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SUMMARY

The effect of red, white and blue environmental noise on discrete-time population dynamics is anal-
ysed. The coloured noise is superimposed on Moran–Ricker and Maynard Smith dynamics, the result-
ing power spectra are then examined. Time series dominated by short- and long-term fluctuations are
said to be blue and red, respectively. In the stable range of the Moran–Ricker dynamics, environmen-
tal noise of any colour will make population dynamics red or blue depending on the intrinsic growth
rate. Thus, telling apart the colour of the noise from the colour of the population dynamics may not
be possible. Population dynamics subjected to red and blue environmental noise show, respectively,
more red or blue power spectra than those subjected to white noise. The sensitivity to differences in
the noise colours decreases with increasing complexity and ultimately disappears in the chaotic range
of the population dynamics. These findings are duplicated with the Maynard Smith model for high
growth rates when the strength of density dependence changes. However, for low growth rates the
power spectra of the population dynamics with noise are red in stable, periodic and aperiodic ranges
irrespective of the noise colour. Since chaotic population fluctuations may show blue spectra in the
deterministic case, this implies that blue deterministic chaos may become red under any colour of the
noise.

1. INTRODUCTION

The controversy on the existence and detection of
complicated dynamics in natural populations (May
1974, 1976) is gaining colour. Population dynamics
data of individual species are observed to be white or
red (Sugihara 1995; Halley 1996). The colour refers to
the analogy with the wavelengths in light. A time se-
ries is said to be white when no frequency dominance
occurs, red when the population dynamics are dom-
inated by low-frequency fluctuations, and blue when
the population fluctuations are dominated by high-
frequency oscillations. Thus, empirical observations
in ecology give rise to the expectation that theoret-
ical population dynamics models also produce pat-
terns showing dominance of low frequencies (Pimm
1991; Powel & Steele 1995), i.e. such dynamics show
reddish spectra.

The opposite was observed, however, when Co-
hen (1995) analysed chaotic dynamics of eight one-
dimensional nonlinear population models. He showed
that high frequencies dominate chaotic fluctuations
in these models, contrary to expectation, making
the power spectra blue. In an early reaction, Sugi-
hara (1995) suggested that natural population fluc-
tuations are not chaotic and/or non-stationary, the
models are fundamentally flawed, or environmental

forcing needs to be incorporated. These findings were
soon commented on by a number of authors (Blarer
& Doebeli 1996; Kaitala & Ranta 1996; White et al.
1996). Blarer & Doebeli (1996) argued that Cohen
(1995) reported results that are based on a limited
number of parameter values in each model. They
showed importantly that in these models the spec-
trum of chaotic dynamics may change for differ-
ent parameter values. In particular, increasing the
growth rate in the Moran–Ricker model may whiten
the occasionally blue spectrum. More generally, they
showed that density dependence may have a pro-
found effect on the colour of the population dynam-
ics. White et al. (1996) argued that adding a spatial
dimension to the population dynamics will give rise
to reddened spectra while Kaitala & Ranta (1996)
reported that delayed density dependence (Turchin
1990; Ranta et al. 1995; Kaitala et al. 1996) will re-
move the dominance of high-frequency oscillations
and will either whiten or redden the frequency dis-
tribution of the population dynamics.

The role of environmental forcing, or noise, was
not touched upon in the previous refined analyses,
perhaps mainly because it is known that environmen-
tal noise may affect the colour of the population dy-
namics (Sugihara 1995). For example, environmental
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Figure 1. Bifurcation diagrams describing the deterministic population dynamics produced by: (a) the Moran–Ricker
model; and (b) the Maynard Smith model in the absence of environmental noise. In the simulations, the first 200 values
of population sizes were omitted to remove the initial transient and the next 100 values were printed for each r in
panel (a) and for each b in panel (b). The initial population sizes were randomly and uniformly distributed between 0
and 1. In panel (b) a = 0.5 and r = 1.2.

forcing can push a stable map into a chaotic regime
(Rand & Wilson 1991; Sugihara 1994). It has also
been suggested that red environmental noise, super-
imposed on models containing multiple stable states,
may tinge power spectra with red (Steele 1985). How-
ever, we show that the effect of environmental noise
upon population dynamics has not yet been fully ex-
plored.

Here we analyse the effects of environmental noise
on stable, cyclic and chaotic population dynam-
ics produced by Moran–Ricker and Maynard Smith
models. We show that environmental noise may cru-
cially affect the colour of population dynamics. In
particular, adding white noise to stable population
dynamics will make the population dynamics either
red or blue, depending on the value of the popula-
tion growth rate (Moran–Ricker model) and the type
and strength of density dependence (Maynard Smith
model). Population dynamics that are subjected to
red and blue environmental noise show, respectively,
more red or blue power spectra than those subjected
to white noise. However, the sensitivity to the dif-
ferences in the environmental colours decreases with
increasing complexity of the dynamics and ultimately
disappears in the chaotic range of the population dy-
namics. In the chaotic range of the Maynard Smith
model an environmental noise of any colour may
make blue deterministic dynamics red.

2. MORAN–RICKER MODEL AND
ENVIRONMENTAL NOISE

We use the well-known Moran–Ricker discrete-
time nonlinear population model (Moran 1950;
Ricker 1954)

Pt+1 = Ptf(Pt), (1)

where t = 0, 1, 2, . . . and Pt denotes the population
size at time t. The density dependence in equation (1)
is defined as

f(Pt) = exp[r(1− Pt)], (2)

where r is a constant density-independent growth
rate. The deterministic population dynamics of the
Moran–Ricker model are stable for r < 2.0, for
2.0 < r < 2.6924 there is a period-doubling route
to chaos (May 1976), and for r > 2.6924 a chaotic
region including periodic windows (figure 1a).

In our simulations we subjected the population
dynamics to environmental noise having different
colours. For brevity we assume a multiplicative ef-
fect of the noise yielding the following population
dynamics:

Pt+1 = Ptf(Pt)(1 + dt), (3)

where dt is a coloured environmental noise generated
by

dt+1 = cdt + wt, (4)

where wt is a random variable (i.i.d., uniformly dis-
tributed on the interval (−0.5, 0.5)). This process
yields power spectra of the coloured noise as red,
white and blue for c greater than, equal to and less
than zero, respectively. All the simulations were car-
ried out by applying the values c = 0.4, 0 and −0.4,
corresponding to red, white and blue spectra (fig-
ure 2a; for the computation of a power spectrum,
see, for example, Cohen 1995).

To further the examination of the significance of
the colour of the noise in affecting population dy-
namics we carried out a more detailed analysis in the
regions of r resulting in stable, periodic and chaotic
dynamics. This classification is based on the stabil-
ity properties of deterministic dynamics (figure 1a).

Proc. R. Soc. Lond. B (1997)



Noise colour and population dynamics V. Kaitala and others 945

lo
g

10
 (

P
ow

er
)

0 0.1 0.2 0.3 0.4 0.5

0.5

1

1.5

2

2.5

3

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5

(a) (b)

(c) (d )

Frequency

Figure 2. (a) Power spectra of the red, white and blue noises. (b) Sample power spectra of the population dynamics
for r = 1.0 when subjected to white, red and blue environmental noise, respectively. Sample power spectra for (c),
r = 2.3 and (d), r = 3.0. Power spectra are averages of 100 simulations in all panels. Notation: thick full lines, blue;
thin dashed lines, white; thin full lines, red environmental noise, respectively.

Note that we do not claim that the population dy-
namics maintain their stability properties when sub-
jected to different classes of environmental noise.
Sugihara (1994) showed, for example, that a noise-
driven originally stable logistic population dynamics
may show chaotic behaviour. These considerations
are, however, beyond the scope of this paper.

(a) Stable population dynamics

By definition, asymptotically stable deterministic
population dynamics converge exponentially to an
equilibrium population level, which is represented in
the bifurcation diagram by a single point (figure 1a).
For stable population dynamics the power is zero
for positive frequencies. However, when environmen-
tal noise is added, stable population dynamics start
oscillating around the equilibrium population. Fig-
ure 2b shows the power spectra of the population
dynamics for r = 1.0 when influenced by white, red
and blue environmental noises. Thus, white environ-
mental noise produces a white spectrum, and red
and blue noises produce red and blue power spec-
tra, respectively. In other words, the colour of the
environmental noise is transmitted to the population
dynamics when the population is inherently stable.

However, the effect and the colour of the power
spectra are not independent of the specific value of

the growth rate, r, within the stable area. We used
colour index (Blarer & Doebeli 1996) to study this
question. Colour index is defined as the ratio between
the area under the spectrum ranging from 0–0.25 to
the area ranging from 0.25–0.5. With red spectra the
index assumes values greater than one, with white
spectra these two areas are largely matching, while
with blue spectra the index values are less than one.

We observe that in the region of stable dynamics
(r < 2.0) of the Moran–Ricker model the value of the
intrinsic growth rate, r, affects crucially the colour
of the population dynamics when the population dy-
namics are subjected to an environmental noise of
any colour (figure 3a): the population dynamics with
low growth rates are typically red, turning blue with
increasing growth rate. Red population dynamics are
observed for low values of r even for white and blue
environmental noises, and blue population dynamics
are observed for higher values of r even for white and
red environmental noises. In particular, we do not
need multiple attractors to observe the crucial effect
of the environmental noise on the colour of the popu-
lation dynamics as discussed by Steele (1985). How-
ever, the colour of the environmental noise seems to
be important for ‘intermediate’ growth rates around
r = 1.0.

The reason for the power spectra becoming blue
with increasing growth rate, r, is probably the fact
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Figure 3. The logarithms of the values of the colour in-
dices as a function of the intrinsic growth rate r: (a) over
the stable region; (b) over the period-doubling cascade to
chaos; and (c) in the chaotic range. Positive and negative
values indicate red and blue colours, respectively. In all
panels we have used 300 equally spaced values of r. No-
tation: +, blue; ◦, white; and •, red environmental noise,
respectively.

that when r increases we gradually approach the bi-
furcation point r = 2.0, at which the stable undis-
turbed population dynamics bifurcate and turn to
periodic population dynamics. The loss of stability
with increasing growth rate is reflected in the colour
index at each value of r. This can be understood as
follows. The derivate of function Ptf(Pt) at the equi-
librium P = 1 (i.e. the eigenvalue of the linearized
system) is λ = 1 − r. Thus, we have 0 < λ < 1 for
0 < r < 1 and −1 < λ < 0 for 1 < r < 2. In the first
case the convergence of the population dynamics to
the equilibrium state is exponential while in the lat-
ter case the convergence includes oscillations. These

different types of approaches to equilibrium could
cause the colour of population dynamics subjected to
environmental noise. The non-oscillatory exponential
approach to equilibrium suggests positive autocorre-
lations in the time series, and therefore the domi-
nance of the long-term trends and reddened spectra
are expected. The oscillatory approach, however, im-
plies negative autocorrelations and, thus, blue spec-
tra.

We observe that, for each value of the intrinsic
growth rate r, the colour of the population dynam-
ics is affected by the colour of the environmental
noise: red and blue environmental noises cause, re-
spectively, red and blue shifts in the colour of the
population dynamics, as compared to the colour un-
der white noise. Thus, stable population dynamics
are sensitive to the colour of the environmental noise.

(b) Period-doubling route to chaos

We next study the interval of the growth rates on
which the period-doubling route to chaos occurs. Our
simulations show (figure 3b) that the power spec-
tra remain blue for the whole interval of the period-
doubling cascade (2.0 < r < 2.6924). Nevertheless,
oscillations with low period appear to be sensitive
to the colour of the environmental noise in the sense
that the difference of the colour of the environment
can be observed for 2.0 < r < 2.4. It is interesting to
note, however, that the sensitivity to the differences
in the environmental colour vanishes as the dynamics
approach the chaotic region with increasing r (fig-
ure 3b).

As an example we calculated the power spectra
for r = 2.3 (figure 2c). Although the colour index
does not seem to differ much among the differently
coloured environmental noises the power spectrum
induced by red environmental noise follows more
closely that of white noise for the higher frequencies
(f > 0.175) than does that of the blue noise. The
pattern is revised at the low frequencies (f < 0.175):
the power spectrum induced by blue noise follows
more closely that of white noise than does that of
the red noise.

(c) Chaotic population dynamics

For r > 2.6924 the population dynamics turn to
chaos. As above, we ask whether the differences in
the colour of the noise can be observed in the colour
of chaotic dynamics? We see that the difference be-
tween the different colours of the environmental noise
seems to be minor, as compared with the differences
observed for the stable and periodic regions of the
population dynamics. Furthermore, the colour of the
power spectrum approaches that of white, irrespec-
tive of the colour of the environmental noise (fig-
ure 3c). This observation is in accordance with Blarer
& Doebeli (1996). For r = 3.0 we observe clear dif-
ferences among the power spectra only at very low
frequencies (figure 2d).

To finish with we pose a more detailed statistical
question: is it possible to make a difference among
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the colour indices over the whole range of r? The an-
swer is dependent upon the range of the growth rate
coefficient, r, adopted. To us there are three natural
breaking points in r: the range of stable dynamics
(figure 3a), the range of period doubling (figure 3b)
and the range of chaotic dynamics (figure 3c). Run-
ning the analysis of covariance, ANCOVA (colour of
the noise as categorical variable, growth rate r as
covariate) for the range of stable population dynam-
ics yields F2,894 = 9.38 (p < 0.001) for the equal-
ity of slopes tests. This indicates the less obvious,
that the slopes of the three noise colours are different
in statistical terms. Furthermore, the colour indices
assume values at different levels (F2,894 = 870.61,
p < 0.001) for the differently tinged noise (fig-
ure 3a). The differences are even more pronounced
at the period-doubling range of r (equality of slopes
F2,894 = 303.58, p < 0.001; equality of covariate
adjusted means F2,894 = 392.29, p < 0.001; fig-
ure 3b). On the contrary, no such differences were
found at the chaotic range of r (equality of slopes
F2,894 = 1.84, p = 0.159; equality of covariate ad-
justed means F2,894 = 2.12, p = 0.121; figure 3c).

3. MAYNARD SMITH MODEL

In order to obtain a more general picture of the
interaction between environmental noise and popu-
lation dynamics we also analysed the more sophisti-
cated Maynard Smith model (Maynard Smith 1974).
Here the density dependence (see equation (1)) is de-
fined as

f(Pt) = r/(1 + (aPt)b), (5)

where r is the growth rate, a scales the carrying ca-
pacity and b describes the type and strength of den-
sity dependence. The environmental noise was added
as in the Moran–Ricker model (equations (3) and
(4)).

Parameters r and b affect the dynamics of the
Maynard Smith model. When r is constant and b
increases, stable dynamics become first periodic and
then chaotic (figure 1b). Increasing r also increases
the complexity of the dynamics.

For high fixed values of growth rate (e.g. r = 6.0)
red colour can be observed both in the stable and
chaotic ranges of b (figure 4b). Blue spectra are ob-
served for 1.5 < b < 9, that is, around the values of
b producing period-doubling cascade to chaos. As in
the Moran–Ricker model the dynamics are sensitive
to the differences in the environmental colours in the
stable and cyclic range but not in the chaotic range.

For a low value of the growth rate (r = 1.2) the
power spectra are red for all values of b, that is, for
stable, periodic and chaotic ranges, and for all en-
vironmental colours considered (figure 4a). Blarer &
Doebeli (1996) observed that for strong density de-
pendence (i.e. large values of b) and low growth rate
r, the colour of the deterministic Maynard Smith dy-
namics is red. Note that the colour of the determin-
istic chaotic dynamics is blue for r = 1.2 in the early
part of the chaotic range. Thus, interestingly enough,
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Figure 4. The colour indices corresponding to red, white
and blue noises in the Maynard Smith dynamics as a
function of b when growth rate is constant: (a) r = 1.2;
and (b) r = 6.0. (c) The colour indices as a function
of r when the derivate at equilibrium is kept constant:
λ = −0.25. We have used 300 equally spaced values of b
and r. a = 0.5. Notation: +, blue; ◦, white; and •, red
environmental noise, respectively, and ?, the colour of the
undisturbed chaotic dynamics for r = 1.2.

blue environmental noise can make blue chaotic dy-
namics red. However, the opposite—red dynamics
turning to blue—was not observed.

One would expect that when the complexity of
the dynamics is maintained constant the effects of
environmental noise would be unchanged. We stud-
ied this question in the stable region of the Maynard
Smith model by maintaining the derivate at the equi-
librium constant but changing the values of r and b.
Figure 4c shows the colour indices corresponding to
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red, white and blue noises for the constant derivate
at equilibrium λ = 1 − b + b/r = −0.25. As r is in-
creased then b is decreased, which affects the strength
of density dependence in the model. The results show
that although the equilibrium population size of the
undisturbed model remains equally stable the dis-
turbed dynamics may be blue or red.

As a whole, the analysis of the Maynard Smith
model completes the picture obtained above from
the Moran–Ricker model. When different environ-
mental colours are added to the models, low growth
rates tend to produce red dynamics. Furthermore,
red and blue environmental noises produce, respec-
tively, more red and blue power spectra as compared
to white environmental noise in the stable range
of the dynamics, whereas the differences disappear
when the complexity of the dynamics increases. The
analysis of the Maynard Smith model shows that the
stability properties of the model do not alone deter-
mine the colour of the dynamics under environmen-
tal noise—different combinations of growth rate and
density dependence may produce qualitatively differ-
ent results. Furthermore, the colour of the disturbed
dynamics may be red for all ranges of stability (sta-
ble, cyclic and chaotic) of the dynamics, and blue
chaotic dynamics may turn to red under the influ-
ence of environmental noise of any colour.

4. CONCLUSIONS

We have analysed the effects of the colour of envi-
ronmental noise on population dynamics that range
from stable via cyclic to chaotic behaviour. We have
shown that environmental noise may well affect the
colour of population dynamics. Not entirely unex-
pectedly, red and blue environmental noises increase,
respectively, the presence of long- and short-term
fluctuations in the population dynamics in the stable
range of population dynamics. However, it is not pos-
sible to derive the colour of the environmental noise
from the colour of the population dynamics alone.
Subjecting stable population dynamics to white en-
vironmental noise is observed to induce either red or
blue population dynamics, depending on the value of
the intrinsic growth rate and the type and strength
of density dependence or intraspecific competition.
The difference between the effects of the environmen-
tal colours decreases with increasing complexity of
the dynamics and disappears in the range of chaotic
population dynamics. In the chaotic range of pop-
ulation dynamics environmental noise may have an
unexpected effect on the undisturbed dynamics: blue
dynamics may become red under disturbances of any
colour.

The models that we used in our study are robust
in the sense that small changes in the amplitude of
environmental noise do not change the results quali-
tatively. Furthermore, introducing the environmental
noise directly into the exponential ‘fitness function’

of the Moran–Ricker model (f(Pt), see equation (2)),
either in the multiplicative or additive form, does not
affect our main conclusions.

We concentrated in this article on two single-
species models with non-delayed density dependence.
The effects of spatial structure, population interac-
tions or different patterns of density dependence on
the sensitivity of population dynamics to the colour
of the environmental noise remain unknown.
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