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Selective sweeps can increase genetic differentiation among populations and cause allele frequency spectra to depart
from the expectation under neutrality. We present a likelihood method for detecting selective sweeps that involves
jointly modeling the multilocus allele frequency differentiation between two populations. We use Brownian motion to
model genetic drift under neutrality, and a deterministic model to approximate the effect of a selective sweep on single
nucleotide polymorphisms (SNPs) in the vicinity. We test the method with extensive simulated data, and demonstrate
that in some scenarios the method provides higher power than previously reported approaches to detect selective
sweeps, and can provide surprisingly good localization of the position of a selected allele. A strength of our technique is
that it uses allele frequency differentiation between populations, which is much more robust to ascertainment bias in
SNP discovery than methods based on the allele frequency spectrum. We apply this method to compare continentally
diverse populations, as well as Northern and Southern Europeans. Our analysis identifies a list of loci as candidate targets
of selection, including well-known selected loci and new regions that have not been highlighted by previous scans for
selection.

[Supplemental material is available online at http://www.genome.org.]

A selective sweep alters the allele frequencies of single nucleotide

polymorphisms (SNPs) in the vicinity of the selected allele, and

thus causes a distorted pattern of genetic variation that can be

useful for detecting selection. The scans for selection that have

sought to detect such signals have largely been based on searching

for a distortion in the allele frequency spectrum or haplotype

structure in a single population (Tajima 1989; Fu and Li 1993; Fay

and Wu 2000; Sabeti et al. 2002; Nielsen et al. 2005; Voight et al.

2006; for review, see Akey 2009).

The first scans for selection that took advantage of differentia-

tion across populations focused on single-marker Fst (Lewontin and

Krakauer 1973; Akey et al. 2002). However, this statistic is highly

variable over loci under neutrality (Weir et al. 2005), making it dif-

ficult to find an Fst statistic that is genome-wide significant unless

the signal-to-noise ratio is high as in closely related populations,

such as Northern and Southern Europeans (Price et al. 2008). To

address this limitation, Weir et al. (2005) and Oleksyk et al. (2008)

proposed studying the average of Fst over multilocus windows.

However, these methods do not take advantage of the nontrivial way

that Fst depends on the allele frequency of the SNPs before selection.

Another approach to identifying signals of selection through

population comparison is the cross-population extended haplo-

type heterozygosity test (XP-EHH), which was designed to detect

ongoing or nearly fixed selective sweeps by comparing haplotypes

from two populations. (Sabeti et al. 2007; Tang et al. 2007). How-

ever, since this method relies on linkage disequilibrium (LD),

which breaks down quickly over time, it provides weak power to

detect historical sweeps that are ‘‘ancient’’ and ended up to several

thousand generations ago.

Selection has also been identified using methods that model

the allele frequency spectrum to search for signals of selection.

Williamson et al. (2007), building on Nielsen et al. (2005), applied

a multiple-locus composite likelihood ratio method (CLR) to

screen for selection in two populations. However, they did not take

advantage of the characteristic differences in allele frequencies

across two populations that are expected to arise in the case

of natural selection. Nielsen et al. (2009) recently introduced

a new method that is able to take advantage of allele frequency

differences across populations by modeling the neutral two-

dimensional frequency spectrum using genome-wide data and

searching for locus-specific outliers. However, a limitation is that

unlike the single-population CLR method, this method does not

model the joint allele frequency spectrum under selection, and

thus cannot support a likelihood ratio test. Moreover, all of these

methods are very sensitive to SNP ascertainment bias.

We present a new statistical method for detecting selective

sweeps based on multilocus allele frequency differentiation be-

tween two populations, which achieves multiple advantages over

these existing methods. Our method is best understood in analogy

to the extended haplotype homozygosity (EHH) test (Sabeti et al.

2002) (Fig. 1). In the EHH test, one searches for alleles that are

of substantial frequency, suggesting that they arose a long time

ago, but which are, in fact, too young to be consistent with neu-

trality (the age of the allele can be measured based on the extent

of LD around it). In our method, we search for regions in the ge-

nome, where the change in allele frequency at the locus occurred

too quickly (as assessed by the size of the affected region) to be due

to random drift. The details of this method are presented below.

Results

Parametric method

Suppose that we are investigating the allele frequencies of a neu-

tral SNP in two populations with allele frequencies p1 and p2,
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respectively. The allele frequencies can be modeled by a Wiener

process from a common allele frequency p0 in the ancestral pop-

ulation (Nicholson et al. 2002). That is, p1 and p2 follow a normal

distribution:

f ðxÞ = 1ffiffiffiffiffiffiffi
2p
p

s
e�
ðx�p0 Þ

2

2s2 ; ð1Þ

with s2 » vp0ð1� p0Þ. Here, v contains all information concerning

the population histories since the split time, including the genetic

drift times and bottleneck events. This is a good approximation

when s is small. The Wiener process is time reversible, and thus

we can approximate the whole process by assuming that the fre-

quency starts from p2 in population 2, evolves backward in time

to the split time, and then evolves forward to p1. Thus, by replacing

p0 in Equation 1 with p2, we obtain the distribution of allele fre-

quency in population 1 (‘‘objective’’ population) as a function of

that in population 2 (‘‘reference’’ population).

To model the effect of a selective sweep at a selected allele A in

population 1, we study the expected distortion in the allele frequency

of a neutral allele B in the vicinity. For simplicity of modeling, we as-

sume that selection completed at the current generation (Fig. 2, top).

Given the allele frequency p2 of allele B in population 2, we

assume that the allele frequency p�1in the objective population

before selection follows a normal distribution as in Equation 1. To

model the joint effect of selection and recombination on the dis-

tribution of p1 after selection, we follow Maynard Smith and Haigh

(1974), who used a continuous approximation and a logistic sweep

model to derive the result that if the allele is linked to the selected

allele A, its frequency is expected to be increased to 1� c + cp�1 after

selection. Otherwise, if it is linked to the other allele a, its allele

frequency is expected to be reduced to cp�1, where

c = rð1� q0Þ +
‘

n = 0

ð1� rÞn

ð1� q0 + q0ð1 + sÞn + 1Þ
: ð2Þ

Here, r is the recombination fraction between the selected allele

A and the neutral allele B, s is the selection coefficient, and q0 is

the initial allele frequency of A in population 1. Durrett and

Schweinsberg (2004) showed that for a wide range of r/s, Equation

2 can be approximated by:

c = 1� q0
r=s: ð3Þ

By applying a linear transformation following Fay and Wu (2000),

we can derive the distribution of allele frequencies after a selective

sweep as:
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where I½a;b�ðxÞ is 1 on the interval [a,b], and 0 otherwise. Here, p2 is

the allele frequency observed in population 2, and c is defined as

before. When s!0 or r > s, the distribution converges to Equation 1.

Figure 2, bottom, shows an example of the predicted allele frequency

distribution, which has a nontrivial shape that we model to increase

power to detect selection.

So far, we have focused on predicting the allele frequency

distribution at a single marker. We now generalize to the analysis of

extended regions, where the allele frequencies of multiple con-

tiguous markers are distorted from the prediction under neutrality,

and where the allele frequency differences between two pop-

ulations have an expected ‘‘spatial’’ pattern as a function of genetic

distance to the selected allele. Analytic derivation of the joint

distribution of allele frequency at multiple markers is challenging

due to the complex correlations among sites. We therefore use

a composite likelihood approach in which we multiply the mar-

ginal likelihood function of the k SNPs:
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where r stands for {r1, r 2, . . . , r k}, n is the sample size, and mi is the

count of allele B at locus i. We define a statistic similar to the

likelihood ratio of the alternative over the null hypothesis.

T = 2½sup
w;s;r

log CLðw; r; sÞ � sup
w

log CLðw; r; s = 0Þ�: ð6Þ

Figure 1. An analogy between the extended haplotype homozygosity (EHH) test and a multimarker test of unusual allele frequency differentiation. (A) In
the EHH test, one searches for sites where the change in allele frequency since a putative selection event began (as assessed by its derived allele frequency)
occurred too quickly (as assessed by the extent of LD around the tested allele) due to random genetic drift. The open circles show the expectation under
neutrality, while the filled circles shows a selection signal (adapted from Fig. 3 of Sabeti et al. 2002). (B) In the multilocus test of allele frequency differentiation
(XP-CLR) the idea is to search for regions in the genome where the change in allele frequency at the locus occurred too quickly (as assessed by the size of the
affected region) due to random drift. A large region with moderate differentiation can easily stand out as genome-wide significant (filled circle).
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Although we choose a sliding window of size k in the formaliza-

tion of the likelihood function, the method does not depend on

the choice of window size when the window is sufficiently large.

When r > s, the marginal likelihood for that SNP locus is identical

under the two hypotheses.

A shortcoming of composite likelihood methods is that the

correlation of marginal likelihood terms in the composite likelihood

function is ignored (Lindsay 1988). Thus, these methods overesti-

mate the amount of information that is available in the data, which

can result in false-positive signals of selection. To partially control for

this problem, we assigned weights to each of the marginal likelihood

functions in proportion to their statistical independence of all of

the others. We implemented this idea by studying the correlation

(pairwise LD) of SNPs in the reference population, down-weighting

SNPs that are in LD. We weighted SNPs i according to:

Wi =
1

+jIðcorrði; jÞ > cutoff Þ ; ð7Þ

where corr(i,j) is the pairwise correlation

coefficient of two SNPs, and I(�) is an in-

dicator function equal to 1 if corr(i,j) is

above some prechosen cut-off level, and

0 otherwise. An intuitive explanation is

that when several SNPs are in perfect LD

or highly correlated, they provide re-

dundant information and their contri-

bution to the likelihood function should

be down-weighted or even treated as a

single piece of information. In practice,

we found that this weighting scheme is

useful for reducing false-positive signals.

We note that this is an innovation of our

approach compared with other compos-

ite likelihood methods for detecting se-

lection. When analyzing data from only

a single population, it is difficult to dis-

tinguish the autocorrelation among SNPs

that is expected under neutrality from

that caused by selection. However, when

two populations are compared, one can

use LD in the reference population to

perform an appropriate SNP weighting

that is not affected by selection.

Properties of the XP-CLR test when
applied to simulated data

To investigate the statistical properties

of our method (We name it ‘‘the cross-

population composite likelihood ratio

test’’, or XP-CLR), we carried out simula-

tions with a range of parameters. We first

investigated the null distributions of

XP-CLR scores for different demographic

models. Four historical scenarios were

considered (Supplemental material), and

samples were generated by coalescent

simulations. We found that the mean

and variance of the XP-CLR scores for

the comparison of African to non-African

populations were larger than those of the

comparisons of closely related popula-

tions. However, the distributions had the same shape. After sub-

tracting the mean and dividing by the standard deviation, the dis-

tribution of normalized XP-CLR scores closely matched regardless

of the demography we analyzed (Fig. 3). Based on this, we hypo-

thesized that the normalized XP-CLR scores might be robust to

variation in demographic models, which is a valuable property of

our test, since current models of human demographic history are, of

course, imperfect approximations to the truth. The robustness

suggests that we might even be able to interpret XP-CLR scores

formally in terms of P-values. In this study, to be conservative, we do

not assign P-values, but instead follow Voight et al. (2006) and

Pickrell et al. (2009), and rank-order scores across the genome.

We explored the power of this method to detect both recent

sweeps and ‘‘ancient sweeps,’’ by which we mean any sweeps that

started after the divergence of two populations and ended in the

Figure 2. (Top panel) Illustration of the two-population model. (A) The two populations split at di-
vergence time Td. The dotted lines represent the historical frequencies of an allele in the two populations;
the dashed lines represent the increase of its allele frequency during the selection phase due to hitchhiking
with a nearby advantageous allele. (B) Illustration of the modeling procedure. Starting from the observed
allele frequency of a SNP in the reference population, the model predicts the allele frequency distributions
under neutrality or selection in the object population. (Bottom panel) An example of the allele frequency
distribution of a SNP near a putatively selected allele in the object population under selection (Equation 4,
solid line) and neutrality (Equation 1, dashed line). The vertical dotted line represents the allele frequency
of the SNP in the reference population (p2 = 0.3). The ratio r/s of genetic distance between the SNP and the
advantage allele mutant divided by selection intensity is 0.05. The two populations are both assumed to
have effective sizes 10,000. The divergence time v is set to be 0.04.

Differentiation-based test for selection
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past dating back as far as several thousand generations ago. We set

the fixation time to be 1000 generations ago for ‘‘ancient sweeps,’’

and the current generation for ‘‘recent sweeps.’’ To match the

density of SNPs in typical modern genotyping data, we simulated

about one SNP per 3 kb. Two frequency spectrum-based methods,

Nielsen et al. (2005)’s composite likelihood ratio (CLR) method

and Tajima’s D test (Tajima 1989), were also applied to the simu-

lated data. We used a threshold for statistical significance such that

the false-positive rate was 0.01 for all tests. The statistical cutoffs

were determined by neutral simulations

with the ms software (Hudson 2002)

(Methods), and the proportion of signif-

icant results was used to determine the

power for detecting selection. Our simu-

lations show that the power of XP-CLR

exceeds Tajima’s D and CLR for a range of

selection intensities (Fig. 4).

We further tested the method’s ac-

curacy in inferring the location of the

selected allele. For each of the simulated

data sets, we generated a sample of 100

haplotypes for a 500-kb region, and po-

sitioned the advantageous mutant in the

middle of the region. The inferred posi-

tions of the advantageous mutants from

our method are illustrated in Supple-

mental Figure S1. Most inferred locations

are within a 30-kb distance from the true

location for selection intensities of 0.005.

The precision of localization is, of course,

a function of the selection intensity.

Robustness to ascertainment bias

Current SNP arrays use markers that were

selected in complex ways, which causes

distortions of the shape of the allele frequency distribution, or ‘‘as-

certainment bias’’ (Nielsen et al. 2004; Clark et al. 2005). This can

bias tests of selection based on the allele frequency spectrum, such as

the CLR test and G2D (Nielsen et al. 2009). While these effects can

be ameliorated by modeling the SNP ascertainment scheme, this

approach requires precise knowledge of how SNPs were chosen,

which is often not known (Clark et al. 2005).

The XP-CLR test is based on allele frequency differentiation

across populations, which is not as affected by ascertainment bias.

Figure 3. The empirical distributions of XP-CLR scores normalized by their means and variances
under a variety of demographic scenarios, showing the robustness to demographic histories.

Figure 4. The proportions of significant results for three tests of selection, as assessed by simulations for recent sweeps (A) and ancient sweeps (B).
(XP-CLR) the method developed in this study; (Tajima D) Tajima’s D test on the data from the object population; (Nielsen CLR) the method developed
by Nielsen et al. (2005). Simulations were carried out with constant population sizes of 10,000 and population divergence time of 3000 generations with
the code p2S (detailed in Methods). The false-positive rate is chosen to be 0.01. ‘‘Ancient’’ refers to the scenarios in which selection stops at 1000 genera-
tions ago; ‘‘recent’’ refers to selection stopping at the current generation.
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To test how XP-CLR performs in the face of ascertainment bias,

we simulated two types of bias: (1) We restricted to SNPs with a fre-

quency >5% in the reference population, and (2) we restricted to

SNPs that were polymorphic in a pilot sample of two chromosomes

from each of the two populations. Figure 5, A and B, and Supple-

mental Figure S2, A and B, demonstrate that the normalized XP-CLR

scores under the two ascertainment schemes follow almost identical

distributions as they do without ascertainment bias.

Robustness to recombination rate heterogeneity

Recombination rates are known to vary

dramatically at fine-scales (Myers et al.

2005). To explore the robustness of the

XP-CLR method to uncertainty in the local

recombination rate, we performed neu-

tral simulations of 500-kb regions with an

overall recombination rate of 1.25 cM/Mb,

and simulated recombination hotspots of

2 kb in size that were spaced every 25 kb

(the within-hotspot recombination rate

was t times higher than the background,

with t exponentially distributed with mean

equal to 6). We also explored the effect

of systematically misestimating a uni-

formly distributed recombination rate by

1/2, 1/4, two-, and fourfold. Figure 5, C

and D, and Supplemental Figure S2, C

and D, show that recombination rate un-

certainty does not cause substantial dis-

tortions in the expected XP-CLR statistic.

Analysis of real data

We applied XP-CLR to comparisons of

West African, North European, and East

Asian samples from HapMap Phase II, and

to Northern and Southern European an-

cestry samples from POPRES (Nelsen et al.

2008) (Supplemental Figs. S3–S6). The

strongest XP-CLR score in the comparison

of Northern and Southern European is

on chromosome 2, near the lactase gene

(LCT) (Fig. 6). Table 1 and Supplemental

Tables S1 and S2 list the 40 genomic re-

gions with the strongest evidence for

sweeps from the comparison of different

population pairs, along with the genome-

wide ranks of XP-EHH and iHS scores for

comparison. The majority were previously

reported by Sabeti et al. (2007) (top 40 re-

gions), Frazer et al. (2007) (top 200 re-

gions), Pickrell et al. (2009) (top 10 regions

for Europeans and top 10 regions for

East Asians), and Carlson et al. (2005) (top

20 regions in each population analysis).

There is a strong correlation between the

list of genes identified by XP-CLR and XP-

EHH, reflecting the fact that the two tests

take advantage of different but correlated

data patterns. Thus, the XP-CLR and XP-

EHH methods detect some overlapping

regions. However, there are also novel regions that emerge from

our analysis.

Novel regions identified by XP-CLR

The novel information that is revealed by XP-CLR is best un-

derstood by studying examples in which the test finds signals not

identified by previous approaches. Figure 7 highlights a 1-Mb re-

gion around 38.2 Mb on chromosome 11 that contains an ex-

tremely strong XP-CLR signal in the comparison of CEU-YRI

Figure 5. (A,B) A comparison of XP-CLR scores calculated from simulations of an ascertainment
bias scheme in which SNPs are discovered in a pilot sample that included two chromosomes from each
population. (A) Constant population size model with divergence time of T = 700 generations ago. (B)
Constant population size model with divergence time of T = 3000 generations ago. Note that the
XP-CLR scores in the figures were normalized. (C,D) A comparison of XP-CLR scores calculated from
simulations of models assuming constant recombination rates with those including recombination
hotspots or misspecified recombination rates. (C ) The recombination hotspot model. (D) Estimated
recombination rate is one-fourth of the true recombination rates. XP-CLR scores were normalized before
this analysis.

Figure 6. Plot of XP-CLR scores along chromosome 2 in a Northern–Southern European population
comparison. The horizontal line indicates a 1% genome-wide cutoff level.

Differentiation-based test for selection
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Table 1. The top 40 regions of the human genome based on the XP-CLR test in the CEU-YRI comparison

Chromosome
no. Positions (Mb) Max XP-CLR Genes XP-EHH iHS(CEU) iHS(YRI) Study

2 74.3–74.87 471.89 MOBK1B, MTHFD2, SLC4A5, DCTN1,
WDR54, RTKN, ZNHIT4, WBP1,
GCS1, MRPL53, FLJ14397, TTC31,
DQX1, AUP1, HTRA2, LOXL3,
DOK1, LOC130951, SEMA4F,
HK2, LBX2, PCGF1, TLX2

0.0009 0.0100 0.0038 Sabeti et al. 2007;
Frazer et al. 2007;
Pickrell et al. 2009

5 142–142.1 369.92 FGF1, ARHGAP26 0.0002 0.0768 0.0052 Sabeti et al. 2007;
Frazer et al. 2007;
Pickrell et al. 2009

15 46.2–46.33 364.07 SLC24A5, MYEF2, SLC12A1, DUT 0.0028 0.0003 0.0019 Sabeti et al. 2007;
Frazer et al. 2007

5 110–110.3 353.84 SLC25A46 0.0010 0.0079 <0.0001 Frazer et al. 2007
18 7.51–7.68 349.61 0.0023 0.0013 0.0050 Pickrell et al. 2009
14 78.3–78.46 343.42 NRXN3 0.0130 0.0490 0.0077
17 55.8–56.18 341.16 USP32, C17orf64, APPBP2,

PPM1D, BCAS3
0.0003 0.1006 0.0240 Sabeti et al. 2007;

Frazer et al. 2007
4 33.2–34.16 338.62 0.0028 0.0003 0.0019 Sabeti et al. 2007;

Pickrell et al. 2009
10 31.5–31.91 333.27 ZEB1 0.0052 0.0047 0.0001
21 16.8–16.92 317.91 C21orf134 0.0003 0.1390 0.0007 Frazer et al. 2007
15 27–27.19 310.43 0.0010 0.0137 0.0108
2 72.4–73.05 309.53 SPR, EMX1, SFXN5 0.0590 0.0009 0.0023 Pickrell et al. 2009
11 19.5–19.69 308.03 NAV2 0.0071 0.0641 0.0109
15 42.9–43.21 307.94 TRIM69, C15orf43, SORD, DUOX2,

DUOXA2, DUOXA1, DUOX1, SHF
0.0011 0.0083 0.0111

10 22.6–22.8 298.00 COMMD3, BMI1, SPAG6, PIP5K2A 0.0001 0.1203 0.0012 Sabeti et al. 2007
17 56.4–56.59 289.25 BCAS3 <0.0001 0.0979 0.0004 Sabeti et al. 2007;

Frazer et al. 2007
14 61–61.29 285.59 PRKCH, HIF1A, SNAPC1 0.0003 0.0016 0.0021 Frazer et al. 2007
3 112–112.4 285.07 LOC151760, PVRL3 0.0010 0.1191 0.0002
7 98.6–99.04 279.90 SMURF1, ARPC1A, ARPC1B, PDAP1,

BUD31, PTCD1,ZNF789, ZNF394,
ZFP95, ZFP95, C7orf38,ZNF655,
ZNF498, CYP3A5, CPSF4, ATP5J2

0.0009 0.1040 <0.0001 Carlson et al. 2005

3 131.7–130.9 273.66 C3orf25, MBD4, IFT122, RHO,
H1FOO, PLXND1, TMCC1

0.0020 0.0013 0.0042

16 78.4–78.5 272.32 0.0020 0.0013 0.0042 Pickrell et al. 2009
13 40.6–40.67 271.13 WBP4, KBTBD6, KBTBD7, MTRF1 0.4070 0.0982 0.0355
3 124.8–125 257.71 PTPLB, MYLK 0.0009 0.0542 0.0035
3 190–190.3 257.41 LPP 0.0001 0.0910 0.0348 Frazer et al. 2007
3 98.4–98.72 254.11 EPHA6 0.0089 0.0484 0.0012 Frazer et al. 2007
15 25.9–26.23 251.79 OCA2, HERC2, GOLGA8G,

FLJ32679
0.0010 0.1070 0.0157 Sabeti et al. 2007;

Frazer et al. 2007
9 0.47–0.5 250.43 DOCK8, ANKRD15 0.0131 0.0501 0.0380
16 22.2–22.42 249.58 EEF2K, POLR3E, CDR2 0.0417 0.1237 0.0066
14 56.8–56.93 248.47 EXOC5, C14orf108, NAT12,

C14orf105
0.0376 0.1646 0.0504

18 65.7–66.02 247.79 DOK6, CD226, SOCS6 0.0433 0.0482 0.0147
1 35.2–35.22 245.50 C1orf212, DLGAP3, ZMYM6,

ZMYM1
0.0003 0.0022 0.0317 Sabeti et al. 2007;

Frazer et al. 2007;
Carlson et al. 2005

5 138.8–139 243.75 PAIP2, SLC23A1, MGC29506,
DNAJC18, ECSM2, TMEM173,
UBE2D2

0.2758 0.0219 0.0926

2 121–121.4 242.44 GLI2 0.0025 0.1167 0.0090
10 65.6–65.8 242.15 0.0009 0.1189 0.0027
13 73.75–73.78 237.81 0.0014 0.0147 0.0359 Sabeti et al. 2007
12 110–110.2 237.40 CCDC63, MYL2, FAM109A 0.0013 0.0314 0.0347
12 78.4–78.92 235.28 SYT1, PAWR, PPP1R12A 0.0024 0.0152 0.0136 Sabeti et al. 2007
6 14.8–14.87 234.42 0.0045 0.1197 0.0213
16 80.6–80.65 234.21 PLCG2, HSPC105, HSD17B2,

MPHOSPH6
0.0754 0.0728 0.0277

8 42.7–43.91 232.18 CHRNB3, CHRNA6, THAP1, RNF170,
HOOK3, FNTA, FLJ23356, POTE8

0.0493 0.0159 0.0059

The studies referenced are: top 40 signals of Sabeti et al. (2007), top 200 signals of Frazer et al. (2007), top 10 signals from Europeans and top 10 signals
from East Asians of Pickrell et al. (2009), and top 20 signals from European populations of Carlson et al. (2005).
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populations, but in which both the XP-EHH and iHS scores are not

outliers compared with the genome-wide empirical distributions.

We manually explored the data pattern in that region to un-

derstand the discrepancy. The derived allele frequency distribution

in YRI is not unusual, but in CEU, 349 out of 918 SNPs are fixed,

and there is a severe reduction of heterozygosity, suggesting

a sweep. The sweep is likely to be ancient, since we observed

breakdown of LD across hotspots in the region in CEU, explaining

why the LD-based XP-EHH tests and iHS tests are not particularly

striking. There are no known genes in this region, although there

are cDNAs expressed in testes (Wiemann et al. 2001).

A second example of a novel locus that emerges from the

XP-CLR test is a 300-kb region on chromosome 14, containing

two major haplotypes that appear to be increased in frequency in

CEU relative to YRI (Supplemental Fig. S7). We hypothesize

that this reflects selection on standing genetic variation, in which

the two haplotypes increased to high frequency in the Europe-

an population because they were both in LD with the advanta-

geous allele when selection began. The fact that these two haplo-

types are very divergent explains why XP-EHH is not significant at

the 1% level (XP-EHH searches for a single haplotype that is in-

creased in frequency). This region contains the NRXN3 neurexin

Figure 7. (A, top) The plot of XP-CLR scores along chromosome 11 from the CEU-YRI comparison. (Middle) The derived allele frequencies of SNPs in YRI
(blue dots) and CEU (red dots) populations in the zoomed region. (Bottom) Heterozygosity in the same region. (blue line) The average heterozygosity of
20 SNPs in the YRI population; (red line) CEU. (B,C ) Histograms of genome-wide XP-CLR scores (B) and XP-EHH scores (C ) in the comparison of CEU-YRI
populations. The red arrows indicate the ranks of XP-CLR and XP-EHH scores relative to the genome-wide average.
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protein, which is related to cell adhesion during synaptogenesis.

Supplemental Figure S8 shows another locus that potentially re-

flects selection on standing variation and that is also a novel

finding of XP-CLR relative to previous methods that analyzed the

same data.

High XP-CLR scores in pigmentation genes
and other functional categories

Genes related to pigmentation and hair color have been shown to

be enriched in signals of selection, including SLC24A5, SLC45A2,

KITLG, OCA2, TYRP1, MLPH, and RGS19 (Sabeti et al. 2007; Pickrell

et al. 2009). Our method also found many signals at pigmentation

genes and obtained a novel finding at HERC2, which is known to

modulate iris color and blonde hair (Han et al. 2008; Kayser et al.

2008) (Supplemental Fig. S9).

To develop a formal test for whether particular sets of genes

defined according to their functional category (like pigmentation)

are enriched in high XP-CLR scores, we first assigned empirical

rank-order-based P-value to each of the genes, taking into account

the gene length by permutation. With the XP-CLR scores from

a genome-wide scan, we randomly placed the genes in the ge-

nome, and recorded the highest XP-CLR score within a distance

of 100 kb from the gene. The proportion of XP-CLR scores from the

permutations that exceeded the observed score was used as the

empirical P-value. We then used a hypergeometric distribution

to assess whether the number of genes beyond the 1% cutoff

was statistically significant. Table 2 lists the P-values for those

pigmentation candidate genes. There is a highly significant en-

richment of pigmentation genes under selection in comparisons

involving Europeans (P = 1.20 3 10�8 for CEU-ASN, 1.9 3 10�4

for CEU-YRI).

We applied this test to functional categories of genes listed in

the Gene Ontology (GO) database (Ashburner et al. 2000). The

inflammatory response pathway is significantly enriched in se-

lected loci even after correcting for multiple hypothesis testing

using a Benjamini-Hochberg correction (Benjamini and Hochberg

1995) (P = 5.7 3 10�6 in the CEU-ASN population comparisons).

The pathways related to regulation of apoptosis, blood vessels

development, protein kinase activity, metabolic process, and im-

mune system activity are also significantly enriched in selected loci

(Supplemental Table S3). Interestingly, when we applied this cat-

egory-based test to sets of genes that have emerged as associated to

complex traits from GWA studies, we found no evidence of en-

richment for selection at genes associated with Crohn’s disease,

height, and BMI. However, like Pickrell et al. (2009), we found

significant enrichment for selection signals associated with Type-2

diabetes (Supplemental Table S4).

Discussion
We have presented a novel method for detecting natural selection

based on multilocus allele frequency differentiation between two

populations. Single locus Fst values are highly variable (Weir et al.

2005). To circumvent this problem, recent studies either reported

the highest Fst score (Pickrell et al. 2009) or used the average of Fst

within a window (Weir et al. 2005). Using a sliding window can

reduce variance in Fst measurements, but does not take advantage

of the detailed pattern of allele frequency differentiation expected

in a selected region. Our method can be viewed as a model-based

extension of Fst to multiple-loci. We explicitly model the ‘‘spatial’’

pattern of allele frequencies along a chromosome as a function

of the genetic distance to the advantageous allele. Our method

is independent of window sizes, as when the studied SNP is far

away, the distributions under neutrality

and selection converge. By combining

information from contiguous SNPs, we

increase our power to detect selection. In

addition to being a test of neutrality, the

method also provides a confidence in-

terval for the position of an advantageous

allele with surprisingly good resolution.

We compared the power of XP-CLR

in detail to several methods that take ad-

vantage of skews in the allele frequency

spectrum in a single population to detect

signals of selection: the CLR test (Nielsen

et al. 2005) and Tajima’s D test (Tajima

1989), and showed that our method is

more powerful than these two methods

for a range of selection scenarios, high-

lighting the value of taking into account

allele frequency differences in surveys for

signals of natural selection. We note that

Nielsen et al. (2009) recently extended

their CLR method into a two-dimensional

allele frequency spectrum method, ‘‘G2D.’’

G2D is similar to our method in that both

use allele frequency information from two

populations. However, the two methods

are qualitatively different, and our method

achieves functionality that is not achieved

by G2D in several respects. First, our method

is robust to ascertainment bias, which

Table 2. Genes related to pigmentation, hair color, and iris color

Chromosome no. Position (bp) Gene NEU-SEU CEU-YRI CEU-ASN ASN-YRI

2 25237226–25245063 POMC — — — —
2 108877363–108972260 EDAR — — 0.00600 0.02300
3 70068443–70100177 MITF — — 0.01650 —
4 55218918–55301612 KIT — — — —
5 33980478–3402059 SLC45A2 — 0.0360 0.00620 —
5 33980510–34020373 MATP — — — —
5 61687871–61913140 HERC1 — — — 0.02730
5 87410700–87498369 KITLG — 0.0379 — —
6 430139–638109 EXOC2 — — — —
6 336760–356193 IRF4 0.03140 — — —
9 12683449–12700249 TYRP1 — — 0.00017 —
10 100165946–100196694 HPS1 — — — —
10 103815137–103817782 HPS6 — — — —
11 68572941–68612568 TPCN2 0.01870 — — —
11 88550688–88668574 TYR — — — —
12 54634157–54646093 SILV — — — —
13 93889842–93929924 DCT — — —
14 91975432–92032349 SLC24A4 — 0.0221 — —
14 103674813–103716988 KIF26A — — — —
15 25673628–26018061 OCA2 0.00830 0.0045 — —
15 26029785–26240890 HERC2 0.00570 0.0035 — —
15 46200461–46221880 SLC24A5 — 0.0002 0.00008 —
15 50386771–50608539 MYO5A 0.04670 — 0.00370 —
15 50271814–50375144 MYO5C — 0.0455 0.00250 —
15 61687871–61913140 HERC1 — — — 0.02870
15 53283092–53369293 RAB27A — — — —
16 88512527–88514885 MC1R — — — —
20 32311832–32320809 ASIP — — — —

(—) Empirical P-values that are >5%.
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makes it appropriate for applying to the large SNP array data sets

that are already available in diverse human populations, whereas

G2D is sensitive to ascertainment bias. Second, our method is ro-

bust to uncertainty about the demographic history of a pop-

ulation, in contrast to G2D, which is sensitive to the detailed

model of demography that is used. Third, our method takes ad-

vantage of the specific ‘‘spatial’’ pattern in the allele frequency

skew that is expected to arise around a selected variant, a signal

that is not exploited by G2D.

Our method also has some advantages compared with XP-

EHH, which has been widely used in searching for signals of selec-

tion. Compared with this approach, our method is able to detect

older signals (since a strong XP-EHH signal is expected to disappear

within several hundred generations due to LD breakdown), and also

selection on standing variation. Moreover, phase information is not

required by our method and, hence, we can apply it to genotype

data without preprocessing steps like phasing that could bias results.

A potential pitfall for our analysis is that we used recom-

bination rates estimated by studying local LD under the assump-

tion of neutrality (Myers et al. 2005), which is expected to provide

an underestimate of the true recombination at loci truly affected by

selective sweeps (O’Reilly et al. 2008). Encouragingly, however,

artifactual estimation of a too-low recombination rate due to se-

lective sweeps is expected to be conservative for our analysis, as it

will cause us to underestimate the effect of selection in a region.

Moreover, the XP-CLR score is robust to recombination rate un-

certainty (Fig. 5).

We conclude that XP-CLR uses a different approach to scan

for selection than previous analyses, and thus is able to identify

a list of novel regions as potential targets of natural selection. By

combining multiple methods—for example, the XP-CLR test, the

XP-EHH test, the iHS test, and the CLR test—it should be possible

to obtain a richer catalog of likely selective sweeps and a better

understanding of how selection has affected human variation.

Methods

Simulation
To generate the null distribution of XP-CLR scores under neutral-
ity, we used coalescent simulations (Hudson 2002). (The software
for estimating XP-CLR is publicly available at http://genepath.
med.harvard.edu/;reich.) We chose a number of SNPs to evaluate,
and then dropped SNPs randomly if they exceeded this number.
We explored a range of demographic histories to address the effect
of population history on the null distribution. A recombination
rate hotspot model was simulated using msHOT (Hellenthal and
Stephens 2007). Selection simulations were carried out via the
structured-coalescent scheme with our own code p2S (available on
request from HC). To check that the simulation ran correctly, we
simulated data under selection for a range of selection intensity
levels, and compared observed with predicted Tajima’s D. We com-
pared our simulated results with the theoretical prediction for the
probability of a lineage escaping from a sweep for a range of r/s values.

Genetic map

We downloaded the genetic map of Myers et al. (2005) from the
HapMap webpage (http://www.hapmap.org) and interpolated the
genetic positions for each SNP in our data set.

Estimation of test statistics

The list of iHS scores based on HapMap II populations, and the XP-
EHH scores for the CEU-YRI comparison, were provided by Pardis

Sabeti and Ilya Schlyakhter (Harvard University). The XP-EHH
and iHS scores for other populations were calculated with code
downloaded from the Pritchard lab web page (http://hgdp.uchicago.
edu). The CLR scores were estimated using code provided by
Rasmus Nielsen (University of California, Berkeley) and Melissa
Hubisz (University of Chicago). We set grid points for CLR tests with
an equal spacing of 2 kb along the genome. All site frequency spectra
were treated as unfolded. The phased data for HapMap II pop-
ulations were downloaded from the HapMap FTP server. The soft-
ware fastPhase (Scheet and Stephens 2006) was used to infer phase
for the POPRES samples.

HapMap phase-II data

Except for the Northern–Southern European comparison, all anal-
yses were carried out on 3,619,100 SNPs that had successfully
been genotyped in all four HapMap populations. We evaluated
grid points for putative advantageous alleles every 2 kb along the
genome, and evaluated a window size of 0.2 cM around each grid
point. To account for heterogeneity of SNP density across different
genomic regions, we fixed the number of SNPs in each window
(100). For those windows with more than 100 SNPs, we randomly
dropped SNPs until they matched this number. The derived alleles
were determined by the comparison with chimpanzee.

Analysis of European data

The Northern and Southern European population samples were
obtained from the POPRES data set (Nelsen et al. 2008), restricting
to 347,315 SNPs that overlapped with HapMap. The Northern
European sample (n = 480) consisted of individuals with ancestry
from Denmark, Germany, Norway, Sweden, and the United
Kingdom; and the Southern European sample (n = 595) consisted
of individuals with ancestry from Greece, Italy, Portugal, Spain,
and Tuscany. The window size was chosen to be 0.2 cM and the
number of SNPs in each window was fixed equal to be 50. All
analyses use Southern Europeans as the reference population. We
also carried out an analysis using Northern Europeans as the ref-
erence, but the results are not reported here.
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