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Abstract The spittlebug (Aeneolamia varia) is one of 
the most important sugarcane pests in Colombia, where a 
recent increase in population and distribution specially in 
southwestern Colombia have led to the need for new tech-
nologies for integrated pest management. The objectives of 
this study were to determine the spatial distribution of this 
pest in commercial sugarcane fields and to validate machine 
learning (ML) tools for indirect injury detection and impact 
on yield (damage) using satellite images. This study was 
carried out in fields grown with the CC 01-1940 variety in 
El Cerrito, Valle del Cauca, Colombia, where systematic 
sampling of the populations (number of adults and nymphs 
per stem) was carried out. The spatial aggregation and dis-
tribution were determined using Moran’s index and point 
patterns, sequence observations, and analysis with distance 
indicators (Sadie). The indirect injury detection and quan-
tification of the impact on production were carried out with 
a ML approach using satellite image products with 10 m 
spatial and five days temporal resolutions, obtained from a 
Sentinel-2 sensor using Google Earth Engine. The results 
indicated that spittlebug populations had an aggregate spa-
tial behavior and high spatial dependence. In addition, the 

ML algorithms predicted spittlebug injury, and the effect on 
production was estimated at 26.4 tons of cane per hectare, 
which represented a 17% reduction in the expected yield. 
The use of spatial analysis and remote sensing tools are an 
alternative for indirect detection of injury and for under-
standing population dynamics of the pest in sugarcane, so 
they can become instrumental for decision-making on an 
integrated pest management program.
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Introduction

The global sugarcane (Saccharum officinarum L.) agroin-
dustry has a large socioeconomic impact given its many 
products, including the production of sugar, “panela” 
(unrefined sugar), electricity, biofuels, paper, among oth-
ers (Aguilar-Rivera 2019). In Colombia, sugar production 
is concentrated mainly in the southwest, in the departments 
of Valle del Cauca, Cauca, Quindío, Caldas, and Risaralda 
(Asocaña 2020). This sector represents 0.7% of the gross 
domestic product (GDP) per capita and generates more than 
180,000 direct and indirect jobs, benefiting more than 1.2 
million families in Colombia (Asocaña 2020).

Currently, a series of phytosanitary problems threatens 
the sugarcane agroindustry in Colombia, where the spittle-
bug Aeneolamia varia (F) (Hemiptera: Cercopidae) stands 
out (Vargas and Gutiérrez 2017). In southwestern Colombia, 
this pest is emerging, increasing its population and distribu-
tion, and presenting a considerable risk given its impact on 
production, which can be up to 25% of biomass production 
(Salazar and Proaño 1989), without mentioning the costs 
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associated with pest management and the environmental 
impact from the use of chemical insecticides (Vargas and 
Gutiérrez 2017). The injury of spittlebugs in sugarcane is 
associated with necrosis, portions of reddish brown spots 
and in advanced stages tissue death (Vargas and Gutiérrez 
2017). This kind of injury it is related to nymphs and adults 
that can inject toxins into plant stems (Taliaferro et al. 1967).

Generally, the implementation of an integrated pest man-
agement program entails: (1) sampling and monitoring; (2) 
determination of the impact on the crop in terms of injury, 
damage, and loss; (3) application of treatments and evalua-
tion of management practices; (4) forecasts of future popula-
tion dynamics; and (5) implementation of site-specific agri-
culture (Brenner et al. 1998; Arbogast et al. 2000; Binns 
et al. 2000; Ferguson et al. 2003). Monitoring and subse-
quent spatial analysis are key to generating basic informa-
tion on population dynamics, species detection, behavior, 
and pest distribution (Binns et al. 2000; Deleon et al. 2017; 
Arias et al. 2019).

Spatial analysis of sugarcane monitoring has optimized 
sampling schemes and, therefore, the integrated management 
of important arthropod pests, such as the weevil Spheno-
phorus levis Vaurie (Coleoptera: Curculionidae) in Brazil 
(Pavlu and Molin 2016); melolonthidae species (Coleop-
tera: Scarabaeidae) in the USA (Cherry 1984) and Australia 
(Allsopp and Bull 1989); and the sugarcane borer Diatraea 
saccharalis F (Lepidoptera: Crambidae) in the USA (Schex-
nayder Jr et al. 2001).

Remote sensing can optimize the spatio-temporal charac-
terization of a pest attack, in a quickly, accurately, cheaply, 
and noninvasively ways (Khdery 2021). Specifically, it 
obtains key information on the interactions between pest 
attack, the structural changes of the crop, and its effect on 
the response in specific segments of the electromagnetic 
spectrum (Hatfield and Pinter Jr 1993). Currently, the 
combination of the Sentinel-2 A + B satellite constellation 
(European Space Agency—ESA—Copernicus Programme) 
and the massive processing platform Google Earth Engine 
(GEE) generates, validates, and updates numerous spectral 
monitoring tools for crops on multiple scales (Amani et al. 
2020; Segarra et al. 2020). On the other hand, in the last 
decade numerous studies have reported on the usefulness of 
machine learning (ML) algorithms to data processing and 
analysis in the indirect detection of crop injury (Pardede 
et al. 2020).

The integration of ML tools and remote sensors to detect 
the effect of pests on sugarcane is incipient. However, recent 
work has focused on the detection of phytosanitary prob-
lems, stress conditions, and yield components (Abdel‐Rah-
man and Ahmed 2008). In this regard, several studies have 
reported promising results in the prediction of plant growth 
and final yield (Natarajan et  al. 2016; Ghazvinei et  al. 
2018), identification and mapping of weeds with spectral 

responses (Souza et al. 2020), and disease recognition with 
photographic images (Militante et al. 2019). Specifically, in 
analyses associated with spittlebugs in sugarcane, the use 
of a hybrid artificial intelligence model for the analysis of 
population parameters based on climate variables has been 
reported by Figueredo et al. (2021). In addition, several stud-
ies have reported that ML algorithms increase efficiency in 
time, precision and costs of injury detection, loss quantifica-
tion, species identification, and monitoring (He et al. 2019; 
Partel et al. 2019; Rustia et al. 2020).

No studies are available yet, to the best of the authors 
knowledge, that validate the combination of ML algorithms 
and remote sensors in relation to spatial distribution and 
behavior of A. varia in sugarcane. Similarly, these technolo-
gies have not been used to classify the presence/absence 
of spittlebug injury and the subsequent damage, that is, its 
impact on sugarcane productivity. Finally, the quantification 
of the effect of spittlebug injury, in addition to generating 
key information on the affected productivity components, 
will generate a technical and economic base that will opti-
mize integrated management. The objectives of this study 
were: (1) to determine and characterize the spatial–temporal 
dynamics of spittlebug populations and infestation in sug-
arcane crops; (2) to validate the use of ML algorithms for 
remote detection of spittlebug injury on sugarcane, using 
Sentinel 2 A + B satellite images; and (3) to quantify the 
effect of spittlebug damage on sugarcane yield.

Materials and Methods

Characterization of the Assessed Sugarcane Fields

This study was carried out in two 30 ha commercial fields 
(Field 1 and 2) planted with the sugarcane variety CC 
01-1940 in a second ratoon (Fig. 1a). They were in the 
municipality of El Cerrito, Valle del Cauca, Colombia 
(latitude north: 3.693, longitude west: − 76.306; elevation: 
960 m). The average monthly temperature varies between 19 
and 30 °C, with minimums of 17 °C and maximums close to 
32 °C, annual precipitation with bimodal distribution, and 
accumulated monthly values between 20 and 160 mm. The 
relative humidity is between 60 and 80%, and wind speeds 
are between 2 and 14 km  h−1. The agroecological zone is 
6H1, which indicates less than 200 mm per year of excess  
precipitation and a predominantly sandy soil texture (Car-
bonell González 2011). All agronomic management prac-
tices were carried out according to the instructions of the 
technical staff in charge. The mechanical harvest was carried 
out for 13.1 months (06-01-2020), and the spatial obtaining 
yield was represented based on map (TCH: tons of cane per 
hectare) with a spatial resolution of 1 m, visualized using 
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the QGIS version 3.16 geographic information system tool 
(QGIS Development 2016).

Monitoring Spittlebug Populations

At the middle of 2019, a spittlebug attack was detected 
in the fields described above (Fig. 1a and b), with a crop 
of 5 months of age. So, monitoring of pest’s immatures 
(nymphs) and adults was carried out. Then, a systematic 
sampling was designed in a regular georeferenced 40 × 40 m 
grid, selecting 51 and 86 sampling points for fields 1 and 2, 
respectively (Fig. 1c). Field monitoring was carried out on 
May 25 and 31 and July 2, of 2019.

Variables associated with the population level of adults 
and nymphs were evaluated at each sampling point during 
three monitoring sessions. Each point was represented by 
row meter transects (10 m), where the number of stems and 
the number of adults present in the foliage were determined; 
then, the root zone was checked for spittle masses, assuming 
each one contained a nymph. Finally, estimates of the infes-
tation were made by calculating the number of nymphs/stem 
and adults/stem (Vargas and Gutiérrez 2017). Additionally, 

injury to the foliar tissue on the plants was evaluated, quan-
tifying it as a dichotomous variable (presence–absence). The 
injury at the foliar level was characterized as portions of red-
dish brown spots, chlorosis, and necrosis in a more advanced 
stages tissue death (Fig. 1b) (Vargas and Gutiérrez 2017).

Spittlebug Population Inference and Level of Injury

With samplings executed in three different times (described 
above), a data set was obtained and used for estimates of pop-
ulation parameters using descriptive statistic methods. For 
pest population variables (number of nymphs and adults) and 
infestation (nymphs/stem and adults/stem), the mean, mode, 
minimum, maximum, standard deviation, variance, and coef-
ficient of variation (CV) were estimated. In addition, with the 
aim to evaluate whether there were population changes over 
time, an one-way analysis of variance and subsequent means 
comparisons were performed using Tukey’s test (P < 0.05). 
The Levene and Kolmogorov–Smirnov criteria were used 
to evaluate the homoscedasticity and normality of the data, 
respectively. Analyses were run in the free statistical software 
R version 4.2.1 (R Development Core Team 2022).
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Fig. 1  Design and work scheme. a Fields 1 and 2 affected by Aene-
olamia varia infestation. b Plant injury after A. varia attack, where 
chlorosis and necrosis of foliar tissue are evident. c Pest population 
sampling grid, 40  m × 40  m. d Sampling points to measure crop 
development variables at 10  months of age. Infestation levels (IL) 
considered were: null (0 IL and > 0.58 NDVI), low (0.01–0.14 IL and 
0.44–0.57 NDVI), medium (0.141–0.45 IL and 0.34–0.43 NDVI), 

and high (> 0.451 IL and < 0.33 NDVI). IL was determined as the 
mean of adults and nymphs per stem. e NDVI index through a former 
crop cycle without pest infestation and a subsequent one with pest 
infestation. NDVI data were acquired from historical remote imagine 
from Sentinel-2 using Google Earth Engine. Normalized difference 
vegetation index (NDVI)
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Analysis of the Spatio‑temporal Dynamics 
of the Spittlebug Populations

The analysis of the spatial–temporal dynamics of nymphs 
and adults was carried out in two steps. The first step deter-
mined the aggregation (random, aggregate, or uniform) 
and spatial dependence of spittlebug populations using the 
Moran index (MI) (Moran 1948). In the second step, the 
spatial distribution was modeled, and since the number of 
nymphs and adults were counting types (discrete) and dis-
tributed randomly, spatial tools of the point and area pattern 
type were used (Cressie 1991).

The methods used in this second step were: (1) analy-
sis distribution patterns using the kernel density estimator, 
where the points were a function of the coordinates (xy), and 
the mark was a function of the value of the population count 
(nymphs and adults). This process was implemented with the 
statistical software R and the functions of the spatstat pack-
age (Baddeley et al. 2015). (2) Area patterns using count 
sequence observations (population of nymphs and adults) 
in space (coordinates) based on the monitoring carried out 
at each sampling point in the field, implemented with R and 
the functions of the epiphy package (Gigot 2018). (3) Spa-
tial analysis with distance indicators (Sadie) (Perry 1995; 
Li et al. 2012), implemented with R and the functions of the 
epiphy package (Gigot 2018). The Sadie index is designed 
for individual count analysis, obtaining an aggregation index 
(Ia) and associating the presence of neighbors with a high 
presence (Vi) or absences (Vj) (Perry 1995; Li et al. 2012). 
Likewise, the colors in the points provide a visual represen-
tation that is related to clusters associated with the size and 
dimension of the studied phenomenon (Perry et al. 1999a, 
b).

Acquisition of Multi‑band Satellite Images with High 
Temporal and Satellite Resolution and Determination 
of Vegetation Indices

Our approach was based on evaluating two sugarcane 
production cycles: (1) without infestation and (2) with 
spittlebug infestation. The average length/cycle was 
13 months. For both, monitoring was carried out using 
satellite images from planting to harvest. The time win-
dow evaluated was from years 2017 to 2020, specifically 
the first crop cycle occurred between October 2017 and 
November 2018, while the cycle of high infestation, 
between December 2018 and January 2020.

Multispectral satellite images were the source of the 
overall set of predictor variables. These images were 
obtained from the Sentinel-2 A + B constellation system 
supported by the “Copernicus Land Monitoring studies” 
mission (https:// senti nel. esa. int/ web/ senti nel/ user- guides/ 
senti nel-2- msi/ produ ct- types/ level- 2a), with a spatial and 

temporal resolution of 10 m and 5 days, respectively, for 
October 2017 to January 2020. The selected bands were: 
2-blue (0.45–0.52 μm), 3-green (0.54–0.57 μm), 4-red 
(0.65–0.68 μm), 8-NIR1 (0.78–0.90 μm), and 11-SWIR 
1 (1.56–1.65). The images were acquired from the plane-
tary-scale platform for Earth science data and analysis—
Google Earth Engine (GEE) (Amani et al. 2020), using 
own JavaScript code.

The multi-step scheme that was executed on the GEE 
platform consisted of: (1) selection of the luck area and 
obtaining all the available images for the 2017–2020 
period; (2) cloud mask and threshold to select products 
that meet quality and information parameters; (3) clipping, 
band extraction and calculations of pixel values associ-
ated with reflectance to determinate the vegetation indices 
described in the next section; (4) visualization of vegeta-
tion indices for the lots and extraction of characteristics for 
the sampling points; and (5) export information. Addition-
ally, since band 11—SWIR 1 had a spatial resolution of 
20 m, an interpolation and resampling process was carried 
out at 10 m, supported by the 10 m resolution bands. For 
this process, a convolutional neural network (Wu et al. 
2022) was optimized and applied, implemented in the free 
Python programming language using the TensorFlow and 
Keras libraries (Brownlee 2016).

In total, 39 (for 2017–2018) and 31 (For 2018–2020) 
Sentinel-2 satellite images were obtained for the fields, 
divided into two production cycles: (1) without spittlebug 
affectation (2017–2018) and (2) with spittlebug affecta-
tion (2018–2020), respectively. With the images, previ-
ously reported vegetation indices with a high potential 
for detecting alterations in plants caused by arthropod 
pests were calculated (Table 1). Additionally, blue, green, 
red, and near-infrared (NIR) bands were obtained. Sub-
sequently, these products were projected to the evaluated 
fields. This process was executed with R with functions in 
the LSRS package (Sarparast 2018).

Indirect Detection of spittlebug Injury Using Machine 
Learning Tools

To indirectly detect the spittlebug injury in the host, a set 
of multi-band satellite images (described above) were used 
that had a temporal correspondence after field pest popula-
tion evaluations between the fifth day and 15 days after the 
last field evaluation (May 25 and 31 and July 2, 2019). Then, 
the indices described in Table 1 were determined, and the 
bands were extracted for use as predictor variables. Healthy 
plants (absence of injury), soil, and injured plants were used 
as classes to be predictors. The presence class was obtained 
by extracting the mean of the sampled plants at any of the 
sampling points (Supplementary Information 1 A and B), 
indicating presence class as plants presenting some level 

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
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of injury (as described above), while absence means plants 
with no evidence of injury.

For the classification process of the previous classes, the 
ML approach was used. Specifically we selected the random 
forest (RF) classifier for simplicity, low computational cost 
and effectiveness (Pal 2005). We implemented an assem-
bly model of the bootstrap Bagging aggregation (Breiman 
1996). The data were randomly divided into two data sets: 
(1) training (75%) and (2) testing (25%), and in each run of 
the model, a seed was placed to stabilize the predictions and 
achieve reproducibility in the results.

Different variations of input data and parameters were 
made within the RF algorithm, seeking a balance between 
robustness, significance, and computational performance. 
A set of variable combinations (bands and bands + indices) 
and classes was evaluated. At the algorithm level, varia-
tions were made in the number of trees, number and depth 
of nodes (1–4000), and the hyperparameter alpha (0–20) 
(Henao-Rojas et  al. 2021). Additionally, the evaluated 
classes were balanced, incorporating artificial class weights 
in the RF classifier algorithm (Liaw and Wiener 2002).

The classification result was evaluated using five statis-
tical parameters: (1) the receiver operation characteristic 
(ROC), comparing the values on the scalar value of the area 
under the curve (AUC), a measure of the quality of the clas-
sification (Cortes and Mohri 2003); (2) confusion matrix 
(Bekkar et al. 2013; Mueller and Guido 2016), where the 
rows corresponded to the true classes and the columns to 
the predicted classes. With each matrix, the global accu-
racy (GA) was calculated using the ratio between the total 
number of correct samples over the total number of samples 
(Hasmadi et al. 2009); (3) the Kappa index; (4) inference 
error using a stratified 10 K-fold cross-validation (1-infer-
ence error = precision); and (5) significance (P < 0.05).

The supervised classification and the evaluation of the 
results were developed by building code in the free software 
R using functions from the caret (Kuhn et al. 2020); random 
forest (Liaw and Wiener 2018); Car (Fox et al. 2020); pROC 

(Robin et al. 2021); randomForestExplainer (Paluszynska 
and Biecek 2019); and Raster (Hijman 2016) packages.

Estimation of Spittlebug Infestation Effects on Yield 
Using Indirect Detection of Injury and a Machine 
Learning Approach

With the objective of quantifying some productivity param-
eters prior to harvest, a stratified sampling was designed on 
the 10th month of crop development (20 of September 2019) 
(Fig. 1d). The infestation level (IL) was associated with the 
normalized differential vegetation index (NDVI) according 
to the distribution of quartiles as follows: (1) high infestation 
and low NDVI values (Q4: > 0.451 IL and < 0.33 NDVI); (2) 
mean infestation and intermediate NDVI values (Q2–Q3: 
0.141–0.45 IL and 0.34–0.43 NDVI); (3) low infestation 
and medium high NDVI values (Q1–Q2: 0.01–0.14 IL and 
0.44–0.57 NDVI); and (4) no infestation and high NDVI 
values (QI: 0 IL and > 0.58 NDVI) (for further details, see 
Fig. 1f). The IL for each evaluation point was obtained as 
the mean of the pixel value after joining the interpolation 
rasters, using the kernel density method (described above) 
for the variables nymphs/stem and adults/stem and func-
tions of the raster library, implemented in the free software 
R (Hijman 2016).

The free application Avenza Maps (Avenza Systems Inc) 
was used for the geolocation of each sampling point. Then, 
the number, height and diameter of the stems were deter-
mined in transects of 10 m each. The data were subject to an 
analysis of variance and post hoc tests, using the Tukey test 
(P < 0.05), after verifying the normality and homoscedastic-
ity of the data using the Levene and Kolmogorov–Smirnov 
criteria, respectively, using statistical free software R.

The second analysis aimed to evaluate the use of multi-
variate regression methods and an ML approach for predict-
ing infestation effects on sugarcane yield using predictive 
variables obtained from satellite images described above. 
Our approach was based on the sensitivity of NDVI obtained 
at a resolution of 10 m from Sentinel-2 sensor images for the 

Table 1  Mathematical formulas of several vegetation indices used to plant indirect pest injury detection

Near infrared (NIR)(0.85–0.88  nm); red (0.64–0.67  nm), green (0.53–0.59  nm); blue (0.45–0.51  nm); short-wave infrared (SWIR1)(1.75–
1.65 nm) = Landsat bans. R: surface reflectance values. L: to adjust the background = 1

Name Equation References

Normalized difference vegetation index (NDVI) NDVI = RNIR − RRED/RNIR + RRED Genc et al. (2008)
Green normalized difference vegetation index (GNDVI) GNDVI = RGREEN − RRED/RGREEN + RRED Sudbrink et al. (2015)
Two-band Enhanced Vegetation Index (EVI2) EVI2 = 2.5*((R

NIR − RRED)/(RNIR + 2.4*R
RED- + 1)) Mondal (2011)

Ashburn vegetation index (AVI) AVI = RNIR − RRED Sudbrink et al. (2015)
Soil-adjusted vegetation index (SAVI) SAVI = (R

NIR − RRED) (1 + L)/RNIR + RRED + L1 Yang et al. (2007)
Normalized difference water Index (NDWI) NDWI = RNIR − RSWIR/RNIR + RSWIR Huo et al. (2021)
Atmospheric resistant vegetation (ARVI) ARVI = (R

NIR-(2R
RED-BLUE))/ (R

NIR+(2R
RED-BLUE)) Yang et al. (2005)



1120 Sugar Tech (Sept–Oct 2023) 25(5):1115–1133

1 3

characterization of phenological phases and productivity of 
sugarcane (Wang et al. 2019) (Fig. 1e).

With the 39 and 31 images obtained for the above-men-
tioned periods, the mean spectral responses of each index 
and band were calculated (Table 1) for each phenological 
phase for the two evaluated cycles (Fig. 1g) as predictor 
variables. The prediction variable was the yield, expressed in 
tons of cane per hectare (TCH) for the 2017–2018 (without 
infestation) and 2018–2020 harvests (with spittlebug infesta-
tion), obtained from the mechanized and visualized harvest 
with the raster format of continuous values using the free 
software QGIS.

The extraction of the values from the raster origi-
nated with the indices, and the specific bands [2-blue 
(0.45–0.52  μm), 3-green (0.54–0.57  μm), 4-red 
(0.65–0.68 μm), 8-NIR1 (0.78–0.90 μm), and 11-SWIR 
1 (1.56–1.65)] were done using the raster library (Hij-
man 2016), while the yield values were obtained from the 
mechanic harvest map described before using aspatial join 
of the rgeos library, as the information was in representative 
polygons at each pixel (Bivand et al. 2020).

With this information, some parameters of spatial 
descriptive statistics were determined. The behavior of the 
spectral indices and bands at different points of crop devel-
opment and their relationship with the TCH were estimated 
by calculating the centroids associated with each polygon of 
the production area, and the subsequent extraction of values, 
whose visualization was carried out using histograms, was 
done using the sf library of the free software R (Pebesma 
2018). In addition, histograms were generated per infestation 
level to compare the behavior between sampling days and 
the spectral response in the crop.

An estimation model was fitted from the values of each 
pixel for the variable to be predicted (TCH) and the pre-
dictors (bands and indices obtained from spectral images), 
comparing two approaches. In the first approach, we used 
a generalized additive model (GAM) (Eq. 1). Initially, a 
selection process of non-autocorrelated variables was car-
ried out using the Pearson or Spearman coefficient, elimi-
nating those with values less than 0.8. Subsequently, the 
selection of predictive variables was carried out with a 
stepped selection method, using the Akaike information 
criterion (AIC) until the variables were correlated with 
the residuals (Efron et al. 2004). The procedures were 
developed using R and the functions of the gam library 
(Hastie 2020).

where TCH is the tons of cane per hectare; β0 is the inter-
cept; and f (xs) is the standardized vegetation bands and 
indices according to z transformation methods using the 
expression reported in Eq. 2.

(1)TCH = �0 + f1
(

xs1
)

+ f2
(

xs1
)

+⋯ + fm
(

xsm
)

,

where χi = the raw variable value, μ = mean, and σ = standard 
deviation.

In the second approach, we implemented ML algorithms. 
We selected a regularized linear regression using the meth-
ods Lasso (stands for Least Absolute Shrinkage and Selec-
tion Operator) regression model because this method selects 
variables, excluding less relevant predictors (Friedman et al. 
2010). The penalty of this model was controlled by evaluat-
ing a set of values of the hyperparameter λ (0–20), selecting 
the λ value that gave rise to the best model through cross-
validation using the statistical parameter of the mean square 
error (MSE). The calibration and validation of the model 
were developed with a data set, 75 and 25%, respectively. 
The procedures were developed using the software R and 
the functions in the glmnet library (Friedman et al. 2021).

The evaluation of the two models was carried out using 
the coefficient of determination (adjusted R2), AIC, and root 
mean square error (RMSE). The procedures were developed 
using the free software R. The results of the selection of var-
iables with the Lasso regression method (described above) 
showed that the biomass production (TCH) was highly 
influenced by the level of spittlebug infestation (adults and 
nymphs per stem) and the indirect injury detection associ-
ated with NDVI values. So, the TCH and infestation were 
fitted to a second-order linear and quadratic model as a func-
tion of the infestation level and the NDVI, respectively.

The TCH and infestation data for each sampling point 
were obtained by extracting the values according to the coor-
dinates of the harvest map and the mean of the three sam-
plings. The fit of second-order linear and quadratic models 
was evaluated with statistical significance (P < 0.05), coeffi-
cient of correlation (r), determination (R2), and mean square 
error (MSE). Likewise, for all models, the assumptions of 
normality, independence, constant variances, and linearity 
were guaranteed. The procedures were developed using the 
statistical free software R.

Results

Spittlebug Infestation Levels and Space–Time 
Population Dynamics

The monitoring of adult spittlebug populations and their 
level of infestation showed high variation over time, repre-
sented by values of the CV between 102.5 and 234%. The 
highest average populations were present in the first and 
second sampling times, with a reduction in the third evalua-
tion. In this sense, maximum population values of 110 adults 
were observed in a linear row meter, along with maximum 

(2)Zi =
� i − �

�X
,
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infestation values of 73 adults per stem, for all samples 
(Table 2). This variation gave rise to significant differences 
depending on the sampling time (Fig. 2).

For the nymph population and infestation, the means were 
similar in all three samplings but with high variation, as 
represented by the CV and high number of atypical values, 
higher than Q4 of the box-and-whisker plot (Table 2, Fig. 2a 
and c). In some sampling points, maximums of 151 nymphs 
were found, with infestation levels of 78 nymphs per stem. 
This high variation resulted in no statistical differences, 
depending on the sampling time (Table 1 and Fig. 2b and d).

For the spatial dynamics, it was found that, according 
to the Moran index, the adult populations had an aggregate 
distribution, highly aggregated distribution, and medium 
aggregation, with a random tendency, in samples 1, 2, and 
3, respectively (Table 1). On the other hand, the populations 
of nymphs presented a very high, medium, and medium–low 
aggregation for the three samplings, respectively (Table 1) 
(Fig. 1a).

For the spatial distribution, populations of nymphs and 
adults were generally grouped in areas within the lot with 
variations depending on the sampling (Figs. 1a and 3). The 
higher concentrations were in the central and southwestern 
areas of the fields, with a tendency toward spatial aggre-
gation. The three methods of spatial analysis used found 
coincidence in the above-mentioned. On the other hand, 
the interpolation with the kernel method assigned higher 
values of density or grouping, depending on the state type 
of the insect and the sampling time (Fig. 3a). Likewise, 
the area pattern method grouped centroids with population 
values for adults and nymphs between 1 and 7 individuals 
(Fig. 3b). The Sadie index was able to differentiate areas 
with a high risk of finding populations of adults and nymphs 
(red, Fig. 3c) with an aggregate distribution, those areas with 

low levels (blue dots, Fig. 3c), and the areas with movement 
of insects toward new areas (white color, Fig. 3c).

For the nymphs, higher levels of population grouping 
were observed in the first and third sampling, with greater 
intensity in the southeast, center, and northeast (Fig. 3), as 
corroborated by the interpolation using the kernel density 
(Fig. 3a). This result was corroborated with the Sadie index, 
which showed that, in these areas, there was aggregation and 
a greater probability of finding nymphs (Fig. 3c). The densi-
ties of adults were considerably higher in the first sampling, 
with a tendency to concentrate toward the edge of the lot in 
the southwest but with a more random distribution (Fig. 3b). 
Later, in samplings 2 and 3, although the population level 
decreased, the aggregation increased, moving from the edges 
to the central areas in the fields (Fig. 3).

Remote Spittlebug Injury Detection Using Satellite 
Imagery and ML Tools

It was found that the ability to correctly discriminate the 
classes associated with injured plants associated with spit-
tlebugs, without injury, and soil using vegetation indices 
and bands obtained from satellite images varied depending 
on the number of variables used as predictors, the sampling 
time, and the optimization of the RF algorithm according to 
the number of nodes, minimum depth, and hyperparameter 
λ (Fig. 4 and Table 3).

For the RF algorithm, the best prediction was based on a 
balance between the accuracy, the values of the kappa sta-
tistic, the ROC-AUC and the significance for the training 
and testing data set and was obtained with a combination 
of predictor variables between 4 and 10, a number of nodes 
between 120 and 334, a minimum depth of nodes between 

Table 2  Descriptive statistics 
and population of nymphs, 
adults per meter of crop row and 
infestation expressed as nymphs 
and adults per stem in sugarcane 
commercial plots under natural 
infestation of Aeneolamia varia 

CV coefficient ofvariation
a Values close to 0, less than − 1, and close to 1 indicate a random, uniform, and aggregated spatial pattern, 
respectively (Moran 1948)

Sampling Variable Average Mode Median Minimum Maximum CV (%) Moran  indexa

1 Number of nymphs 12.4 0.0 3.0 0.0 77.0 146.1 0.8
number of adults 22.4 0.0 18.0 0.0 110.0 102.5 0.8
Nymphs/stem 5.1 0.0 1.0 0.0 28.0 142.5 na
Adults/stem 9.5 0.0 7.0 0.0 73.0 121.3 na

2 Number of nymphs 14.0 0.0 6.0 0.0 115.0 150.0 0.5
number of adults 2.0 0.0 0.0 0.0 34.0 224.2 0.8
Nymphs/stem 6.8 0.0 3.0 0.0 56.0 152.0 na
Adults/stem 0.93 0.0 0.0 0.0 16.0 234.0 na

3 Number of nymphs 12.7 0.0 4.0 0.0 151.0 175.0 0.6
number of adults 1.94 0.0 0.0 0.0 22.0 212.5 0.6
Nymphs/stem 7.47 0.0 2.0 0.0 78.0 173.7 ma
Adults/stem 1.1 0.0 0.0 0.0 12.0 209.2 na
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1.91 and 418, and hyperparameter λ values between 2 and 
5 (Table 3).

For the discrimination of classes associated with injury 
associated with spittlebug adults or nymphs, it was found 
that the informative variables differed for each sampling 
time. First, a highly predictive capacity for the presence of 
spittlebugs injury in the NIR band was observed, followed 
by the AVI, EVI, and SAVI vegetation indices. Likewise, 
a good prediction for the absence of spittlebugs injury was 
obtained in the red, green, and blue bands. In the second 
sampling time, a low predictive capacity was observed for 
the bands and indices for pest injury, while for the absence 
of injury the more important predictors were the NDVI, 
AVI, ARVI, and NDWI vegetation indices. In the third sam-
pling, only the green band had predictive importance for 
the presence of injury of spittlebugs, while for absence, the 
more important predictors were the EVI, NDVI, and SAVI 
vegetation indices and the blue and NIR bands. In the three 
samplings, the red, green, and blue bands presented predic-
tive capacity for the soil class (Fig. 4a).

According to the values found in the confusion matrix 
(Fig. 4b), the results indicated that the trained RF model 
presented variations in the correct selection of classes as 
a function of time. In the first sampling, the presence of 
pest injury was moderately estimated, but the absence was 
underestimated since a higher value indicated a presence. 
On the other hand, in the second and third sampling times, 

the opposite occurred, and the classes associated with pest 
injury were underestimated.

The prediction accuracy of the evaluated classes, as well 
as the other evaluated statistics, varied depending on the 
number of classes, the combination of the predictive vari-
ables and the sampling time (Table 4). In general, a better fit 
was found using all bands and indices, all classes, and sam-
pling times (Table 3). Based on the above, a best-case accu-
racy of 68, 70, and 72% was achieved for monitoring 1, 2, 
and 3, respectively (Table 3). Figure 4c represents the spatial 
distribution of the classification using the RF algorithm of 
the evacuated classes in the three samples. Here it is evident 
a considerable difference in the magnitude of the presence 
of injury associated with spittlebugs classified between the 
first sampling in comparison to the other two. Despite these 
differences, the prediction of presence of injury tended to 
be concentrated in similar areas during the three surveys 
and was highly associated with the population analyses of 
nymphs and adults using spatial statistic tools (Fig. 4). The 
soil class was identified with higher density in the second 
sampling, possibly because of the high infestation resulting 
from high population levels in those same areas during the 
first sampling (Table2 and Fig. 4).

There was a correspondence between the density of pixels 
for each of the seven vegetation indices and the bands evalu-
ated with respect to the level of infestation of nymphs and 
adults (Supplementary Information 1), explaining how the 
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Fig. 2  Boxplot representation and significance of population level 
and infestation of immature and adult of Aeneolamia varia in sugar-
cane at different monitoring times (1, 2, and 3). No overlapping of 
the error bars of equal letters indicates significant differences (Tukey, 

α = 0.05). a Nymph population per meter of crop row, b adult pop-
ulation per meter of crop row, c nymph’s infestation expressed as 
nymphs/stem and d adult’s infestation expressed as adults/stem
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Fig. 3  Analysis of the spatial 
distribution of population level 
of nymphs and adult spittle-
bugs in sugarcane at different 
monitoring times. SADIE index 
range: Values of the index 
range > 1.5 indicate aggregation 
of the populations, values of 
the index range < 1.5 indicate 
non-aggregation and values 
between − 1.5 and 1.5 indicate 
areas of interception of the two 
phenomena. The size and color 
of the circles (red and blue) 
indicate the size, intensity, and 
dimension of the phenomenon 
(aggregated and non-aggregated 
populations) (Perry et al. 1999a, 
b)
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lower values in each index and band were associated with 
higher infestation levels, along with intermediate and high 
values with low and medium infestation levels (Supplemen-
tary Information 1).

Determination of Spittlebug Infestation and Its Effect 
on Yield

The more informative vegetation indices for discriminating 
differential values of TCH values were NDVI, GNDVI, EVI, 
AVI, and ARVI (Fig. 5a–c), explaining how the NDVI was 
highly consistent and sensitive in differentiating the different 
phenological phases of sugarcane during its crop cycle and 
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Fig. 4  Results of the classification of sugarcane plants with spittle-
bugs injury using machine learning tools and spectral images as pre-
dictors. a Importance of variables on the discrimination of classes. 
b Confusion matrix and classification infestation of immature, rows 
correspond to the true classes and the columns to the predicted 
classes. c Adult and nymphs spittlebugs injury classification in sugar-

cane at different monitoring times using the random forest algorithm. 
Normalized difference vegetation index (NDVI); Green normalized 
difference vegetation index (GNDVI); two-band Enhanced Vegetation 
Index (EVI2); Ashburn vegetation index (AVI); Soil-adjusted veg-
etation index (SAVI); Normalized Difference Water Index (NDWI); 
Atmospheric resistant vegetation (ARVI)
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achieving a clear differentiation between the cycle without 
infestation and where the A. varia outbreak occurred in this 
commercial sugarcane fields (Fig. 1g). For the relationship 
of the mean values of the vegetation indices during the crop 
cycle with the TCH, lower levels coincided with the areas 
where there was less yield (Fig. 5a, b). These results coin-
cided with the fact that higher numbers of pixels with high 
index values, such as NDVI, GNDVI, EVI, AVI, and ARVI, 
were found in the classes with high production (120–124.9 
and 130–142 TCH) (Fig. 5a–c). The latter results show con-
sistency of areas with a lower population level of nymphs 
and adults (Fig. 3) and areas classified by the RF algorithm 
as non-infested areas (Fig. 4).

At the 10th month of crop development the comparison of 
relationships between the productivity components related to 
the number, weight and diameter of stems, and based on the 
categories of infestation levels from the NDVI indices: none 
(0 IL and > 0.58 NDVI), low (0.01–0.14 IL and 0.44–0.57 
NDVI), medium (0.141–0.45 IL and 0.34–0.43 NDVI), and 
high (> 0.451 IL and < 0.33 NDVI), presented statistical dif-
ferences (Figs. 1c and 6a–c). High infestation levels led to 
a lower number, height, and diameter of stems. Between 
the medium and low categories, there were no considerable 
differences in the productivity components in terms of rela-
tive magnitudes; the losses from the effect of high levels of 
spittlebug infestation occurred in descending order: number 
of stems (~ 70% lower), height of stems (~ 48% smaller), and 
stem diameter (~ 33% smaller) (Fig. 6a–c).

For the prediction of production using the two approaches 
in this study, the traditional method using a GAM-type 
model was inferior to the Lasso regression (Table 4). The 
prediction of TCH for both methods was slightly overesti-
mated, but the value did not exceed 10% of the real perfor-
mance, with a better fit for the Lasso regression with respect 
to the GAM (Table 4).

For both crops cycles (with and without infestation), the 
methods were sensitive in detecting changes in the estimated 
yield based on the mean values of the spectral indices and 
bands obtained from satellite images during a cycle of approxi-
mately 13 months. The ML method was able to predict that the 
losses associated with the spittlebugs injury were 26.4 TCH, 
when high infestations of nymphs and adults per stem were 
compared with similar areas but without infestation, while the 
real value of the reduction from the affectation was 24.7 TCH, 
corresponding to a 17% reduction in the expected production, 
and where the estimated loss value with the GAM method was 
lower (17.1 TCH) (Table 4).

The simple linear models presented a good fit, indicating 
that the variation explained by the predictor variables was 
greater than a random effect (Fig. 7a–d). Negative relation-
ships were found between infestation and plant productiv-
ity variables. In the case of the number of adults per stem, 
there was a first-order relationship between the infestation 
and TCH (F = 145.23; gl = 1, 135; P < 0.001; r = − 0.71; 
R2 = 51.82; MSE = 5.60; Fig. 7a), while, between the infes-
tation and the NDVI index, the relationship was quadratic 
(F = 141.8; df = 2, 134 = P < 0.001; R2 = 67.92; MAE = 0.06; 
Fig. 7c). According to the relationship between adults per 
stem and TCH, an increase of one unit in the infestation 
would be associated with a decrease in TCH of 19.2%. In 
reference to the nymphs per stem, there was a first-order 
relationship between infestation and TCH (F = 36.95; 
df = 1, 135; P < 0.001; r = − 0.56; R2 = 41.48; MAE = 7.32; 
Fig. 7b), while between the infestation and the NDVI index 
the relationship was of the second order (F = 25.95; df = 2, 
134 P < 0.001; R2 = 27.91; MAE = 0.08; Fig. 7d). According 
to the relationship between nymphs per stem and TCH, an 
increase of one unit in the infestation would be associated 
with a decrease in TCH of 3.4%.

Table 4  Ability of traditional and machine learning methods to predict the yield on sugar cane without and with infestation of Aeneolamia varia 

GAM generalized additive model, Lasso least absolute shrinkage and selection operator, RMSEP root mean square error of prediction, AIC 
Akaike information criterion, R2 coefficient of determination
1 The reduction by infestation was determined by means of the following expression:
RI = (TCHn − 1 − (RR)) − TCHn , where
RI: reduction by infestation,  TCHn−1: tons of sugarcane per hectare of the previous period without infestation; RR ratoon reduction, for the case 
of an initial cut (n = 1) to a later one (n = 2), it was assumed to be 10 TCH; y  TCHn: TCH of the period affected by the infestation

Productive cycle Method RMSEP AIC R2 (%) Yield (TCH) Computational times

Real Predicted Reduction by infesta-
tion

Algorithm Time needed

Real1 Predicted

Without infestation GAM 96.2 7,092 84.5 153.5 164.3 na na 100 × RDCV 2 min 10 s
Lasso 28.9 3,153 90.7 153.5 159.2 na na Single CV 1 min

With infestation GAM 112.1 8,812 82.1 118.8 126.4 24.7 17.1 100 × RDCV 3 min 55 s
Lasso 67.4 4,529 88.3 118.8 122.1 24.7 26.4 Single CV 1 min
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Discussion

The results confirmed that the spittlebug A. varia is a pest 
of high economic importance in sugarcane production sys-
tems. The infestation levels in this study (means ranging 

from 5.1 to 7.4 nymphs per stem and 0.9 to 9.5 adults per 
stem) were associated with injury that caused losses up to 
24.7 tons of cane per hectare, representing an approximately 
17% reduction in the expected yield. The foregoing can be 
aggravated if there is no rapid response in control actions 

Fig. 5  Visualization of average vegetation indexes and yield in 
affected plots by infestation by nymphs and adults of Aeneolamia 
varia during a productive cycle. a Maps of productivity in terms of 
Tons of Cane per Hectare (TCH). b Percent area with specific range 
of yield and number of pixels of each band and vegetation index. 
In A and B the productivity map and the value and number of pix-
els for each index and band evaluated according to the grouping of 
TCH classes and the% of area, c The indexes more effective to inform 

about spatial variation on yield (TCH) were NDVI, GNDVI, EVI, 
AVI, and ARVI based on Lasso regression methods. Normalized dif-
ference vegetation index (NDVI); Green normalized difference vege-
tation index (GNDVI); two-band Enhanced Vegetation Index (EVI2); 
Ashburn vegetation index (AVI); Soil-adjusted vegetation index 
(SAVI); Normalized Difference Water Index (NDWI); Atmospheric 
resistant vegetation (ARVI). TCH: tons of sugarcane per hectare. 
Lasso: Least Absolute Shrinkage and Selection Operator
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based on sampling of population levels (Table 1). In this 
case, given the state of the infestation and a delay in detect-
ing the problem, the implementation of management meas-
ures was relying mainly on spraying chemical insecticides 
(Fig. 1a, b).

Spatial analyses using ML tools and satellite images 
obtained from the GEE platform were effective to assess 
spittlebug population patterns associated with injury 
and were also instrumental to estimate final damage 
(i.e., effects on yield). A. varia having an aggregated 
spatial structure and high space dependence moves rela-
tively quickly from the infested areas, with high impact 
on neighboring plants evidenced on advanced injury in 
the surrounding areas (Fig. 1). The latter raises the need 
for timely detection and early warnings to avoid severe 
attacks from rapid establishment and population increases 
(Fig. 1a, b). The space–time dynamics of spittlebugs are 
highly sensitive to environmental conditions (Figueredo 

et al. 2021), which, in the case of the study area, have 
been found to be highly associated with transitions from 
dry to rainy periods (Ramirez-Gil et al. 2021), which sets 
the stage for coupling population dynamics and associated 
environmental factors to develop early warning systems 
(Méndez-Vázquez et al. 2019; L. Méndez-Vázquez et al. 
2022).

In relation to the above-mentioned, populations of A. 
varia have been found associated with early development 
of sugarcane, either with those stands with few months after 
harvest (ratoon) or those during establishment (Vargas et al. 
2013), with a greater incidence and relationship with low 
values in the vegetation indices found in this work (Supple-
mentary Information 1), indicating that the first 6 months of 
crop development are more sensitive to pest attack, aggra-
vated by the fact that some sugarcane varieties may be more 
susceptible than others (Cuaran et al. 2012).

As mentioned previously, the injury of spittlebugs in 
sugarcane is associated with chlorosis, necrosis, portions 
of reddish brown spots, and in advanced stages death of the 
stools (Vargas and Gutiérrez 2017). This kind of injury is 
related to the feeding behavior of both nymphs and adults 
that after injecting digestive enzymes trigger adverse effects 
primarily on leaves and then in other tissues (Taliaferro et al. 
1967). These leaf lesions cause changes in the coloration of 
tissues, which can be identified by means of spectral tech-
niques, where the amount of light absorbed by the object and 
its respective reflectance vary depending on the degree of 
injury (West et al. 2003; Chaerle et al. 2009; Mahlein et al. 
2012). In our results, we identify that bands blue, green, red, 
and near-infrared, and vegetation index have the capacity 
to discriminate sugarcane plants with injury by A. varia. 
These bands have been associated with the ability to detect 
changes in biochemical, color, structural, and leaf density 
(Vogelmann et al. 1993; Huo et al. 2021).

Negative relationships between variables of infestation 
and those of crop yield (i.e., TCH and NDVI) corroborated 
the impact of the pest on production and showed that the 
negative effect of the infestation is more severe when the 
infestation is associated with adults than with nymphs. A 
one-unit increase in adults per stem impacted TCH about 
five times more than a one-unit increase in nymphs per stem. 
Notably, this affectation occurred at maximum levels of 1.6 
adults per stem, while the nymphs reached maximum lev-
els of 10 nymphs per stem. In studies on Bermuda grass 
attacked by Prosapia bicinta (Say) (Hemiptera: Cercopidae), 
symptoms of pest attack were only evident when the plants 
were exposed to adults (Byers and Wells 1966). In sugar-
cane, attack symptoms are largely caused by adult attacks, 
1 to 3 weeks after detection (Fewkes 1969). As greater level 
of injury was more associated with the presence of adults, it 
is important to identify how sampling of the nymphal stage 
can help in preventing the ulterior injury of an increased 
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1129Sugar Tech (Sept–Oct 2023) 25(5):1115–1133 

1 3

population of adults. Under a scenario where the nymphs 
attack is no noticeable by either plain sight or remote sens-
ing, there would be still need of executing field samplings 
of nymph populations, especially on those sugarcane fields 
with history of previous spittlebug attacks or in those plots 
planted with susceptible varieties, mostly on susceptible 
crop stages (< 6 months).

According to the above-mentioned, a general approach for 
IPM (Integrated pest management) of this pest could have 
remote sensing as complementary tool for injury assessment 
while filed sampling of both adults and nymphs is sustained 
in a continuous monitoring program over time (Hutchins 
1994). In this ecological aspects need to be considered 
(Kuno 1991), such as pest’s aggregated distribution and its 
rapid movement in the field, so the detection via remote 
sensing of areas expressing injury in the field could be an 
early warning to prevent further increase in the area under 
attack. The latter while keeping in mind the potential high 
impact on final biomass production, mainly driven by attacks 
on early stages of crop development that in the case of the 
fields surveyed was around 5 months of age.

The approach used on this work represents a combina-
tion of promising emerging technologies for plant health 
monitoring. The GEE platform proved to be suitable for 
quickly, accurately, and cheaply obtaining a historical series 

of images for the evaluated batches that, after processing 
and extracting products such as bands and spectral indices, 
were incorporated as predictive variables into different ML 
models and algorithms. The versatility of our approach was 
due to the fact that, on the one hand, the Sentinel-2 sensor 
provides constant and uninterrupted multispectral satellite 
images at high temporal frequency, high spatial resolution 
and global coverage (Segarra et al. 2020). For its part, GEE 
efficiently combines numerous remote sensing data sets and 
processing algorithms, which are easily accessible at mul-
tiple spatial scales (Amani et al. 2020). The combination 
of these emerging technologies simultaneously provides 
processing infrastructure, storage, algorithms, software, 
and generation of Internet-based application programming 
interface (API) and a Web-based interactive development 
environment, providing unprecedented opportunities to gen-
erate effective computational tools for crop monitoring.

This study is illustrating how sampling tools do not only 
generate information for longitudinal analysis of popula-
tions, using elements of descriptive and inferential statis-
tics (Binns et al. 2000), but also can incorporate the space 
dimension using location and elements of spatial statistics. 
Additionally, the remote sensing and GEE platform tools 
used to indirectly detect injury and damage associated 
with pest infestation is an example of a useful application 

Yield (TCH)=138.7 -26.6 (adults/stem)

Y
ie

ld
 (

T
C

H
)

A B

Nymphs/Stem

N
D

V
I

NDVI=0.48 -0.67 (adults / stem)- 0.40 adults / stem)2 NDVI=0.45 -0.12 ( /stem)-0.012 (nymphs nymphs / stem) 2C D

Adults/Stem

Yield (TCH)=136.2 -4.6 (nymphs/stem)

Fig. 7  Fit models for the prediction of biomass (TCH) and NDVI 
vegetation index in sugar cane associated with infestation by 
nymphs and adults of Aeneolamia varia. A, B, C y D: fit to a lin-
ear and second-order quadratic models of biomass production (TCH) 
and infestation as a function of variables with greater weight deter-
mined by the Lasso regression model. Black line: prediction limits. 

Orange line: confidence limits. Model statistics metrics: a r: − 0.61; 
R2:51.5%; MAE: 5.6. b r: − 0.52; R2:41.4%; MAE: 7.3. c r: 0.77; 
R2:60.6%; MAE: 4.93. d r: 0.75; R2:60.2%; MAE: 4.94. r coefficient 
of correlation. R2: coefficient of determination. MAE mean absolute 
error



1130 Sugar Tech (Sept–Oct 2023) 25(5):1115–1133

1 3

associated with the agriculture 4.0 approach (Tyagi 2016; 
Erazo-Mesa et al. 2022), where advanced technologies, 
whose objective is the management of information, will 
enhance the decision-making process (Kamilaris et al. 
2017; Erazo-Mesa et al. 2022) with multiple economic 
benefits and environmental indicators in the production 
systems where they are implemented (Karmas et al. 2016; 
Kamilaris et al. 2017; Méndez-Vázquez et al. 2019).

Conclusion

This study aimed to characterize spatio-temporal popula-
tion dynamics of the spittlebug A. varia in commercial 
sugarcane plots based on the proposal and validation of 
a digital agriculture approach in which sampling tools, 
spatiotemporal analyses, satellite sensing big data, and ML 
analytical techniques are complementary. This approach 
provided a good approximation for the detection of the 
infestation level of nymphs and adults, as well as predict-
ing the reduction on yield caused by this pest. The results 
suggested that the potential impact of A. varia infesta-
tion varies in sugarcane, generating losses of ~ 17% in 
biomass, having that further effects on sucrose content 
warrant additional studies. The GEE platform proved to be 
an ideal emerging technology to obtain massive satellite 
data that facilitates characterizations of the spatiotemporal 
dynamics of A. varia attacks on sugarcane. The precise 
geolocation of the impact of attacks and the magnitude on 
productivity using the proposed approach generates oppor-
tunities to implement emerging management practices that 
optimize the use of inputs and validate management prac-
tices and time control interventions. Future studies should 
validate the proposed technological approach in similar 
and different agroecological conditions. Likewise, the 
agronomic analysis of the results must be complemented 
with a focus on optimizing crop management practices to 
prevent or mitigate spittlebug infestations.

Acknowledgements The authors would like to thank the sugarcane 
producers for the valuable information and help they provided dur-
ing this research,and Minciencias-Ministerio de Ciencia Tecnología e 
Innovación (Colombia)-Cenicaña—Centro de Investigación de la Caña 
deAzúcar de Colombia for supporting the postdoctoral stance of first 
author. We want to thanks to Sistema Nacional de Bibliotecas-SINAB, 
Dirección Nacional de Bibliotecas-Universidad Nacional de Colom-
bia, for managing the Open Access payment, throughthe agreement 
"Consorcio Colombia"

Author Contributions JGRG and GV were responsible for concep-
tualization, investigation, writing—review and editing, and supervi-
sion; JGRG and WALR carried out formal analysis; JGRG, WALR, 
MCF, and GV were involved in writing—original draft preparation. 
All authors have read and agreed to the published version of the 
manuscript.

Funding Open Access funding provided by Colombia Consortium.

Declarations 

Conflict of interest The authors declare no conflict of interest. This 
submission is original to myself and my coauthor, and has not been 
published previously, nor is it currently under consideration for pub-
lication elsewhere. It also complies with all the ethical requirements 
of the journal. Please do not hesitate to contact us for any questions.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abdel-Rahman, E.M., and F.B. Ahmed. 2008. The application of 
remote sensing techniques to sugarcane (Saccharum spp. hybrid) 
production: A review of the literature. International Journal of 
Remote Sensing 29: 3753–3767. https:// doi. org/ 10. 1080/ 01431 
16070 18746 03.

Aguilar-Rivera, Noé. 2019. A framework for the analysis of socio-
economic and geographic sugarcane agro industry sustainability. 
Socio-Economic Planning Sciences 66: 149–160. https:// doi. org/ 
10. 1016/j. seps. 2018. 07. 006.

Allsopp, P.G., and R.M. Bull. 1989. Spatial patterns and sequential 
sampling plans for melolonthine larvae (Coleoptera: Scarabaei-
dae) in southern Queensland sugarcane. Bulletin of Entomological 
Research 79: 251–258.

Amani, M., M. Kakooei, A. Moghimi, A. Ghorbanian, B. Ranjgar, 
S. Mahdavi, A. Davidson, T. Fisette, P. Rollin, and B. Brisco. 
2020. Application of google earth engine cloud computing plat-
form, sentinel imagery, and neural networks for crop mapping in 
Canada. Remote Sensing 12: 3561.

Arbogast, Richard T., Paul E. Kendra, Richard W. Mankin, and Jeffrey 
E. McGovern. 2000. Monitoring insect pests in retail stores by 
trapping and spatial analysis. Journal of Economic Entomology 
93: 1531–1542.

Arias, C., A. Martínez. Valencia, JG Morales. Osorio, and Osorio, and 
J. G. Ramírez-Gil. 2019. Spatial analysis of presence, injury, and 
economic impact of the Melolonthidae (Coleoptera: Scarabae-
oidea) complex in avocado crops. Neotropical Entomology 48: 
583–593.

Asocaña. 2020. Informe anual de Asocaña con aspectos generales 
del Sector Agroindustrial de la Caña de Colombia 2019–2020 y 
Anexos estadístico. Asocaña.

Baddeley, Adrian, Ege Rubak, and Rolf Turner. 2015. Spatial point pat-
terns: Methodology and applications with R. London: CRC Press.

Bekkar, Mohamed, Hassiba Kheliouane Djemaa, and Taklit Akrouf 
Alitouche. 2013. Evaluation measures for models assessment over 
imbalanced data sets. Journal of Information Engineering and 
Applications 3: 27–38.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/01431160701874603
https://doi.org/10.1080/01431160701874603
https://doi.org/10.1016/j.seps.2018.07.006
https://doi.org/10.1016/j.seps.2018.07.006


1131Sugar Tech (Sept–Oct 2023) 25(5):1115–1133 

1 3

Binns, Michael R., Jan P. Nyrop, Wopke van der Werf, and Wopke 
Werf. 2000. Sampling and monitoring in crop protection: the 
theoretical basis for developing practical decision guides. Cabi.

Bivand, Roger, C Rundel, E Pebesma, R Stuetz, K Hufthammer, P 
Giraudoux, M Davis, and S Santilli. 2020. rgeos: Interface to 
Geometry Engine-Open Source (’GEOS’). Comprehensive R 
Archive Network (CRAN).

Breiman, Leo. 1996. Bagging predictors. Machine Learning 24: 123–
140. https:// doi. org/ 10. 1007/ BF000 58655.

Brenner, Richard J., Dana A. Focks, Richard T. Arbogast, David K. 
Weaver, and Dennis Shuman. 1998. Practical use of spatial analy-
sis in precision targeting for integrated pest management. Ameri-
can Entomologist 44: 79–102.

Brownlee, Jason. 2016. Deep learning with Python: develop deep 
learning models on Theano and TensorFlow using Keras. 
Machine Learning Mastery.

Byers, R.A., and Homer D. Wells. 1966. Phytotoxemia of coastal Ber-
mudagrass caused by the two-lined spittlebug, Prosapia bicincta 
(Homoptera: Cercopidae)1. Annals of the Entomological Society 
of America 59: 1067–1071. https:// doi. org/ 10. 1093/ aesa/ 59.6. 
1067.

Carbonell González, J. 2011. Zonificación agroecológica para el 
cultivo de la caña de azúcar en el valle del río Cauca (cuarta 
aproximación): principios metodológicos y aplicaciones. cenicaña 
(Colombia).

Chaerle, Laury, Sándor. Lenk, Ilkka Leinonen, Hamlyn G. Jones, 
Dominique Van Der Straeten, and Claus Buschmann. 2009. Multi-
sensor plant imaging: Towards the development of a stress-cat-
alogue. Biotechnology Journal 4: 1152–1167. https:// doi. org/ 10. 
1002/ biot. 20080 0242.

Cherry, R.H. 1984. Spatial distribution of white grubs (Coleoptera: 
Scarabaeidae) in Florida sugarcane. Journal of Economic Ento-
mology 77: 1341–1343.

Cortes, Corinna, and Mehryar Mohri. 2003. AUC optimization vs. 
error rate minimization. In Proceedings of the 16th international 
conference on neural information processing systems, 313–320. 
NIPS’03. Whistler: MIT Press.

Cressie, Noel. 1991. Statistics for spatial data. New York: Wiley.
Cuaran, V.L., Ulises Castro Valderrama, Alex Enrique Bustillo. Pardey, 

Nora Cristina Mesa. Cobo, Gerson Darío Ramírez. Sánchez, Car-
los Arturo Moreno. Gil, and Luis Antonio Gómez. Laverde. 2012. 
Método para evaluar el daño de los salivazos (Hemiptera: Cercop-
idae) sobre caña de azúcar, Saccharum spp. Revista Colombiana 
De Entomología 38: 171–176.

Deleon, Leonel, Michael J. Brewer, Isaac L. Esquivel, and Jonda Hal-
comb. 2017. Use of a geographic information system to produce 
pest monitoring maps for south Texas cotton and sorghum land 
managers. Crop Protection 101: 50–57.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani. 2004. Least angle 
regression. Annals of Statistics 32: 407–451.

Erazo-Mesa, Edwin, Andrés Echeverri-Sánchez, and Joaquin Guill-
ermo Ramírez-Gil. 2022. Advances in Hass avocado irrigation 
scheduling under digital agriculture approach. Revista Colombi-
ana De Ciencias Hortícolas 16: e13456–e13456. https:// doi. org/ 
10. 17584/ rcch. 2022v 16i1. 13456.

Ferguson, Andrew W., Zdisław Klukowski, Barbara Walczak, Suzanne 
J. Clark, Moira A. Mugglestone, Joe N. Perry, and Ingrid H. Wil-
liams. 2003. Spatial distribution of pest insects in oilseed rape: 
implications for integrated pest management. Agriculture, Eco-
systems and Environment 95: 509–521.

Fewkes, D.W. 1969. The biology of sugar cane froghoppers. In Pests of 
sugar cane, ed. J.R. Williams, J.R. Metcalfe, R.W. Mungomery, 
and R. Mathes, 283–307. Amsterdam: Elsevier Publishing 
Company.

Figueredo, Luis, Adriana Villa-Murillo, Yelitza Colmenarez, and 
Carlos Vásquez. 2021. A hybrid artificial intelligence model for 

Aeneolamia varia (Hemiptera: Cercopidae) populations in sugar-
cane crops. Journal of Insect Science 21: 11. https:// doi. org/ 10. 
1093/ jisesa/ ieab0 17.

Fox, John, Sanford Weisberg, Brad Price, Daniel Adler, Douglas Bates, 
Gabriel Baud-Bovy, Ben Bolker, et al. 2020. Car: Companion to 
Applied Regression (version 3.0–10).

Friedman, Jerome, Trevor Hastie, Rob Tibshirani, Balasubramanian 
Narasimhan, Kenneth Tay, Noah Simon, and Junyang Qian. 2021. 
Package ‘glmnet.’ CRAN R Repositary.

Friedman, Jerome, Trevor Hastie, and Rob Tibshirani. 2010. Regulari-
zation paths for generalized linear models via coordinate descent. 
Journal of Statistical Software 33: 1.

Genc, H., L. Genc, H. Turhan, S.E. Smith, and J.L. Nation. 2008. Veg-
etation indices as indicators of damage by the sunn pest (Hemip-
tera: Scutelleridae) to field grown wheat. African Journal of Bio-
technology. https:// doi. org/ 10. 4314/ ajb. v7i2. 58347.

Ghazvinei, Pezhman Taherei, Hossein Hassanpour Darvishi, Amir 
Mosavi, Khamaruzaman Bin Wan. Yusof, Meysam Alizamir, 
Shahaboddin Shamshirband, and Kwok-wing Chau. 2018. Sugar-
cane growth prediction based on meteorological parameters using 
extreme learning machine and artificial neural network. Engineer-
ing Applications of Computational Fluid Mechanics 12: 738–749. 
https:// doi. org/ 10. 1080/ 19942 060. 2018. 15261 19.

Gigot, Christophe. 2018. Analyzing plant disease epidemics with R 
package epiphy.

Hasmadi, Mohd, H.Z. Pakhriazad, and M.F. Shahrin. 2009. Evaluating 
supervised and unsupervised techniques for land cover mapping 
using remote sensing data. Geografia-Malaysian Journal of Soci-
ety and Space 5: 1–10.

Hastie, T. 2020. gam: Generalized Additive Models (version 1.20). 
Comprehensive R Archive Network (CRAN).

Hatfield, P.L., and P.J. Pinter Jr. 1993. Remote sensing for crop protec-
tion. Crop Protection 12: 403–413.

He, Yong, Hong Zeng, Yangyang Fan, Shuaisheng Ji, and Wu. Jianjian. 
2019. Application of deep learning in integrated pest manage-
ment: A real-time system for detection and diagnosis of oilseed 
rape pests. Mobile Information Systems 2019: 1–14.

Henao-Rojas, Juan Camilo, María Gladis. Rosero-Alpala, Carolina 
Ortiz-Muñoz, Carlos Enrique Velásquez-Arroyo, William Alfonso 
Leon-Rueda, and Joaquín Guillermo. Ramírez-Gil. 2021. Machine 
learning applications and optimization of clustering methods 
improve the selection of descriptors in blackberry Germplasm 
Banks. Plants. https:// doi. org/ 10. 3390/ plant s1002 0247.

Hijman, R. J. 2016. Package ‘raster.’
Huo, Langning, Henrik Jan Persson, and Eva Lindberg. 2021. Early 

detection of forest stress from European spruce bark beetle attack, 
and a new vegetation index: Normalized distance red and SWIR 
(NDRS). Remote Sensing of Environment 255: 112240. https:// 
doi. org/ 10. 1016/j. rse. 2020. 112240.

Hutchins, Scott H. 1994. Techniques for sampling arthropods in inte-
grated pest management. In Handbook of sampling methods for 
arthropods in agriculture. CRC Press.

Kamilaris, Andreas, Andreas Kartakoullis, and Francesc X. Prenafeta-
Boldú. 2017. A review on the practice of big data analysis in 
agriculture. Computers and Electronics in Agriculture 143: 23–37. 
https:// doi. org/ 10. 1016/j. compag. 2017. 09. 037.

Karmas, A., A. Tzotsos, and K. Karantzalos. 2016. Geospatial big data 
for environmental and agricultural applications. Berlin: Springer.

Khdery, Ghada A. 2021. Remote sensing technology and its applica-
tions in plant pathology. In Emerging trends in plant pathology, 
683–701. Springer.

Kuhn, Max, Jed Wing, Steve Weston, Andre Williams, Chris Keefer, 
Allan Engelhardt, Tony Cooper, et al. 2020. caret: Classification 
and regression training (version 6.0–85).

https://doi.org/10.1007/BF00058655
https://doi.org/10.1093/aesa/59.6.1067
https://doi.org/10.1093/aesa/59.6.1067
https://doi.org/10.1002/biot.200800242
https://doi.org/10.1002/biot.200800242
https://doi.org/10.17584/rcch.2022v16i1.13456
https://doi.org/10.17584/rcch.2022v16i1.13456
https://doi.org/10.1093/jisesa/ieab017
https://doi.org/10.1093/jisesa/ieab017
https://doi.org/10.4314/ajb.v7i2.58347
https://doi.org/10.1080/19942060.2018.1526119
https://doi.org/10.3390/plants10020247
https://doi.org/10.1016/j.rse.2020.112240
https://doi.org/10.1016/j.rse.2020.112240
https://doi.org/10.1016/j.compag.2017.09.037


1132 Sugar Tech (Sept–Oct 2023) 25(5):1115–1133

1 3

Kuno, E. 1991. Sampling and analysis of insect populations. Annual 
Review of Entomology 36: 285–304. https:// doi. org/ 10. 1146/ annur 
ev. en. 36. 010191. 001441.

Li, Baohua, Laurence V. Madden, and Xu. Xiangming. 2012. Spatial 
analysis by distance indices: An alternative local clustering index 
for studying spatial patterns. Methods in Ecology and Evolution 
3: 368–377.

Liaw, A, and M Wiener. 2018. Randomforest: Breiman and Cutler’s 
random forests for classification and regression (version 4.6–14).

Liaw, A., and M. Wiener. 2002. Classification and regression by ran-
domForest. R News 2: 18–22.

Mahlein, Anne-Katrin., Erich-Christian. Oerke, Ulrike Steiner, 
and Heinz-Wilhelm. Dehne. 2012. Recent advances in sensing 
plant diseases for precision crop protection. European Jour-
nal of Plant Pathology 133: 197–209. https:// doi. org/ 10. 1007/ 
s10658- 011- 9878-z.

Méndez-Vázquez, L., R. Lasa-Covarrubias, S. Cerdeira-Estrada, and A. 
Lira-Noriega. 2022. Using simulated pest models and biological 
clustering validation to improve zoning methods in site-specific 
pest management. Applied Sciences 12: 1900. https:// doi. org/ 10. 
3390/ app12 041900.

Méndez-Vázquez, L. Josué., Andrés Lira-Noriega, Rodrigo Lasa-
Covarrubias, and Sergio Cerdeira-Estrada. 2019. Delineation 
of site-specific management zones for pest control purposes: 
Exploring precision agriculture and species distribution mod-
eling approaches. Computers and Electronics in Agriculture 167: 
105101. https:// doi. org/ 10. 1016/j. compag. 2019. 105101.

Militante, S. V., B. D. Gerardo, and R. P. Medina. 2019. Sugar-
cane Disease Recognition using Deep Learning. In 2019 IEEE 
Eurasia conference on IOT, communication and engineering 
(ECICE), 575–578. https:// doi. org/ 10. 1109/ ECICE 47484. 2019. 
89426 90.

Mondal, Pinki. 2011. Quantifying surface gradients with a 2-band 
Enhanced Vegetation Index (EVI2). Ecological Indicators 11: 
918–924. https:// doi. org/ 10. 1016/j. ecoli nd. 2010. 10. 006.

Moran, P.A.P. 1948. The interpretation of statistical maps. Journal 
of the Royal Statistical Society Series B (methodological) 10: 
243–251.

Mueller, A., and S. Guido. 2016. Introduction to machine learn-
ing with python: A guide for data scientists. Dawn Sachanafelt: 
O’Reilly Media.

Natarajan, Rajathi, Jayashree Subramanian, and Elpiniki I. Papa-
georgiou. 2016. Hybrid learning of fuzzy cognitive maps for 
sugarcane yield classification. Computers and Electronics in 
Agriculture 127: 147–157. https:// doi. org/ 10. 1016/j. compag. 
2016. 05. 016.

Pal, M. 2005. Random forest classifier for remote sensing classifi-
cation. International Journal of Remote Sensing 26: 217–222. 
https:// doi. org/ 10. 1080/ 01431 16041 23312 69698.

Paluszynska, Aleksandra, Przemyslaw Biecek, Yue Jiang [aut, and 
cre. 2019. randomForestExplainer: Explaining and Visualiz-
ing Random Forests in Terms of Variable Importance (version 
0.10.0).

Pardede, Hilman F., Endang Suryawati, Dikdik Krisnandi, R. Sandra 
Yuwana, and Vicky Zilvan. 2020. Machine learning based plant 
diseases detection: A review. In 2020 International conference 
on radar, antenna, microwave, electronics, and telecommunica-
tions (ICRAMET), 212–217. IEEE.

Partel, Victor, Leon Nunes, Phil Stansly, and Yiannis Ampatzidis. 
2019. Automated vision-based system for monitoring Asian cit-
rus psyllid in orchards utilizing artificial intelligence. Comput-
ers and Electronics in Agriculture 162: 328–336.

Pavlu, Franz Arthur, and José Paulo. Molin. 2016. A sampling plan 
and spatial distribution for site-specific control of Sphenophorus 
levis in sugarcane. Acta Scientiarum. Agronomy 38: 279–287.

Pebesma, E. 2018. Simple features for R: Standardized support for 
spatial vector data. The R Journal. https:// doi. org/ 10. 32614/ 
RJ- 2018- 009.

Perry, Joe N., L. Winder, J. M. Holland, and R. D. Alston. 1999b. 
Red–blue plots for detecting clusters in count data. Ecology 
Letters. Wiley Online Library.

Perry, Joe N. 1995. Spatial analysis by distance indices. Journal of 
Animal Ecology 64: 303–314.

Perry, J.N., L. Winder, J.M. Holland, and R.D. Alston. 1999a. Red–
blue plots for detecting clusters in count data. Ecology Letters 
2: 106–113. https:// doi. org/ 10. 1046/j. 1461- 0248. 1999. 22057.x.

QGIS Development. 2016. QGIS system. Open source geospatial 
foundation project.

R Development Core Team. 2022. R: The R Project for Statisti-
cal Computing. 2022. R foundation for statistical computing. 
Vienna: Austria.

Ramirez-Gil, JG, German Vargas, Hector Chica-Ramirez, Alberto 
Roldan-Gonzalez, and A J Peña. 2021. Variación temporal de 
la lluvia como modulador de la dinámica poblacional del sal-
ivazo Aeneolamia varia (Hemiptera: Cercopidae) en sistemas 
de producción de caña de azúcar. In Congreso Internacional de 
Variabilidad y Cambio Climático, 45–46. Bogotá: Universidad 
Nacional de Colombia.

Robin, Xavier, Natacha Turck, Alexandre Hainard, Natalia Tiberti, 
Frédérique Lisacek, Jean-Charles Sanchez, Markus Müller, Ste-
fan Siegert (Fast DeLong code), and Matthias Doering (Hand & 
Till Multiclass). 2021. pROC: Display and analyze ROC curves 
(version 1.17.0.1).

Rustia, Dan Jeric, Chien Erh Arcega, Jui-Yung Chung. Lin, Yi.-Ji. 
Zhuang, Ju-Chun. Hsu, and Ta.-Te. Lin. 2020. Application of an 
image and environmental sensor network for automated green-
house insect pest monitoring. Journal of Asia-Pacific Entomol-
ogy 23: 17–28.

Salazar, J., and L. Proaño. 1989. Pérdidas ocasionadas por la can-
delilla de la caña de azúcar (Aeneolamia varia) en el área de 
influencia del central río Turbio: Estudio comparativo de las 
zafras 84/85 y 85/86. Caña De Azúcar 7: 49–54.

Sarparast, Mehdi. 2018. LSRS: Land Surface Remote Sensing (ver-
sion 0.2.0).

Schexnayder, H.P., Jr., T.E. Reagan, and D.R. Ring. 2001. Sampling 
for the sugarcane borer (Lepidoptera: Crambidae) on sugarcane 
in Louisiana. Journal of Economic Entomology 94: 766–771.

Segarra, J., M.L. Buchaillot, J.L. Araus, and S.C. Kefauver. 2020. 
Remote sensing for precision agriculture: Sentinel-2 improved 
features and applications. Agronomy 10: 641.

Souza, M.F.D., L.R.D. Amaral, S.R.D.M. Oliveira, M.A.N. 
Coutinho, and C.F. Netto. 2020. Spectral differentiation of sug-
arcane from weeds. Biosystems Engineering 190: 41–46. https:// 
doi. org/ 10. 1016/j. biosy stems eng. 2019. 11. 023.

Sudbrink, Donald L., Steven J. Thomson, Reginald S. Fletcher, F. 
Aubrey Harris, Patrick J. English, and James T. Robbins. 2015. 
Remote sensing of selected winter and spring host plants of 
tarnished plant bug (Heteroptera: Miridae) and herbicide use 
strategies as a management tactic. American Journal of Plant 
Sciences 06: 1313. https:// doi. org/ 10. 4236/ ajps. 2015. 68131.

Taliaferro, C.M., R.A. Byers, and G.W. Burton. 1967. Effects of 
spittlebug injury on root production and sod reserves of coastal 
Bermudagrass1. Agronomy Journal 59: 530–532. https:// doi. 
org/ 10. 2134/ agron j1967. 00021 96200 59000 60013x.

Tyagi, Avinash C. 2016. Towards a second green revolution. Irri-
gation and Drainage 65: 388–389. https:// doi. org/ 10. 1002/ ird. 
2076.

Vargas, G, U Castro, Y Granobles, and G Ramirez. 2013. Biología 
y perspectivas de manejo de los salivazos Mahanarva bipars y 
Aeneolamia varia (Hemiptera: Cercopidae) en caña de azúcar. 
In XXXX congreso de la Sociedad Colombiana de Entomología, 

https://doi.org/10.1146/annurev.en.36.010191.001441
https://doi.org/10.1146/annurev.en.36.010191.001441
https://doi.org/10.1007/s10658-011-9878-z
https://doi.org/10.1007/s10658-011-9878-z
https://doi.org/10.3390/app12041900
https://doi.org/10.3390/app12041900
https://doi.org/10.1016/j.compag.2019.105101
https://doi.org/10.1109/ECICE47484.2019.8942690
https://doi.org/10.1109/ECICE47484.2019.8942690
https://doi.org/10.1016/j.ecolind.2010.10.006
https://doi.org/10.1016/j.compag.2016.05.016
https://doi.org/10.1016/j.compag.2016.05.016
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.1046/j.1461-0248.1999.22057.x
https://doi.org/10.1016/j.biosystemseng.2019.11.023
https://doi.org/10.1016/j.biosystemseng.2019.11.023
https://doi.org/10.4236/ajps.2015.68131
https://doi.org/10.2134/agronj1967.00021962005900060013x
https://doi.org/10.2134/agronj1967.00021962005900060013x
https://doi.org/10.1002/ird.2076
https://doi.org/10.1002/ird.2076


1133Sugar Tech (Sept–Oct 2023) 25(5):1115–1133 

1 3

Socolen, 422–435. Bogotá: Sociedad Colombiana de Ento-
mología, Socolen.

Vargas, G., and Y. Gutiérrez. 2017. Manejo de las poblaciones de 
Aeneolamia varia. Carta Informativa Cenicaña. No. 1: 18–19.

Vogelmann, J.E., B.N. Rock, and D.M. Moss. 1993. Red edge spec-
tral measurements from sugar maple leaves. International Jour-
nal of Remote Sensing 14: 1563–1575. https:// doi. org/ 10. 1080/ 
01431 16930 89539 86.

Wang, Ming, Zhengjia Liu, Muhammad Hasan Ali. Baig, Yongsheng 
Wang, Yurui Li, and Yuanyan Chen. 2019. Mapping sugarcane 
in complex landscapes by integrating multi-temporal Sentinel-2 
images and machine learning algorithms. Land Use Policy 88: 
104190. https:// doi. org/ 10. 1016/j. landu sepol. 2019. 104190.

West, Jonathan S., Cedric Bravo, Roberto Oberti, Dimitri Lemaire, 
Dimitrios Moshou, and H. Alastair McCartney. 2003. The 
potential of optical canopy measurement for targeted control of 
field crop diseases. Annual Review of Phytopathology 41: 593–
614. https:// doi. org/ 10. 1146/ annur ev. phyto. 41. 121702. 103726.

Wu, Jingan, Liupeng Lin, Tongwen Li, Qing Cheng, Chi Zhang, and 
Huanfeng Shen. 2022. Fusing Landsat 8 and Sentinel-2 data for 

10-m dense time-series imagery using a degradation-term con-
strained deep network. International Journal of Applied Earth 
Observation and Geoinformation 108: 102738. https:// doi. org/ 
10. 1016/j. jag. 2022. 102738.

Yang, Chwen-Ming., Ching-Huan. Cheng, and Rong-Kuen. Chen. 
2007. Changes in spectral characteristics of rice canopy infested 
with brown Planthopper and Leaffolder. Crop Science 47: 329–
335. https:// doi. org/ 10. 2135/ crops ci2006. 05. 0335.

Yang, Z., M.N. Rao, N.C. Elliott, S.D. Kindler, and T.W. Popham. 
2005. Using ground-based multispectral radiometry to detect 
stress in wheat caused by greenbug (Homoptera: Aphididae) 
infestation. Computers and Electronics in Agriculture 47: 121–
135. https:// doi. org/ 10. 1016/j. compag. 2004. 11. 018.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1080/01431169308953986
https://doi.org/10.1080/01431169308953986
https://doi.org/10.1016/j.landusepol.2019.104190
https://doi.org/10.1146/annurev.phyto.41.121702.103726
https://doi.org/10.1016/j.jag.2022.102738
https://doi.org/10.1016/j.jag.2022.102738
https://doi.org/10.2135/cropsci2006.05.0335
https://doi.org/10.1016/j.compag.2004.11.018

	Population Dynamics and Estimation of Damage of the Spittlebug Aeneolamia varia on Sugarcane in Colombia by Using remote Sensing and Machine Learning Tools
	Abstract 
	Introduction
	Materials and Methods
	Characterization of the Assessed Sugarcane Fields
	Monitoring Spittlebug Populations
	Spittlebug Population Inference and Level of Injury
	Analysis of the Spatio-temporal Dynamics of the Spittlebug Populations
	Acquisition of Multi-band Satellite Images with High Temporal and Satellite Resolution and Determination of Vegetation Indices
	Indirect Detection of spittlebug Injury Using Machine Learning Tools
	Estimation of Spittlebug Infestation Effects on Yield Using Indirect Detection of Injury and a Machine Learning Approach

	Results
	Spittlebug Infestation Levels and Space–Time Population Dynamics
	Remote Spittlebug Injury Detection Using Satellite Imagery and ML Tools
	Determination of Spittlebug Infestation and Its Effect on Yield

	Discussion
	Conclusion
	Acknowledgements 
	Anchor 19
	References




