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Dipartimento di Fisica, Università di Roma ‘‘La Sapienza,’’ P.le A. Moro 2, I-00185, Roma, Italy
and Istituto Nazionale Fisica della Materia, Unità di Roma 1, P.le A. Moro 2, I-00185, Roma, Italy
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A discrete-time model of reacting evolving fields, transported by a bidimensional chaotic fluid flow,

is studied. Our approach is based on the use of a Lagrangian scheme where fluid particles are

advected by a two-dimensional symplectic map possibly yielding Lagrangian chaos. Each fluid

particle carries concentrations of active substances which evolve according to its own reaction

dynamics. This evolution is also modeled in terms of maps. Motivated by the question, of relevance

in marine ecology, of how a localized distribution of nutrients or preys affects the spatial structure

of predators transported by a fluid flow, we study a specific model in which the population dynamics

is given by a logistic map with space-dependent coefficient, and advection is given by the standard

map. Fractal and random patterns in the Eulerian spatial concentration of predators are obtained

under different conditions. Exploiting the analogies of this coupled-map ~advection plus reaction!
system with a random map, some features of these patterns are discussed. © 2001 American

Institute of Physics. @DOI: 10.1063/1.1371285#

The spatial structure of passive fields transported by a

fluid flow is an important question in fluid and nonlinear

dynamics. Many important situations require in addition

to take into account chemical or biological interactions

between the substances transported by the flow. In par-

ticular, our motivation comes from the general question

on the mechanisms for plankton patchiness in the ocean,

and more specially for the spatial patterns that would be

reached by plankton or marine herbivores grazing from

a localized source of nutrients. We present a general

methodology, based in coupled discrete-time dynamical

systems describing reaction or population dynamics and

advection in the Lagrangian framework, and apply it to a

model of logistic population dynamics in the presence of a

localized source of nutrients and chaotic advection. Frac-

tal and random spatial features develop in the concentra-

tion patterns, which can be understood in terms of an

analogy with random maps.

I. INTRODUCTION

Patchiness, or the uneven distribution of substances of

organisms, is ubiquitously observed in the ocean.1–4 In com-

plex situations such as the marine ecosystems, characterized

by the interplay of population dynamics and an ambient fluid

motion which may differently affect individual populations,

the question of how a localized availability of nutrients ~or

preys, or, in chemical terms, activators! may affect the dis-

tribution of primary producers ~or predators, or inhibitors,

respectively; in the following we refer to preys and preda-

tors! is a crucial and challenging problem.

According to Ref. 2, the possible causes originating

patchiness in marine ecosystems may be grouped in different

categories: fluid motion, biological growth coupled with dis-

persive processes, less ubiquitous mechanisms like swarm-

ing, vertical migration, and others. In addition to patchiness,

localized availability of food may occur in correspondence of

localized sub-ecosystems, such as Posidonia Oceanica beds

~for a review see Ref. 5!: they display a quite complex struc-

ture in which the most important features arise from direct

consumption of the plant and epiphyte–herbivore interac-

tions, although a portion of the trophic chain is based on

suspended matter.5

A comprehensive description of such processes leads to

the study of the so-called advection–reaction–diffusion

equations. These are partial differential equations of the type

]C i~x,t !

]t
1~v~x,t !•¹ !C i5R i~C1 , . . . ,CN ,x,t !

1D iDC i , ~1!

where C i(x,t) (i51, . . . ,N) is the concentration of the itha!Electronic mail: clopez@imedea.uib.es
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reactive ~in biological or chemical terms! species or sub-

stance, and the functions R i describe the reaction, or the

population, intrinsic dynamics. The possible explicit spatial

and temporal dependence may model the influence of tem-

poral and spatial inhomogeneities in food, temperature, etc.

The term (v(x,t)•¹)C i represents advection by a given so-

lenoidal ~i.e., incompressible ¹•v50) velocity field v(x,t).

Finally, the term D iDC i describes diffusion of the i-th spe-

cies or substance with diffusivity D i . In writing ~1! we are

assuming that the evolution of the advected concentrations

does not affect that of the underlying flow v(x,t). This is

definitely reasonable at the scales we are interested in, even

though it is worth mentioning that at much smaller scales the

presence of organisms may affect the rheological properties

of sea water.6,7

In some situations it would be necessary to consider a

different velocity field for each of the N concentrations C i .

This may happen, for instance, if different organisms live at

different mean depths, leading to differences in the experi-

enced flow. In such cases one has to replace Eq. ~1! by

]C i~x,t !

]t
1~vi~x,t !•¹ !C i5R i~C1 , . . . ,CN ,x,t !

1D iDC i . ~2!

In this paper, however, we will only consider the case given

by Eq. ~1! in which the same velocity field advects all the

substances.

Introducing the Lagrangian time derivative d/dt 5]/]t

1v•¹ , Eq. ~1! can be written in the form

dC i~x,t !

dt
5R i~C1 , . . . ,CN ,x,t !1D iDC i . ~3!

If diffusion is neglected, it is simple to write the C i(x,t) in

terms of the solutions of the Lagrangian evolution equation

dx~ t !

dt
5v~x~ t !,t !, ~4!

and the reactive evolution equation

dC i~ t !

dt
5R i~C1 , . . . ,CN ,x~ t !,t !. ~5!

This set of coupled ordinary differential equations describe

the advection–reaction process in a Lagrangian frame: Fluid

particles move according to ~4!, and reactions among the

C i’s occur inside each fluid particle, as expressed by ~5!,
where C i(t) are the concentrations at a particular fluid par-

ticle @the one at x(t) at time t, i.e., C i(t)[C i(x(t),t)]. De-

noting by S t and L t the formal solutions of ~4! and ~5!, re-

spectively @i.e., x(t)5S tx(0) and C(t)5L tC(0), with C

5(C1 ,C2 , . . . ,CN)] we can write the solution of Eq. ~1! in

the form ~with D i50)

C~x,t !5L tC~S2tx,0!. ~6!

The case D iÞ0 needs a more elaborated treatment. In addi-

tion to the time dependence, L t will have also an explicit

space dependence if the R i’s have it.

Obviously, the detailed understanding of the above class

of partial differential equations constitute a formidable task.

However, at this stage of development, we are just interested

in the search for generic behaviors expected when few typi-

cal characteristics of the flow and of the population dynamics

are considered. Thus, if, for example, we concentrate on

flows of geophysical nature, horizontal motion turns out to

be much more intense than vertical one as soon as one con-

siders scales larger than a few kilometers. This justifies re-

stricting in the following to incompressible two-dimensional

flows. A turbulent bidimensional flow would be a way to

model the irregular advection process to which suspended

matter is subjected in real oceans. There are, however, sim-

pler classes of flows which share some basic characteristics

with turbulence, but are much more accessible to analysis:

Lagrangian chaotic flows.8,9 These are smooth velocity

fields, with some simple time dependence in the Eulerian

description, but which lead to chaotic trajectories of fluid

elements, with the associated stretching and folding, in the

Lagrangian description. In this restricted framework, it is

well known that even periodic time-dependence in two-

dimensional incompressible flows leads generically to cha-

otic motion of fluid particles.

Rather than integrating the full equations describing the

continuous in time dynamics, and since our interest lies

mainly in a qualitative characterization of the population sys-

tem, we will resort in this paper to a discrete in time

mapping-approach in terms of discrete-time dynamical sys-

tems. This approach is numerically very efficient, and has

proven to be extremely productive to study the impact of

chaotic advection on mixing.8–10 The main idea is to mimic

the advection and reaction processes in terms of maps that

capture the main features of each aspect. Thus, since we will

be looking at processes taking place in two-dimensional ~2D!

incompressible flows, the advective part of our model is

naturally described by a two-dimensional symplectic map. It

is well known that Lagrangian motion in such systems is

typically chaotic and with a rather rich behavior. In addition,

the transported fluid parcel contains concentrations of active

chemical substances or biological specimens subjected to a

specific dynamics that will be also modeled in terms of a

map. Also, it is worth noticing that even though this is not

done in this work, diffusion can be easily incorporated into

the model by averaging ~see, for e.g., Ref. 11!, after each

iteration of the maps, the concentration of the different spe-

cies contained in the fluid elements over a region of size l

;AD it , where D i is the corresponding diffusivity and t is a

characteristic time scale of the system. Finally, additional

aspects of the interplay between chaotic advection and reac-

tion ~with possible applications to population dynamics! can

be found in Ref. 12.

The general ideas and formalism sketched above will be

made more concrete in the following, and applied to tackle

our main problem: The influence of inhomogeneities of the

distribution of preys on that of predators. We will make use

of some known results for random maps, and compare our

discrete-time approach with results obtained in a continuous-

time description of the problem.13,14 In Sec. II we will dis-

cuss the approach to population dynamics in terms of maps;

in Sec. III our particular model is presented and compared

with results for a random logistic map; the analogy helps in
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the interpretation of the resulting spatial structure of preda-

tors, which is described in Sec. IV, and discussed in Sec. V.

II. A DISCRETE-TIME APPROACH

Let us now present the general idea of our approach for

the analysis of the population dynamics in terms of maps.

It is easy to understand that for time-periodic velocity

fields, i.e., v(x,t)5v(x,t1T) where T is the period, Eq. ~4!
can be described by a discrete-time dynamical system. The

position x(t1T) is completely determined by x(t). In addi-

tion ~because of the periodic velocity field! the map x(t)

→x(t1T) cannot depend on t. Since a periodic time depen-

dence is enough to induce Lagrangian chaos, and because of

the above mathematical simplifications, we particularize our

study to time-periodic velocity fields, for which we can write

x~ t11 !5F~x~ t !!. ~7!

Now, time is measured in units of the period T. If v is in-

compressible, the map ~7! is volume ~area in 2D! preserving,

i.e., udet(]F i /]x j)u51. In 2D the map ~7! is symplectic, i.e.,

the discrete-time version of a Hamiltonian system. Usually,

it is not simple at all to obtain F(x(t)) for a given v(x,t).

However, one can directly write models for F which contain

the qualitative features of the flow one is trying to model.

In addition, the transported fluid parcel contains species

subjected to their own population dynamics. Denoting the

solution of ~5! after one period of the flow (LT) by G, the

evolution rule for the interacting concentrations C

5(C1 ,C2 , . . . Cn) is expressed in terms of a map:

C~ t11 !5G~C~ t !!. ~8!

As before, G will carry additional explicit time and

space dependencies if ~5! is not autonomous in space or time.

The discrete-time version of Eq. ~6! is

C~F~x!,t11 !5G~C~x,t !!. ~9!

In the following we particularize this general approach

to a particular model.

III. A PARTICULAR MODEL AND ITS RELATIONSHIP
WITH A RANDOM LOGISTIC MAP

The main interest of our study is to consider the problem

of how the spatial structure of the prey spatial distribution

may affect the one of the predators. Related studies of popu-

lation dynamics advected by a flow may be found, e.g., in

Refs. 1 and 15. In this section we study a particular model

and present its analogies with the random map. This will

enable us to use the already known properties of this random

map to get a further insight into the influence of the distri-

bution of preys on the predator patterns. We will considered

a single-species population dynamics, i.e., the predator

evolves for fixed prey distribution, and under the influence of

the flow, but the distribution of the prey is a nondynamic

variable, in the sense that it is not transported by the flow and

is maintained at fixed values undisturbed by the predator

action. This is the simplest setting in which the effects of a

localized source of nutrients on an advected predator will

show up. Moreover, this simple model may account for the

interactions predator–prey in Posidonia beds. In this particu-

lar case, the preys are the green leaves of the Posidonia, or

any kind of nutrients attached to this, and the predators are

any herbivores living on them, and which we assume to be

passively advected by the oceanic flow.

The model is the following: the positions of the fluid

parcels are advected by a standard map,16 i.e., a 2D symplec-

tic map defined in the square of side 2p by

x~ t11 !5~x~ t !1K sin y~ t11 !!mod 2p , ~10!

y~ t11 !5~y~ t !1x~ t !!mod 2p . ~11!

It is not integrable for KÞ0. As K increases chaotic

regions occupy larger areas, and the original KAM tori

~regular nonchaotic orbits! are successively destroyed. For K

large enough the KAM tori occupy a very small region and

practically the whole phase space is a unique chaotic region.

The model is completed by stating the evolution rules

for the predator–prey interactions. We denote with n(x) the

stationary spatially nonuniform distribution of preys, and

with C(x,t) the concentration of predators in point x at time

t. We take it to evolve in each fluid parcel according to the

well known logistic map: C(t11)5G(C)5rC(t)(1

2C(t)), but with a growth rate parameter r determined by

the presence of preys, i.e., r5mn . The complete evolution

equation ~9! is

C~F~x!,t11 !5mn~x!C~x,t !~12C~x,t !!. ~12!

The standard map has been written in the compact form ~7!
with x5(x ,y).

For simplicity, and in order to allow comparison with

particular models of random maps, we have considered a

constant carrying capacity ~which is normalized to one! in all

the space. We do not expect the inclusion of additional vari-

ability from a space-dependent carrying capacity to modify

qualitatively our results. Space- and time-dependent carrying

capacity has been explicitly considered in the framework of

three-level ~carrying capacity, predator and prey! trophic

models in Ref. 15. We now introduce the particular form of

the localized prey distribution n(x)

r5mn~x!5H r1 if xP@p~12p !,p~11p !# , ;y ,

r0 otherwise,
~13!

with 0<p<1. We are suggesting a striped spatial distribu-

tion of the preys ~with strip width 2pp), which basically

represents ~due to the 2p-periodicity of the flow! the sim-

plest way to mimic a localized distribution in a closed recir-

culating flow. A fraction p of system area has the value r

5r1 , and fraction 12p , the r5r0 . The heuristic idea that

will guide our analysis is that, if mixing provided by the

advection map is strong enough, fluid parcels will visit re-

gions with the different values of r in a stochastic way, so

that the Lagrangian evolution of the concentrations will be

well described by a random logistic map, i.e., a map of the

form

C~ t11 !5a tC~ t !~12C~ t !!, ~14!

where the random variable a t can take only two values
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a t5H r0 with probability 12p

r1 with probability p
, ~15!

and a t11 is independent of any previous a t .

The random map ~14! has been studied in Ref. 17 for

r051/2 and r154. This corresponds to the situation in which

for a value of r5r0 the population dynamics is attracted by

a fixed point, whereas chaotic population dynamics occurs

for r5r1 . The alternation in time of these two tendencies

gives rise to nontrivial behavior. Numerical ~and some ana-

lytical! computations17 give the following results for ~14!
with r051/2 and r154, for different values of p:

~i! If p<p151/3 the Lyapunov exponent l

5limN→` (1/N) ( i50
N21 lnuat(122C(t))u is negative, i.e.,

there is exponential convergence of two initially close

sequences C(t) generated with the same sequence a t

but slightly different initial conditions C(0). In this

case, the sequences are attracted by C50.

~ii! If p1<p<p2.0.5 the Lyapunov exponent is negative

again, but now the sequences do not converge to any

fixed point. They wander in an irregular and seem-

ingly chaotic manner ~of the on–off intermittency

type!. The meaning of the negative value of l is that

close initial values of C evolve, under the same se-

quence a t , towards the same irregular trajectory. This

is a case of chaotic synchronization related to the phe-

nomenon of synchronization by noise.18,19

~iii! If p>p2 the Lyapunov exponent is positive, i.e., there

is exponential divergence of two initially close se-

quences C(t), behaving both chaotically.

As a first check confirming that our advection-

population dynamics model is close to the random map when

mixing is strong, we fix r051/2 and r154, as in Ref. 17.

This describes a system in which predators are advected over

regions in which not enough food is available (r051/2 leads

to population extinction! and over the strip-like regions in

which preys are abundant ~leading to chaotic population dy-

namics of the predators!. We iterate ~12! to obtain C(i)

[C(x(i),i), and then calculate the reaction Lyapunov expo-

nent lR for our system:

lR
5 lim

N→`

1

N (
i50

N21

lnuG8~C~ i !!u

5 lim
N→`

1

N (
i50

N21

lnumn~x~ i !!~122C~ i !!u. ~16!

The initial condition C(x,0) was a smooth function propor-

tional to sin(x)sin(y). lR measures the rate of convergence or

divergence of two initially similar concentration values C at

the same fluid particle. In Fig. 1 we show lR as a function of

p for different values of K. When K is increased above a high

enough value ~e.g., K'9, for which the standard map shows

a unique ergodic chaotic region16!, lR approaches the

Lyapunov exponent l of the random map.17 On the other

side, when K is small, this correspondence is lost.

Therefore, exploiting this equivalence we can study dif-

ferent regimes of our system depending on the value of the

parameter p. In particular, the spatial patterns of the advected

field are strongly dependent of the value of lR. Next section

is dedicated to the study of these structures.

IV. PREDATOR SPATIAL STRUCTURES

The three regimes described above for the random map

are also found for the behavior of the Lyapunov exponent lR

as a function of p in our advection model, with just some

minor quantitative differences, e.g., in the values of p1 and

p2 ~in particular, in most of our calculations we take K59,

which gives p1.0.34 and p2.0.48). These three regimes

give rise to the following different predator spatial struc-

tures:

~i! For p<p1 , the concentration of predators vanishes in

all the space. The nutrient area is too small to support

a stable population.

~ii! If p1<p<p2 , a typical spatial pattern appears. A

relatively high, but very intermittent, concentration of

predators appears in the area occupied by preys.

Moreover, the concentration pattern displays fractal

features.

~iii! If p>p2 , the spatial concentration of predators shows

a random pattern. No typical structure seems to

emerge.

Whereas the result for case ~i! is self-evident, cases ~ii!
and ~iii! need a more elaborated study. We proceed in the

following subsections.

A. Case p1ÏpÏp2

The regime which we have labeled above with ~ii! is

characterized by a negative reaction Lyapunov exponent lR.

In this case, we observe numerically ~see Fig. 2! the exis-

tence of a typical structure of the reactive field, which fol-

lows the strip-like structure of the preys. Moreover, a fractal

pattern seems to be displayed by the distribution. Let us pro-

ceed to a quantitative characterization of these features.

FIG. 1. Reaction Lyapunov exponent, lR, calculated for different values of

K. Solid line corresponds to K51.5, dotted line to K59 and dashed line to

K519.
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References 13 and 14 study the general continuous-time

case of a chemically or biologically decaying field ~thus with

a negative reaction Lyapunov exponent! advected by a cha-

otic 2D flow. Since periodic velocity fields are used, it is

straightforward to apply the results in these papers to our

case with discrete time. Nevertheless, a fundamental assump-

tion in these studies is that a source term in the equations,

analogous to our prey distribution, is a smooth function of

space. The quantitative results of Refs. 13 and 14 would fail

@see, e.g., Eq. ~1! in Ref. 13# when discontinuities are present

in the source, as in our localized prey distribution ~13!.
Therefore, in our calculations, and with the view on charac-

terizing the spatial patterns, we will use a continuous ap-

proximation to the previous step function describing the dis-

tribution of nutrients, which would allow us to compare our

results ~in the regime of lR
,0) with those in Refs. 13 and

14. The approximation is performed by truncating the Fou-

rier transform of the step function of width p @Eq. ~13!# and

smoothing properly the coefficients.20 The final expression

we use is

n~x ,y !5
1

2p
S p1

7p

2
D1 (

k52N ,kÞ0

N S 12
uku

N11
D

3~21 !k
7

2pk
sinS kp

2
D cos~kx !, ~17!

for any 0<x ,y<2p and N510. Figure 3 shows a one-

dimensional ~1D! cut of this smoothed distribution of nutri-

ents.

A quantitative characterization of the observed structures

can be performed in terms of structure functions. In particu-

lar, the structure function of order one, S1 , is defined by

S1~dx!5^uC~x1dx!2C~x!u& , ~18!

where ^¯& indicates an average taken over the different spa-

tial points x along a line in the system. In Ref. 14 the scaling

of S1 is calculated with the result S1(dx);udxua when dx

→0, with a' ulRu/lF when lR
,0 and lF

.ulRu, being lF

the Lyapunov exponent of the Lagrangian motion ~4!. The

above expression for a is just an approximation to which

multifractal corrections should be in principle added,14 but

we are not going to consider them here.

The Lyapunov exponent of the standard map, for K high

enough, is given16 by: lF.ln(K/2). In our calculations for

K59 we are in the above mentioned conditions, that is, lF

.ulRu21 for all the values of p.

Figure 4 shows ulRu as a function of p for K59 ~the

smooth approximation to the spatial distribution of preys is

used!. In addition, we have numerically calculated the scal-

ing exponent a of S1 in lines across the central strip of

FIG. 2. Predator 2D pattern obtained for p50.37. The distribution of nu-

trients is continuous. The lighter the color the higher the concentration.

FIG. 3. One-dimensional cut of the continuous distribution of nutrients.

FIG. 4. ulRu for a continuous distribution of nutrients, calculated in two

different ways against p. Values labeled with squares come from a direct

calculation using expression ~16! in the text. Circles are calculated from

ulRu'alF, being a the numerically calculated scaling exponent of the

first-order structure function.
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nutrients, and multiplied it by ln(9/2)'lF for different val-

ues of p. The agreement between both quantities is quite

good for p near p1 , confirming the expression a
' ulRu/lF, although it gets worse as p→p2 . The reason for

this are the already mentioned multifractal corrections to the

scaling exponent of the structure function, but a deeper dis-

cussion about this will be given in a subsequent work. The

agreement allows us to understand the pattern displayed in

Fig. 2 in terms of the filamental fractal patterns discussed in

Refs. 13 and 14 for continuous-time dynamics. The observed

fractal structures are revealing the stable and unstable mani-

folds ~local contracting and expanding directions! attached to

each point of the phase space of the standard map. It should

be noted, however, that there is here a much larger amount of

irregularities at small scales than in the patterns analyzed in

Refs. 13 and 14. The reason is the much more irregular dy-

namics associated to the logistic map considered here. The

Lagrangian evolution of C(t)[C(x(t),t) is related to the

one of the logistic random map, which is of the on–off in-

termittency type. Models considered in Refs. 13 and 14 dis-

played simple local relaxation behavior. The small-scale

structure seen in Fig. 2 will introduce stronger multifractal

corrections in higher-order structure functions. We finally

remark that when a discontinuous distribution of preys such

as ~13! is considered, the relationship a' ulRu/lF is not sat-

isfied at all.

B. Case pÌp2

Now we proceed to study the case p.p2 . In this re-

gime, the reaction Lyapunov exponent lR is positive, i.e., the

chemical or biological part of our system is also chaotic.

The patterns calculated in this regime have random ap-

pearance, being dominated by strong small-scale irregularity

with very small amount of structure ~see Fig. 5!. In fact, the

scaling exponents of the first-order structure function are

close to zero, as corresponding to a random discontinuous

field.

This random structure is easy to understand once one has

realized that lR
.0 in this range of p: Neighboring sites,

even if they have initially nearly similar concentration val-

ues, and even when they remain close for long time so that

they experience close values of the sequence x(t), will de-

velop growing differences in concentration values, thus lead-

ing to the observed discontinuities at small scales.

V. DISCUSSION

Summing up, spatial structures with fractal features ~of

filamental type! appear for the predator field in a range of

values of the size of the nutrient patch p. An increasing

amount of small-scale randomness appears when p is in-

creased, until structure is finally lost. The analogy with the

random map model has allowed us to understand this behav-

ior as being originated by the change in the value of the

reaction Lyapunov exponent lR when p is varied. In particu-

lar, structure is lost when lR becomes positive. For p small

enough, global extinction occurs, since most of the system

has a parameter value for which C50 is the only attractor.

Our results have been obtained for a particular set of

coupled maps, and for a specific nutrient distribution. We do

not expect major qualitative changes in the above findings if

the standard map is replaced by a different advecting flow, as

long as the Lyapunov exponent lF takes the same value.

This belief is supported by the more detailed arguments of

Refs. 13 and 14 for the time-continuous case. It should be

said, however, that the quantitative strength of multifractal

corrections to simple expressions such as a' ulRu/lF will

depend on the particular flow chosen.

Our choice of the logistic map as the population dynam-

ics to study is certainly important for the results obtained.

Our results should describe the behavior under other popula-

tion models as long as their parameters take values favoring

chaotic oscillations in a localized portion of space, and fa-

voring relaxation to a fixed point in the rest. The election of

the logistic map has allowed the use of results known for

random logistic maps, thus helping to interpret the different

patterns in terms of the value of lR and its relationship with

lF. Those quantities would be the right tool for the interpre-

tation of advection–reaction patterns in other population or

chemical models.

Diffusion has been discarded in the present work. We

expect that its only effect would be to smooth out any small-

scale fractal or random structure below a size of the order of

AD/lF. In fact, our numerical calculations have an effective

diffusion which comes from our minimal spatial resolution.

As mentioned above, a more controlled way to introduce

diffusion is to perform explicitly, after each map operation,

an average of the concentrations of fluid particles closer than

the diffusion length.

We finally mention that the map approach turns out to be

an extremely efficient method from the numerical point of

view, as compared to direct solution of partial differential

equations such as ~1! or other continuous approaches.

FIG. 5. Predator 2D pattern obtained for p50.87. The distribution of nu-

trients is continuous.
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