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We discuss the Giardinà-Kurchan-Peliti population dynamics method for evaluating large deviations of time-

averaged quantities in Markov processes [Phys. Rev. Lett. 96, 120603 (2006)]. This method exhibits systematic

errors which can be large in some circumstances, particularly for systems with weak noise, with many degrees

of freedom, or close to dynamical phase transitions. We show how these errors can be mitigated by introducing

control forces within the algorithm. These forces are determined by an iteration-and-feedback scheme, inspired

by multicanonical methods in equilibrium sampling. We demonstrate substantially improved results in a simple

model, and we discuss potential applications to more complex systems.

DOI: 10.1103/PhysRevE.93.062123

I. INTRODUCTION

In many physical systems, interesting and important be-

havior is associated with rare events; examples include crystal

nucleation, slow transitions in biomolecules [1–3], rare tran-

sitions in turbulent flows [4,5], and extreme events in climate

dynamics [6]. Many computational methods for sampling

these events have been proposed and exploited [1,3,5,7–18].

One family of methods is based around population dynamics

[19–24], in which several copies of a system evolve in parallel:

the copies which exhibit the rare behavior of interest are copied

(or cloned) while other copies are discarded. The result is

that typical copies within the population dynamics reproduce

the desired rare events in the original system. One such

method has recently been employed to characterize a particular

class of rare events [7,8], in which time-averaged physical

quantities exhibit large deviations [25,26] from their typical

values in the large time limit. Studies of such events have

revealed new and unexpected features in glass formers [27],

biomolecules [28–30], nonequilibrium transport [31,32], and

integrable systems [8]. In this article, we identify a pitfall that

limits the computational efficiency of the population dynamics

method, and we show that the method can be modified so as

to avoid this problem. The issue at stake is the number of

copies of the system that must be considered in order to obtain

accurate results; if very many copies are required, then the

method is difficult to apply, especially if even a single system

is complex or contains many degrees of freedom. In some

relevant cases then the standard population dynamics method

requires an exponentially large population to be effective [33].

However, the method that we propose here, which is an

improved version of the population dynamics, inspired by

multicanonical methods in equilibrium systems [13,14] (or

adaptive importance sampling [15–18]), can still be effective

in these cases.

The intuitive description of the problem that we identify

is the following. The population dynamics is characterized

by two different distributions, which describe the state of the

system at some fixed final time and its state at intermediate

times. We show that in situations where the two distributions

have a small overlap, the population dynamics is affected by a

serious sampling problem, in which statistical estimators of the

quantities of interest become dominated by just a few samples.

One relevant case is that of systems with weak noise, for which

the two distributions become more and more concentrated

around their most likely values, so that they quite generally

have zero overlap: this leads to an unavoidable failure of

the population dynamics. In this article we describe how to

modify the population dynamics so as to maintain the two

distributions close to each other, thus solving the sampling

problem. We argue that this new method will provide a step

change in the complexity of the systems for which large

deviation computations can be performed.

The structure of the paper is as follows: we introduce our

model and the population dynamics algorithm in Sec. II. We

discuss sampling problems associated with this algorithm in

Sec. III. In Sec. IV we introduce our main idea, which is

to combine a controlling force with the population dynamics

algorithm, in order to resolve the sampling issues. In Sec. V

we numerically demonstrate this method in a simple Brownian

particle model. Finally, in Sec. VI we describe the potential

for future applications and extensions of this work.

II. MODEL AND METHODS

A. Rare event problem

The rare events that we consider can take place in a variety

of models. To illustrate the method, consider a particle moving

in d dimensions, whose position x ∈ Rd obeys a Langevin

equation

ẋt = F (xt ) + B(xt )ξt , (1)

where ξ is a d-dimensional Gaussian white noise of unit

variance, F (x) ∈ Rd a deterministic force, and the matrix

B(x) specifies the action of the noise on the particle. [34]. We

use the Itô convention [35] for stochastic calculus throughout

this paper, although one can also work with the Stratonovich

convention by using a transformation formula to relate one

convention to the other [36].

We restrict to ergodic systems, and we focus on rare events

in which a time-averaged quantity �(τ ) takes some nontypical

value. Here τ is the long time period over which the average
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is taken, and

�(τ ) = �d(τ ) + �c(τ ) (2)

consists of a “scalar” contribution

�d(τ ) =
1

τ

∫ τ

0

λd(xt ) dt (3)

and a “vector” one

�c(τ ) =
1

τ

∫ τ

0

λc(xt ) · dxt , (4)

where λd,c are arbitrary functions of the particle position x.

The first contribution �d(τ ) is a time average of a quantity λd

that depends only on the position x (i.e., a time average of a

static function such as a particle density or an energy density),

whereas the second contribution �c(τ ) includes transitions of

x as seen from the form λc(xt ) · dxt [i.e., �c(τ ) is an average

of a dynamic function such as a particle current or an energy

current [37]]. See also the explanation around Eq. (34) in

Ref. [38] for a pedagogical introduction of �(τ ). This class

of observable includes many physically and mathematically

interesting examples, and fluctuations of these quantities have

been intensively studied recently, where examples are entropy

production [39,40], dynamical activity [27,41], and particle

fluxes [42].

In the limit of large τ , ergodicity of the system means that

the observable �(τ ) is almost surely equal to its typical value

�. Our aims are (i) to estimate the (small) probability of devi-

ations from this value and (ii) to generate the rare trajectories

that lead to these deviations. This is an important problem

because these nontypical trajectories can exhibit interesting

and unusual structures, including misfolded proteins [29,30],

stable glass states [27], and traveling waves in models of

particle transport [31].

To achieve these aims, the standard theoretical route [25,39]

is to introduce a biasing field h, which controls deviations of

�(τ ) from its typical value. Specifically, we consider an en-

semble of paths X = (xt )
τ
t=0 with (unnormalized) probability

density

Ph[X] = π0(x0) exp

[

−
∫ τ

0

L(xt ,ẋt ) dt + hτ�(τ )

]

, (5)

where

L(x,ẋ) = 1
2
[ẋ − F (x)] · κ(x)−1[ẋ − F (x)] (6)

is a Lagrangian density that describes the (unbiased) model (1);

π0(x) is the initial condition for the trajectories, which can be

arbitrary and which we take to be the stationary probability

distribution of the unbiased model in the numerical examples.

Also, κ = BBT where the notation BT indicates a matrix

transpose [43].

Normalised averages with respect to Ph are denoted by 〈·〉h,

and we use these averages to characterize the rare trajectories

associated with deviations of �(τ ) from �, for the model in

Eq. (1). We define the scaled cumulant generating function

(CGF):

G(h) = lim
τ→∞

τ−1 log〈eτh�(τ )〉0. (7)

In the limit of large τ , the probability distribution of �(τ )

satisfies a large deviation principle, and can be obtained by a

Legendre transformation of G(h) [for which we assume that

the large deviation function of �(τ ) is convex [25,26]]. In the

same limit, for a given deviation � from �, there exists a bias

h⋆(�) for which 〈·〉h⋆(�) is equivalent to a conditional average

over trajectories with �(τ ) = � [44]. Biased averages with

respect to the biased distribution Ph, which are numerically

evaluated through the population dynamics, thus enable us to

characterize the trajectories of the original dynamics for which

time-averaged physical quantities exhibit large deviations from

their typical values in the large time limit.

B. Population dynamics method

There are several computational methods that allow eval-

uation of averages with respect to Ph [7,11,12,45]. In the

population dynamics method [7], one considers Nc copies (or

clones) of the system. These clones evolve independently as

a function of the time t , except that (for h > 0) clones with

small �(t) are periodically removed (eliminated) from the

system, while clones with large �(t) are duplicated (cloned),

to maintain a constant population. The algorithm is illustrated

in Fig. 1 and described fully in Appendix A 1. This method

biases the dynamics towards the rare events of interest. For

sufficiently large Nc (and large enough τ ), the method provides

accurate estimates of G(h), and it generates sample paths

consistent with the biased distribution Ph.

C. Numerical example

To show the operation of the population dynamics method,

we introduce a simple model of diffusion in a quartic potential;

that is, F (x) = −x3 and B(x) =
√

2ǫ, where ǫ is the noise

strength (or temperature). We take λc = 0 and λd = x(x + 1).

For h < 0 the distribution Ph is concentrated on trajectories

with small values of λd, which tend to localize near x ≈ − 1
2
.

Here we focus on the case h > 0, which leads to unusually

large values of λd. Those can be realized either for x > 0 or

x < 0, but at large τ this rare event is almost always realized

by trajectories that have x > 0 (as illustrated in Fig. 1). This

simple problem can be solved exactly in the zero-noise limit

(see Appendix D).

The operation of the population dynamics method is illus-

trated in Fig. 1. Figure 1(a) shows four copies of the system that

evolve in time, except that some trajectory segments stop and

others branch, as the cloning operates. Figure 1(b) shows four

representative trajectories (sample paths) for the distribution

Ph[X], which have been reconstructed from Fig. 1(a), by

tracing backwards in time from the clones that survived up

to the final time τ .

III. SAMPLING ERRORS WITHIN

POPULATION DYNAMICS

A. Distributions pend and pave

The accuracy of the population dynamics is limited by the

number of clones Nc used in its numerical implementation, as

we now explain. Consider the distribution

pave(x) = lim
τ→∞

〈

τ−1

∫ τ

0

δ(xt − x) dt

〉

h

, (8)

062123-2
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FIG. 1. (a) Trajectories xa(t) generated by population dynamics

at fixed total population Nc = 4 for the model system described in

Sec. II C (ǫ = 1,h = 1). The different colors or line types, the green

(dark gray) solid line, green dashed line, yellow (light gray) solid line,

and yellow dashed line, represent different copies. At certain times,

some copies of the system are removed (× symbols) and others

are duplicated (◦ symbols). The time interval �T for the cloning

procedure is set to be 0.05, and the time step for solving the Langevin

equation is 0.001 (see Appendix A 1 for the details of the algorithm).

(b) Representative sample paths x̃a(t) for the distribution Ph[X],

derived from those in (a) by keeping only trajectories surviving up to

final time τ = 30. For each cloning event, we also copy the history of

the trajectory, which replaces the history of the eliminated trajectory.

This means that the trajectories (x̃a(t))
Nc

a=1 overlap, especially for early

times. For example, in panel (b), the point A appears in the past of the

four points B1, . . . , B4. For any point xa(t) (such as A, B1, B2, . . . ),

we define the multiplicity ma(t,τ ) as the number of trajectories that

include this point and survive until the final time τ . So for point A,

the multiplicity is ma(t,τ ) = 4, but for B1, . . . , B4 then ma(t,τ ) = 1.

[For all points in the trajectories that die before τ , which are not

drawn in panel (b), ma(t,τ ) = 0.]

which indicates the fraction of time spent at position x, within

the biased ensemble. We also define

pend(x) = lim
τ→∞

〈δ(xτ − x)〉h, (9)

which indicates the fraction of trajectories for which the

particle’s final position is x. For the stationary state of the

dynamics (1), which corresponds to h = 0, time-translational

invariance ensures that pave = pend. However, this is not the

case for biased ensembles where h 
= 0, as illustrated in

Refs. [7,46] and in Fig. 2.

The population dynamics method provides estimates of

both pave and pend. Let the position of clone a at time t be

xa(t), with a = 1, . . . ,Nc. Recalling Fig. 1(a), note that the

functions xa(t) are not continuous in time and do not represent

sample paths for the distribution Ph[X]. However, from the

definition of the population dynamics algorithm (as explained

in Appendix A 1), the distribution of xa(t) can be used to

estimate pend(x), as

pend(x) ≃
1

τNc

∫ τ

0

Nc
∑

a=1

δ[x − xa(t)] dt. (10)

In order to construct sample paths, which we denote by

x̃a(t), we trace backwards in time from the clones that survive

up to τ , as shown in Fig. 1(b). There are still Nc paths x̃a ,

but these overlap, particularly at early times. Since these

trajectories correspond to Ph[X], the distribution of x̃a gives

an estimate of pave(x), as:

pave(x) ≃
1

τNc

∫ τ

0

Nc
∑

a=1

δ[x − x̃a(t)] dt. (11)

The approximate equalities in the relations (10) and (11)

become exact in the limit Nc → ∞ and τ → ∞, in which

the population dynamics gives exact results.

We show numerical examples of these functions in Fig. 2,

for a particle moving in a quartic potential, as introduced

in Sec. II C. We estimate pave and pend from (10) and (11),

and show them in Fig. 2. In the same figure, we also plot

the numerically exact distributions, obtained by numerical

solution of a modified Fokker-Planck equation (see Ref. [25]

and Appendix B 2). The population dynamics converges to the

exact result as Nc is increased. Also shown in Fig. 2 are results

using the control-with-feedback method that we introduce in

this paper; these results will be discussed in later sections.

B. Multiplicity

The population dynamics method gives accurate results

in the limit of large Nc. The central idea is that in a large

population, short-lived rare fluctuations will occur. Based on

these short-lived fluctuations, we duplicate some of the clones:

repeated application of this procedure generates the long-lived

fluctuations that are relevant for large deviation theory. For this

to be effective, the population on which the cloning operates

must be large enough to capture the relevant short-lived

fluctuations; that is, the cloning part of the algorithm can

allocate extra statistical weight to configurations that are

already present in the population, but new configurations are

generated only by the natural (unbiased) dynamics of the

system.

Assuming that Nc is large enough for efficient operation

of the algorithm, the configurations that are associated with

long-lived dynamical fluctuations are distributed as pave, but

the cloning step operates on a population distributed as pend.

From the argument above, it is clear that if typical samples

from pave are rare with respect to pend, then a large population

is required in order to obtain accurate results. To quantify

this, it is useful to define the multiplicity ma(t,τ ) of clone

a at time t as the number of its descendants that survive

until the final time τ (see Fig. 1). Rewriting (8) as pave(x) ≃
1

τNc

∫ τ

0

∑Nc

a=1 ma(t,τ )δ[x − xa(t)] dt and comparing with (9),

one sees that for a clone with position x = xa(t), the expected
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FIG. 2. (a–d) Distributions pend(x) and pave(x), defined in (8) and (9), calculated from the population dynamics method, with various

numbers of clones Nc. The different panels correspond to a different value of h (h = ±1) or a different distribution function [pend(x) or pave(x)]:

(a) pend(x) for h = −1, (b) pave(x) for h = −1, (c) pend(x) for h = 1, and (d) pave(x) for h = 1. For all panels, we set ǫ = 1 and τ = 30.

The numerically exact result is plotted as a black line. We repeat the simulation 1200/Nc times, and the result is the average of them (this

procedure means that we vary Nc while keeping a fixed computational cost). The results of the population dynamics converge to the analytical

ones as Nc increases. (e) pave(x) for h = 1 (improved estimation) calculated from a population dynamics method with control-with-feedback,

as described in Secs. IV C and V. Results are shown after two iterations of the feedback procedure. The exact distribution pave(x) is again

shown as a black line. The comparison between (d) and (e) indicates that the convergence with respect to Nc is improved significantly by the

control-with-feedback method. The variance m2 and the relative entropy D2 defined in (12) and (13) both measure how much large values of

Nc are required for the cloning procedure to be reliable. For panel (b), (d) and (e), these values are (m2 = 0.068, D2 = 0.039), (m2 = 0.33,

D2 = 0.17), and (m2 = 0.0064, D2 = 0.0032) respectively.

value of its future multiplicity is pave(x)/pend(x). Since

the clone positions xa(t) are distributed as pend, averaging

this future multiplicity over configurations x yields
∫

pend ·
(pave/pend) dx =

∫

pave(x) dx = 1, which reflects the fact that

the population size is constant in time.
In practice, the distribution of the multiplicity ma(t,τ ) is

very broad, and typical multiplicities are far from their average

values. There are many clones for which no descendants
survive until time τ [see Fig. 1(a)], in which case ma(t,τ ) = 0.
In order to maintain an average multiplicity of 1, these
zero-multiplicity clones are balanced by a small number of
clones with larger multiplicity. It is useful to define Ñc(t,τ )
as the number of clones that are present in the population at
time t , for which ma(t,τ ) > 0. Numerical results for Ñc(t,τ )
are shown in Fig. 3; this quantity decreases rapidly as t

decreases away from τ , showing that many clones have no
surviving descendants, and it follows that the multiplicities of
the surviving clones must be large. From (11), one sees that
if Ñc(t,τ ) is small, numerical estimates of pave contain only a
small number of independent samples, which can lead to large
numerical uncertainties within the algorithm.

Moreover, the presence of large multiplicities within the

cloning scheme can lead to large systematic errors, which

cannot be reduced by averaging over repeated runs of the same

algorithm. On running the system with a fixed population,

the future multiplicity of any clone is bounded above by the

population size Nc. We will show in the next section that this

constraint has serious implications for systems in the small

noise limit. More generally, in order to characterize whether a

system requires a large population or not, it is useful to define

two numbers that measure how different are the distributions

pave and pend. These are

m2 =
∫

pend(x)

{[

pave(x)

pend(x)

]2

− 1

}

dx (12)

and

D2 =
∫

pave(x) log

[

pave(x)

pend(x)

]

dx. (13)

Given that pave(x)/pend(x) is the expected future multiplicity

of a clone at x, we recognize m2 as the variance of this

multiplicity, with respect to the distribution pend of clone

positions (recall that the average multiplicity with respect to

this distribution is equal to unity). Similarly D2 is the relative

entropy of pave with respect to pend [47]: this is related to the

controlling forces that will be introduced in Sec. IV. Large

values of m2 and D2 indicate that pend and pave are different

from each other, in which case larger values of Nc will be

required for accurate results within population dynamics. For

the two cases h = ±1 shown in Fig. 2, we have for h = −1

that (m2,D2) = (0.068,0.039), while for h = +1, (m2,D2) =

062123-4
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FIG. 3. The number of independent (distinct) clones Ñc(t) ob-

tained from the normal population dynamics method [green line (dark

gray) line] for h = −1 (a) and h = 1 (b). The line type corresponds

to the value of noise intensity: ǫ = 1 (solid line) and ǫ = 0.1 (dashed

line). We set Nc = 20 and τ = 30. When the distributions pave and

pend are very different from each other, we expect that Ñc(t) decreases

rapidly as t decreases from τ : to illustrate this, note that (for ǫ = 1)

m2 = 0.068 for h = −1 and m2 = 0.33 for h = 1: the same ordering

is preserved for smaller ǫ. We also plot Ñc(t) obtained from the

controlled population dynamics [yellow line (light gray) line] with

the control-with-feedback explained in Secs. IV C and V. The larger

values of Ñc(t) obtained with the control-with-feedback method lead

to smaller statistical uncertainties in the results.

(0.33,0.17), reflecting the larger populations required for

accurate results when h = +1. Obtaining general estimates

of the actual population size Nc required for convergence is an

important goal for future work.

C. Sampling problems for weak noise

The effect described in the previous section is particularly

severe for systems where the random (noise) force in (1)

is small. To illustrate this case, we set B(x) =
√

2ǫB0(x),

consistent with the numerical example of Sec. II C (for which

B0 = 1). The small noise limit is then ǫ → 0. We define

x∗ = arg maxx[pave(x)] as the most likely value of x, within

the distribution pave. The population dynamics requires that

the typical multiplicity of a clone with position x∗ should be

(at least) of order m∗ ≡ pave(x∗)/pend(x∗). This clearly cannot

be achieved unless Nc � m∗, which provides an estimate of

the number of clones required for accurate results.

This multiplicity m∗ increases exponentially as the noise in-

tensity of the system becomes small. In this limit, the dynamics

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.3
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FIG. 4. Estimates of G̃(h̃ = 1), as ǫ is varied. We compare results

from the normal population dynamics and from the control-with-

feedback method explained in Secs. IV C and V. The analytical result

for limǫ→0 G̃(h̃) is shown as a red dashed line, and the characteristic

value of the noise intensity ǫ∗, defined in (14), is plotted as a green

vertical solid line. The standard method fails for ǫ smaller than ǫ∗, but

the control-with-feedback method (black continuous line and black

circles) converges to the correct value even for ǫ < ǫ∗.

of the system runs increasingly slowly, so it is natural to rescale

either the time variable or (equivalently) the biasing field h

as G̃(h̃) ≡ ǫG(h) with h̃ ≡ hǫ. (This scaling also appears

in the hydrodynamic limit of microscopic models [48].) In

this limit, pave and pend satisfy a large deviation principle

with respect to the noise intensity ǫ: pave(x) ∼ e−Iave(x)/ǫ and

pend(x) ∼ e−Iend(x)/ǫ . Hence, m∗ ∼ eIend(x∗)/ǫ , where we used

Iave(x∗) = 0. This indicates that we need an exponentially

large Nc as ǫ becomes small. More quantitatively, we define a

characteristic noise intensity ǫ∗ by

ǫ∗ ≡
1

Iend(x∗)
. (14)

For ǫ < ǫ∗, we expect that population dynamics can not

be used practically, because of the exponentially large Nc

required.

As a numerical example, we again consider the Brownian

particle introduced in Sec. II C. We numerically estimate ǫ∗ by

using a quadratic approximation of the large deviation function

Iend(x). We plot it as a green vertical line in Fig. 4. In the same

figure, we show the result of the population dynamics for G̃(h̃)

as ǫ is reduced, with a red constant line corresponding to the

analytical value of G̃(h̃) in the ǫ → 0 limit (see Appendix D 3

for its determination). Below the characteristic value ǫ∗, the

population dynamics method converges very poorly as Nc

increases.

IV. POPULATION DYNAMICS WITH

A FEEDBACK CONTROL

A. Controlled dynamics

To resolve the sampling issues described in the previous

section, we introduce a “control strategy,” which modifies

the original model (1), in order to make the rare events of

interest more likely. (These large deviation problems have dual

representations in terms of optimal control problems [49–54],

which provide a natural interpretation of the method presented
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here.) The modified model is

ẋt = F (xt ) + w(xt ) + B(xt )ξt , (15)

where w(x) is a controlling force which we write as

w(x) = hκλc(x) − κ∇V (x), (16)

where V acts as a potential. A straightforward calculation

shows that averages with respect to the biased distribution

Ph can be rewritten as averages with respect to this modified

dynamics, but with a bias on a different observable �w, which

replaces �. That is, by defining

�w =
1

τ

∫ τ

0

λw(xt ) dt (17)

with

λw = λd +
1

h

[

(F + w/2) · κ−1w −
1

2
Tr(HV κ)

]

, (18)

in which HV is a Hessian matrix with elements (∂2V/∂xi∂xj ),

we have

Ph[X] = Pw[X]eV (xτ )−V (x0) (19)

with

Pw[X] = π0(x0) exp

[

−
∫ τ

0

L
w(xt ,ẋt ) dt + hτ�w(τ )

]

,

(20)

where Lw is the action corresponding to the controlled

Langevin equation (15) obtained by replacing F �→ F + w

in (6). See Appendix B for details of the derivation. We stress

that these relations are satisfied for any control w.

Averages with respect to Pw are denoted by 〈·〉w and can

be calculated using the population dynamics method with

the modified model (15). Physically, Eq. (19) says that rare

events for the system (1) have an alternative characterization

as rare events for the controlled system (15). More precisely,

from (19), the averages 〈·〉h and 〈·〉w are not equal, but

their associated probability distributions differ only through

boundary terms at initial and final times. For large τ , we focus

on properties far from initial and final times, in which case the

averages 〈·〉h and 〈·〉w are equivalent.

This equivalence implies that

pw
ave = pave, (21)

where pw
ave is defined as in (8) but for the controlled population

dynamics (15). On the other hand, when we consider properties

close to the final time τ (which are not relevant for the large

deviations of time-averaged quantities), the two averages 〈·〉h
and 〈·〉w are different in general. For example, the end-time

distribution pw
end for the controlled dynamics differs from its

uncontrolled counterpart as

pw
end ∝ pende−V (x), (22)

as read from (19) [or see Appendix B 2 for a detailed derivation

of (21) and (22)]. Thus the control w allows pw
end to be

varied, while always keeping pw
ave constant (and hence leaving

unchanged the bulk properties of Ph, which are relevant for

the large deviations of time-averaged quantities).

B. Optimal control

These results apply for any control force w, but a (unique)

optimal choice w∗ can be defined by the condition

pw∗

ave = pw∗

end. (23)

From (12) and (13), this result implies that for the controlled

population dynamics, m2 = D2 = 0: all clones have expected

future multiplicity of unity, regardless of their position. In

fact, this case also implies that λw∗
(x) is independent of x

(see Appendix B 2), so that there is no cloning or deletion

of clones in the optimally controlled population dynamics

algorithm. That is, all multiplicities are equal to unity (not

just their expected values). The result is that the optimally

controlled process [50–54] generates directly the path measure

Ph, up to the corrections given in (19) [38,55–58]. Note

also that D2, as defined in (13) for the original population

dynamics, is also related to an average of the optimal control

potential V ∗ (where V ∗ is the potential V corresponding to the

optimal control w∗), since log[pave(x)/pend(x)] = −V ∗(x) −
log[

∫

e−V ∗(x ′)pend(x ′) dx ′].
The optimal control can be estimated by using the pop-

ulation dynamics with any nonoptimal control force w (or

its corresponding potential V ). We perform the population

dynamics and generate sample paths from Pw. From the

definition of the optimal force (23) with the relations between

pw
end,ave and pend,ave [(21) and (22)], we obtain

V ∗(x) = V (x) + log
pw

end(x)

pw
ave(x)

. (24)

Since all terms on the right-hand side of (24) can be measured

from the population dynamics with a nonoptimal control w,

this allows an estimate of V ∗, and hence of w∗.

C. Control-with-feedback for population dynamics

Based on (24), we arrive at the following iteration and

feedback scheme for efficient analysis of large deviations

of �(τ ). Starting with the original population dynamics of

Ref. [7], we obtain estimates p0
end and p0

ave of pend and pave,

and we use (24) to obtain an estimate of the optimal control

potential V ∗, which we denote by V 1. We then repeat the

population dynamics calculation with a control force w = w1

derived from the potential V 1. We use results from this new

calculation together with (24) to obtain a new (more accurate)

estimate of the optimal control. Iterating this scheme, the

estimate of V ∗ at iteration r is V r . As V r → V ∗, we have

from (24) that pw
end → pw

ave, and hence the sampling problems

described in Sec. III B are reduced. This improves the accuracy

of the population dynamics method.

Given sufficiently many clones Nc, the original method

of [7] can already provide accurate results, but we have

demonstrated that for finite Nc there may be large systematic

errors. The strength of our scheme is that on repeated iteration,

the control potential V approaches the optimal control V ∗, and

the errors within the method are reduced. Thus, the numerical

accuracy of the method increases as the scheme is iterated.

For the implementation of this iteration scheme, we require

a computational representation of the function V (x) and its

gradient ∇V . From (24), a natural choice might be to represent

pave and pend by histograms, based on a discretization of the
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configuration space. However, this choice does not facilitate

estimation of ∇V , and it is also unfeasible in high-dimensional

systems. We therefore use a potential V that is defined in terms

of a set of basis functions ζi , with coefficients ci :

V (x) =
k

∑

i=1

ciζi(x), (25)

where k is the size of the basis set.

At stage r of our iterative scheme, the coefficients c are

denoted by cr = (cr
i )ki=1. In the absence of prior information

about the optimal control V ∗, the first stage of the method

(r = 0) uses the original population dynamics, so c0
i = 0 for

all i. In stage r + 1, we update these coefficients according

to (24) so that the potential V r+1 in the next stage is the best

available estimate of V ∗. There is considerable freedom in how

to obtain this estimate: we take

c
r+1 = argminc

∫

�r

[

V r (x) + log
p

w,r
end (x)

p
w,r
ave (x)

−
k

∑

i=0

ciζi(x)

]2

dx,

(26)

where p
w,r
end is the numerical estimate for pw

end obtained at

iteration r , and similarly pw,r
ave . The state space �r is defined

as the space where pw,r
ave > 0 [note that p

w,r
end (x) > 0 whenever

pw,r
ave (x) > 0, from the definition of how to construct x̃a(t) as

shown in Fig. 1(b)].

We emphasize that, for any basis set ζi (with any truncation

number k), Eq. (19) is satisfied, meaning that if the number

of clones Nc and the time τ are large enough, the result

of any controlled population dynamics always leads to the

same results, which can also be obtained from the original

(uncontrolled) population dynamics. However, the choice of

the expansion functions ζi(x) (and the value of the truncation

number k) does affect the computational cost, through the

number of clones required for convergence, as discussed in

Sec. III B.

D. Advantages of the control-with-feedback for population

dynamics, and relation to other methods

Compared to the original population dynamics method,

the addition of control forces and the use of iteration and

feedback increase the complexity of the method presented

here. Here, we summarize the improvements that these

changes achieve. Typically, existing methods either exploit

an ensemble (population) of copies of the system [19–24], or

they use modified (controlled) dynamical rules to drive the

system towards rare events of interest [12–18,53], or they use

path-sampling methods [27,59]. All these methods are useful,

but the population-based methods can suffer convergence

problems, due to the very large populations required in some

problems. On the other hand, the controlled methods require

accurate estimation of an optimal control force that is typically

a high-dimensional and complex object, which can be difficult

to represent computationally (see, for example, Ref. [60]). Path

sampling methods are most effective when the ensemble Ph

has time-reversal symmetry, which limits their applicability

e.g.) Giardinà-Kurchan-Peliti method

e.g.) Multi-
canonical
ensemble 
method

Modified dynamics

Population dynamics

Controlled population 

dynamics method

FIG. 5. A schematic map illustrating the methodological situation

of the controlled population dynamics.

in nonequilibrium settings. The method proposed here is a

mixture of the population- and control-based methods, as

illustrated schematically in Fig. 5.

In terms of the applicability of this new method, we expect

the following general behavior. For complex high-dimensional

problems, accurate representation of the optimal control V ∗

is likely to be difficult, but we expect even approximate

representations of V ∗ to significantly improve the performance

of the population dynamics method. Thus, the controlled

method should reduce the computational cost of problems

that are already tractable using population dynamics, allowing

access (for example) to larger system sizes and larger values

of the bias parameter h. On the other hand, for relatively

simple problems such as the particle in a quartic potential of

Sec. II C, the original population dynamics fails for small noise

(Fig. 2), but we would expect that a solution by the controlled

method of Ref. [12] might already be possible. However, for a

similar model in three or more dimensions, we expect that the

method of Ref. [12] would already be challenging, due to the

difficulty of representing exactly the effective potential. Here

we combine that control strategy with population dynamics:

we arrive at a flexible method that exploits the strengths of

both approaches and that we anticipate will be effective in a

wide variety of problems.

V. NUMERICAL EXAMPLE

To illustrate the control-with-feedback method, we consider

the numerical example from Sec. II C, and we take the effective

description in (25) to be a quartic polynomial: ζi(x) ≡ xi

(that is, “x raised to the power i”) and k = 4. For the first

iteration of the method we take (c0
i )ki=1 = 0. Note that this

potential-parametrization of V cannot capture the exact V ∗,

neither for ǫ > 0 nor in the limit ǫ → 0 (see Appendix D).

This emphasizes that the control-with-feedback method does

not require a perfect representation of the optimal control in

order to improve the convergence of the population dynamics

method.

Figure 2 shows estimates of the distribution pave obtained

using the original cloning method [Figs. 2(a)–2(d)], com-

pared with the results obtained using control-with-feedback
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FIG. 6. The integrands of m2 and D2 defined as (a)

pw
end(x){[ pw

ave(x)

pw
end

(x)
]
2
− 1} and (b) pw

ave(x) log [
pw

ave(x)

pw
end

(x)
] [see (12) and (13)]

for the standard (normal) population dynamics method (w = 0) and

for the control-with-feedback method (w: obtained from the control-

with-feedback method). For the control-with-feedback method, we

set Nc = 20. In the legends, we put the values corresponding to m2

and D2.

procedure proposed here [Fig. 2(e)]. (Two iterations of the

feedback were used, which allow an accurate estimate of

the optimal control potential V ∗.) The comparison between

Figs. 2(d) and 2(e) shows that the number of clones required

to obtain convergence to the exact result is much reduced using

the control-with-feedback method.

In the weak-noise limit ǫ → 0, one can see this advantage

more clearly. In this limit, a sampling issue arises because of

the exponential increase of the required number of copies Nc,

as discussed in Sec. III C. Figure 3(a) shows numerical results

for G̃(h̃), as ǫ is reduced. The normal population dynamics

converges very poorly for small noise, ǫ < ǫ∗. However, the

controlled population dynamics does not fail at small ǫ because

it maintains pw
end ≈ pw

ave [61].

We then consider statistical errors. Figure 3(b) shows the

number of distinct clone positions in the population, Ñc(t).

Again, the control-with-feedback method performs better than

the original method, in that it averages over a larger sample of

distinct positions, reducing the statistical errors.

Finally, in order to illustrate how the control-with-feedback

method improves the standard population dynamics method,

in Fig. 6, we show the integrands of m2 and D2 defined in (12)

and (13) [62]. As discussed in Secs. III B and III C, the standard

population dynamics has sampling issues, which are captured

by the deviations of m2 and D2 from 0. In the figure, we can

see that the control-with-feedback method greatly reduces the

values of m2 and D2 close to 0, ensuring that pw
end and pave

are closer than in the original cloning, thus yielding better

performances as seen throughout this section.

VI. OUTLOOK

We have shown that the performance of the population

dynamics algorithm for sampling large deviations [7] can be

improved by introducing a controlling force w. Given the

optimal choice for this force, the rare events of interest in large

deviation theory can be characterized as typical trajectories

of the controlled system without any cloning. In complex

systems with many degrees of freedom it is likely that the

optimal w cannot be determined exactly, but even nonoptimal

controls can still significantly improve both the statistical and

the systematic errors associated with the population dynamics

method (see Sec. V). It is straightforward to improve existing

population dynamics codes to include this approach: we expect

that it will significantly expand the range of systems for

which numerical calculations can be performed, including

open quantum systems [63,64], or more complex molecular

dynamics models than those considered so far [27,59].
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APPENDIX A: POPULATION DYNAMICS METHOD

In this Appendix, complementing Secs. II B and III A, we

explain the details of the population dynamics algorithm.

1. Population dynamics algorithm

The population dynamics is a numerical technique designed

to evaluate a large deviation function associated to the CGF of

a time-averaged observable �(t). Each step of the algorithm

consists of a first substep in which the normal (unbiased)

dynamics of the system is simulated for a time �T , followed

by an elimination-multiplication substep. (The elimination-

multiplication substep is also called a cloning step, or a

mutation-selection step.) In detail, the method is

(1) Generate Nc initial conditions, for example, drawn

from the stationary state of the unbiased (h = 0) dynamics.

(2) Repeat the following procedure M times. (The iteration

index is m = 0,1, . . . ,M − 1.)

(a) For each copy of the system, perform the normal

dynamics from t = m �T to (m + 1)�T . We denote

each trajectory by xa(t). (Throughout this section, a =
1,2, . . . ,Nc.) During the simulation, for each trajectory,
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calculate

sa = exp{h[(t + �T ) �(t + �T ) − t�(t)]}. (A1)

(b) For each trajectory a, calculate an integer na as

na =
⌊

sa
∑

b sb

Nc + η

⌋

, (A2)

where η is a random number uniformly distributed on [0,1]

and ⌊·⌋ denotes the lower integer part. Calculate and store

the quantity Sm =
∑

b sb.

(c) Multiply or eliminate each trajectory a so that it

appears na times in the new population. (For example, if

na = 0 then trajectory a is deleted. If na = 5, then we

retain trajectory a and we introduce four new copies of

that trajectory.)

(d) Eliminate or multiply trajectories within the pop-

ulation, chosen randomly and uniformly, so that the total

number of surviving trajectories is Nc.

(e) Go back to (a), using the current set of configurations

xa[(m + 1)�T ] as initial conditions for the next iteration

of the normal dynamics.

Note that if the population were not kept constant in step

2c above, then the population would expand by a factor of

Sm/Nc. It follows that the CGF can be estimated as

G(h) ≃
1

M �T

∑

m

log
Sm

Nc

. (A3)

Also, averages over the population at the final time τ are

estimates of averages with respect to pend:

∫

f (x)pend(x) dx ≃
1

Nc

Nc
∑

a=1

f [xa(τ )], (A4)

which follows from the definition of pend. When estimating

pend, we can improve the statistics by using the history of

xa(t). That is, assuming an ergodicity property, we can replace

f [xa(τ )] by its time average, leading to

∫

f (x)pend(x) dx ≃
1

τNc

∫ τ

0

Nc
∑

a=1

f [xa(t)] dt. (A5)

This means that the empirical distribution of xa(t) is an

estimator for pend, as shown in (10).

In order to generate the sample paths corresponding to

the biased measure Ph, we also need to copy the history

of trajectory (not just the current configuration of x) in the

selection-mutation procedure in step 2(b) of the algorithm.

This fact is directly derived from the definition of Ph. Thus,

the xa(t) defined above do not correspond to sample paths of

Ph. The paths are obtained as x̃a(t), which are defined as those

trajectories that survive until the final time τ (see Fig. 1). In

numerical simulations, there are several ways to generate (or

reconstruct) these trajectories, as we now explain.

2. Generating continuous sample paths x̃a(t)

for the biased dynamics

A simple way to characterize x̃a(t) is the following: If we

do not require full sample paths but wish only to evaluate the

biased average of an additive observable A(τ ) =
∫ τ

0
a[x(t)] dt ,

a simple method [65] consists in attaching a value of the

observable A to every trajectory and, at every time step,

to update its value and copy or delete it together with the

trajectory. Then an evaluation of the biased average of A is

given by an average of the numerical values of A: this average

runs over all trajectories that are present at the final time. For

example, when we divide the configuration space into small

bins and take ai[x(t)] = 1 if x(t) is in bin i, Ai(τ )/τ is an

estimate of pave, integrated across the ith bin.

For the small systems where we can store all of the

trajectories in the population dynamics, we can generate full

sample paths corresponding to x̃a . The procedure is as follows:

we first generate all the trajectories and then select those that

survive until the final time τ . Considering the Nc copies at final

time, indexed by 1 � a � Nc, one can follow the ancestors of

every copy. Upon every coalescence observed backwards in

time (corresponding to multiplications of clones in the original

forwards simulation), one increments a counter ma(t,τ ) by the

number of trajectories which have coalesced. At the end of the

procedure, the counters [ma(t,τ )]1�a�Nc
represent, at time t ,

the number of descendants of a copy a at final time τ .

APPENDIX B: DERIVATION OF THE RATIO OF PATH

PROBABILITY DENSITY (19)

In this Appendix, complementing Sec. IV we derive the

relation between Ph[X] and Pw[X] [Eq. (19)]. We show the

derivation in two ways, one based on path probability densities

(stochastic differential equations) and the other on Fokker-

Plank equations.

1. Derivation using path probability density

We denote a trajectory of the system by X = [x(t)]0�t�τ .

From the definitions of Ph[X] and Pw[X], we have

Pw[X]e−hτ�w(τ )

Ph[X]e−hτ�(τ )
= exp

[∫ τ

0

(ẋ − F ) · κ−1w dt

−
1

2

∫ τ

0

w · κ−1w dt

]

. (B1)

The integrand on the right-hand side is written as

(ẋ − F ) · κ−1w −
1

2
w · κ−1w

= ẋ · (−∇V + hλc) −
(

F +
1

2
w

)

· κ−1w, (B2)

where we have used the expression of w(x) as given in the

main text (w(x) = κ[−∇V (x) + hλc(x)]). We then consider

the integral of the first term on the right-hand side:

∫ τ

0

ẋ · (−∇V ) dt. (B3)

Since the trajectory X is generated from the stochastic

differential equation (15) and we use the Itô convention, the

time-derivative of V (x(t)) is given by Itô’s formula

d

dt
V = ẋ · ∇V +

1

2
Tr[BT HV B]. (B4)

062123-9



NEMOTO, BOUCHET, JACK, AND LECOMTE PHYSICAL REVIEW E 93, 062123 (2016)

Here HV is a Hessian matrix defined as (HV )i,j = ∂V
∂xi∂xj

.

Combining (B4) and (B3) we have
∫ τ

0

ẋ · (−∇V ) dt = −V [x(τ )] + V [x(0)]

+
∫ τ

0

1

2
Tr[BT HV B] dt. (B5)

Thus, from (B1), (B2), and (B5), we get

Pw[X]e−hτ�w(τ )

Ph[X]e−hτ�(τ )

= e−V [x(τ )]+V [x(0)] exp

{∫ τ

0

[

1

2
Tr[BT HV B]

+ hẋ · λc −
(

F +
w

2

)

· κ−1w

]

dt

}

. (B6)

Finally, by noticing Tr[BT HV B] = Tr[HV κ] and using

the definitions of �w and �, the right-hand side is

e−V [x(τ )]+V [x(0)]ehτ�(τ )−hτ�w(τ ). Hence one arrives at Eq. (19).

2. Derivation using time-evolution operator

An alternative derivation of (19) is obtained by using a

“tilted” generator (or master operator) for the biased ensemble

of trajectories. Let uh(x,τ ) be the (unnormalized) probability

density at time τ , obtained as a marginal of the path distribution

Ph. As discussed, for example, in Appendix A.2 of Ref. [38],

this distribution evolves in time according to a generalized

Feynman-Kac formula as

∂

∂τ
uh = Lh[uh] (B7)

with

Lh[f ] ≡ LF
FP[f ] + h(λd + λc · F )f

+
h2

2
(λc · κλc)f − h∇ · (κλcf ). (B8)

Here the Fokker-Planck operator LF
FP is

LF
FP[f ] = −∇ · [Ff ] +

1

2

∑

i,j

∂2

∂xi∂xj

κijf, (B9)

where the superscript F on LF
FP indicates that the particle feels

the physical force F introduced in (1).

For the controlled population dynamics, the analog of uh is

uw(x,τ ), which evolves as ∂
∂τ

uw = Lw[uw], with

Lw[f ] ≡ LF+w
FP [f ] + hλwf. (B10)

The relation (19) follows from a duality relation between

Lh and Lw:

Lh[f ] = eV Lw[f e−V ]. (B11)

This relation may be verified directly from (B8) and (B10),

noting that the potential V is related to the control w via the

definition w = hκλc − κ∇V .

From (B7), we note that the operator Uh
τ = eτLh

cor-

responds to integration forward in time over a dura-

tion τ . Similarly Uw
τ = eτLw

, and from (B11) we have

Uh
τ [f ] = eV Uw

τ [f e−V ]. Setting f (x) = δ(x − x0), then

uh(x,τ |x0,0) = Uh
τ [f ] is the (unnormalized) probability den-

sity at x, for a particle that was at x0 a time τ earlier. Defining

similarly uw(x,τ |x0,0), (B11) implies

uh(x,τ |x0,0) = eV (x)uw(x,τ |x0,0)e−V (x0). (B12)

Hence one arrives at (19).

This approach also provides insight into the distributions

pave and pend, as discussed in Refs. [7,56]. One easily sees that

pend(x) = lim
τ→∞

uh(x,τ |x0,0)
∫

x ′ uh(x ′,τ |x0,0)
, (B13)

which is independent of x0. Similarly,

pave(x) = lim
τ→∞

∫

x1
uh(x1,τ/2|x)uh(x,0|x0,−τ/2)

∫

x ′,x1
uh(x1,τ/2|x ′)uh(x ′,0|x0,−τ/2)

.

(B14)

For large τ , the propagator uh is dominated by the largest

eigenvalue of Lh, as

uh(x,τ |x0,0) ≃ pend(x)eG(h)τq(x0), (B15)

where pend(x) is the dominant right eigenvector of Lh [required

for consistency with (B13)], the associated eigenvalue is G(h),

and q(x) is the dominant left eigenvector. The approximate

equality in (B15) is valid for large times, up to corrections

of order e−λτ , where λ is the spectral gap of Lh. Combin-

ing (B13)–(B15) we have pave(x) ∝ pend(x)q(x).

This approach also shows why pave is not affected by the

control force w: the dominant left and right eigenvectors of Lh

are q and pend so (B11) means that the dominant eigenvectors

of Lw are qw = qeV and pw
end = e−V pend. Hence it is clear that

pw
ave = qwpw

end = qpend = pave.

In the special case where w is given by the optimal control

w∗ (that is defined as the control w satisfying the condition

pw
ave = pw

end in the main text), one can show that the controlled

system is described by the auxiliary process [56] (or the

“driven process” [38]), which is a Markov process whose path

probability density is equivalent to Ph in its stationary regime.

(Indeed, pw∗

ave = pw∗

end implies qw∗ = 1, which expresses that

Lw∗
conserves probability.) In this case, one has [38]

e−V Lh[f eV ] = LF+w∗

FP [f ] + G(h)f, (B16)

where G(h) is a constant (independent of x): this is the CGF.

Comparing with (B11) one sees that λw∗
(x) is independent of

x, from which it follows that the population dynamics in this

case has no cloning or deletion of clones (this property is true

for all finite Nc: all clones have equal weights at all times).

APPENDIX C: AN EXAMPLE OF THE

FEEDBACK-ALGORITHM

Here, in order to complement Sec. IV C, we explain the

algorithm used within the feedback population dynamics. The

procedure is a combination of the population dynamics and an

iterative construction of a control potential V (x) that is close

to the optimal control V ∗. There is considerable flexibility in

the precise definitions of the estimators used in this algorithm,

but these choices have proven effective in the simple model

problem considered here.
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(1) Generate Nc initial conditions, for example, drawn

from the stationary distribution of the original (unbiased)

system.

(2) Repeat the following feedback procedure R times (the

iteration index is r = 0,1, . . . ,R − 1). We denote by V r (x) the

control potential V (x) for iteration r , and we take V 0(x) = 0.

(a) Perform the population dynamics for the system as

explained in Appendix A, using a time interval Mτ0. The

unbiased evolution within the method includes the control

force wr that is obtained from the control potential V r , and

the elimination-multiplication step uses the corresponding

biasing factor �wr

. The time τ0 between elimination-

multiplication steps should be larger than the correlation

time of the system. From each time segment (indexed by

m), estimate the distributions

p
m,r
1 (x) =

1

Ncτ0

Nc
∑

a=1

∫ (m+1)τ0

mτ0

δ[x − xa(t)] dt (C1)

and

p
m,r
0 (x) =

1

Nc(τ0 − tend)

×
Nc
∑

a=1

∫ (m+1)τ0−tend

mτ0

δ[x − x̃a(t)] dt, (C2)

where the trajectories x̃ are defined on the time interval

[mτ0,(m + 1)τ0], as specified in Appendix A 2. The shift

parameter tend is chosen so that p0 is an accurate estimator

for pave, by excluding times t that are too close to the final

time (m + 1)τ0. If τ0 is large enough, all results should

depend weakly on tend.

(b) Having completed M time segments within the

population dynamics, evaluate p
w,r
end (x) and pw,r

ave (x) as

p
w,r
end (x) =

1

M

∑

m

p
m,r
1 (x), (C3)

pw,r
ave (x) =

1

M

∑

m

p
m,r
0 (x). (C4)

(c) Finally, from these distribution functions, calculate

V r+1(x) in terms of a sum of basis functions, according

to Eq. (26). In practice, note that it is not necessary to

keep track of the full distributions p0 and p1, but only

those statistics that are required to solve the minimisation

in (26). Also, it is sometimes convenient to take V r+1(x) =
V r (x)(1 − α) + Vnew(x)α, where Vnew(x) is the control

potential specified by the right-hand side of (26), and α

is a parameter (with 0 < α � 1) that acts to suppress large

fluctuations in V .

(3) Go back to step 2 and perform the next iteration (r + 1),

with the control potential V r+1, and initial conditions for the

clones given by their current states xa(Mτ0).

APPENDIX D: LANGEVIN SYSTEM

WITH QUARTIC POTENTIAL

In this final Appendix, in order to complement Sec. V, we

explain the property of the system we considered there: the

parameters are given by d = 1, F (x) = −x3, B(x) =
√

2ǫ,

1.5 1.0 0.5 0.5 1.0 1.5
x

15

10

5

5

10

h 1

h 0

h 1

h 2

FIG. 7. Plots of the polynomial 3x5 − 4hx − 2h for several h.

The roots of this polynomial determine the concentration points of

pave(x) for ǫ → 0 in the model system considered.

λd(x) = λ(x) ≡ x + x2 and λc(x) = 0. We focus on the small-

noise limit ǫ → 0. Throughout this section, h corresponds to

h̃ in the main text (see below).

The main features of the limit ǫ → 0 are the following:

(1) The distribution pave(x) concentrates on a point xave

that is a root of the polynomial

3x5 − 4hx − 2h = 0.

This function is sketched in Fig. 7. For h > 0, the concentration

is at the positive root (xave > 0); for h = 0 one has xave = 0.

For negative h, the point xave decreases quickly from zero and

localizes at xave ≈ 1
2
.

(2) There is a second-order dynamical phase transition at

h = 0, which appears as divergence of the second derivative

of the dynamical free energy, G′′(h) (see Fig. 8).

(3) The distribution pend(x) concentrates on a point xend,

with xend 
= xave in general. This leads to poor convergence of

the population dynamics method for small ǫ, as discussed in

the main text.

(4) Even though the system is simple, the analytical

expressions of pave and pend are not straightforward. In

particular, the perfect potential V ∗(x) corresponding to w∗(x)

is not expressed exactly as the quartic polynomial expansion

used to perform a numerical evaluation of w(x); however, as

described in the main text, this does not affect the effectiveness

of the numerical procedure.

Below, relying on the Euler-Lagrange equation, we derive

the analytical results of G(h), pave and pend in ǫ → 0, from

which these features are obtained.

1. Euler-Lagrange equation (Instanton equation)

We consider the following finite time CGF:

Gτ,ǫ(h) =
ǫ

τ
log〈e(τ/ǫ)h�(τ )〉st, (D1)

where 〈 〉st means the average with respect to the path with

a stationary initial condition. [Hereafter, we denote this

initial distribution function by Pst(x).] The function Gǫ(h) ≡
limτ→∞ Gτ,ǫ(h) corresponds to G̃(h̃) in the main text. By
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FIG. 8. (a) Generating function limǫ→0 Gǫ(h). (b) The first derivatives, where the green (dark gray) solid line represents

(d/dh) limǫ→0 Gǫ(h), the red dotted line represents −(d/dh) limǫ→0 Gǫ(−h), and the black solid line represents a straight line h1/5. We

find that the first derivative converges to 0 as a power law ∼h1/5 (as can also be checked analytically). (c) The second derivative of limǫ→0 Gǫ(h)

with respect to h. These are calculated from (D11)–(D12). We can see that the second derivative shows a singularity at h = 0, although the first

derivative converges to 0. This represents a second-order dynamical phase transition.

taking ǫ → 0, we obtain the following variational principle:

lim
ǫ→0

Gτ,ǫ(h)

= −
1

τ
min
x0,xτ

⎡

⎣ min
(x(t))τt=0

x(0)=x0 ,x(τ )=xτ

∫ τ

0

L(ẋ(t),x(t)) dt + Ffree(x0)

⎤

⎦

(D2)

with the Lagrangian L(ẋ,x) defined as

L(ẋ,x) ≡ 1
4
[ẋ − F (x)]2 − hλ(x), (D3)

and the free energy function Ffree(x0) defined as

Ffree(x0) ≡ − lim
ǫ→0

ǫ log Pst(x0) = 1
4
x4

0 + const. (D4)

Then, the corresponding Euler-Lagrange equation (Hamilton

equation), which is obtained from minimizing this action, is

ẋ = −x3 + 2p, (D5)

ṗ = 3px2 − h(2x + 1) (D6)

with the required initial and the final conditions as

p(0) =
∂Ffree(x)

∂x

∣

∣

∣

∣

t=0

= x(0)3, (D7)

p(τ ) = 0. (D8)

We analyze these equations numerically and analytically in

Ref. [66]. The following results are based on that study.

2. Steady solutions

Here we consider the steady solutions of these instantons,

which is defined as the solution obtained from ẋst = ṗst = 0

in (D5) and (D6). These conditions lead to

pst = 1
2
x3

st (D9)

and

3x5
st − 4hxst − 2h = 0. (D10)

We plot the left-hand side of (D10) as a function of x in Fig. 7

for several fixed h. The figure shows that this equation has

three solutions, when h is larger than a certain value (larger

than 0).

3. Cumulant generating function

From the variational principle (D2), even in the case

where there are multiple instanton solutions, the CGF can be

calculated. This is based on the observation that the instanton

solution corresponding to the minimum is time independent
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[67]. More precisely, by combining this observation with the

variational principle (D2), we get

lim
ǫ→0

Gǫ(h) = max
xst

Gst(xst) (D11)

with

Gst(xst) ≡ − 1
4
x6

st + h
(

x2
st + xst

)

. (D12)

We plot the ǫ → 0 result, limǫ→0 Gǫ(h), in Fig. 8, from

which we can see that the generating function has a kink

at the origin, which is the sign of the dynamical phase

transition in this system, appearing in the zero-temperature

limit. Asymptotic analysis allows to find G(h) ∼ A±|h|1/5

with A± depending on the sign of h, as illustrated on Fig. 8.

4. Analytical expressions of pend(x) and pave(x) in ǫ → 0

Finally, we write the explicit analytical expressions of

pend(x) and pave(x) in the ǫ → 0 limit. We consider the

biased (unnormalized) probability density uh introduced at

the beginning of Sec. B 2. We also consider the same

function but with fixed initial condition uh(x,τ |x0,τ ). By

using these function, we introduced two logarithmic functions

defined as

WF(x,t) ≡ ǫ log uh(x,t), (D13)

WB(x,t) ≡ ǫ log

∫

uh(y,t |x,0) dy. (D14)

From the generalized Feynman-Kac formula (B7), we obtain

the time evolution equation for them as

∂

∂t
WF(x,t) = −ǫ

∂

∂x
F (x) − F (x)

∂

∂x
WF(x,t)

+ ǫ

(

∂

∂x

)2

WF(x,t) +
[

∂

∂x
WF(x,t)

]2

+ hλ(x)

(D15)

and

∂

∂t
WB(x,t) = F (x)

∂

∂x
WB(x,t) + ǫ

(

∂

∂x

)2

WB(x,t)

+
[

∂

∂x
WB(x,t)

]2

+ hλ(x). (D16)

These equations can be solved in ǫ = 0 with t large limit.

Indeed, by setting WF(x,t) = tG(h) + WF(x) and WB(x,τ −
t) = (τ − t)G(h) + WB(x) with G(h) ≡ limǫ→0 Gǫ(h) in
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FIG. 9. The functions ∂WF(x,t)/∂x (a, b) and ∂WB(x,t)/∂x (c, d) obtained in the large t limit by solving numerically (D15) and (D16)

[yellow lines (light gray) lines]. We set h = 1 (a, c) and h = −1 (b, d). The line types correspond different values of ǫ: dash-dotted, dashed,

and solid lines correspond to ǫ = 1, 0.5, 0.1, respectively. To illustrate the determination of the ± sign of Ch in the analytical results (D17)

and (D18), we also plot on each subfigure those results with the choice of Ch = 1 (for all x) as black solid lines and the choice of Ch = −1 (for

all x) as black dashed lines. As the noise goes to zero, we observe the convergence of the functions ∂WF(x,t)/∂x and ∂WB(x,t)/∂x determined

numerically at large t towards the analytical line (D17) and (D18), where the + sign in ± is taken for x < xmin and the − sign is taken for

x > xmin.
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these expressions, we obtain the equations to determine WF(x) and WB(x) as

∂WF(x)

∂x
=

1

2
{F (x) + Ch(x)

√

F (x)2 − 4hλ(x) − min
y

[F (y)2 − 4hλ(y)]} (D17)

and

∂WB(x)

∂x
=

1

2
{−F (x) + Ch(x)

√

F (x)2 − 4hλ(x) − min
y

[F (y)2 − 4hλ(y)]} (D18)

with

Ch(x) = 1 (x < xmin), (D19)

Ch(x) = −1 (x > xmin), (D20)

where

xmin ≡ Argminx[F (x)2 − 4hλ(x)]. (D21)

Equations (D17) and (D18) are the key result in this subsection. From them, we indeed get

pend(x) ∼ exp

{

(1/ǫ)

∫ x 1

2
[F (y) + Ch(y)

√

F (y)2 − 4hλ(y) − min
z

[F (z)2 − 4hλ(z)]] dy

}

(D22)

and

pave(x) ∼ exp

{

(1/ǫ)

∫ x

Ch(y)
√

F (y)2 − 4hλ(y) − min
z

[F (z)2 − 4hλ(z)] dy

}

. (D23)

Also from the same equations, we get the most probable x in pend(x) and pave(x) with ǫ → 0. We denote them by xend and xave,

respectively. Then, from (D22) and (D23), we find that these values satisfy

xave = Argmaxxst
Gst(xst), (D24)

where Gst(h) is defined in (D11), and

F (xave)2

4h
= λ(xave) − λ(xend). (D25)

Since F (xave)2

4h

= 0, xave and xend are different from each other. In other words, pave and pend concentrate on different values of

their argument in the ǫ → ∞ limit, as demonstrated in the main text.

For checking the validity of the obtained expressions, we numerically solve the equations (D15) and (D16) during a sufficiently

large time interval t . We set h = 1 [Figs. 9(a) and 9(c)] and h = −1 [Figs. 9(b) and 9(d)]. The different colors represent the

different values of ǫ: yellow, blue, and red lines correspond to ǫ = 1, 0.5, 0.1, respectively. In the same figure, we plot the

analytical lines (D17) and (D18), with Ch = 1 (for all x) (black solid line) and Ch = −1 (for all x) (black dashed line). We can

see the convergence of the numerical lines (with decreasing ǫ) towards the analytical lines (D17) and (D18), where a + sign is

chosen for x < xmin and a − sign is chosen for x > xmin.
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