loci are required to compre-
hensively assess the relationships and cross-specific
dynamics between R. polystigma and R. montagui.

O

Several nuclear genes have been screened in Rajidae
(Pasolini et al. 2006, Rocco et al. 2007) and a suitable
level of polymorphism could be determined in order
to clearly differentiate the recently diverged species
as R. polystigma and R. montagui.

The present study confirmed the parapatric distri-
bution of the 2 species and further assessed their
geographic ranges. It provides important novel zoo-
geographical data which will contribute to the updat-
ing of the available reference literature data and
maps (Ellis et al. 2007, Serena et al. 2010, Ungaro et
al. 2015) that presently provide inconsistent species
distributions.
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