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A class of tractable models for population dynamics with random interactions is proposed which
is of the form:

9= 6, +Q,~+2L 31 5.5 5in27(6,4— 6,9)
Tict;

for j=1,2, -, N(>1), where the §/s are independent random parameters and /; is an interacting
neighbor of the site j. Theories of phase transitions to mutual synchronization are developed and
verified numerically with particular emphasis on a new type of ordered phase characterized by a
vanishing order parameter. The frustration effect is also discussed in the context of population
dynamics.

§1. Introduction

Large assemblies of interacting self-oscillators exhibit a variety of interesting
behavior which may be significant in many areas of science. In particular the onset
of mutual synchronization in such assemblies or populations has been a subject of
much interest to quite a few researchers in recent years."™® From a physicist’s point
of view it is remarkably analogous to second-order phase transitions known to occur
in diverse equilibrium systems such as magnets."” Therefore, extensive investiga-
tions into the mutual synchronization and related problems in populations of self-
oscillators are expected to open a new active area in the field of critical phenomena
beyond the scope of conventional statistical mechanics.®

Let us go into the subject in more detail. Suppose that we have a large popula-
tion of interacting self-oscillators whose native frequencies w: are distributed over the
population with a density, say, f(w). Furthermore, we assume that the typical
strength of interaction is adjustable with a single parameter . Then, as ¢ is in-
creased from zero with f(w) fixed, we ultimately reach a certain threshold e beyond
which a macroscopic number of oscillators are entrained to a common frequency, say,
@, so that the whole population begins to exhibit rhythmic behavior. (By a “macro-
scopic” number we mean that of O(N), where N>1 is the population size.) So far
this type of “phase transition” has been investigated numerically and analytically
from various points of view using a number of interesting model systems."™'® For
example, some papers are concerned with populations of oscillators under stochastic
perturbations.”®91% 1314 While all these previous studies were carried out using
systems of differential equations (i.e., continuous-time models), a certain type of
discrete-time models have also been proposed and investigated recently.!”"*®

The purpose of the present paper is to examine how random interactions between
the constituent oscillators affect the dynamics of populations. For this purpose, we

220z 1snBny 0z uo 1senb Aq G006981/229/€/. L/o1o1e/d)d/w oo dno-oiwapese)/:sdyy Woly papeo|umo



Population Dynamics of Randomly Interacting Self-Oscillators. 1 623

use discrete-time models of the following form:

081 = 0"+ Q53 usin2a(6,9— 6,) )
for j=1,2, -, N. In general oscillators are assumed to be placed on a “lattice”, and
69 is the phase of an oscillator on the jth site whose interacting neighborhood is
denoted by I; in (1). The parameters £, -+, Qv are native frequencies (to be more
exact, native winding numbers in the discrete-time case) distributed with the density
7(£). 1t is on the interaction parameters J; that we focus our interest in this paper.
They are random variables each obeying a certain distribution law which may most
generally vary from one interacting pair (7, /) to another. Such a model is a particu-
lar case of a more general one proposed in Ref. 17) (Eq. (2) therein) and the case such
that J; equals &/N for any pair has already been studied.”™® Note that in the model
(1) each oscillator is allowed to possess only one degree of freedom, the phase. Such
a simplification of population dynamics models was made perhaps most intensely by
Kuramoto™®'? in the form of differential equations, and several interesting models
have been proposed and investigated so far.”#"12)~15

Let us now explain what motivates us to consider the effect of random interac-
tions in population dynamics. We have two motivations. The first one is very
naive, but of practical importance. As discussed extensively by Winfree,""” biology
is one of the disciplines of science to which population dynamics is most relevant.
For instance, we may use a population of oscillators to model a living organ consist-
ing of a large number of oscillatory elements (e.g., human small intestine). It would
be reasonable to expect that any biological objects inevitably retain more or less
random features. This randomness may exist not only in the properties of each
element such as the native frequency, but also in the interactions between the ele-
ments. In previous models only the former type of randomness is taken into account
as the distribution of native frequencies, but it would not be the case that such models
are always realistic enough. Note that in the above we mean by randomness “quen-
ched” disorder. Biological systems may also be exposed to time-dependent random
perturbations whose effect has been already studied by 'some authors, as referred to
previously. '

The second motivation may sound more academic, but is quite exciting (at least
to the author). As mentioned earlier, populations of self-oscillators are considerably
analogous to magnets which are populations of spins. In statistical mechanics of spin
systems it is known that random interactions can yield quite a new type of ordered
phase called a “spin glass” phase in which spins are frozen in random directions with
a vanishing total magnetization. Recent intensive and extensive studies?’?? trigger-
ed especially by Edwards and Anderson® have shown that a spin glass phase as well
as a transition to it are characterized by some remarkably new properties in compari-
son with familiar ferromagnetic phases and associated phase transitions in nonran-
dom magnets. A glance at such a new development in the area of spin systems may
tempt us to a question as follows: Can random interactions give rise to a new type
of phase analogous to a spin glass in population dynamics as well? If the answer is
affirmative, we may term such a phase an oscillator glass which is expected to play
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624 H. Daido

some new role in the development of population dynamics.

With these motivations in mind we attempt a study of “phase transitions” in
populations of randomly interacting self-oscillators using the model (1). As a first
step in this direction we confine ourselves in this paper to a particular kind of random
interactions as

Ju=38:5;, )

where §, -+, §5 are random parameters governed by a common distribution law that
are independent not only from one another but also from the £’s. Let the number of
interacting neighbors of one site be z. Then, it is convenient to put §:=(g/z)"?s; and
deal with
65 = 6,9+ Qj—i-ﬁi;“sisjsin%r( 6,7 — 6, 3)

for 1<7< N, where we use ¢ as a control parameter while both the distribution of £,
F(82), and that of s;, P(s), are fixed. The reason for the choice of (2) is simply that
it enables us to treat the problem more or less analytically as demonstrated in §§ 2 and
3. We expect, however, that there may be some (e.g., biological) contexts in which
interactions of the form (2) are of qualitative use. Unfortunately, random interac-
tions of the type (2) do not produce a truly glass-like phase, though,a certain type of
ordered phase is generated by them which resembles a spin glass phase only
superficially. Nevertheless, we believe that our model (3) works as useful starting
point of the study of random population dynamics, and that it will play a considerable
instructive role. (We remark that some preliminary results were reported in Ref. 16)
on the effect of random interactions in a population of van der Pol oscillators.)

The content of this paper is as follows. In § 2 we discuss a particular case of
P(s)=p8(s—1)+(1—p)8(s+1) which reveals existence of a new type of ordered phase
despite its simplicity. Then, in § 3, we proceed to the case of fully general P(s),
though the range of interaction is specified to be infinity, i.e., I,={1, 2, ---, N} for any
7. Moreover, we assume that the width of distribution of £; is so small that we may
invoke a differential-equation approximation for a set of “mean-field” maps. In this
case we can derive self-consistent equations for a pair of order parameters whose
solutions are compared in § 4 with results of numerical experiments. Section 5 is
devoted to a summary of this work as well as discussion on the frustration effect,
which our models (3) lack, in the context of population dynamics. Some remarks and
further problems are also presented. Finally an appendix is given for § 3.

§2. Removable randomness and spurious glass-like phase

First of all we discuss the dynamics of the model (3) for a particular distribution
of s as follows:

p($)=p3(s—1)+({1—p)o(s+1), (4

where ¢ is the Dirac function and p is a parameter such that 0<p<1. In the area of
spin systems a Hamiltonian with this type of interactions is known as the Mattis
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model® It is easy to check that a set of transformations:
09— V=9 —(s,/4) (1<7<N) (5)
reduces the model (3) with (4) to

P = "’+Q+ Zsm27r(¢n(” $.") (1<j;<N) 6)

whose interactions are no longer random. Therefore, it turns out that.the random-
ness of the model (3) with (4) is removable.

Let us then consider the behavior of order parameters for phase transitions to
mutual synchronization. Needless to say, a most direct measure of mutual entrain-
ment is the ratio of the number of entrained oscillators to N which we mean by R.>'?
An ordered phase may be defined by R>0, so that it works as an order parameter.
Obviously the two populations, (3) with (4) and (6), have this parameter in common.
Another interesting order parameter introduced by Kuramoto'® is

Z"_}HEWE 2T O~ n!)) (7)
where 7/=+—1 and @ is a “frequency” with which a macroscopic number of oscil-
lators are entrained mutually for €e>&.. In the absence of randomness in interactions
it is known analytically and numerically for several models”"'O"?~117:18) that | 7.1 =)
for e<ec while {Zo| >0 for e>e.. (Since Zo is complex in general, the order param-
eter is practically |Zo|.) To see the effect of random interactions on Zs, we first note

Zp=i'(2p—1)Z,,

where { > means an average with respect to the s;’s and Z, is the order parameter for
(6). We next obtain

AZo—LZp>=N"K|e"™"2— g™ I2y|2y

which reveals that in the limit N - oo, Z, equals {Zs> with probability unity, so that we
may safely put

Zo=i(2p—1)Z, | _ o (®)

for N>1. Now suppose that the model (6) exhibits a phase transition for e=e.
characterized by the behavior of Z, as mentioned above. Then, by (8), it follows that
the model (3) with (4) also goes into a mutually entrained phase at the same value of
& €, with the order parameter |2p—1| times that of the model (6). Therefore,
randomness causes a decrease in the order parameter. An example of (6) which
enjoys a phase transition is in Refs. 17) and 18). It is expected that there are many
other examples.

According to (8), the case of p=1/2 is most interesting in which P(s) is symmetric
with respect to s=0. In this special case the order parameter Z, remains to be zero
even for e>¢e.. This implies that the phases of entrained oscillators are “frozen” in
random directions if we look at them sitting on a frame rotating with the angular
velocity 2. Since Zs is an analog of magnetization in spin systems, the above new
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626 H. Daido

phase resembles a spin glass phase. Of course, this is so only superficially as will be
discussed in § 5. Therefore, in this paper, we call such a phase a spurious glass-like
phase (SGP) for convenience. In the next section we will encounter SGP’s again for
the case of fully general distribution of s;, though instead some restrictions are
introduced on I; and 7(R).

§3. Infinite-range interactions under a narrow symmetric distribution
of native frequencies

In order to go further we employ infinite-range (or uniform) interactions in (3).
Namely we discuss the onset of mutual synchronization in the following model:

051= 0,4+ Q; + N Zszsjsm27r(€n“’ 6,9 V (9)

for j=1,2, -, N where we do not assume any particular form of P(s). Concerning
f(2), however, we confine ourselves to the case such that it is symmetric in both sides
of a certain £ with a small “width”, which we denote by 7 hereafter (¥ may be
identified with the standard deviation if it exists). The symmetry is assumed only for
avoiding inessential complexity. A recipe will be given in the Appendix for the case
without such a symmetry.

Let us start our arguments to construct a theory in a self-consistent way as done
by Sakaguchi and Kuramoto for populations of continuous-time oscillators with
nonrandom uniform interactions.” Our basic assumption is expressed by

1 . . ) -
_zsjez 2700, Dez'Zn(nQ+a) (10)
J=1

for n—>oo where both D(=0) and « are constants. Substituting this into (9) and
introducing {¢.“’} by
b=, nB—a  (1<j=N), | an

we obtain a set of circle maps as follows:

)] (12)

(n — &S;
=¢a" 2
for 1<j<N with 4,=92,— . Note that by (10) and (11)

%112—}23 et =p) (13)
All what remains is to evaluate the Lh.s. of the above expression making use of the
circle maps to reach a self-consistent equation of D. As will become clear later, D
plays a role of an order parameter. For this purpose we first introduce an approx-
imation to the circle maps (12) in which they are replaced by the following differential
equations:

(62] . .
W ;- Lpsin2rg?  (1<j<N). (1)
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This replacement is valid since 4; may be regarded as small by the assumption on
7(82). Of course, the control parameter € must be kept in a correspondingly small
range, but this restriction conveys no difficulty for our purpose because &c should be
O(y). By (14) it follows that the condition of entrainment is given by

)<< p - (15)

under which ¢“ converges to one of stationary solutions for (14) satisfying the
stability condition:

s; cos2mp9 >0 . (16)

Let us now calculate the Lh.s. of (13). As will be shown in the Appendix, the
equality:

lim~. ZsJ '”‘”"‘”=LN2ems,-COSZ7r¢f"’ a7
n-oo [V ji=1
holds, where 2lent means to sum up over the all of the entrained oscillators. Using
(14)~(16) it is easy to find an expression for the r.h.s. of (17) which enables us to arrive
at a self-consistent equation of D as follows:

SD/ a’sP(s)s/dx(l x2)1’2f<.Q+ |s|x> (18)

To see how the parameter D is linked to a phase transition to mutual synchronization,
we then compute the order parameter R to obtain

R=2D ["asP(s)ls| [ dxf<9+ |s|x> (19)

which indicates that the behavior of R is qualitatively the same as that of D.
Namely, R is positive if and only if D is so. Therefore, we may use (18) to locate the
threshold beyond which a state of macroscopic entrainment stably exists. Unfortu-
nately we have no means to a priori determine the stability of solutions of (18), so that
we simply assume a change of stability at the threshold from the trivial solution D=0
to a nontrivial one which grows continuously from zero. Some numerical results
described in the next section show that this is indeed the case. Under the assumption
we obtain

ec=4/{<sDF(Q)} . (20)
We then proceed to consider the behavior of another order parameter Z, defined

by

Zk—thZ'. et (21)

n-oo [Vj=1

which is obviously equivalent to Z in (7) except a minor difference in phase. Let us
denote its absolute value by K. What is the relationship between K and D? As
shown in the Appendix, Z. equals N 'Xencos27¢™, so that we have
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628 H. Daido

K= +€D/ dsP(s)s/ dx(1— xz)”zf< + Is]x) | “(22)

where the sign of the r.h.s. should be chosen so as for K to be positive. Although (22)
looks quite similar to (18), K and D are in general quantitatively very different from
each other. This fact is most evident in a SGP. Namely, suppose that P(s) is
symmetric with respect to s=0. Then, K is zero irrespective of ¢ or D, so that in this
particular case we have a transition to a SGP at e=e.. In general K as well as D and
R grow just beyond e. obeying the square root law if £(2) is maximal at 2 with 7/(Q)
=0, as is easily checked.

One of interesting quantities other than the order parameters is a distribution
function of the residual phases ¢’ of entrained oscillators which we denote by Q(¢).

It is useful especially for qualitatively dlstmgulshlng a SGP from non SGP’s. By (14)
and (16) we obtain

Q($)=Clcos2ny| l ) f<.(§ +%xsin27r¢) , (23)

where h=sgn(cos27¢) and C is a normalization constant for the interval 0<¢<1.
As this expression implies, the residual phase ¢ is confined to the regions 0<¢<1/4
and 3/4<¢<1 if P(s)=0 for s<0, and to the range 1/4< ¢<3/4 if P(s)=0 for s>0.
(In fact this is a straightforward consequence of the stability condition (16).)
Therefore, no SGP appears for such distributions of s as prohibiting a change of sign.
As mentioned earlier, it appears for €>e. when P(s) is symmetric at s=0. For such
a P(s), Q(¢) acquires periodicity of 1/2, which means that ¢ finds itself in the range
1/4<¢<3/4 and the remainder with equal weights, in contrast with the above
“¢-confinement” cases. This amounts to K=0. Such a broad distribution of ¢ over
the whole interval is an important characteristic of a SGP.

§4. Numerical experiments

We are now ready to compare the theory developed in the foregoing section with
results of direct numerical computations. For convenience we follow the evolution of
$:.9=0,—n0 (1<;<N), where the 6."s are supposed to obey (9) with the Qs
given by

di=y tan(]<] ]\g;\}l ) (1<j<N),

where 4;=92,— 2. We choose N=10° and y=10"% expecting that they are re-
spectively large and small enough to make the theory applicable. The above choiAce
of the 4ys is for approximating the Lorentzian distribution f(Q2)={(y/7n){(L2— Q)
+»%7! for which e.=4ry/<{s® by (20). A random number generator was used to get
a couple of samples of si, -+, sy obeying a Gaussian distribution law:

1 (s—a)
mdexp{— 820? } (24)

P(s)=
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Fig. 1. The order parameters D, K vs ¢ for the model (9) with the Qs and P(s) given above and in
(24), respectively. The real lines as well as the broken one are theoretical results for D and K
based on (18) and (22). The experimental results, which were obtained by averaging upon 2"
iterations, are displayed for two runs with different samples of {s;}, as (D, K)=([], +) or (&, X).
The choice of parameters is as follows: y=10%, 6=1 and 2=0 ((a)), =1((b)).

The initial condition used is $o”’=0 (1
DK D <j<N), but we confirmed in some test
cases that a choice of another initial
condition caused no significant change in
a [ results.

In Fig. 1 numerical results for the
order parameters D and K are displayed
. in comparison with theoretical curves
for them. = The latter was obtained from
o 01 (18) and (22) by numerical integration.
- o The numerical results of D and K stand
+ x for long time averages of |21\is,e72%”
/N| and |2%.e7%"”|N|, respectively,

5 0 after an initial transient up to #=999.
12 3 &£X0 .
N Figure 1(a) shows results for the case a
=0 and o=1. Since P(s) is symmetric
Fig. 2. The N-dependence of the order parameters concerning s=0, the theory predicts the

D and K, where 7, ¢ and o are the same asin  f])awing: As € is increased, both D

Fig. 1{a). The left ordinate is for D(£=0.008: . . .

) and K(e—0.008: +: e=0.016: X) while the and K remain to be zero until e=¢., and

right one is for D(e=0.016: A). The initial then a phase tranSiti.on takes place to a

condition of random-number generation for SGP in which D>0 while K=0.

getting {s;} is equivalent to that for the (O, +) ~ Numerical results are given in Fig. 1(a)

run in Fig. 1. Note that é=0.008< e, while ¢ . for two different samples of {Sj}. Unfor-

=0.016> €. tunately the sample dependence of the
results turns out not very small even for

N=10% but it is seen that both results are in reasonable agreement with the theory.
Although a more careful look at the figure indicates that D and K for e<e. as well
as K for > e. deviate slightly from zero, additional numerical results presented in

005 - r0.2
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Ql¢) Q(¢)
(a) (b}
5 - 5 1\ I
0 4 -0 4 i Sl S
0 05 1 ¢ 0 05 17

Fig. 3. The distribution of residual phases of entrained oscillators for &> e. Besides &, which is
0.023106 in (a) and 0.011808 in (b), the parameters in (a) and (b) are the same as in Figs. 1(a) and
(b), respectively. Theoretical results are drawn by real lines using (23). The histograms show
numerical results for N=10° with the same {s;} as for the (0J, +) run in Fig. 1. A criterion of
entrainment adopted is that the winding number of ¢ averaged upon 10" iterations is less than 107%

Fig. 2 suggest that it is a finite size (V) effect. Namely, the values of D and K tend
to rapidly decrease as N is increased, in the case that they should be zero theoretical-
ly. On the other hand, the value of D for £> ¢, is stable against such a change in N.
The same effect was found previously in a population with nonrandom interac-
tions."™'® Figure 1(b) is used to display results for the case a=0=1. Asisin F ig. 1(a),
the agreement between the theory and numerical outcomes is at a satisfactory level.
In this case K grows beyond the threshold as D does, but randomness in interactions
keeps them substantially different from each other. Let us proceed to Fig. 3 where
the distribution function Q(¢) for residual phases of entrained oscillators manifests
itself for =0, 0=1 in (a) and @=0=1 in (b) with a qualitatively excellent agreement
between the theory and the experiment in each case. In the former the characteristic
feature of a SGP should be noticed which is, as discussed in § 3, a highly extended
distribution of ¢ with equal weights in the range 1/4< ¢ <3/4 and the remainder. On

the other hand, such a feature is no longer found in the result for a non SGP presented

in Fig. 3(b), and instead we see a remarkably localized distribution.
§5. Summary, discussion and further problems

A class of models has been proposed in this paper for populations of self-
oscillators whose interaction parameters J; are randomly chosen. There may be a
variety of possibilities for making them random in the class of models expressed in
(1), but we have confined ourselves to the case of (2), which has the advantage of
analytical tractability. In § 2 we discussed phase transitions in models with probably
the simplest interactions of the form (2), and found in particular a new type of ordered
phase (SGP) in which K=0 despite R>0. Next, in § 3, we went a step forward by
taking P(s) fully generally (but only for infinite-range interactions and in the limit

220z 1snBny 0z uo 1senb Aq G006981/229/€/. L/a1o1e/d)d/woo dno-oiwapeoe)/:sdyy Woly papeo|umod



Population Dynamics of Randomly Interacting Self-Oscillators. T 631

y—0) to develop a self-consistent-theory, a central result of which is. the
simultaneous equations for the order parameters D and K. The theory predicts
emergence of a SGP for P(s) symmetric with respect to s=0, and this was numerically
verified in § 4 together with other theoretical predictions including the distribution
function of residual phases of entrained oscillators.

Let us give a remark. We have found SGP’s in § 2 as well as in § 3 when P(s) is
an even function. This is not mere coincidence. If P(s) is symmetric concerning
s=0, sgn(s) and |s| are probabilistically independent from each other. Using this fact
and transformations Y- ¢9=0""—(sgn(s;)/4) in (3), we find :

| ZJ>=N""

which allows us to conclude Z,=0 for N—>oco. Therefore, if P(s) is an even function,
we may have only a SGP as an ordered phase in (3). We also remark that the theory
developed in § 3 is virtually for models of differential equations obtained by replacing

One1— 0n to dO/dt in (9). Therefore, for the case of § 3, further investigations are

.necessary to look for any discrete-time effect by making y much larger.

One of our motivations for the present work was to search for any new type of
ordered phase analogous to a spin glass phase in disordered magnetic systems.
Recall that our models exhibit, depending on P(s) and the interaction strength &, one
of the following:

(i)  a “paramagnetic” phase (K=R=0),

(ii)  a “ferromagnetic” phase (K =0, R=0),

(iii) a SGP (K=0, R=0).

Therefore, if we may identify R with the Edwards-Anderson order parameter?’~?®
(this would be reasonable considering an analogy between an entrained (i.e., phase-
locked) oscillator and a frozen spin), a SGP seems to be a complete counterpart of a
spin glass phase as far as the behavior of the order parameters is concerned. This is
so, however, only superficially since our models lack frustration™ which is regarded
as one of important ingredients of a spin glass phase.?”?® Here we do not intend to
give a detailed introduction on the frustration effect, which is now in vogue in the area
of spin systems, but instead invoke a simple example useful for illustrating how it may
work in the context of population dynamics. Take a system of interacting three
oscillators as follows:

08 = 6,9+ 0 -I—%]lsinZ?r( 0,2 — Hn‘”)+%fasin27r( 09— 0,) |
2= 6,2+ 0 -I-%]lsinZ 7(6,V — 6, +%]zsin2 7(6,®— 0,?)

652 = 6, + 0 +%]3Sin27f( 6.1 — 6,¥) +%]28in27(((9n(2) —0.), (25)

where
Ji=J: (J>0, ;=1 or —1)

for i=1~3. We put 2:=8 for all 7 because y=0 corresponds to the zero absolute

220z 1snBny oz uo 1senb Aq G006981/229/€/. L/o1P1e/d)d/Wwoo dno-oiwapeoe)/:sdyy Woly papeojumod



632 : H. Daido

temperature in terms of a spin system for which the effect of frustration is most
conspicuous. Before dealing with (25), let us recall the following: In the case of two
oscillators as 68%= 60,4+ Q2+ J sin27(6,®— 6, and the same equation with 1 and 2
interchanged, the phase difference ¢=6"— 6 has two stationary values, 0 and 1/2,
and the former is stable for J >0 with the latter unstable, and vice versa if J <0
(where | J | is assumed not very large). Namely, the sign of J determines whether the
interaction is of a ferromagnetic type (J >0) or of an antiferromagnetic one (J <0).}?
Then, as to (25), we may define the frustration function ¥ by

(lf=(1— Z'1Z’22‘3)‘/2 .

That is to say, ¥ =1 indicates presence of frustration, and ¥ =0 does absence of that.
As in the case of two oscillators, we are concerned with the phase differences ¢; = 4"
— 0% and ¢.=0®—0®. It is easy to derive a pair of evolution equations of ¢ and
¢» from (25), whose stationary solutions (fixed points) are listed in Table I together
with their stability for each case of {¢;}.¥ It is evident that uniqueness of the stable
solution is destroyed by frustration. More specifically, frustration brings about a
multi-basin phenomenon in such a way that coexisting attractors possess an identical
degree of stability (i.e., they have in common eigenvalues of the Jacobian matrices
governing their stability), as is easily realized. This may be regarded as a counter-
part of frustration-induced degeneracy of the ground state in a spin system.” Of
course, such an effect would become more and more prominent as the system size is
increased, and in fully frustrated populations, phases deserving the term “oscillator
glass” are expected to appear. Therefore, in a forthcoming paper, we will address
ourselves to the study of the case such that in (1) the random parameters J;; are

Tablel. Frustration effect in the system of interacting three oscillators, (25). All the stationary solutions
of the phase differences ¢: and ¢. (where we assume —1/2<¢;<1/2) are listed together with their
stability (O: stable; X: unstable) for each case of {;}. The frustration function ¥ is defined in the

" text. The stable solutions for the case: ni=n=wn=-—1 are known as the 120° structure in
antiferromagnetic-XY-spin systems on a triangular lattice. (See, e.g., Ref. 26).)

n=n=06=7 == —B=T
&1, &2 =1 r=-—1 &, 2 r=1 r=-—1
0,0 O X 0,0 X X
0,—1/2 X X 0,—1/2 X O
—-1/2,0 X X —1/2,0 X X
—-1/2, =1/2 x X —-1/2, —1/2 X X
1/3,-1/3 X O] 1/3,1/6 ®) X
~1/3,1/3 X O —1/3,-1/6 O x
Number of stable
) 1 2 2 1
solutions
¥ ' 0 1 1 0

*) The results in Table I are valid for J<2/(3x) and equivalent to those for interacting three XY spins
(see Ref. 10) for this connection with XY spins). For larger J, however, this equivalence breaks down by
period-doubling instability of some of the stable solutions. (This does not happen in a differential-equation
version of (25).)
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independent of one another obeying the same distribution law. Being different from
the frustration-free models (3), more or less frustration can be produced in such a case
by adjusting the distribution. Does this really result in a new type of ordered phase
and other interesting phenomena?

Appendix

Here we derive useful expressions of

Zd—llzn Z‘,s o iment ) (A-1)
and
2=ty e | (A-2)

for general () (not necessarily symmetric) and P(s) where the ¢,“”’s are assumed
to obey (14) with 4,=9,—3. For general f(R), the frequency of entrainment, 3,
must also be determined in a self-consistent way (replace £ in (10) and (11) by 2.)
~ We denote f(Q+4) by f(4).

Let us start from Z,. A contribution to it from entrained oscillators, Zd(e), i

given by

Z"(E):[:dsp(s%.gwls.,z;dAﬂA)KSZ‘<25L5’>2>m+ j-2nd } . (A-3)

On the other hand, nonentrained oscillators give a contribution to Z, by

Zd(n):/::dsp(s)s./l;|>smsl/zndd]?(A)Aldslfus,éf((ﬁ)ei,zw , (A-4)

where us,4(¢) is a distribution function of ¢ obtained as a stationary solution of
us A, n)=— {(A S eD sm27r¢>usa(¢ n)}
ie., ‘
v eD .
us,a(9)=C /‘A—32—7[~ sm27r¢1 ‘ (A+5)
with a normalization constant C’. By (A-4) and (A-5) we have

S I LY R PR N R

In this way we get an expression of Zo=Z,'“+Z,"” by summing up (A-3) and (A- 6).

Similarly we find

Zi = [:dsP(s)s‘ILIS emsuz;rddf(d){(SZ B <%>2)”2 N Z%} A

and
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from which we get an expression of Zx=Z,"+Z.™. Then, by (13), we have
simultaneous equations Re Z,=D and Im Z,=0 which determine £ and D, where Re
and Im stand for a real part and an imaginary one, respectively. Let us now assume
as we did in § 3 that /() is symmetric with respect to a certain value of 2,9, and
put 2=0. Then, Im Z,=0 automatically holds together with ImZ,=0 since f (4) is
an even function. We thus arrive at (18) and (22). The analysis presented above is
an extension of Sakaguchi and Kuramoto’s'™ to our populations with random interac-
tions, (9) in the limit y—0.

b))
2)
3)

12)

13)
14)
15)
16)

17)
18)
19)

20)

21)
22)
23)
24)
25)
26)
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