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Abstract

The convergence and divergence are two common phenomena in swarm intelligence. To

obtain good search results, the algorithm should have a balance on convergence and diver-

gence. The premature convergence happens partially due to the solutions getting clustered

together, and not diverging again. The brain storm optimization (BSO), which is a young

and promising algorithm in swarm intelligence, is based on the collective behavior of

human being, that is, the brainstorming process. The convergence strategy is utilized in

BSO algorithm to exploit search areas may contain good solutions. The new solutions

are generated by divergence strategy to explore new search areas. Premature convergence

also happens in the BSO algorithm. The solutions get clustered after a few iterations,

which indicate that the population diversity decreases quickly during the search. A defi-

nition of population diversity in BSO algorithm is introduced in this paper to measure the

change of solutions’ distribution. The algorithm’s exploration and exploitation ability can

be measured based on the change of population diversity. Different kinds of partial re-

initialization strategies are utilized to improve the population diversity in BSO algorithm.

The experimental results show that the performance of the BSO is improved by part of

solutions re-initialization strategies.

1 Introduction

Optimization, in general, is concerned with

finding the “best available” solution(s) for a given

problem. Optimization problems can be simply

divided into unimodal problems and multimodal

problems. As indicated by the name, a unimodal

problem has only one optimum solution; on the

contrary, a multimodal problem has several or nu-

merous optimum solutions, of which many are lo-

cal optimal solutions. Galois theory has proved that

there is no quintic formula, i.e., the fifth and higher

degree equations are not generally solvable by rad-

icals. The iterative method is a powerful tool to

solve the fifth and higher degree equations or other

difficult functions. Based on the simple rules of it-

eration, the solution(s) could be improved iteration

by iteration, and finally reached to a “good enough”

solution. Evolutionary optimization algorithms, or

simply the evolutionary algorithms (EAs), are a

kind of population-based iterative methods to solve

difficult optimization problems. The weakness of
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EAs is generally difficult to find the global optimum

solutions for multimodal problems due to the possi-

ble occurrence of the premature convergence [1–3].

This balance could be controlled by setting an algo-

rithm’s parameters [4].

An optimization problem in R n, or simply an

optimization problem, is a mapping f : R n
→ R k,

where R n is termed as decision space [5] (or param-

eter space [6], problem space), and R k is termed as

objective space [7]. Optimization problems can be

divided into two categories according to the value

of k. When k = 1, this kind of problem is called

Single Objective Problems(SOPs), and when k > 1,

this is called Multi-Objective Problems (or Many

Objective Optimization, MOO) [8, 9].

The evaluation function in optimization, f (x),
maps decision variables to objective vectors. Each

solution in decision space is associated with a fit-

ness value in objective space. This situation is rep-

resented in Fig. 1 for the case n = 3, and k = 2.

Evolutionary computation algorithm is inspired

from the natural selection process of the physical

world, and the swarm intelligence mimics the be-

haviors of a population of animals/humans in the

real world. Both evolutionary computation algo-

rithms and swarm intelligence algorithms can be

seen as decentralized systems, and a population

of interacting individuals searches in the solution

space to optimize a function or goal based on col-

lective adaptation [10].

Swarm intelligence is based on a population of

individuals [11]. In swarm intelligence, an algo-

rithm maintains and successively improves a col-

lection of potential solutions until some stopping

condition is met. The solutions are initialized ran-

domly in the search space. The search information

is propagated through the interaction among solu-

tions. Based on the solutions convergence and di-

vergence, solutions are guided toward the better and

better areas.

In swarm intelligence algorithms, there are sev-

eral solutions which exist at the same time. The pre-

mature convergence may happen due to the solution

getting clustered together too fast. The population

diversity is a measure of exploration and exploita-

tion. Based on the population diversity changing

measurement, the state of exploration and exploita-

tion can be obtained. The population diversity def-

inition is the first step to give an accurate obser-

vation of the search state. Many studies of popu-

lation diversity in evolutionary computation algo-

rithms and swarm intelligence have been proposed

in [2, 12–18].

Brain storm optimization (BSO) algorithm is a

young and promising swarm intelligence algorithm,

which mimics the brainstorming process in which a

group of people solves a problem together [19, 20].

In a brain storm optimization algorithm, the solu-

tions are divided into several clusters. The solutions

being divided into several clusters can be seen as the

population diverging into separate species, which

are similar to the speciation in the natural selection.

The new solutions are generated based on individ-

ual(s) in one or two clusters.

BSO algorithm has been utilized to different

kinds of problems, such as multimodal optimiza-

tion [21], multi-objective optimization [22,23]. The

parameters in BSO are investigated in [24], the so-

lution clustering is analyzed in [25], the population

diversity management is studied in [26]. Many vari-

ants of BSO algorithms are proposed. In [27], to re-

duce the algorithm computational burden, a simple

grouping method (SGM) in the grouping operator is

introduced to replace the clustering method.

Brain storm optimization algorithm has been

utilized into several kinds of real-world problems,

such as economic dispatch considering wind power

[28], closed-loop BSO algorithm on optimal satel-

lite formation reconfiguration problem [29], preda-

torCprey BSO algorithm for DC Brushless Motor

[30], and quantum-behaved BSO algorithm on solv-

ing Loney’s Solenoid problem [31].

In this paper, we give a population diversity

definition of the brain storm optimization algo-

rithm, and test several partial re-initializing solu-

tions strategies to enhance the population diversity

and to help solutions jump out of local optima. The

idea behind the re-initialization is to increase the

possibility for solutions “jumping out” of local op-

tima, and to keep the ability for the algorithm to find

“good enough” solution.

This paper is organized as follows. Section 2 re-

views the basic brain storm optimization algorithm.

Section 3 gives the definition of population diver-

sity and the diversity maintaining strategies of BSO

algorithm. Experiments on unimodal and multi-
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Figure 1. The mapping from solution space to objective space.

modal benchmark functions are conducted in Sec-

tion 4. The analysis and discussion of the perfor-

mance of the BSO algorithm and the population di-

versity maintaining are given in Section 5. Finally,

Section 6 concludes with some remarks and future

research directions.

2 Brain Storm Optimization

The convergence and divergence are two com-

mon phenomena in swarm intelligence. The conver-

gence and divergence information also can be uti-

lized on the search. The framework of divergence

and convergence is shown in Fig. 2. The conver-

gence strategy is utilized to explore new possible

search region, while the divergence strategy is uti-

lized to exploit existing regions may contains good

solutions.

The brain storm optimization algorithm and

firework algorithm [32, 33] algorithm can be an-

alyzed by the convergence and divergence frame-

work. In BSO algorithm, the random initialized so-

lutions are convergence to different areas. This is

a convergence strategy, and the new solutions are

generated to diverge the search space. The Firework

algorithm [32,33] also utilized convergence and di-

vergence strategies in optimization. Mimicking the

explosion of fireworks, the solutions are generated

to diverge into large search space. The solutions

with good fitness values are selected, which indi-

cated that the solutions are converged to small ar-

eas. The convergence and divergence strategies are

process iteration by iteration. Based on the itera-

tions of convergence and divergence, the solutions

could be clustered to small regions finally.

The BSO algorithm, which is a young and

promising algorithm in swarm intelligence, is based

on the collective behavior of human being, that is,

the brainstorming process [19, 20, 34]. The specia-

tion is a process of natural selection, which means

that the population diverging into separate species

[35, 36]. The solutions in BSO are also diverging

into several clusters. The new solutions are gen-

erated based on the mutation of one individual or

interactive of two individuals.

The original BSO algorithm is simple in con-

cept and easy in implementation. The main proce-

dure is given in Algorithm 1. There are three strate-

gies in this algorithm: the solution clustering, new

individual generation, and selection [25].

In a brain storm optimization algorithm, the so-

lutions are separated into several clusters. The best

solutions of each cluster are kept to the next iter-

ation. New individual can be generated based on

one or two individuals in clusters. The exploita-

tion ability is enhanced when the new individual is

close to the best solution so far. While the explo-

ration ability is enhanced when the new individual

is randomly generated, or generated by individuals

in two clusters.

The brain storm optimization algorithm is a

kind of search space reduction algorithm [37]; all

solutions will get into several clusters eventually.

These clusters indicate a problem’s local optima.

The information of an area contains solutions with

good fitness values are propagated from one clus-

ter to another [38]. This algorithm will explore in

decision space at first, and the exploration and ex-

ploitation will get into a state of equilibrium after

iterations.
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Figure 2. The framework of divergence and convergence in swarm intelligence.

Algorithm 1: The procedure of the brain storm optimization algorithm

1 Initialization: Randomly generate n potential solutions (individuals), and evaluate the n individuals;

2 while have not found “good enough” solution or not reached the pre-determined maximum number

of iterations do

3 Clustering: Cluster n individuals into m clusters by a clustering algorithm;

4 New individuals’ generation: randomly select one or two cluster(s) to generate new individual;

5 Selection: The newly generated individual is compared with the existing individual with the

same individual index, the better one is kept and recorded as the new individual;

6 Evaluate the n individuals;

The brain storm optimization algorithm also

can be extended to solve multiobjective optimiza-

tion problems [22, 34]. Unlike the traditional mul-

tiobjective optimization methods, the brain storm

optimization algorithm utilized the objective space

information directly. Clusters are generated in the

objective space; and for each objective, individu-

als are clustered in each iteration. The individual,

which perform better in most of objectives are kept

to the next iteration, and other individuals are ran-

domly selected to keep the diversity of solutions.

2.1 Solution Clustering

The aim of solution clustering is to converge the

solutions into small regions. Different clustering

algorithms can be utilized in the brain storm opti-

mization algorithm. The clustering strategy can be

replaced by other convergence method, such as sim-

ple grouping method (SGM) [27]. In this paper, the

basic k-means clustering algorithm is utilized.

Clustering is the process of grouping similar

objects together. From the perspective of ma-

chine learning, the clustering analysis is sometimes

termed as unsupervised learning. There are N

points in the given input, D = {xi}
N
i=1, the useful

and functional patterns can be obtained through the

similarity calculation among points [39]. Every so-

lution in the brain storm optimization algorithm is

spread in the search space. The distribution of so-

lutions can be utilized to reveal the landscapes of a

problem.

The procedure of solution clustering is given in

Algorithm 2. The clustering strategy divides indi-

viduals into several clusters. This strategy could re-

fine a search area. After many iterations, all solu-

tions may be clustered into a small region. A proba-

bility value pclustering is utilized to control the prob-

ability of replacing a cluster center by a randomly

generated solution. This could avoid the premature

convergence, and help individuals “jump out” of the

local optima.

2.2 New Individual Generation

The procedure of new individual generation is

given in Algorithm 3. A new individual can be gen-

Random Initialization

Divergence Strategy

Exploration of new possibilities

Convergence Strategy

Exploitation of old certainties

Initial Solutions

Chosen SolutionImproved Solution
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erated based on one or several individuals or clus-

ters. In the original brain storm optimization al-

gorithm, a probability value pgeneration is utilized to

determine a new individual being generated by one

or two “old” individuals. Generating an individual

from one cluster could refine a search region, and it

enhances the exploitation ability. On the contrast,

an individual, which is generated from two or more

clusters, may be far from these clusters. The explo-

ration ability is enhanced in this scenario.

The probability poneCluster and probability

ptwoCluster are utilized to determine the cluster cen-

ter or random individual will be chosen in one clus-

ter or two clusters generation case, respectively.

In one cluster generation case, the new individual

from center or random individual can control the

exploitation region. While in several clusters gen-

eration case, the random individuals could increase

the population diversity of swarm.

The new individuals are generated according to

the functions (1) and (2).

xi
new = xi

old +ξ(t)× rand() (1)

ξ(t) = logsig(
0.5×T − t

c
)× rand() (2)

where xi
new and xi

old are the ith dimension of xnew

and xold; and the value xold is a copy of one indi-

vidual or the combination of two individuals. The

parameter T is the maximum number of iterations,

t is the current iteration number, c is a coefficient to

change logsig() function’s slope.

2.3 Selection

The selection strategy is utilized to keep good

solutions in all individuals. A modified step size

and individual generation was proposed in [40].

The step size can be utilized to balance the conver-

gence speed of the algorithm. The better solutions

are kept by the selection strategy, while clustering

strategy and generation strategy add new solutions

into the swarm to keep the diversity for the whole

population.

3 Population Diversity

The most important factor affecting an op-

timization algorithm’s performance is its ability

of “exploration” and “exploitation.” Exploration

means the ability of a search algorithm to explore

different areas of the search space in order to have

high probability to find good promising solutions.

Exploitation, on the other hand, means the ability

to concentrate the search around a promising region

in order to refine a candidate solution. A good op-

timization algorithm should optimally balance the

two conflicted objectives [38, 41].

In a brain storm optimization algorithm, the so-

lutions are grouped into several clusters. The best

solutions of each cluster are kept to the next itera-

tion due to the selection operation. New individual

can be generated based on one or two individuals in

clusters. The exploitation ability is enhanced when

the new individual is close to the best solution so

far. While the exploration ability is enhanced when

the new individual is randomly generated, or gener-

ated by individuals in two clusters.

Population diversity is useful for measuring and

dynamically adjusting an algorithm’s ability of ex-

ploration or exploitation accordingly. In the brain

storm optimization algorithm, many solutions are

existed at the same time, and these solutions are

gathered into several clusters. The solutions may

get together into a small region after iterations. The

clustering algorithm is difficult to cluster solutions

into different group when every solution is within a

small region. The algorithm’s exploration ability is

decreased at this time.

It is important to find a metric to measure the

population diversity of solutions in the brain storm

optimization algorithm. From the measurement, we

can monitor the search of solutions.

3.1 Population Diversity Definition

Population diversity is a measurement of solu-

tions’ distribution. In [20], proposed Dc, Dv, and

De to measure normalized distance for a cluster,

inter-cluster diversity, and information entropy for

the population, respectively. Here, in this paper, we

define the population diversity given below, which

is dimensional-wise and based on the L1 norm.
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Algorithm 3: The new individual generation strategy

1 New individual generation: randomly select one or two cluster(s) to generate new individual;

2 Randomly generate a value rgeneration in the range [0,1);
3 if the value rgeneration is less than a probability pgeneration then

4 Randomly select a cluster, and generate a random value roneCluster in the range [0,1);
5 if the value roneCluster is smaller than a pre-determined probability poneCluster;

6 then

7 Select the cluster center and add random values to it to generate new individual;

8 else

9 Randomly select an individual from this cluster and add random value to the individual to

generate new individual;

10 else

11 randomly select two clusters to generate new individual;

12 Generate a random value rtowCluster in the range [0,1);
13 if the value rtowCluster is less than a pre-determined probability ptwoCluster then

14 the two cluster centers are combined and then added with random values to generate new

individual;

15 else

16 two individuals from each selected cluster are randomly selected to be combined and added

with random values to generate new individual;

17 The newly generated individual is compared with the existing individual with the same individual

index, the better one is kept and recorded as the new individual;

x̄ j =
1

m

m

∑
i=1

xi j

Div j =
1

m

m

∑
i=1

|xi j − x̄ j|

Div =
n

∑
j=1

w jDiv j

where x̄ j represents the pivot of solutions in di-

mension j, and Div j measures solution diversity

based on L1 norm for dimension j. Then we de-

fine x̄ = [x̄1, · · · , x̄ j, · · · , x̄n], x̄ represents the mean

of current solutions on each dimension, and Div =
[Div1, · · · ,Div j, · · · ,Divn], which measures solution

diversity based on L1 norm for each dimension. Div

measures the whole group’s population diversity.

Without loss of generality, every dimension is

considered equally. Setting all weights w j =
1
n
,

then the dimension-wise population diversity can be

rewritten as:

Div =
n

∑
j=1

1

n
Div j =

1

n

n

∑
j=1

Div j

3.2 Population Diversity Maintenance

Population diversity is a measurement of popu-

lation state of exploration or exploitation. It illus-

trates the distribution of solutions. The solutions

diverging means that the search is in an exploration

state, on the contrary, solutions clustering tightly

means that the search is in an exploitation state [42].

The solutions get clustered in search space, and

it may not be easy to diverge. The population di-

versity is decreased when all solutions are clustered

into one small region. Many strategies are pro-

posed to enhance the population diversity in evolu-

tionary computation algorithms and swarm intelli-

gence. These strategies include inserting randomly

generated individuals, niching [43,44], solutions re-

initialization [37, 42], or reconstructing the fitness

function with the consideration of the age of indi-

viduals [45] or the entropy of the population [46].

In this paper, the solutions partial re-

initialization is utilized to promote diversity of BSO

algorithm. In the brain storm optimization algo-

rithm, the new individual is generated by adding

one or two individual(s) with the noise based on

equation (1). However, every solution will be very
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similar in each dimension when the solutions get

clustered into a small region. The original BSO

algorithm may not be easy to escape from local

optima. The partial re-initialization in the whole

search space could make many solutions diverge

into large search areas. The idea behind the re-

initialization is to increase possibility for solutions

“jumping out” of local optima, and to keep the abil-

ity for algorithm to find “good enough” solutions.

Algorithm 4 gives the procedure of the BSO al-

gorithm with re-initialization strategy. After sev-

eral iterations, part of solutions are re-initialized in

whole search space, which increases the possibility

of solutions “jumping out” of local optima. Accord-

ing to the number of re-initialized solutions, this

strategy can be divided into following categories:

– The number of re-initialized solutions is de-

creasing during the search process. More

than half solutions are re-initialized at the be-

ginning of search, and the number of re-

initialized solutions is linearly decreased at each

re-initialization. This strategy is to focus on the

exploration at first, and the exploitation at the

end of the search.

– Part of solutions re-initialized after certain iter-

ations. The number of re-initialized solutions is

fixed during the search process. This approach

can obtain a great ability of exploration due to

the possibility that part of solutions, e.g., half of

solutions, will have the chance to escape from

local optima.

– The number of re-initialized solutions is in-

creasing during the search process. Less

than half solutions are re-initialized at the be-

ginning of search, and the number of re-

initialized solutions is linearly increased at each

re-initialization. This strategy is to focus on the

exploitation at first, and the exploration at the

end of the search.

4 Experimental Study

Wolpert and Macerady have proved that un-

der certain assumptions no algorithm is better than

other one on average for all problems [47]. The aim

of the experiment is not to compare the ability or

the efficacy of the brain storm optimization algo-

rithm with other swarm intelligence algorithms, but

the population diversity property of the brain storm

optimization algorithm.

4.1 Benchmark Test Functions and Pa-

rameter Setting

The experiments have been conducted to test

the proposed BSO algorithm on the benchmark

functions listed in Table 1. Considering the gen-

erality, eleven standard benchmark functions were

selected, which include five unimodal functions and

seven multimodal functions [48, 49]. All functions

are run 50 times to ensure a reasonable statistical

result. There are 1500 iterations for 50 dimensional

problems in every run. Randomly shifting of the lo-

cation of optimum is utilized in each dimension for

each run.

In all experiments, the brain storm optimiza-

tion has 200 individuals, and parameters are set as

the following, let pclustering = 0.2, pgeneration = 0.6,

poneCluster = 0.4 and ptwoCluster = 0.5. The parameter

k in k-means algorithm is 20. The coefficient c is set

as 20.0. In the BSO with solution re-initialization,

the solutions will be partially re-initialized after

each 200 iterations. In the decreasing number of

solution re-initialization case, there are 20 solu-

tions are kept at the first time, the number of kept

solutions increase 20 at each re-initialization, and

140 solutions are kept at the last time. In the in-

creasing number of solution re-initialization case,

there are 180 solutions are kept at the first time,

the number of kept solutions increase 20 at each re-

initialization, and 60 solutions are kept at the last

time.

4.2 Experimental Results

Several measures of performance are utilized in

this paper. The first is the best fitness value attained

after a fixed number of iterations. In our case, we

report the best result found after 1500 for 50 dimen-

sional problems. The following measures are the

median, the worst and mean value of best fitness

values in each run. It is possible that an algorithm

will rapidly reach a relatively good result while be-

coming trapped into a local optimum. These three

values give a measure of algorithms’ reliability and

robustness.
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Algorithm 4: The procedure of the population diversity promoted BSO algorithm

1 Initialization: Randomly generate n potential solutions (individuals), and evaluate the n individuals;

2 while have not found “good enough” solution or not reached the pre-determined maximum number

of iterations do

3 Clustering: Cluster n individuals into m clusters by a clustering algorithm;

4 New individual generation: randomly select one or two cluster(s) to generate new individual;

5 Selection: The newly generated individual is compared with the existing individual with the same

individual index, the better one is kept and recorded as the new individual;

6 Re-initialization: partially re-initialize some solutions after certain iterations;

7 Evaluate the n individuals;

Table 1. The benchmark functions used in experimental study, where n is the dimension of each problem,

z = (x−o), x = [x1,x2, · · · ,xn], oi is an randomly generated number in problem’s search space S and it is

different in each dimension, global optimum x∗ = o, fmin is the minimum value of the function, and

S ⊆ R n. ⊆

Function Test Function S fmin

Parabolic f0(x) =
n

∑
i=1

z2
i +bias0 [−100,100]n -450.0

Schwefel’s P2.22 f1(x) =
n

∑
i=1

|zi|+∏
n
i=1 |zi|+bias1 [−10,10]n -330.0

Schwefel’s P1.2 f2(x) =
n

∑
i=1

(
i

∑
k=1

zk)
2 +bias2 [−100,100]n 450.0

Step f3(x) =
n

∑
i=1

(⌊zi +0.5⌋)2 +bias3 [−100,100]n 330.0

Quartic Noise f4(x) =
n

∑
i=1

iz4
i + random[0,1)+bias4 [−1.28,1.28]n -450.0

Rosenbrock f5(x) =
n−1

∑
i=1

[100(zi+1 − z2
i )

2 +(zi −1)2]+bias5 [−10,10]n 180.0

Rastrigin f6(x) =
n

∑
i=1

[z2
i −10cos(2πzi)+10]+bias6 [−5.12,5.12]n -330.0

Noncontinuous
f7(x) =

n

∑
i=1

[y2
i −10cos(2πyi)+10]+bias7

[−5.12,5.12]n 450.0

Rastrigin yi =

{

zi |zi|< 1
2

round(2zi)
2

|zi| ≥ 1
2

Ackley
f8(x) =−20exp

(

−0.2

√

1
n

n

∑
i=1

z2
i

)

[−32,32]n 180.0

−exp

(

1
n

n

∑
i=1

cos(2πzi)

)

+20+ e+bias8

Griewank f9(x) =
1

4000

n

∑
i=1

z2
i −

n

∏
i=1

cos( zi√
i
)+1+bias9 [−600,600]n 120.0

f10(x) =
π
n
{10sin2(πy1)+

n−1

∑
i=1

(yi −1)2

[−50,50]n 330.0
Generalized ×[1+10sin2(πyi+1)]+(yn −1)2}
Penalized +∑

n
i=1 u(zi,10,100,4)+bias10

yi = 1+ 1
4
(zi +1)

u(zi,a,k,m) =







k(zi −a)m zi > a,

0 −a < zi < a

k(−zi −a)m zi <−a
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Table 2 gives results of the brain storm op-

timization algorithm solving unimodal and mul-

timodal problems. The population diversity en-

hanced BSO performs better than the original BSO

for most problems, especially for the unimodal

problems.

For traditional algorithms, the multimodal

problems are difficult to solve than unimodal prob-

lems due to that the multimodal problems have

many local optima. However, the brain storm op-

timization algorithm may be more suitable for mul-

timodal problems. The concept of brain storm op-

timization algorithm is not to cluster all solutions

into one small region, but many regions. From the

results, we can find that the original BSO algorithm

performs well on the multimodal functions, and the

population diversity enhanced BSO algorithm have

more improvement in solving unimodal functions

than multimodal functions.

5 Analysis and Discussion

5.1 Population Diversity Monitor

The simulation results give the convergence

curves of benchmark functions. Fig. 3 displays

the average performance of BSO algorithms solv-

ing five unimodal functions. Fig. 4 displays the av-

erage performance of BSO algorithms solving six

multimodal functions. The brain storm optimiza-

tion algorithm has a fast convergence at the begin-

ning of search, which indicates that the good search

regions can be located after several solution clus-

tering strategies. However, the ability of preventing

premature convergence, and “jumping out” of lo-

cal optima should be improved. Keeping the global

search ability, and improving the local search ability

should be investigated in the brain storm optimiza-

tion algorithm.

5.2 Population Diversity Analysis

Fig. 5 and Fig. 6 display the population diver-

sity changes during the search process. There are

many vibrations of population diversity change in

the original BSO solving unimodal functions. The

population diversity changes smoothly in the orig-

inal BSO solving multimodal functions. This may

be caused by the different properties of BSO solv-

ing unimodal and multimodal functions.

The population diversity is enhanced through

the re-initialization strategy. From Fig. 5 and Fig.

6, we can see that the population diversity change is

related to the number of re-initialized solutions. In

general, the larger the number of re-initialized solu-

tions is, the smaller the value of population diversity

is.

In this experiments, we only tested the re-

initialization strategy with fixed number of itera-

tions, and the number of re-initialized solutions is

fixed or linear changed. To reveal the relation be-

tween the algorithm’s performance and the popula-

tion diversity change, more investigation should be

taken on the mechanism of BSO solving different

types of problems. The population diversity main-

tained BSO has promoted the population diversity

after certain iterations. The value of population di-

versity is kept at a large number during the search,

this could help the solutions “jump out” a local op-

tima.

6 Conclusion

The convergence and divergence are two com-

mon phenomena in swarm intelligence. Based on

the solutions convergence and divergence, solutions

are guided toward the better and better areas. In

swarm intelligence algorithms, premature conver-

gence happens partially due to the solutions getting

clustered together, and not diverging again. The

premature convergence also happens in the brain

storm optimization algorithm. To prevent the pre-

mature convergence, algorithm’s exploration ability

and exploitation ability should be balanced during

the search.

The population diversity is a measure of explo-

ration and exploitation. Based on the population di-

versity changing measurement, the state of explo-

ration and exploitation can be obtained. The pop-

ulation diversity definition is the first step to give

an accurate observation of the search state. Many

approaches have been introduced based on the idea

that prevents solutions from clustering too tightly

in one region of the search space to achieve great

possibility to “jump out” of local optima [50].

In this paper, we introduce a population diver-

sity definition of the brain storm optimization algo-

rithm, and test several kinds of diversity enhanced
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Table 2. Result of brain storm optimization solving unimodal and multimodal benchmark functions. All

algorithms are run for 50 times, where “best”, “median”, “worst”, and “mean” indicate the best, median,

worst, and mean of the best fitness values for all runs, respectively.

Func. fmin Dim Best Median Worst Mean Std. Dev.

f0 −450.0

original -283.7674 69.3182 1011.455 128.2867 268.266

half -413.8930 -292.6541 -73.4257 -282.6678 78.2084

decrease -389.3168 -296.8813 89.42494 -279.8117 93.4272

increase -401.3942 -222.5723 21.8686 -233.6816 88.4352

f1 −330.0

original -329.9999 -329.9987 -329.0885 -329.9615 0.16351

half -329.9999 -329.9975 -329.9844 -329.9968 0.00311

decrease -329.9999 -329.9978 -329.9872 -329.9969 0.00297

increase -329.9999 -329.9982 -329.9907 -329.9974 0.00227

f2 450.0

original 1674.185 3469.0662 6521.9105 3715.998 1155.126

half 1236.369 1715.393 2518.608 1770.651 365.281

decrease 1013.162 1734.731 2432.571 1682.709 311.921

increase 1302.540 2088.135 2941.036 2078.788 417.398

f3 330.0

original 1461 1989 4036 2121.96 450.6883

half 765 1122 1548 1110.22 163.962

decrease 785 1095 1536 1086.92 173.0487

increase 875 1185 1768 1221.74 205.0707

f4 −450.0

original -449.9989 -449.9966 -449.9933 -449.9963 0.00116

half -449.9983 -449.9960 -449.9934 -449.9960 0.00114

decrease -449.9978 -449.9955 -449.9922 -449.9955 0.00130

increase -449.9982 -449.9961 -449.9928 -449.9960 0.00132

f5 180.0

original 221.5290 227.5745 288.2411 232.1447 15.4617

half 219.0803 227.5494 389.8904 239.6247 33.4026

decrease 221.2358 227.3915 360.8707 237.8019 26.1117

increase 218.9889 227.7686 336.3135 240.7103 25.7083

f6 −330.0

original -300.1512 -265.3277 -224.5344 -264.9098 17.7013

half -301.1461 -271.2974 -198.6657 -267.5166 20.5183

decrease -295.1764 -263.3378 -190.7060 -260.3728 22.7473

increase -294.1814 -271.2974 -225.5294 -270.0637 16.5337

f7 450.0

original 482 526 619 528.68 27.3447

half 487 532 592 528.04 20.8891

decrease 487 528 606 530.58 25.4684

increase 486 528 581 526.28 20.9074

f8 180.0

original 188.2361 190.7374 192.2957 190.6498 0.84468

half 186.9072 190.3279 192.1137 190.1500 1.13627

decrease 187.4559 190.5704 191.8832 190.2716 1.07905

increase 186.9843 190.6153 192.3914 190.4371 1.16226

f9 120.0

original 129.8876 134.4022 142.2110 134.6174 2.88916

half 124.2548 126.2922 130.5381 126.3547 1.28784

decrease 124.3876 126.1242 129.6540 126.1661 1.14855

increase 123.8568 127.1556 131.5378 127.4312 1.65378

f10 330.0

original 332.1512 336.5663 344.5289 337.1611 2.89567

half 332.5938 336.9778 344.0822 337.3973 2.97637

decrease 332.1948 336.2336 345.7965 337.0947 2.84417

increase 332.2791 336.70007 343.7704 337.2055 2.67052
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Figure 3. The average performance of the brain storm optimization algorithm solving unimodal functions.
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Figure 4. The average performance of the brain storm optimization algorithm solving multimodal

functions.
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Figure 5. The population diversity monitor of the brain storm optimization algorithm solving unimodal

functions.
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Figure 6. The population diversity monitor of the brain storm optimization algorithm solving multimodal

functions.
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strategies to help solutions jump out of local op-

tima. The experimental study shows that the per-

formance of optimization is improved by the popu-

lation diversity enhancement. The population diver-

sity also should be monitored in the brain storm op-

timization algorithm solving multiobjective prob-

lems. The relationship between the population di-

versity changes and the performance of BSO al-

gorithm, and the properties of population diversity

changes with different problems also needs more

analysis. In general, the brain storm optimization

algorithm is a young and promising algorithm; there

are many fields which are under investigation.
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