
 1 

Population Flow Drives Spatio-Temporal Distribution of COVID-19 
in China 

Jayson S. Jia1, Xin Lu2, 3, Yun Yuan4, Ge Xu5, Jianmin Jia6,7*, Nicholas A. Christakis8 

1Faculty of Business and Economics, The University of Hong Kong, Hong Kong SAR, China. 
2College of Systems Engineering, National University of Defense Technology, Changsha, China 
3Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden 
4School of Economics and Management, Southwest Jiaotong University, Chengdu, China. 
5School of Management, Hunan University of Technology and Business, Changsha, China 
6Shenzhen Finance Institute, School of Management and Economics, The Chinese University of Hong 
Kong, Shenzhen, China.  
7Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China.  
8Yale Institute for Network Science, Yale University, New Haven, CT, U.S.A. 

*Corresponding author. Email: jmjia@cuhk.edu.cn (JMJ) 
 

Sudden, large-scale and diffuse human migration can amplify localized outbreaks into 

widespread epidemics. Rapid and accurate tracking of aggregate population flows may 

therefore be epidemiologically informative. Here we use 11,478,484 mobile-phone-data-

based counts of individuals leaving or transiting through the prefecture of Wuhan between 

1 January and 24 January 2020 as they moved to 296 prefectures throughout mainland 

China. First, we document the efficacy of quarantine in ceasing movement. Second, we 

show that the distribution of population outflow from Wuhan accurately predicts the 

relative frequency and geographical distribution of infections with SARS-CoV-2 until 

19 February 2020, across mainland China. Third, we develop a spatio-temporal ‘risk 

source’ model that leverages population flow data (which operationalizes the risk that 

emanates from epidemic epicentres) not only to forecast the distribution of confirmed 

cases, but also to identify regions that have a high risk of transmission at an early stage. 

Fourth, we use this risk source model to statistically derive the geographical spread of 

COVID-19 and the growth pattern based on the population outflow from Wuhan; the 

model yields a benchmark trend and an index for assessing the risk of community 

transmission of COVID-19 over time for different locations. This approach can be used by 

policy-makers in any nation with available data to make rapid and accurate risk 

assessments and to plan the allocation of limited resources ahead of ongoing outbreaks. 
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Tracking population flows is especially exigent in the context of China’s COVID-19 

outbreak, which emerged in Wuhan (a prefecture-city in the province of Hubei) in the run-up to 

Chinese Lunar New Year eve on January 24, 2020 with its annual chunyun mass migration 

(which can involve as many as 3 billion trips). The potential scale and range of the outbreak’s 

diffusion was particularly alarming given Wuhan’s position as a central hub in China’s rail and 

aviation networks and given the severity of COVID-19.  

We used nationwide mobile phone data to track population outflow from Wuhan and linked 

this to COVID-19 infection counts by location – at the prefecture level. Our data include 296 

prefectures in 31 provinces and regions in China (average population 4.40 million, 94.07% of 

China’s population). Mobile phone geolocation data, which can reliably quantify human 

movement, provide precise, verifiable, and real-time information.5-11 We conceptualize 

epidemiological morbidity as a function of human population movement from a disease 

epicenter. We thus normalize disease risk by population inflow from Wuhan rather than the size 

of local population.  

Our approach differs from prior work linking individual mobility and disease spread1-4, 12 in 

terms of: our use of real-time data about actual movement; our focus on aggregate population 

flows rather than individual tracking; and our particular modeling approach. That is, other recent 

research on COVID-19 has used historical population flow data (e.g., previous years’ chunyun 

migrations) to estimate case exportation during the current outbreak.14-18 But the benefits of 

observing rather than estimating population movements are substantial since inaccurate 

predictions can have important consequences for policy-making: under-reaction can result in 

disease spread, and over-reaction can lead to medically, socially, and economically inefficient 

policies. Moreover, distinct from prior approaches to epidemiological modelling,12-18 we take 

advantage of detailed data about population flow emanating at the source of the outbreak to 

develop a population-flow-based “risk source” model to test the extent to which population flow 

data can capture the spatio-temporal dynamics of the spread of the SARS-CoV-2 virus. 

To measure total aggregate population outflow from Wuhan prior to its quarantine on 

January 23, 2020, we used country-wide data, provided by a major national carrier, tracking all 

movement out of Wuhan between January 1 and January 24, 2020. The symptom onset of the 

first recorded case in Wuhan was December 1, 2019; by February 19, the end of our study 
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period, 74,576 infection cases had been verified in mainland China.19-22 Our time period includes 

the time that news about the outbreak initially appeared (on December 31, 2019 and January 9, 

2020) and the annual Lunar New Year migration (which culminated on January 24, 2020). The 

dataset included any mobile phone user who had spent at least 2 hours in Wuhan during this 

period, and it tracked the total daily flow of such individuals to all other prefectures throughout 

mainland China. Locations were detected when users simply had their phones on. The dataset 

includes two measures of population outflow: the carrier’s own customer count and their 

extrapolated count of total population movement. We use the latter in our primary analyses and 

the former as a robustness check (see Supplementary Information). 

We defined population flow as the total aggregate count of people entering any given 

prefecture from Wuhan during the whole observation period (January 1 to 24). Since Wuhan 

(population 11.08 million in 2018) is a major transportation hub, many of these people were 

through travelers rather than residents. The definition is also weighted by number of transits 

through Wuhan since some people may have entered and exited Wuhan on several occasions in 

January (especially if they lived in neighboring prefectures). This can be thought of as a linear 

weighting of additional infection and transmission risk from repeated transits. There were 

11,478,484 counts of movements from Wuhan: 8,685,007 to other prefectures within Hubei and 

2,793,477 to prefectures in other provinces. 

Key dates during this period were January 24, Lunar New Year’s Eve (outbound holiday 

travel is typically completed before this evening), and January 23, when Wuhan was quarantined. 

We observed the efficacy of the quarantine (Fig. 1b, c), which was manifested in a 52% (38%) 

drop of inter- (intra-) provincial population outflow on January 23 compared to January 22 

(when there were 546,324 and 141,208 counts of intra- and extra- provincial travel, 

respectively), and a further of 94% (84%) drop on January 24 compared to January 23. With the 

imposition of the quarantine – first with respect to Wuhan (and two neighboring prefectures) at 

10 a.m. on January 23, and then with respect to 12 other prefectures in Hubei by the end of the 

day on January 24 – population outflow from Wuhan almost completely stopped (the average 

daily outflow thereafter was just 1,087 people to all prefectures outside of Hubei, probably 

government workers). 
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We combined the population flow dataset with the count and geographical location of 

COVID-19 confirmed cases nationwide (Fig. 1), which used consistent and stringently enforced 

case ascertainment during this period. As of February 19, 2020, there were 74,576 infection cases 

in mainland China; 29,549 cases occurred outside of Wuhan; and there were 2,118 fatalities.22  

 Population flow from Wuhan may be hypothesized to export the virus to other locations, 

where it causes local outbreaks (i.e., either by importation or “community transmission”19-22). 

And indeed, we find a strong correlation between total population flow and number of infections 

in each prefecture (Fig. 2a, b). Consistent with our hypothesis, the cumulative number of 

infections is highly correlated with aggregate population outflow from Wuhan from January 1 to 

24, and the correlation increases over time from r = 0.522 on January 24 to 0.919 on February 5, 

and further to 0.952 on February 19 (p < .001 for all) (Fig. 2a, b, c). Since there is little travel 

throughout the country during this period, the population outflow variable is comparable to a 

lagged variable in a time series. The correlation exhibited the same robust pattern even when 

using different time windows of population outflow (Extended Fig. 1). The rates of confirmed 

infection cases based on population outflow from Wuhan remained uniform across time 

(Extended Fig. 9). The correlation between population outflow from Hubei province (excluding 

Wuhan itself) and number of infections in each prefecture (Fig. 2c) followed a similar pattern but 

was substantially weaker, r = 0.365 on January 24 to 0.583 on February 19. 

 For completeness, we compared the predictive strength of aggregate population outflow 

to certain other factors – such as the relative frequency of Baidu search engine queries for virus-

related terms in each prefecture (e.g., novel coronavirus, flu, SARS, atypical pneumonia, surgical 

mask),23-25 each prefecture’s GDP and population, and also other movement variables. Each of 

these factors became less predictive of local outbreak size over time, either for cumulative or 

daily reported cases (Fig. 2c, d, Extended Fig.2-3).  

 We also evaluated a gravity model.4,13 Gravity models were originally developed to 

model flow volumes or other interactions between geographical areas based simply on distance 

between two locales and their populations. Here, we use a special case of the gravity model with 

only the “recipient” prefecture’s population variable since Wuhan is always the “donor” and thus 

a constant value (Supplementary Information 4.1). This model (with a significantly negative 

parameter for distance) predicts the high quantity of travel from Wuhan to other prefectures in 
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Hubei and to geographically proximate provinces (Fig. 1). But it does not explain the high traffic 

of population outflow to more distant coastal cities. That outflow does not strictly follow a 

gravity model is not surprising given the rationales for chunyun migration patterns, which are 

primarily based on social connections.8,26 

We also tested a gravity model to predict the infection count. Although “recipient” 

population size and distance were significant predictors (p < .001), a mediation analysis shows 

that population flow from Wuhan mediates the effect of distance. Fig. 2c and 2d intuitively 

illustrate why this is the case. Aggregate population flow from Wuhan exhibits a high and 

progressively stronger correlation with infection prevalence in destination locations over time. In 

contrast, the predictive strength of prefecture’s distance from Wuhan, population size, and GDP 

(an alternative source of “gravity”) declines over time. There is no advantage to estimating 

population flow and to estimating infection spread using estimated population flow when actual 

population flow is observable, as in our case.  

Next, we use two sets of models – one cross-sectional and the other dynamic – to 

statistically model and benchmark the extent to which aggregate population outflow from Wuhan 

predicts the spread and distribution of COVID-19 infections across mainland China. We develop 

what we call a “risk source” model that leverages observed population flow data to 

operationalize the risk emanating from the epidemic source.  

We first modeled the effect of outflow on infection by using the following multiplicative 

exponential model: 

                           𝑦𝑖＝𝑐 ∏ 𝑒𝛽𝑗𝑥𝑗𝑖𝑚𝑗=1 𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1                (1) 

 

where 𝑦𝑖 is the number of the cumulative (or daily) confirmed cases in prefecture i (depending 

on the model); 𝑥1𝑖 is cumulative population outflow from Wuhan to prefecture i from January 1 

to 24; 𝑥2𝑖 is the GDP of prefecture i; 𝑥3𝑖 is the population size of prefecture i; m is the number 

of variables included; and c and βj are parameters to estimate. And 𝜆𝑘 is the fixed effect for 

province k; n is the number of prefectures considered in the analysis; Iik is a dummy for 
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prefecture i and Iik = 1, if 𝑖 ∈ 𝑘 (prefecture i belongs to province k), otherwise Iik = 0. (See 

Supplementary Information for more details.)  

We applied a nonlinear least squares method (Levenberg-Marquardt Algorithm) to estimate 

the parameters of a model with confirmed cases as the dependent variable and  

We applied a nonlinear least squares method (Levenberg-Marquardt Algorithm) to 

estimate the parameters of a model with confirmed cases as the dependent variable and aggregate 

Wuhan population outflow from 1–24 January 2020 as the sole predictor variable (R2 = 0.772 on 

24 January to R2 = 0.946 on 19 February) and a model with population size and GDP as 

additional co-variates (R2 = 0.809 on 24 January 24 to R2 = 0.967 on 19 February) 

(Supplementary Tables 1, 2). Although these additional co-variates improve the fit, the 

parameter for population flow from Wuhan becomes increasingly dominant, whereas the GDP 

and population of a prefecture become increasingly less predictive over time. Overall, the 

performance of the models continuously improved as more infected cases were confirmed, 

suggesting that the spreading pattern of the virus gradually converged to the distribution of the 

population outflow from Wuhan to other prefectures in China. As a robustness check, we 

evaluate a model using daily confirmed cases and find consistent results (Supplementary Tables 

3, 4). 

The logic behind this convergence over time, as well as the model’s predictive strength, is 

that population flow from Wuhan to other prefectures fundamentally determines the eventual 

distribution of total infections in mainland China. During the earliest phase of the outbreak, 

before the quarantine of Wuhan, there was a relative lack of awareness of the virus and few 

countermeasures preventing its spread. SARS-CoV-2 should thus have spread relatively 

randomly across the entire prefecture of Wuhan; that is, our results imply that the number of 

infected people was uniformly distributed (statistically speaking) in the population outflowing 

from Wuhan into different prefectures across the country.  

Using the daily predicted cases in model (1), we are also able to calculate a daily risk score 

for prefectures based on the difference between their predicted and confirmed cases on any given 

date (see Supplementary Information). A higher-than-expected level of infection suggests more 

community transmission (i.e., “underperforming” compared to the benchmark derived from the 

outflow population from Wuhan). On the other hand, “over-performing” prefectures, with fewer 
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cases than expected are also noteworthy, since they could have implemented highly successful 

public health measures (or be prone to inaccurate data reporting). Extended Fig. 4 identifies 

prefectures with transmission risk index values over the upper bound of the 90% confidence 

interval on January 29, for example, and this was indeed associated with imminent quarantine. 

The predictive strength of aggregate population flow from Wuhan and the overall fit of model (1) 

over time can also act as an early warning index of an epidemiological transition; they reflect the 

degree to which imported infections are dominant at any point in time. If model strength declines 

significantly at any location, this may indicate that community transmission may be overtaking 

imported cases. 

We next developed a spatio-temporal model to explore changes in distribution and growth 

of COVID-19 across all prefectures over time (rather than on individual dates) (Supplementary 

Information 3.2). We use a Cox proportional hazards framework and replace the constant scaling 

parameter of model (1) with a time-varying hazard rate function λ0(𝑡),which typically has an S-

shaped property (e.g., logistic, generalized logistic, or Gompertz functions27-28) that epidemics 

typically follow: λ(𝑡|𝑥𝑖) = λ0(𝑡)(∏ 𝑒𝛽𝑗𝑥𝑗𝑖𝑚𝑗=1 )𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1     (2) 

 

where λ(𝑡|𝑥𝑖) is the hazard function describing the number of cumulative confirmed cases at 

time t given population outflow from Wuhan to prefecture i, and other variables 𝑥𝑖 = {𝑥1𝑖, 𝑥2𝑖 , … 𝑥𝑚𝑖 } are the realized values of the covariates for prefecture i; and the other notation is the 

same as model (1). 

This model extends our risk source model to a dynamic context; it incorporates all infection 

cases across all locales and dates to statistically derive the COVID-19 epidemic curve and 

growth pattern across China. We used the same method as before to estimate the parameters (see 

Supplementary Information). When using only the single variable of total population outflow 

from Wuhan (from January 1-24) to each other prefecture, we observe R2 = 0.927 for the 

exponential-logistic model (Fig. 3a); and the inclusion of local population and GDP increases R2 

to 0.957 (alternate models are in Supplementary Table 5). 
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We use a similar logic as before in contrasting expected and observed outcomes to gauge 

epidemiological risk. Here, model predictions serve as reference patterns across time (Extended 

Fig. 5, 6). The differences in the growth trends between predicted and confirmed cases can signal 

higher levels of SARS-CoV-2 community transmission. We use the integral of the differences 

over time to create a total transmission risk index (normalized by subtracting the mean and 

dividing by the standard deviation) and identify a list of prefectures above and below the 90% 

confidence interval (Extended Fig. 7, Supplementary Table 11). Indeed, our model identifies a 

list of statistically significant “underperformers”; in most of these cases, we observed the 

subsequent imposition of quarantine (see the Supplementary Information, including 

Supplementary Table 12 and Extended Fig. 5-6). On the other hand, prefectures with lower 

trends than expected might have had more successful public health measures. Fig. 3b depicts the 

dynamic shifts in risk index score for selected prefectures, which allows monitoring which 

prefectures performed better in controlling transmission risk over time.  

In sum, using detailed mobile phone geolocation data to compute aggregate population 

movements, we track the transit of people from Wuhan to the rest of mainland China through 

January 24, 2020. The geographic flow of people anticipates the subsequent location, intensity, 

and timing of outbreaks in in the rest of mainland China through February 19, 2020. These data 

outperform other measures, such as population size, wealth, or distance from the risk source. We 

modeled the epidemic curves of COVID-19 across different locales using population flows and 

showed that deviations from model predictions served as tools to detect the burden of community 

transmission.  

The logic of our population-flow-based “risk source” model differs from classic 

epidemiological models that rely on assumptions regarding population mixing, population 

compartment sizes, and viral properties. By assuming that risk arises from human population 

movements, our “risk source” model is able to parsimoniously capture the distribution of the 

epidemic. The model has several advantages: it makes no assumptions regarding travel patterns 

or effective distance effects; allows for non-linear estimations; generates a non-arbitrary, source-

linked risk score; and is easily adapted to other empirical contexts. Importantly, the 

multiplicative functional form can also accommodate multiple risk sources – for example in 

countries where there are multiple disease epicenters. As an example, we evaluated the distinct 
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impact of population flow from Hubei (excluding Wuhan) as an alternative risk source in our 

models, and indeed find that it had little impact on COVID-19 spread and growth in the country 

(Supplementary Tables 6 and 10). 

We have focused on the relative strength of the outbreak in each area, rather than the 

absolute number of cases, though one can predict the number of cases by using reported data to 

calibrate the parameters of the model. A key contribution of our approach is to robustly 

characterize the structure or relative distribution of cases across different geographic areas and 

over time, which is driven fundamentally by the cumulative outflow from Wuhan. Moreover, 

another benefit is that non-systematic inaccuracy of COVID-19 case-finding is relatively 

unimportant as long as we capture the distribution of population flow accurately over time, 

which we do.  

Our approach is generalizable to any dataset that captures population movements (e.g., 

train ticketing or car tolling data). This method can also be implemented in a live fashion (if 

suitable data are available) to facilitate policy decisions – for example the allocation of resources 

and manpower across specific geographic locales based on the predicted strength of the 

epidemic. This could also yield a dynamic performance metric when contrasted against real-time 

reports of infections, and, as we show, identify which areas have higher virus transmission risk or 

more effective measures.  

Other techniques to forecast the levels of an epidemic in defined populations in advance 

have, of course, been proposed – whether the use of online search behaviour23-25 or the use of 

network sensors (i.e., the monitoring of people who are at heightened risk for falling ill given 

their network position).29 Our approach relies on data regarding population flow.  Indeed, 

historical (i.e., baseline) information about population flows – undisturbed by the imposition of 

quarantines or by publicity regarding outbreaks, both of which happened here – could also be 

valuable to public health experts and government officials when new outbreaks occur.  

When people move, they take contagious diseases with them. Their movements are thus a 

harbinger of the future status of an epidemic, and this offers the prospect of using data-analytic 

techniques to control an epidemic before it strikes too hard.   
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Figures 

 

Figure 1 | Geographical distribution of population outflow and confirmed COVID-19 cases 
as of February 19, 2020. a, There is a high overlap between the geographical distribution of 

aggregate population outflow from Wuhan until 24 January 2020 (in red) and the number of 

confirmed cases of COVID-19 in other Chinese prefectures (n = 296 prefectures). Map source: 

National Catalogue Service For Geographic Information. Grey areas lack population outflow 

data. b, c, During the time that is historically the peak period for outbound Lunar New Year 

holiday travel, total population outflow from Wuhan to other parts of Hubei (b) is over 

three times higher than the population outflow to outside provinces (c). After the implementation 

of the quarantine at 10:00 on 23 January 2020, population outflow from Wuhan became minimal, 
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except to the adjacent prefectures (b). In b, the first peak possibly corresponds to the start of the 

winter break of (roughly one million) college students in Wuhan and the second peak is 

associated with outbound Chunyun travel. 

 

 

Figure 2 | Factors correlated with confirmed COVID-19 cases. a, b, The relationship between 
aggregate population outflow from Wuhan (up to January 24) and confirmed cases by prefecture 
on January 26 (a) and February 19 (b). Red circles are prefectures in Hubei; light blue circles are 
four quarantined prefectures in Zhejiang (including Wenzhou); and the six largest prefectures in 
China are indicated with unique colors. c, Relationship over time between number of confirmed 
cases (c, cumulative through February 19 on x-axis) and prefectures’ (i) cumulative population 
inflow (up to Jan. 24) from Wuhan, (ii) cumulative inflow from Hubei province excluding 
Wuhan, (iii) frequency of Baidu search terms related to the virus, (iv) GDP, (v) population, and 
(vi) distance from Wuhan. Over time, the correlation between population outflow from Wuhan 
and the number of infection cases increases from Pearson’s r = 0.522 on January 24 to r = 0.952 
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(N=296). The decline in the predictive strength of online search behavior might reflect 
information saturation, while the decline in predictive strength of GDP, population size, and 
distance suggests that late-stage chunyun migration from Wuhan was to a more diverse set of 
prefectures (and not merely to the closet, largest, and most developed prefectures) and/or that 
community transmissions began to predominate. The correlation with daily infections (d) is 
consistent, with Pearson’s r ranging from 0.496 on January 24 to a peak of 0.926 on February 4 
(N=296). Fluctuations are likely lags in case reporting (that are smoothed in c); weaker 
correlations on the last few days reflect that >90% of prefectures outside of Hubei reported no 
new cases. 

 

 

Figure 3 | Predictive model based on population outflow. a, The surface indicates the fitted 
performance of our epidemiological model (see Supplementary Information, model (3)) with just 
a single variable x1i indicates outflow population from Wuhan to prefecture i (log transformed), 
for all prefectures, with t as the number of days after chunyun is over (i.e., t = 1 is January 24). 
The dots represents the actual number of comfired cases under a given x1i and t. Red dots 
represent prefectures where the reported number of confirmed cases is greater than the model’s 
predicted values; black dots are all other cases, R2 = 0.930 (N=7,992). b, Risk scores over time 
provide a dynamic picture of shifting transmission risks in different prefectures.  
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Supplementary Information. Attached. 
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Extended Data Figures 

 

 

Extended Data Figure 1 | Time window sensitivity test for correlational analysis. a, 
b, Pearson’s correlation (N = 296 prefectures) between daily population outflow from Wuhan on 
different days ranging from 1 to 14 days before January 24, with (a) the cumulative number of 
diagnosed cases over time, and (b) the number of newly diagnosed (daily) cases over time; 
e.g., t = 3 indicates that the correlation is between daily outflow from Wuhan on January 21 with 
(a) cumulative or (b) daily confirmed cases from January 24 onwards. c, d, Pearson’s correlation 
(N = 296 prefectures) between population outflow during three different (8-day) time periods 
from January 1 to 24, 2020 and (c) the cumulative number of diagnosed cases over time, and (d) 
the number of newly diagnosed (daily) cases over time. 
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Extended Data Figure 2 | Correlation with alternative population movement measures. 
Pearson’s correlation (N = 296 prefectures) between alternative publicly available movement 
measurements from the 2018 City/Prefectures Statistical Year Book of China (with aggregate 
population outflow from Wuhan from January 1-24, 2020 as a reference) and COVID-19 count 
using (a) cumulative confirmed cases over time, and (b) for daily confirmed cases over time. 
Foreign tourist, domestic tourist, and “highway, airway, and waterway passenger” numbers 
reflect inter-prefecture travel, while bus passengers and number of taxis reflect local travel. 
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Extended Data Fig. 3 | Search terms and correlation with confirmed cases. a, Search 

frequency of Baidu search terms related to the COVID-19 outbreak: the search terms are direct 

translations of the Chinese keywords Baidu users used during the study period (note the official 

WHO name “COVID-19” was only announced on February 11). b, Pearson’s correlation 
(n = 296 prefectures) between Baidu search terms and the (cumulative) number of confirmed 

cases of COVID-19 over time. The initially high and then decreasing predictive strength of 

search may reflect the fact that, initially, high volumes of information search about the virus 

signalled stronger risk perception in any given prefecture (for example, because of early reported 

cases, having more relatives in Wuhan, and so on), but that—over time—information saturation 

reduced the impetus for specific searches. 
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Supplementary Figure 4 | Prefectures with high transmission risk index on January 29, 
2020. The predicted structure of the spread of the SARS-CoV-2 virus can be used as a 
benchmark to identify which locales deviate significantly. Since model (1) predicts the number 
of cases in a prefecture based on the population outflow from Wuhan (i.e., imported cases and 
the initial local community transmission of the virus), a greater difference between predicted and 
confirmed cases suggests a higher level of community transmission. Prefectures to the left of the 
dashed line have community transmission risk index values over the upper bound of the 90% 
confidence interval. Our model identified Wenzhou as having the most severe community 
transmission risk on January 29, 2020.  The government announced a full quarantine of the 
prefecture on February 2, 2020. 
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Extended Data Figure 5 | Benchmark (predicted) versus actual virus growth in Hubei’s 
prefectures. Model (2) used aggregate population outflow from Wuhan from January 1-24, 
2020 to provide a reference growth pattern (i.e., epidemic curves) for COVID-19’s spread across 
time and space, without making a priori assumptions of growth pattern or mechanism. 
Differences in the growth trends between predicted and confirmed cases can signal higher levels 
of COVID-19 community transmission (Supplementary Table 11). The discrete jumps in 
confirmed cases in some prefectures after Feb 13 reflected a change in the local governments’ 
infection count criteria; clinically diagnosed cases came to be included in total confirmed case 
counts in those prefectures (within Hubei province).  



 22 

   

   

   

Extended Data Figure 6 | Benchmark (predicted) versus actual virus growth in selected 
prefectures outside of Hubei.  Model (2) used aggregate population outflow from Wuhan from 
January 1-24, 2020 to provide a reference growth pattern (i.e., epidemic curves) for COVID-19’s 
spread across time and space, without making a priori assumptions of growth pattern or 
mechanism. Differences in the growth trends between predicted and confirmed cases can signal 
higher levels of COVID-19 community transmission (Supplementary Table 11).  
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Extended Data Figure 7 | The distribution of transmission risk index ∆̅𝑖. The transmission 
risk index is the normalized score of the integral of the differences between actual confirmed 
infection cases and predicted numbers in our model. Prefectures above the 90% confidence 
interval of the index are likely experiencing more local community transmission than imported 
cases, and prefectures below the 90% confidence interval may have a better performance in the 
control of the virus (see Supplementary Table 11). 
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Extended Data Figure 8 | Robustness check of model (2) with different time lags and time 
window lengths. We explore which time window and time lags of aggregate population outflow 
best explain the spread and intensity of COVID-19. “Time window” refers to how many days of 
outflow data were used; “time lag” (0 to 23) is how many days before January 24 the time 
window starts. For example, time lag = 1 and time window = 2 is using outflow data between 
January 23-24. The surfaces show that a more recent time lag improves (a) the R2 as well as (b) 
the parameter value of the population outflow coefficient in model (2).  

  



 25 

 

Extended Data Figure 9 | Entropy of three forms of incidence rate over time. The entropy of 
incidence rates based on the aggregate population outflow from Wuhan from January 1 to 24, 
2020 increased over time, i.e., became increasingly uniform among different prefectures in 
China, especially during the first week. The entropy curves based on population outflow for 24 
days or 14 days before Jan 24 have an almost identical pattern. The entropy of incidence rates 
based on each prefecture’s total population declined over time (except over the first few days); 
that is population-based incidence rates exhibit no such uniformity.  
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1.  Data Description  

1.1 Mobility outflow data 

The penetration rate of mobile phone usage among the population in China between the 
ages of 15 and 65 is almost 100%, and prior estimates suggest such mobile phone users are 
representative of the whole population in this age range.30-31 

The population flow data we use, provided by one of the three national mobile carriers in 
China, was aggregated from the records of mobile phone activities (including geolocation) of all 
their users, nationwide. A user only had to have their phone on (and not necessarily use it) for 
their locations to be noted. The number of trips made by users who moved from Wuhan to other 
prefectures (including commuters) during the period of January 1-24, 2020, was aggregated to 
produce a national-level population outflow matrix (of total movements from Wuhan in the 
whole period to each other prefecture). To exclude the large number of users who only briefly 
transited through Wuhan, users who stayed in Wuhan less than two hours were filtered out of the 
data. The study period coincided with the run up to the annual chunyun mass migration (which 
can involve as many as 3 billion trips32) which culminated on Chinese Lunar New Year eve on 
January 24, 2020. 

Daily number of trips from Wuhan to other prefectures is the final form of the primary 
dataset provided by the operator. This was supplemented by counts of daily number of trips from 
Hubei province as a whole (excluding Wuhan) to other prefectures, as well as counts of 
movements of different types of Wuhan populations (see Section 1.2). We use these additional 
data as robustness checks for our risk source model (see Section 5). All data were anonymized 
and aggregated. No personally identifying information was processed in our analyses here. Our 
aggregate population flow data is made publicly available with this paper, as is our analytic code 
(in Section 5 below), as part of a replication package. 

The carrier provided two separate measurements of population outflow. One was based 
on the observed movements of the carrier’s own customers. The other was an extrapolated 
measure of movements of the whole population. 

To produce a representative estimate for the total number of trips made by entire 
population, the number of trips made by the carrier’s own users was extrapolated to the whole 
network, with a variety of factors being considered. Specifically, information about user 
coverage, ratio of calls and messages with other operators, and information about users’ age and 
gender, which was combined and modeled using a machine learning approach by the operator, 
generating estimates of the total number of users leaving Wuhan and going to each destination 
prefecture, not just the count of the people moving who were customers of this carrier. This 
extrapolation of counts was then validated with real coverage ratios (i.e., of the two other 
carriers) in several prefectures, as well as all provinces in China, documenting high accuracy in 
predicting the number of users from the whole network with data from this one operator.   

Our evaluations (below) show both measurements produce nearly identical results. And 
the observed correlation (in our analysis) between both measurements of population outflow with 
the independently observed COVID-19 cases serves as a further check of validity. 
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We also note that our primary analyses rely on relative population flows, not actual 
numbers of people moving from Wuhan to each destination. In other words, our methodology 
does not require observing the movements of the entire population. The reason for this is that our 

primary analyses use normalized variables – that is, expresses them as a percentage of total 

population outflow. This methodological feature is advantageous since researchers or policy 
makers may use our approach even if they only have access to a dataset that is a subsample of 
the population, as long as that dataset is representative of the relative distribution and quantity of 
population flow.    

While we use phone data to compute total aggregate flows between prefectures, there is 
also a rich tradition of using individual-level data to track human mobility and population 
movements in humans33-38, including to study disease transmission.39-41  

 

1.2 Different types of population outflow data 

1.2.1 Own customer versus extrapolated data 

We use the measurement of population outflow based on the extrapolated measure in our 
primary analyses so that we are able to discuss total population movements (particularly with 
respect to discussing the impact of the quarantine), and use the carrier’s own customer count 
measure for robustness checks. Since our primary analyses uses the relative distribution (rather 
than absolute quantity) of population outflow, both measurements typically yield the same results 
(see Section 5).  

 

1.2.2 Resident versus non-resident inflow 

In addition, the carrier provided separate counts of non-Wuhan-residents who were 
returning to their home prefectures (as opposed to being Wuhan residents who were visiting 
other prefectures). These ‘returnees’ (which we refer to as “returning resident outflow”) were 
people who were returning to the prefecture where they receive local telecommunications service 
(which is charged at a lower preferential rate, and also where their registered home address is) 
after visiting Wuhan (for at least 2 hours) between January 1 to 24. Returning residents likely 
have a different impact on local disease transmissions dynamics compared to non-residents. 
Since public health policies effectively quarantined (or encouraged self-quarantine of) 
individuals within their own households, infected returning residents (who by definition are 
returning to their own homes) may be more likely contribute to family and community infection 
clusters compared to infected visitors (since not all of them are staying with relatives). Indeed, 
78-85% of infection clusters occurred within families. 42-46 On the other hand, visitors may be 
more likely to visit public areas (e.g., hotels and tourist destinations). We evaluated this measure 
in Section 5.  
 

1.2.3 Population outflow from Hubei excluding Wuhan 

Finally, the carrier provided counts of population outflow from other prefectures in Hubei 
(excluding Wuhan). Hubei had the largest share of COVID-19 infections in China and 
prefectures in Hubei received the highest total population inflow from Wuhan in our study 
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period. Indeed, 75.66% of Wuhan population outflow went to other prefectures within Hubei 
province, which had 56.43% of total COVID-19 cases in China outside of Wuhan. Consequently, 
we also later evaluated whether population outflow from these prefectures brought COVID-19 
export risk to prefectures outside of Hubei province (see Section 5). Previewing briefly, we 
found that the effect of population outflow from non-Wuhan Hubei prefectures on COVID-19 
spread is much more limited compared to the impact of population outflow from Wuhan 
prefecture itself (see Section 5).  
 

1.3 Merge with data regarding 296 prefectures 

In later modeling analyses, we merge outflow data with demographic and economic 
variables from the 2018 City/Prefectures Statistical Year Book of China, which serve as co-
variates and control variables. This yields a final sample of 296 prefectures included in our 
analysis (Wuhan prefecture is not included; the relatively new Sansha prefecture is excluded 
since it is a set of islands with a population of only 448). These prefectures have an average 
population of 4.40 million and a total population of 1.308 billion, representing 94.07% of the 
country’s total population. 

In our analysis, we combined the merged dataset of human mobility and economic 
variables with the daily count and geographical location of confirmed cases of COVID-19  
nationwide, provided by the Chinese Center of Disease Control and Prevention (CCDC), which 
used a consistent (and stringently enforced) procedure for case ascertainment and reporting. We 
report data from January 24 to February 19. After February 19, more than 90% of prefectures 
outside of Hubei province often reported zero infection cases daily.  

Since our analyses focus on the effect of population outflow from Wuhan on COVID-19 
outbreaks elsewhere, we do not use or require infection counts from Wuhan. Thus, any 
inaccurate counts (e.g., due to Wuhan’s hospitals being overwhelmed) or changes in reporting 
methodology in Wuhan do not affect our analysis.  
 

2.  Correlational Analysis  

2.1 Sensitivity tests for the correlational analysis 

In the primary analysis, we used the aggregate population outflow data of the 24 days 
between January 1 to January 24 to document how the correlation between total confirmed cases 
and the population outflow from Wuhan to different prefectures increased over time (see Fig. 2c 
and 2d in main text). Here, we document the correlation between population outflow from 
Wuhan on different days ranging from 1 to 14 days before January 24, with the number of 
diagnosed cases over time (Extended Data Figure 1a, b). The Wuhan population outflow on the 
four most recent days prior to January 24 (i.e., January 21 through 24) is the most highly 
correlated, over time, with the number of local confirmed cases in different areas. This may 
relate to the large movement of people out of Wuhan right before the quarantine was imposed 
and the latency of the virus (which has an observed incubation period of 2-14 days, with a mean 
= 4-5 days45-47). 
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As another robustness check of potential bias generated by selection of periods for 
calculating total population outflow and confirmed cases, we repeat the correlational analysis 
after dividing the observation period into periods. Specifically, we first equally divide the 24 
days (between January 1 and 24) into three 8-day periods; then, with the outflows from these 
different periods, we calculate correlation between outflow, and the cumulative confirmed cases 
(Extended Data Figure 1c) or newly diagnosed cases (Extended Data Figure 1d) over the period 
of January 24 to February 19. 

We can see that, first of all, there is limited difference in the correlation coefficients when 
outflows are calculated from different periods, implying that the general pattern of movement did 
not change significantly in January, i.e., during the Spring Festival Travel period. Secondly, more 
recent outflow had higher correlation with the total number of confirmed cases after January 24, 
2020, indicating that the spatial-temporal pattern of population flow close to Chinese New Year 
Eve (January 24) is more relevant for the prediction of new infections outside Wuhan. Lastly, for 
all three periods, the correlation between outflow and daily number of new cases increases 
rapidly from roughly 0.5 for the first day to about 0.9 four days after. 

 

2.2 Correlations with alternative population movement measures 

For comparison purposes, we also examine the correlation between each prefecture’s 
infection count and the prefecture’s intra- and inter- prefectural movement data from the 2018 
City/Prefectures Statistical Year Book of China (Extended Data Figure 2). All correlations 
decline over time, particularly towards the end of the study period when >90% of prefectures had 
no new daily cases. Only the outflow from Wuhan is highly correlated with cumulative and daily 
confirmed cases.  

 

3.  Risk Model Based on Observed Population Flows From Outbreak Epicenter 

3.1 Analysis based on daily infection data  

3.1.1 Model specification  

The correlational analysis in Fig. 2c suggested that other factors, such as GDP and local 
population, are correlated with the number of confirmed cases (although they have declining 
predictive power over time). To test these and other factors as control variables and as alternative 
variables against the aggregate Wuhan population outflow, we consider two functional forms: an 
exponential model (1) as our basic model, and a power model (2) as a robustness check. As 
illustrated in Figures 2a, 2b (log scale), these functional forms are well-suited for our data. We 
also include fixed effects to control for provincial differences.  
 

                           𝑦𝑖＝𝑐 ∏ 𝑒𝛽𝑗𝑥𝑗𝑖𝑚𝑗=1 𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1                (1) 

 

                           𝑦𝑖＝𝑐 ∏ 𝑥𝑗𝑖𝛽𝑗𝑚𝑗=1 𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1                 (2) 
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where 𝑦𝑖 is the number of cumulative (or daily) confirmed cases in prefecture i, 𝑥1𝑖 is cumulative 
aggregate population outflow from Wuhan (i.e., total outflow between January 1-24) to 
prefecture i, 𝑥2i is the GDP of prefecture i, 𝑥3i is the population size of prefecture i, m is the 
number of variables included, and c and βj are parameter estimates. Of course, other variables 
could be included to test other factors of interest. In the above models, 𝜆𝑘 is the fixed effect for 
province k, n is the number of prefectures considered in the analysis, Iik is a dummy for 
prefecture i and Iik = 1, if 𝑖 ∈ 𝑘 (prefecture i belongs to province k), otherwise Iik = 0. 

Compared with gravity models, we use outflow to replace distance, which provides a 
better measure of interactions between Wuhan and other prefectures (see Section 4 for more 
detailed discussion). Since our models capture flow of human population from the epidemic risk 
source explicitly, yielding risk for the destination location, we name our models “risk source” 
models. When taking the log on the both sides of the models, we have the following generalized 
linear models: 

                           log(𝑦𝑖)＝ log(𝑐) + ∑ 𝛽𝑗𝑥𝑗𝑖𝑚𝑗=1 + ∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1             (3) 

 

                       log(𝑦𝑖)＝ log(𝑐) + ∑ 𝛽𝑗log (𝑥𝑗𝑖)𝑚𝑗=1 + ∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1             (4) 

 

Thus, model (3) becomes a Poisson regression model, implying that 𝑦𝑖 is assumed to 
follow a Poisson distribution. Model (4) is another type of Poisson regression model with the 
logarithm transformation of the independent variables  𝑥𝑗𝑖.  Poisson regression models are 
typically used for modeling count data – here, in this context, the number of confirmed infection 
cases.  

To aid comparability and eliminate differences in units, we normalize the data in two 
ways: for the exponential (1), we normalize data first by taking the log, 𝑥𝑗𝑖′ = log (𝑥𝑗𝑖 ) (the of the 
log-log plot in Figure 2a and b suggests a logarithmic transformation is appropriate), and then by 
standardizing 𝑥𝑗𝑖′′ = (𝑥𝑗𝑖′ − 𝑀𝑒𝑎𝑛) /𝑆𝑡𝑑; for the power model (2), we normalize the data by 𝑥𝑗𝑖′ =𝑥𝑗𝑖/ ∑ 𝑥𝑗𝑖𝑛𝑖=1 , where n is the number of prefectures, which basically uses the fraction of 
population outflow from Wuhan to each prefecture and fractions of GDP and populations in the 
estimation. 

Importantly, we can add more risk source flows (from other candidate epicenters of the 
epidemic) into the models easily, if we want, such as outflow from Hubei (excluding Wuhan). 

 

3.1.2 Model estimation and results  

To conduct statistical analyses for our proposed models, we merged the population 
outflow data with population and GDP data for each prefecture from the 2018 China City 
(Prefecture) Statistical Year Book (produced by the National Bureau of Statistics of China). We 
excluded the epicenter, Wuhan, from this analysis and also the island prefecture of Sansha (with 
a population of only 448 people and no GDP data). Hence, 296 prefectures are included in our 
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analyses.   

Although the logarithmic transformations of models (1) and (2) could be estimated using 
a linear regression approach, we need a consistent estimation method that can also be applied to 
the nonlinear models used here, and for estimating the multiplicative forms of models (1) and (2) 
directly. In machine learning, the steepest gradient algorithm, the Newton algorithm and the 
Levenberg–Marquardt algorithm, are commonly used in solving nonlinear least squares 
problems. In particular, the Levenberg–Marquardt (LM) algorithm is a combination of the 
steepest gradient algorithm and the Newton algorithm, which has the advantages of both48-49. 
This method has been widely applied for solving various nonlinear problems, and it is used to 
estimate parameters for our models. The results are provided in Supplementary Table 1.  

We first fit the models (1) and (2) by using the single variable of aggregate population 
outflow from Wuhan (from January 1 to 24) to other prefectures. The model fit gradually 
improved from R2 = 0.772 for both models (1) and (2) on January 24 to R2 = 0.946 for both 
models on February 19. As shown in Supplementary Table 1, when we include prefecture 
population and GDP into the models, the fit improves a certain degree (R2 = 0.864 on January 24 
and R2 = 0.965 on February 19 for both models). Over time, the key parameter β1 for the outflow 
from Wuhan becomes an increasingly dominant predictor, while parameters β2 and β3 decline 
over time (i.e., prefecture GDP and local population become increasingly less predictive of 
number of confirmed cases over time). But, in general, these parameters are quite stable over 
time, especially after the first few days as the number of observed cases increases. The estimated 
values for these parameters suggest that population outflow from Wuhan to other prefectures is 
much more important than prefecture GDP and local population size in predicting confirmed 
cases (see Supplementary Table 1). The scaling factor a increases as the number of confirmed 
cases increases over time.  

The possibly less accurate and timely infection count during the earlier dates (as case 
reporting systems were still being set up) may possibly have contributed to the lower initial fit of 
our model. Several studies show that COVID-19 has a median incubation time period of about 
4.75 days (interquartile range: 3.0-7.2) that can extend up to 14 days1-3. Thus, the parameter 
estimates from the first few days of our model may be less interpretable. Indeed, our model fit 
improves even more after 14 days, by which time the incubation period was over for most latent 
infection cases.  

 

 

 

Date R2 c β1 β2 β3 

24-Jan 0.809 0.425 1.609 -0.008 0.159 

25-Jan 0.858 0.161 1.392 -0.289 1.356 

26-Jan 0.871 0.631 1.131 -0.144 0.608 

27-Jan 0.902 1.355 1.035 -0.030 0.380 

28-Jan 0.933 1.974 1.070 -0.012 0.289 

29-Jan 0.933 2.502 1.089 -0.025 0.336 

30-Jan 0.938 2.244 1.156 -0.053 0.398 
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31-Jan 0.939 3.375 1.051 0.062 0.338 

1-Feb 0.943 3.923 0.995 0.100 0.359 

2-Feb 0.937 2.324 0.991 0.054 0.406 

3-Feb 0.953 4.355 0.949 0.041 0.479 

4-Feb 0.948 4.926 0.932 0.032 0.457 

5-Feb 0.954 4.913 1.056 0.062 0.441 

6-Feb 0.947 4.921 1.197 0.103 0.397 

7-Feb 0.944 4.577 1.243 0.137 0.369 

8-Feb 0.948 4.842 1.285 0.166 0.348 

9-Feb 0.949 4.727 1.283 0.215 0.341 

10-Feb 0.949 4.886 1.309 0.226 0.327 

11-Feb 0.948 4.506 1.330 0.245 0.316 

12-Feb 0.948 4.540 1.350 0.255 0.300 

13-Feb 0.948 4.422 1.402 0.291 0.260 

14-Feb 0.966 3.885 1.294 0.169 0.268 

15-Feb 0.970 4.766 1.300 0.159 0.244 

16-Feb 0.969 4.985 1.331 0.179 0.234 

17-Feb 0.968 5.349 1.364 0.199 0.224 

18-Feb 0.968 4.425 1.388 0.230 0.214 

19-Feb 0.967 4.420 1.406 0.249 0.218 

Supplementary Table 1 | Results for exponential model (1) using cumulative case count on 
each date.  
 

Overall, our models’ performance continuously improved as more infection cases were 
confirmed. It is noteworthy and significant that population flow up to January 24 can predict the 
final distribution pattern of virus spread over different geographical locales two weeks later (and 
with increasing accuracy). This suggests that the spread did not grow exponentially and that the 
overall spread pattern is basically governed – at least in early stages of the epidemic – by the 
structure of population outflow from Wuhan to other prefectures. We make use of this logic to 
infer the incidence of community transmission in various areas. 

Supplementary Table 2 provides the estimation results for the power model (2), which 
exhibits the same pattern of results as model (1); data fit gradually improved from R2 = 0.623 on 
January 24 to R2 = 0.956 on February 19. These parameters are quite stable over time, especially 
after the first few days, as the number of observed cases increase. The key parameter β1 for the 
outflow from Wuhan is quite stable over time, while parameters β2 and β3 have a declining 
pattern over time. 
 

Date R2 c β1 β2 β3 

24-Jan 0.864 1.636 0.777 -0.385 1.372 
25-Jan 0.869 1.682 0.524 -0.206 0.707 
26-Jan 0.905 2.914 0.473 -0.073 0.472 
27-Jan 0.935 3.023 0.490 -0.046 0.367 
28-Jan 0.937 3.182 0.498 -0.046 0.432 
29-Jan 0.939 3.196 0.522 -0.067 0.508 
30-Jan 0.940 3.191 0.495 0.032 0.434 
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31-Jan 0.944 4.845 0.470 0.049 0.462 
1-Feb 0.938 5.275 0.465 0.025 0.526 
2-Feb 0.954 5.322 0.446 0.021 0.618 
3-Feb 0.949 7.142 0.439 0.017 0.589 
4-Feb 0.955 6.065 0.499 0.034 0.567 
5-Feb 0.948 6.717 0.567 0.053 0.510 
6-Feb 0.945 7.145 0.588 0.067 0.473 
7-Feb 0.949 6.754 0.607 0.078 0.446 
8-Feb 0.950 8.166 0.605 0.098 0.436 
9-Feb 0.950 6.012 0.617 0.102 0.417 

10-Feb 0.949 6.438 0.627 0.110 0.404 
11-Feb 0.949 7.696 0.636 0.114 0.382 
12-Feb 0.959 8.215 0.617 0.107 0.373 
13-Feb 0.967 7.814 0.611 0.079 0.342 
14-Feb 0.970 7.459 0.614 0.076 0.311 
15-Feb 0.969 8.653 0.628 0.083 0.297 
16-Feb 0.969 8.509 0.643 0.092 0.285 
17-Feb 0.969 8.041 0.654 0.104 0.270 
18-Feb 0.968 8.171 0.662 0.111 0.275 
19-Feb 0.965 8.661 0.684 0.126 0.287 

Supplementary Table 2 | Results power model (2) using cumulative case count on each date.  
 

 

3.1.3 Daily model estimation and results  

As a robustness check, we consider daily cases (i.e., new cases) on each date as the 
dependent variable in models (1) and (2). Tables 3 and 4 provide estimation results for the 
exponential model (1) and power model (2), respectively, for daily cases. As can be seen, the 
outflow variable continues to play a dominating role (compared with population and GDP) in 
predicting daily new cases for most of the days. Although the overall model fitting is still good, 
the results for daily cases are more variable than the cumulative COVID19 cases. The differences 
and fluctuations in R2 are akin to as the fluctuations in Fig. 2b (compared to Fig. 2a); there were 
unsmooth fluctuations in case count which may be caused by natural fluctuations or lags in 
reporting (e.g., from case overload). A cumulative dependent variable smooths these fluctuations. 
Nonetheless, this model has high explanatory power until the last two days of the study, when 
there were very few new infections in China outside of Wuhan (the same reason correlation 
declines precipitously in Fig. 2b).  

 

 

Date R2 c β1 β2 β3 

24-Jan 0.833 0.012 2.407 -0.880 3.645 

25-Jan 0.824 1.822 -0.605 -1.179 0.321 

26-Jan 0.781 1.223 0.918 0.245 0.200 

27-Jan 0.898 1.235 1.335 0.110 0.126 

28-Jan 0.872 1.162 1.156 -0.035 0.455 

29-Jan 0.907 1.183 1.263 -0.153 0.587 
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30-Jan 0.868 1.965 1.144 0.495 0.243 

31-Jan 0.838 1.737 0.845 0.153 0.426 

1-Feb 0.867 2.060 0.882 -0.159 0.725 

2-Feb 0.939 2.605 0.753 0.010 0.876 

3-Feb 0.828 2.079 0.933 0.038 0.375 

4-Feb 0.922 0.146 3.094 0.839 0.503 

5-Feb 0.833 8.779 6.960 2.406 0.830 

6-Feb 0.824 0.600 1.984 0.354 0.195 

7-Feb 0.952 0.605 2.000 0.350 0.100 

8-Feb 0.922 2.145 1.341 0.506 0.199 

9-Feb 0.831 0.414 2.083 0.334 0.009 

10-Feb 0.904 0.949 2.145 0.519 0.089 

11-Feb 0.900 1.023 1.936 0.276 -0.071 

12-Feb 0.626 2.536 1.077 0.067 0.154 

13-Feb 0.895 0.205 2.108 -3.599 -1.631 

14-Feb 0.805 1.817 1.359 -1.652 -0.988 

15-Feb 0.880 0.000 13.940 6.048 0.803 

16-Feb 0.924 0.000 12.609 5.230 0.535 

17-Feb 0.771 0.004 4.631 1.879 -0.220 

18-Feb 0.366 0.000 9.265 3.138 2.359 

19-Feb 0.350 -1.761 -0.774 -1.008 -0.369 

Supplementary Table 3 | Results for exponential model (1) using daily new case count on 
each date.  
 

 

 

 

 

 

 

 

 

 

 

Date R2 c β1 β2 β3 

24-Jan 0.833 0.142 1.092 -0.733 4.735 

25-Jan 0.814 5.507 0.000 -0.634 0.331 

26-Jan 0.781 4.284 0.417 0.204 0.259 

27-Jan 0.898 3.166 0.606 0.091 0.164 

28-Jan 0.872 6.359 0.524 -0.029 0.591 

29-Jan 0.907 4.686 0.573 -0.128 0.762 

30-Jan 0.868 4.780 0.520 0.412 0.315 
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31-Jan 0.838 7.525 0.383 0.127 0.553 

1-Feb 0.867 6.686 0.400 -0.132 0.942 

2-Feb 0.939 6.944 0.342 0.008 1.137 

3-Feb 0.828 6.451 0.423 0.032 0.487 

4-Feb 0.922 2.233 1.404 0.698 0.654 

5-Feb 0.833 0.219 3.160 2.003 1.078 

6-Feb 0.824 4.824 0.900 0.294 0.253 

7-Feb 0.952 6.400 0.908 0.292 0.129 

8-Feb 0.922 12.387 0.609 0.421 0.259 

9-Feb 0.831 2.507 0.946 0.278 0.012 

10-Feb 0.904 1.844 0.974 0.432 0.115 

11-Feb 0.900 2.978 0.879 0.230 -0.092 

12-Feb 0.626 5.101 0.489 0.056 0.200 

13-Feb 0.895 0.172 0.957 -2.995 -2.119 

14-Feb 0.805 1.637 0.617 -1.374 -1.283 

15-Feb 0.880 0.000 6.327 5.033 1.043 

16-Feb 0.924 0.001 5.723 4.352 0.695 

17-Feb 0.771 0.148 2.102 1.564 -0.286 

18-Feb 0.366 0.001 4.206 2.613 3.066 

19-Feb 0.323 -1.035 0.000 -0.598 -0.529 

Supplementary Table 4 | Results power model (2) using daily new case count on each date. 
 
 

3.1.4 Estimation for assessing community transmission risk 

Since our model predicts the distribution and geographical structure of COVID-19 cases 
based on the population outflow from Wuhan into different prefectures, the predicted structure of 
the virus spread can be used as a benchmark to identify which locales deviate significantly. We 
use the normalized difference of confirmed and predicted cases (subtracting mean and dividing 
by standard deviation) to create a community transmission risk index. 

Since the number of predicted cases in a prefecture is driven almost completely by 
population inflow from Wuhan in our model, the predicted value is by definition a function of 
the number of imported cases and the initial local transmissions of the virus. Any difference 
(delta) between predicted and confirmed cases would suggest a higher level of COVID-19 
community transmissions (i.e., spread from infected individuals not from Wuhan). Thus, we 
regard places that have more confirmed infections than predicted cases as having higher 
community transmission risks (compared to the benchmark). On the other hand, prefectures with 
fewer cases than expected by our model are also noteworthy, since they could either have had 
more successful public health measures or be at higher risk of inaccurate data reporting (which 
might risk giving local officials a false sense of security).  

Since numerous restrictive public health measures (e.g., travel restrictions, social 
distancing, emphasis on wearing surgical masks outdoors, banning social gatherings, widespread 
public service announcements, as well as a general wave of fear and paranoia that motivated 



 38 

individuals to avoid going outside) were implemented locally throughout China in the aftermath 
of the quarantine of Wuhan and Hubei province, the high predictive power of the model for most 
cases suggests that these measures and factors were generally successful in limiting growth in 
community transmissions in most locales. Travel limitations were particularly severe: in many 
prefectures there was literal ‘rationing’ of families’ trips outside of their homes to once per day 
by one or two family members (usually not outside the neighborhood/district) (this was often 
enforced by neighborhood watches, using mobile phone scanning, or printed ‘trip passes’). In 
addition, many transmissions were within family clusters.42-45 According to the Chinese CDC47, 
83% of transmission so far have happened in family clusters. Since most Chinese families live 
together in households of 2-3 people, this suggests that number of cases of transmission could be 
scaled up proportionally, especially to the extent that all prefectures adopted similar infection 
control measures.  

Extended Data Figure 4 identifies prefectures with community transmission risk index 
values over the upper bound of the 90% confidence interval. Our model identified Wenzhou as 
having the most severe community transmission risk on Jan. 29 (Wenzhou’s total confirmed 
cases at that point was far beyond that expected by the model). The government announced a full 
quarantine of the prefecture on Feb. 2.  

 

3.2 Dynamic model for virus spread and growth 

3.2.1 Dynamic model development  

Models (1) and (2) provide cross sectional analyses at a daily level – in other words, they 
provide snapshots by day (using infection counts of a particular day) and do not account for 
trends across time (though the trends can be described by the constant c discretely). We next 
adapt these models into dynamic models to explore changes in distribution and growth of 
COVID-19 across all prefectures, over time. By including all reported cases in a single model, 
we are also able to document the growth of the epidemic over time. A typical growth pattern for 
epidemiological events follows a sigmoidal pattern50-53 Indeed, we document such a pattern for 
infection spread of COVID-19 in the various Chinese prefectures. 

To combine our previous daily analysis with time as well as fixed effects to control for 
provincial differences, we consider a Cox proportional hazards model to integrate our risk source 
models (1) and (2) with a growth function, which allows the effect of a unit increase in a 
covariate to be multiplicative with respect to the underlying baseline hazard function as follows: 

 

                           λ(𝑡|𝑥𝑖) = λ0(𝑡)(∏ 𝑒𝛽𝑗𝑥𝑗𝑖𝑚𝑗=1 )𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1      (5) 
 

                           λ(𝑡|𝑥𝑖) = λ0(𝑡) (∏ 𝑥𝑗𝑖𝛽𝑗𝑚𝑗=1 ) 𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1      (6) 
          
where λ(𝑡|𝑥𝑖) is the hazard function describing the number of cumulative confirmed cases at 
time t given an population outflow from Wuhan to prefecture i and other variables; λ0(𝑡) is the 
underlying baseline hazard function with t = 1 starting from January 24; 𝑥𝑖 = {𝑥1𝑖, 𝑥2𝑖, … 𝑥𝑚𝑖  } 
are the realized values of the covariates for prefecture i; and the other notation is the same as for 
models (1) and (2). We arrive at these models by using a time-varying function  λ0(𝑡) to replace 

https://en.wikipedia.org/wiki/Hazard_function
https://en.wikipedia.org/wiki/Hazard_function
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the constant scaling parameter c in models (1) and (2) to obtain models (5) and (6). These 
dynamic models imply that the hazard responds exponentially: each unit increase in 𝑥𝑖 results in 
a proportional scaling of the hazard. In particular, Models (5) and (6) capture the effect of risk 
source outflow from Wuhan in a spatio-temporal manner.  

We consider the three most popular sigmoidal functions: logistic, generalized logistic 
(also called a Richards model), and Gompertz functions for λ0(𝑡) in the hazard model (5). 
These curves grow exponentially initially, and then saturates at the later stage. These functions 
have been used to forecast outbreaks for different infectious diseases50-53 and yield the following 
three models with provincial fixed effects:  
 

a) Exponential-Logistic (EL) model:     λ(𝑡|𝑥𝑖)＝ 𝛼1+𝑒−𝛾𝑡+𝜔 (∏ 𝑒𝛽𝑗𝑥𝑗𝑖𝑚𝑗=1 )𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1       (7) 

 

b) Exponential-Generelized-Logistic (EGL) model:   
 

   λ(𝑡|𝑥𝑖)＝ 𝛼[1+g𝑒−𝑟(𝑡−t𝑖)]1𝑔 (∏ 𝑒𝛽𝑗𝑥𝑗𝑖𝑚𝑗=1 )𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1       (8)      

 

c) Exponential-Gompertz (EG) model:  λ(𝑡|𝑥𝑖)＝α𝑎𝑏𝑡(∏ 𝑒𝛽𝑗𝑥𝑗𝑖𝑚𝑗=1 )𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1            (9) 

 

where α, γ, ω, a, b, and g are parameters to estimate; and the other notation is the same as models 
(1) and (2).  In a similar fashion, using the three functions for  λ0(𝑡) in model (6) leads to the 
following spatio-temporal models: 
 

d) Power-Logistic (PL) model:            λ(𝑡|𝑥𝑖)＝ 𝛼1+𝑒−𝛾𝑡+𝜔 (∏ 𝑥𝑗𝑖𝛽𝑗𝑚𝑗=1 ) 𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1                     (10) 

 

e) Power-Generelized-Logistic (EGL) model:   
 

  λ(𝑡|𝑥𝑖)＝ 𝛼[1+g𝑒−𝑟(𝑡−t𝑖)]1𝑔 (∏ 𝑥𝑗𝑖𝛽𝑗𝑚𝑗=1 ) 𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1       (11)      

 

f) Power-Gompertz (PG) model:       λ(𝑡|𝑥𝑖)＝α𝑎𝑏𝑡 (∏ 𝑥𝑗𝑖𝛽𝑗𝑚𝑗=1 ) 𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1         (12) 

 

3.2.2 Dynamic model estimation and results  

As in our previous analysis, 296 prefectures are included here. Since we have t = 27 days 
of observations until February 19, the total sample size for the final analysis is n = 7,992. We use 
the same machine learning method as before to estimate the parameters in models (7) through 
(12). We first fit these models using only the single variable of population outflow from Wuhan 

https://en.wikipedia.org/wiki/Hazard_function
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to other prefectures, and observe R2 = 0.930. Figure 3 in the main text illustrates the basic 
features of our models just using the single variable of aggregate population outflow from 
Wuhan (from January 1 to 24). 

In order to enhance the model’s predictive strength, we added prefecture GDP and local 
population to models (7) through (12) (Supplementary Table 5). All six models have a good fit, 
R2 = 0.957-0.958. For the both exponential and power types of models, whatever baseline hazard 
functional forms λ0(𝑡) used, the key paramater βi values are unchanged. The value of paramater 
β1 is much larger than β1 and β3, implying that the outflow population from Wuhan plays a 

dominating role in predicting infections over time and space.  

 

  

Exponential-

Logistic 

model (EL) 

Exponential-

Generalized-

Logistic 

model (EGL) 

Exponential-

Gompertz 

model (EG) 

Power-

Logistic 

model (PL) 

Power-

Generalized- 

Logistic 

model (PGL) 

Power-

Gompertz 

model (PG) 

R2 0.957 0.958 0.958 0.957 0.958 0.958 

g  0.170   0.170  

γ/a/r 0.274 0.181 0.004 0.274 0.181 0.004 

ω/b/ti 3.386 10.910 0.850 3.386 10.910 0.850 

α 0.930 0.900 0.559 5.042 5.603 4.231 

β1 1.360 1.360 1.360 0.617 0.617 0.617 

β2 0.106 0.106 0.106 0.088 0.088 0.088 

β3 0.273 0.273 0.273 0.355 0.355 0.355 

Fixed effects Yes Yes Yes Yes Yes Yes 

N 7,992 7,992 7,992 7,992 7,992 7,992 

Supplementary Table 5 | Results for dynamic models (7) through (12). 
 

Since prefectures in Hubei are closely linked with Wuhan, they suffered more infections 
compared with prefectures in other provinces, and are thus themselves perceived to be a bigger 
source of risk. Indeed, 75.66% of Wuhan population outflow went to other prefectures within 
Hubei province, which had 56.43% of the total confirmed cases. During January 1- 24, there was 
an average daily population outflow of 478,270 from Wuhan, and an average daily population 
outflow of 916,090 from Hubei (excl. Wuhan) to prefectures in other provinces/regions.  

To investigate this issue, we include secondary risk resource variable 𝑥4𝑖, outflow from 
Hubei (excluding Wuhan), into our dynamic models. Results are provided in the following Table 
6. The estimated value for Β4 is essentially zero, i.e., the outflow population from Hubei 
(excluding Wuhan) had no significant effect on confirmed cases overall. More specifically, the 
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addition of outflow from Hubei has no effect on R2, compared with our previous analysis without 
this variable (see Supplementary Table 5).  

 

 

  

Exponential-

Logistic 

model (EL) 

Exponential-

Generalized-

Logistic model 

(EGL) 

Exponential-

Gompertz 

model (EG) 

Power-

Logistic 

model (PL) 

Power-

Generalized- 

Logistic model 

(PGL) 

Power-

Gompertz 

model (PG) 

R2 0.957 0.958 0.958 0.957 0.958 0.958 

g  0.170   0.205  

γ/a/r 0.274 0.181 0.004 0.274 0.185 0.004 

ω/b/ti 3.386 10.910 0.850 3.389 10.986 0.850 

α 1.103 1.259 1.165 6.065 4.245 3.369 

β1 1.360 1.360 1.360 0.619 0.618 0.623 

β2 0.106 0.106 0.106 0.091 0.088 0.093 

β3 0.273 0.273 0.273 0.357 0.355 0.355 

β4 -0.001 -0.001 -0.001 0.000 0.000 0.000 

Fixed effects Yes Yes Yes Yes Yes Yes 

N 7,992 7,992 7,992 7,992 7,992 7,992 

Supplementary Table 6 | Effect of outflow from Hubei in dynamic models (7) - (12). 
 

 From the analysis above, we find that estimated results are identical between different 
models. There is no advantage to use the generalized logistic hazard function with an additional 
parameter g, compared with the original logistic function. In a prediction analysis, we also find 
that the generalized logistic models perform the worst in early days of the virus spread compared 
with logistic models (EL and PL) as well as Gompertz models (EG and PG). 
 

3.2.3 Time period and time lag sensitivity analysis 

 We also conduct a sensitivity analysis by using different time periods for aggregate 
population outflow from Wuhan based on logistic and Gompertz models. We compare using 

population outflow from Jan 1-12 to outflow from Jan 13-24, and find that the latter (the more 

recent dates of travel) are stronger predictors in term of R2 (0.962 – 0.963) and the outflow 

parameter value of β1 (0.688 vs. 0.557 for power models; 1.530 vs. 1.224 for exponential models, 

Supplementary Table 7 and 8). This implies that more recent outflow from Wuhan played a more 

important role in determining the spread of virus, which is consistent with our correlational 
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analysis (Extended Data Figure 1) and with the outflow-only model robustness check (Extended 
Data Figure 8). 
 

 

Supplementary Table 7 | Results for dynamic models using outflow data from Jan 1 to 12. 
 
  

  

Exponential-

Logistic 

model (EL) 

Exponential-

Gompertz 

model (EG) 

Power-

Logistic 

model (PL) 

Power-

Gompertz 

model (PG) 

R2 0.952 0.953 0.952 0.953 

γ/a 0.274 0.004 0.274 0.004 

ω/b 3.386 0.850 3.386 0.850 

α 1.517 0.995 5.245 4.628 

β1 1.224 1.224 0.557 0.557 

β2 0.074 0.074 0.061 0.061 

β3 0.348 0.348 0.452 0.452 

Fixed effects Yes Yes Yes Yes 

N 0.952 0.953 0.952 0.953 
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Exponential-

Logistic 

model (EL) 

Exponential-

Gompertz 

model (EG) 

Power-

Logistic 

model (PL) 

Power-

Gompertz 

model (PG) 

R2 0.962 0.963 0.962 0.963 

γ/a 0.274 0.004 0.274 0.004 

ω/b 3.387 0.850 3.387 0.850 

α 0.637 0.751 3.101 1.747 

β1 1.530 1.530 0.688 0.688 

β2 0.149 0.149 0.124 0.124 

β3 0.186 0.186 0.242 0.242 

Fixed effects Yes Yes Yes Yes 

N 0.962 0.963 0.962 0.963 

Supplementary Table 8 | Results for dynamic models using outflow data from Jan 13 to 24. 
 
 

3.3 Modelling daily confirmed cases 

Our spatio-temporal risk source models can be used for modeling daily reported new 
cases. In order to do so, we need to have the first order derivative forms of our original models. 
We choose Logistic and Gompertz models for the baseline hazard function λ0(𝑡) for this 
purpose, and the relevant models are as follows: 

 

a)  ΔEL model:   𝑑λ(𝑡|𝑥𝑖)𝑑𝑡 ＝
𝛼𝑒−𝛾𝑡+𝜔𝛾[1+𝑒−𝛾𝑡+𝜔]2 (∏ 𝑒𝛽𝑗𝑥𝑗𝑖𝑚𝑗=1 )𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1                            (13) 

 

b)  ΔEG model:  𝑑λ(𝑡|𝑥𝑖)𝑑𝑡 ＝α𝑎𝑏𝑡𝑏𝑡 ln(𝑎) ln (𝑏)(∏ 𝑒𝛽𝑗𝑥𝑗𝑖𝑚𝑗=1 )𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1           (14) 

 

c)  ΔPL model:   𝑑λ(𝑡|𝑥𝑖)𝑑𝑡 ＝
𝛼𝑒−𝛾𝑡+𝜔𝛾[1+𝑒−𝛾𝑡+𝜔]2 (∏ 𝑥𝑗𝑖𝛽𝑗𝑚𝑗=1 ) 𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1                    (15)     

 

d)  ΔPG model:  𝑑λ(𝑡|𝑥𝑖)𝑑𝑡 ＝α𝑎𝑏𝑡𝑏𝑡 ln(𝑎) ln(𝑏) (∏ 𝑥𝑗𝑖𝛽𝑗𝑚𝑗=1 ) 𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1          (16) 
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We use these derivative forms to model daily reported new cases up to February 19, and 
provide the results in the following table. As can be seen, the parameters remain stable though 
the model fitting is not as good as the original models for cumulative confirmed cases. 

We also include the secondary risk resource variable 𝑥4𝑖, outflow from Hubei (excluding 
Wuhan), into the derivative models. The estimated value for Β4 is nearly zero as well (see 
Supplementary Table 10). Thus, we confirm again that outflow population from Hubei 
(excluding Wuhan) had no additional significant effect on daily confirmed cases over time across 
locales.   

 

  

ΔExponential-
Logistic 

model (ΔEL) 

ΔExponential-
Gompertz 

model (ΔEG) 

ΔPower-
Logistic 

model (ΔPL) 

ΔPower-
Gompertz 

model (ΔPG) 

R2 0.713 0.716 0.713 0.716 

γ/a 0.241 0.002 0.241 0.002 

ω/b 2.987 0.847 2.986 0.847 

α 1.047 1.359 0.862 1.760 

β1 1.453 1.444 0.657 0.652 

β2 0.150 0.150 0.123 0.122 

β3 0.264 0.265 0.343 0.345 

Fixed effects Yes Yes Yes Yes 

N 7,992 7,992 7,992 7,992 

Supplementary Table 9 | Modeling daily confirmed cases in dynamic models (13) - (16). 
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ΔExponential-
Logistic 

model (ΔEL) 

ΔExponential-
Gompertz 

model (ΔEG) 

ΔPower-
Logistic 

model (ΔPL) 

ΔPower-
Gompertz 

model (ΔPG) 

R2 0.713 0.716 0.713 0.716 

α 0.650 1.288 2.145 2.694 

γ/a 0.241 0.002 0.241 0.002 

ω/b 2.987 0.847 2.986 0.847 

β1 1.452 1.443 0.656 0.653 

β2 0.150 0.149 0.121 0.122 

β3 0.264 0.265 0.341 0.343 

β4 -0.001 0.004 0.010 0.008 

Fixed effects Yes Yes Yes Yes 

N 7,992 7,992 0.713 0.716 

Supplementary Table 10 | Modeling daily confirmed cases in dynamic models (13) - (16). 

 

3.4 From reference points to reference patterns 

The risk model in Supplementary Information section 3.1.4 used the aggregate Wuhan 
population outflow to generate a single reference point (on a single date) of expected infections 
for each prefecture. Here, we used Wuhan population outflow to provide a reference growth 
pattern (i.e., across time) for COVID-19’s spread (Fig. 3 in the main text) across 296 prefectures 
in China (the population of these prefectures comprise 94% of China’s total population; some 
prefectures, mainly in sparsely populated autonomous regions, were not included in the model 
analysis due to lack of recent GDP data).  

In contrast to SIR models, which estimates epidemiological spread in a mechanistic 
model, our model does not make a priori assumptions of any growth pattern or mechanism 
(beyond there being some relationship between local infection count and Wuhan’s population 
outflow to that prefecture). Rather, the model leverages machine learning to statistically derive 
COVID-19’s epidemic curve and growth pattern across China from all data points regarding 
confirmed cases across time and space. With more data, the hazard model fit becomes better, and 
a clearer picture of the epidemic curve emerges.  

Similar to the static model, we can again use the predicted growth pattern of the virus as a 
benchmark to identify which locales deviate significantly based on our hazard models. 
Analogous to the logic of our earlier analysis using deviation between predicted and actual 
values of infection numbers to infer risk, here the differences in the growth trends between 
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predicted and confirmed cases can signal higher levels of COVID-19 transmission. Once again, 
prefectures with lower trends than expected by our model might have had more successful public 
health measures in controlling the spread of the virus, while prefectures with higher-than-
expected trends likely have more community transmission.  

Most of the prefectures in Hubei province (excluding Wuhan) fit our dynamic models of 
virus spread very well, as illustrated in Extended Data Figure 5. Since the virus likely spread 
before the quarantine was imposed in Hubei and Wuhan, and before other strict public health 
measures were introduced, these epidemic curves likely represent something close to the virus’s 
‘natural’ growth pattern. Indeed, they closely resemble a classic S-curve. The machine-learning-
based hazard model fitting process naturally chooses some of these prefectures as the reference 
growth trends as the basis for the comparison with other prefectures. Prefectures that have actual 
growth trends that are much higher than the predicted spread patterns are ‘underperforming,’ for 
example Suizhou and Xiaogan (the first two graphs in Extended Data Figure 5). Prefectures that 
have exhibited better-than-expected performance in controlling the spread of the virus include 
Jingzhou and Xianning (the last two graphs in Extended Data Figure 5).  

 

3.5 A transmission risk index 

It should be noted that our model does not merely predict expected levels of infection, but 
also creates benchmark ‘growth patterns’ for epidemiological growth. Hence, performance, as 
evaluated by our model, has less to do with absolute number of infections, and more to do with 
growth pattern of infections compared to what the model predicts (which is derived from 
observing the growth pattern in different locales across China).  

In order to assess the risk of COVID-19 spread for different prefectures, we develop a 
measure of total transmission risk by exploiting the integral of the differences between actual 
confirmed infection cases and predicted numbers in our model.  Δ𝑖 = ∑ [λ(𝑡|𝑖) − �̂�(𝑡|𝑥𝑖)]𝑇𝑡=1       (17) 

where λ(𝑡|𝑖) is the cumulative number of confirmed cases at time t for prefecture i, �̂�(𝑡|𝑥𝑖) is the 
estimated number of cases by our hazards models at time t for prefecture i, and T is the total time 
period (days) considered. We normalize the measure Δ𝑖 by subtracting the mean and dividing by 
the standard deviation to form the final transmission risk index ∆̅𝑖.  Extended Data Figure 7 is the 
distribution of the index based on our modeling results up to February 19. Prefectures above the 
90% confidence interval of the index are likely experiencing more local transmissions than 
imported cases, and prefectures below the 90% confidence interval have a better performance in 
the virus spread control. 

Supplementary Table 11 shows the top and bottom 10 prefectures on the transmission risk 
index up to February 19. When the value of risk index  ∆̅𝑖 is larger than 1.645, 1.960, or 2.576, 
the corresponding prefectures have a statistically significant transmission risk at the 90%, 95%, 
or 99% confidence interval, respectively. Suizhou, Wenzhou, Xiaogan, and Shenzhen have a 
highly significant transmission risk index score at above the 99% confidence interval. We discuss 
these cases in the following section. 
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High transmission risk prefectures Low transmission risk prefectures 

Prefecture Risk index ∆̅𝒊 Prefecture Risk index ∆̅𝒊 
Suizhou 9.797 Xianning -8.861 

Wenzhou 6.749 Jingzhou -3.727 

Xiaogan 3.052 Hangzhou -2.617 

Shenzhen 2.843 Ezhou -2.545 

Xinyu 1.786 Guangzhou -1.269 

Bengbu 1.718 Huanggang -1.016 

Yichang 1.122 Huzhou -0.847 

Taizhou 1.119 Jiujiang -0.791 

Bozhou 1.005 Ji'an -0.694 

Shaoyang 0.950 Chuzhou -0.596 

         Note: The threshold for the 90% and 95% confidence intervals are 1.644 and 1.960, respectively. 

Supplementary Table 11 | Transmission risk index ∆̅𝑖 for top 10 and bottom 10 prefectures 
on February 19. 
 

3.6 Comparison between incidence rate and risk index 

In epidemiology, incidence rate and incidence proportion are commonly used measures 
for epidemic risk, which are typically based on the number of persons in a vulnerable population 
that are infected at a given time: Local population is the most commonly used denominator for 
incidence rate. Since our analyses and risk index uses population outflow from Wuhan (the 
epicenter of the outbreak) as the benchmark for risk assessment, we may re-conceptualize our 
risk index as a population-outflow based incidence rate measurement.  

In other words, we re-conceive incidence rate as the ratio between infection count and 
risk importation count, i.e., the ratio of confirmed cases and population outflow. Supplementary 
Table 12 provides a comparison of the three different measures of risk on February 12.  

 

City name Region  
Confirmed 
cases 

Population 
based 
incidence 
rate 

Outflow 
based 
incidence 
rate 

Risk index  
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Suizhou Hubei 1160 0.046% 0.372% 9.641  

Xiaogan Hubei 2874 0.055% 0.130% 2.600  

Yichang Hubei 810 0.021% 0.296% 1.270  

Xiangyang Hubei 1101 0.019% 0.293% 0.816  

Jingmen Hubei 927 0.032% 0.231% 0.659  

Shiyan Hubei 562 0.016% 0.322% 0.535  

Huangshi Hubei 911 0.034% 0.193% 0.471  

Huanggang Hubei 2662 0.036% 0.139% -0.442  

Ezhou Hubei 1065 0.096% 0.098% -2.602  

Jingzhou Hubei 1431 0.022% 0.212% -5.230  

Xianning Hubei 534 0.018% 0.067% -8.334  

Wenzhou Zhejiang 490 0.006% 5.222% 6.784  

Taizhou Zhejiang 144 0.002% 2.631% 1.204  

Ningbo Zhejiang 153 0.003% 1.926% 0.094  

Zhoushan Zhejiang 10 0.001% 0.914% -0.205  

Lishui Zhejiang 17 0.001% 1.014% -0.323  

Jiaxing Zhejiang 42 0.001% 1.257% -0.438  

Quzhou Zhejiang 21 0.001% 0.686% -0.595  

Shaoxing Zhejiang 41 0.001% 1.184% -0.627  

Jinhua Zhejiang 55 0.001% 1.052% -0.633  

Huzhou Zhejiang 10 0.000% 0.319% -0.870  

Hangzhou Zhejiang 162 0.002% 0.688% -2.597  

Shuangyashan Heilongjiang 39 0.004% 975.000% 0.493  

Jixi Heilongjiang 44 0.003% 275.000% 0.440  

Suihua Heilongjiang 45 0.001% 10.843% 0.335  

Qiqihar Heilongjiang 33 0.001% 20.625% 0.183  

Qitaihe Heilongjiang 16 0.002% 200.000% 0.163  

Jiamusi Heilongjiang 15 0.001% 25.000% 0.155  

Mudanjiang Heilongjiang 12 <0.001% 25.000% 0.084  

Hegang Heilongjiang 5 <0.001% 125.000% -0.026  

Heihe Heilongjiang 10 0.001% 27.778% -0.071  

Yichun Heilongjiang 0 <0.001% 0.000% -0.129  

Daqing Heilongjiang 15 0.001% 2.404% -0.182  

Harbin Heilongjiang 159 0.002% 3.586% -0.290  

Shenzhen Guangdong 391 0.009% 0.894% 2.213 

Chongqing Chongqing 84 0.001% 0.339% 0.017 

Beijing Beijing 28 0.000% 0.253% -0.019 

Shanghai Shanghai 42 0.001% 0.486% -0.061 

Chengdu Sichuan 110 0.001% 0.359% -0.062 

Suzhou Jiangsu 505 0.001% 0.523% -0.076 

Fuzhou Fujian 35 0.001% 0.312% -0.076 
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Lanzhou Gansu 352 0.003% 0.355% -0.077 

Shenyang Liaoning 311 0.002% 0.392% -0.077 

Tianjin Tianjin 107 0.001% 0.511% -0.077 

Kunming Yunnan 31 0.002% 0.792% -0.105 

Yinchuan Ningxia 46 0.001% 0.289% -0.117 

Xi'an Shanxi 150 0.002% 3.383% -0.149 

Jinan Shandong 47 0.001% 0.389% -0.153 

Changchun Jilin 64 0.001% 0.389% -0.163 

Zhengzhou Henan 125 0.001% 0.410% -0.220 

Changsha Hunan 27 0.000% 0.160% -0.370 

Hefei Anhui 53 0.001% 0.314% -0.390 

Shijiazhuang Hebei 87 0.001% 0.229% -0.409 

Qingdao Shandong 157 0.002% 0.289% -0.451 

Harbin Heilongjiang 137 0.002% 0.132% -0.541 

Nanjing Jiangsu 223 0.003% 0.142% -0.557 

Guangzhou Guangdong 323 0.004% 0.541% -1.477 

Supplementary Table 12 | Comparison between incidence rate and risk index. 
 

We first discuss the prefectures in Supplementary Table 12 that are in Hubei province. 
Our transmission risk index identifies Suizhou and Xiaogan (the first two graphs in Extended 
Data Figure 6) in Hubei as the most statistically significant “underperformers,” with both at the 
99% confidence interval. Consistent with this prediction, which we made on February 12, 2020 
based on data through that date, the Hubei provincial government implemented an even more 
restrictive quarantine for Wuhan and Xiaogan on February 16, whereby people were strictly 
prohibited from leaving their homes. Although Xiaogan had the highest number of confirmed 
cases in Hubei province (except Wuhan), its population-based incidence rate was not the highest 
and the outflow-based incidence rate was also relatively small.  

Suizhou (170km from Wuhan, population 2.21M), despite being the second smallest 
prefecture in Hubei, had the highest outflow based incidence rate in the province and the highest 
value on the transmission risk index: Even our analyses at earlier dates suggested it should 
deserve greater government scrutiny. Although the city was not subject to stricter quarantine 
policies like Xiaogan, media reports have suggested the city was seriously stricken and have 
reported that dozens of local government officials were called to account for inadequate control 
of the outbreak.54-55  

On the other hand, Xianning and Jingzhou (the last two graphs in Extended Data Figure 
5) as well as Ezhou exhibited better-than-expected performance in controlling the spread of the 
virus. The three prefectures had the lowest outflow-based incidence rates, though Ezhou had the 
highest population-based incidence rate.  

In Zhejiang province, a cluster of four highly interconnected prefecture-cities (Wenzhou, 
Taizhou, Ningbo, and Hangzhou; all four were in our top-10 list) were the first prefectures to be 
quarantined outside of Hubei. Beginning February 2, the Zhejiang provincial government 
adopted measures including allowing only one person per household to leave their home every 



 50 

two days to buy basic necessities. And, indeed, Wenzhou and Taizhou were above the 95% 
confidence interval in our transmission risk index; Ningbo and Hangzhou were also among the 
top-10 list in the risk index though they did not reach the 90% significance level (Supplementary 
Table 12, Extended Data Figure 6). The decision to quarantine these two prefectures may have 
also been influenced by their relative proximity and interconnectivity with Wenzhou in 
particular. Wenzhou has a reputation of being a city of geographically well-connected 
entrepreneurs, and highlights the downside risk of greater socio-economic connectivity; 1.6 
million people originally from Wenzhou are estimated to run businesses in other parts of China 
(and another 600,000 overseas). 

Early in the outbreak, Shenzhen and Guangzhou had a relatively high absolute number of 
confirmed cases; local media in both prefectures also reported on numerous primary or 
community transmission cases. Guangzhou exhibited an improving (i.e., declining) trend in the 
risk index over time, and had the lowest risk index outside of Hubei, Zhejiang, and Heilongjiang 
(i.e., it had fewer infections over time than expected given population inflow from Wuhan). 
However, Shenzhen had a persistently high risk index score, albeit with a slightly decreasing 
trend. As an economic boomtown and migrant hub, it is possible that Shenzhen may have faced 
additional virus import risk from many other regions in China. Finally, as shown in the last three 
graphs in Extended Data Figure 6, Beijing, Shanghai, and Nanjing have improving trends on the 
transmission risk index, although they are not yet significantly over-performing.  

Overall and in general, our transmission risk index provides a simple and useful method 
to identify situations of transmission risk in different locales.   

 

3.7  Entropy of population versus outflow based incidence rates 

We use the following entropy measure to capture the uniformity of incidence rates of 
COVID-19 based on the population outflow from Wuhan: 𝐸 = − ∑ 𝑝𝑖ln(𝑝𝑖)𝑛𝑖=1       (18) 

where 𝑝𝑖 is the population-outflow normalized incidence rate of prefecture i, i.e., confirmed 
infections in a prefecture divided by the aggregate population outflow from Wuhan to 
prefecture i between January 1 and 24, with rates normalized to sum to 1. The larger the 
value of entropy, the more uniformity of the infection rates among prefectures. We also 
create an entropy measure for the uniformity of incidence rates based on population of that 
prefecture (which is the classic definition of incidence rate).  

Entropy increased in the first week of the study period and remained flat thereafter, 
which suggests that the rates of confirmed infection cases based on population outflow from 
Wuhan remained uniform across Chinese prefectures. One possible reason for our model’s 
robustness beyond January 24 (in the still-early stages of this epidemic) may relate to the fact 
that, as recent research has shown, most early transmissions occurred in family clusters21, which 
would explain why infection growth remains proportional to population outflow from Wuhan 
(with average household size as a possible scaling factor).  
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4. Comparative study regarding gravity models 

 

4.1 Static model comparison 

Gravity models, inspired by Newton’s gravity law, were originally developed to model 
mobility flows between two populations considering their relative distance.56 They have been 

broadly used to study spatial interactions between different places, including traffic behavior, 

economic exchange, migration, and disease spread (see Barbosa et al. (2018)33 for a recent 

review). A typical gravity model for mobility flow 𝑇𝑖𝑗 between two populations 𝑃𝑖and 𝑃𝑗 in areas 

i and j has a multiplicative form: 𝑇𝑖𝑗 = 𝑐𝑃𝑖𝛽1𝑃𝑗𝛽2𝑑𝑖𝑗−𝛽3, where 𝑑𝑖𝑗  is the distance between areas i 

and j, and c and βi are parameters to estimate. The distance function is typically modeled by a 
power law 𝑑𝑖𝑗−𝛽3 or an exponential form 𝑒−𝛽3𝑑𝑖𝑗. 33  

In the area of epidemic research, gravity models have been widely used to study the 

spatial spread of virus and its relationship with mobility.38, 57-61 When using the gravity model to 

estimate the epicenter Wuhan’s effect on population outflow as well as infections in other 
prefectures 𝑇𝑖𝑗, we let j = 1 for Wuhan; the Wuhan population variable can then be dropped in 

the model (since it is constant across all prefectures in the model). In order to be comparable 

with our risk source models (1) and (2), we also control for prefecture GDP and provincial fixed 

effects. Then we can have the following gravity models for our purpose of comparison.   

 

 

                             𝑇𝑖1＝𝑐𝑒𝛽1𝑃𝑖𝑒𝛽2𝐺𝑖𝑒−𝛽3𝑑𝑖1𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1      (19) 

 

                       𝑇𝑖1＝𝑐𝑃𝑖𝛽1𝐺𝑖𝛽2𝑑𝑖1−𝛽3𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1       (20) 

 

where notations are the same as for models (1) and (2), and all the variables are also normalized 
in the same way as before. We use the gravity models to predict both outflow from Wuhan to 
prefecture i and infections in prefecture i with and without fixed effects. Provincial fixed effects 
allow the unobserved location specific effects to be correlated with the explanatory variables. 
Since these effects may have a similar role as distance, we also conduct analyses without fixed 
effects in order to have a typical gravity model for comparison. We also replace the distance 
variable with the outflow variable Oi−β0to jointly model it with distance in our analysis. 

Results are provided in Supplementary Table 13 for the exponential model (19) and 
Supplementary Table 14 for the power model (20) at the date of February 19 for cumulative 
confirmed cases. Since the two types of models have almost the same goodness of fit, we just 
discuss results for model (19). As we can see, when provincial fixed effects are in place, the 
parameter value and effect of distance are reduced in the model.  In general, the gravity models 
can predict outflow from Wuhan to different prefectures very well, R2 = 0.902, but are less 

predictive of number of confirmed cases, R2 = 0.758, when fixed effects are not included. If we 
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use outflow instead of distance in the model, then R2 = 0.941, which is much higher than the 

original gravity model without fixed effects.  

When we include both outflow and distance into the models, the parameter β0 for outflow 

has a much larger value than others in the model, the parameter β3 for distance becomes nearly 

zero, and the rest of parameters remain stable. Thus, adding the distance variable into the model 

does not contribute to model fit (i.e., no change for R2) in the presence of the population outflow 

variable. Although “recipient” population size and distance were significant predictors for 
infections (p < .001) in the absence of outflow, a mediation analysis shows that population 
outflow from Wuhan fully mediates the effect of distance on infections (i.e., the parameter of 
distance is no longer statistically significant when considered jointly with outflow). In fact, there 
is no advantage to estimating population flow and estimating infection spread by using estimated 
population flow, when population flow is actually observable, as in our case. Thus, it becomes 
possible to jointly evaluate the effects of population outflow and disease spread in the same 
model as our risk source models; whereas gravity models typically evaluate each relationship 
separately. 

 

 

Dependent 

Variable 

Outflow 

from 

Wuhan  

Outflow 

from 

Wuhan  

Confirmed 

Cases 

Confirmed 

Cases 

Confirmed 

Cases 

Confirmed 

Cases 

Confirmed 

Cases 

Constant (c) 9623.48 15.919 21.934 2.278 13.669 4.222 3.935 

Outflow (β0)         1.821 1.507 1.565 

GDP (β1) -0.408 0.154 0.124 0.286 0.136 0.152 0.144 

Population (β2) 0.505 0.656 0.751 0.683 0.135 0.221 0.202 

Distance (β3) -1.250 -0.844 -1.196 -0.579     0.025 

Fixed effects No Yes No Yes No Yes Yes 

R2 0.902 0.966 0.758 0.941 0.941 0.965 0.965 

N 296 296 296 296 296 296 296 

Supplementary Table 13 | Comparison regarding exponential gravity model (19). Empty 
cells denote when the variable listed in the dependent variable column is not present in the 
model. Presence of fixed effects in the model is denoted by ‘Yes’ and ‘No.’ 

 

 

 

 

 

 

Dependent 

Variable 

Outflow 

from 

Wuhan  

Outflow 

from 

Wuhan  

Confirmed 

Cases 

Confirmed 

Cases 

Confirmed 

Cases 

Confirmed 

Cases 

Confirmed 

Cases 

Constant (c) 6016.43 38.371 22.168 2.278 133.400 8.661 3.935 
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Outflow (β0)         0.827 0.684 1.565 

GDP (β1) -0.343 0.124 0.102 0.286 0.113 0.126 0.144 

Population(β2) 0.659 0.853 0.981 0.683 0.176 0.287 0.202 

Distance (β3) -1.861 -1.253 -1.783 -0.579     0.025 

Fixed effects No Yes No Yes No Yes Yes 

R2 0.901 0.966 0.757 0.941 0.941 0.965 0.965 

N 296 296 296 296 296 296 296 

Supplementary Table 14 | Comparison regarding power gravity model (20).  

Previous research also shows that gravity models are only suitable within a certain 
distance57-58. Viboud et al. (2006)57 found that workflows capture the spread of influenza better 
than simple Euclidean distance or other movement metrics. Balcan et al. (2009)58 used a gravity 
model to investigate the different contributions of the long- and short-range mobility flows on 
infectious diseases. Brockmann and Helbing (2013)62 proposed a concept of effective distance, 
reflecting that a small fraction of traffic flow is effectively equivalent to a large distance, and 
vice versa. Our outflow population from Wuhan can be regarded as an “effective distance” 
measure between Wuhan and other prefectures that reflects effective interactions in social and 
economic perspectives. Our risk source models can be viewed as a further development by 
replacing the distance variable in gravity models with population outflow from risk source. With 
these empirical relationships in mind, we develop a “risk source” model that focuses on 
leveraging observed population flow data to operationalize the risk emanating from the epidemic 
source or epicenter.  
 

 

4.2 Spatio-temporal model comparison 

Gravity models may be used to study the geographic properties of the spread of 

something like a virus. Even though some prior work has also studied temporal features of 

transmission using various approaches57-58, this work has not offered an integrated spatio-

temporal model. In order to study the combined properties of the spread of a virus over time and 

space jointly in a unified model, researchers have tried to extend gravity models by incorporating 

some time-varying components into their models.63-66 In particular, several recent papers have 

used the framework of Cox proportional hazard model to develop spatio-temporal 

epidemiological models. 64-67  

We consider replacing the constant c with a baseline hazard function λ0(𝑡) based on the 

Cox hazard model framework, which leads to the following spatio-temporal gravity models:  

 

                          λ(𝑡|𝑃𝑖, 𝐺𝑖 , 𝑑𝑖1)＝ λ0(𝑡)𝑒𝛽1𝑃𝑖𝑒𝛽2𝐺𝑖𝑒−𝛽3𝑑𝑖1𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1   (21) 

 

                           λ(𝑡|𝑃𝑖, 𝐺𝑖 , 𝑑𝑖1)＝ λ0(𝑡)𝑃𝑖𝛽1𝐺𝑖𝛽2𝑑𝑖1−𝛽3𝑒∑ 𝜆𝑘𝐼𝑖𝑘𝑛𝑘=1    (22) 
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These models are in fact special cases of our risk source models (5) and (6) where the outflow 

variable is replaced by distance. Alternative approaches beyond gravity models can also be used 

to create sophisticated dynamic spatio-temporal models (e.g., Tang et al. (2019) for a Bayesian 

framework considering time and geographic spread68); our spatio-temporal risk source models 

offer a dynamic framework that is parsimonious, descriptive, and insightful.  

As with our earlier models (5) and (6), we use three most popular sigmoidal functions: 
logistic, generalized logistic, and Gompertz functions for λ0(𝑡) in this comparison analysis. 
These models have been often used in the epidemic literature to model infectious disease 
spread.51-53  

Results based on models (21) and (22) are provided in Supplementary Table 15. When 

we include both outflow and distance into our spatio-temporal risk source models, the parameter 

for distance is much smaller than other parameters in the model, i.e., the outflow variable play 

the most important role in driving COVID-19 dissemination over time and space in the country. 

Compared with our early results in Supplementary Table 5, adding the distance variable into our 

models does not improve model fit (i.e., no change for R2) in the presence of the outflow 

variable. 

 

 

  

Exponential-

Logistic 

model (EL) 

Exponential-

Generalized-

Logistic 

model (EGL) 

Exponential-

Gompertz 

model (EG) 

Power-

Logistic 

model 

(PL) 

Power-

Generalized- 

Logistic 

model (PGL) 

Power-

Gompertz 

model (PG) 

g   0.171     0.171   

γ/a/r 0.274 0.181 0.004 0.274 0.181 0.004 

ω/b/ti 3.386 10.913 0.85 3.386 10.913 0.85 

α 1.097 1.196 1.218 4.97 4.896 4.231 

Outflow (β0) 1.422 1.421 1.421 0.645 0.645 0.644 

GDP (β1) 0.095 0.095 0.095 0.08 0.08 0.08 

Population 

(β2) 
0.253 0.253 0.253 0.328 0.329 0.329 

Distance (β3) 0.029 0.028 0.028 0.042 0.041 0.041 

Fixed effects  Yes Yes Yes Yes Yes Yes 

R2 0.957 0.958 0.958 0.957 0.958 0.958 

N 7,992 7,992 7,992 7,992 7,992 7,992 

Supplementary Table 15 | Comparison between outflow and distance in dynamic models. 
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5.  Assessment of alternative population outflow measures  

In our main analysis, we use the total population outflow from Wuhan as the primary risk 
resource and outflow from Hubei as the secondary risk resource. Here we evaluate alternative 
measures of population outflow (Section 1.2), using different approaches, as robustness checks.  

First, we distinguish returning residents versus ‘migrants’ in our analyses. The carrier 
also provided us a count of returning residents who had spent at least 2 hours in Wuhan from 
January 1-24. Residence is defined by customer’s registered home address, which is also used for 
billing purposes (local calls receive a preferential rate). Thus, we can separate total population 
outflow from Wuhan into two types of travelers: 1) returning residents of each prefecture (who 
visited Wuhan and then traveled back to their home prefectures); 2) non-returning-residents 
(‘migrants’) who travelled from Wuhan before entering the prefecture. In vast majority of the 
latter cases were likely Wuhan or Hubei residents. In our dataset, 38.78% of population outflow 
from Wuhan were returning residents of other prefectures in Hubei; only 9.10% were returning 
residents from prefectures outside of Hubei. 

Second, we investigate the effect of population outflow from Hubei (excluding Wuhan) 
on infection count in prefectures across China. Besides being the most stricken province in 
China, Hubei residents were subject to particularly stringent travel restrictions in China and 
internationally. 

Third, we evaluate how population outflow that occurred after the quarantine was 
imposed affected COVID-19 spread. We note in the main text that a very small stream of 
population outflow continued after the quarantine of Wuhan and prefectures in Hubei (January 
24). We note that some movement of government, medical, rescue, and logistical service 
providers across prefecture borders is to be expected. By testing the impact of post-quarantine 
population flow, we evaluate the effectiveness of the quarantine of Wuhan city and Hubei 
province. 

 Since these alternative measures of population outflow are highly inter-correlated (e.g., r 
= 0.876 for returning resident outflow and non-returning-resident outflow), simply including 
them into existing models as additional variables would introduce collinearity problems. Here we 
use nonparametric statistics and machine learning approaches to address this. 

 

5.1 Kernel-based conditional independence test 

Let X, Y and Z denote sets of random variables. The Conditional Independence (CI) 
between X and Y given Z, is denoted by (X⊥Y)|Z, meaning: if and only if, given the values of 
Z, further knowing the values of X (or Y) does not provide any additional information on the 
likelihood of Y (or X) occurring. In the dependence graph, this corresponds to whether the link 
between X and Y exists conditional on that the other two links exist. 
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Zhang et al. (2012)69 developed a Kernel-based Conditional Independence test (KCI-test), 
by constructing an appropriate test statistic and deriving its asymptotic distribution under the null 
hypothesis of conditional independence. This approach can test CI for continuous variables 
without assuming a functional form between the variables as well as the data distributions. 

In this test, X represents an outflow variable, Y is cumulative confirmed cases, and Z 
denotes a set of variables including local population size, GDP, and other outflow variables not 
included in X. Specifically, we let 𝑥1 = Non-returning-resident outflow from Wuhan during 
January 1-24, 𝑥2 = Returning resident outflow from Wuhan during January 1-24, 𝑥3 = Population 
outflow from Hubei (excluding Wuhan) during January 1-24, 𝑥4 = Additional population outflow 
from Wuhan during January 25 – February 6, and 𝑥5 = Additional population outflow from 
Hubei (excluding Wuhan) during January 25 – February 6; y = cumulative confirmed cases by 
February 19; and 𝑧1 = local population, and 𝑧2 = GDP. We use the full sample of 296 prefectures 
(excluding Wuhan) in this test. The results are as follows: 

 

X Y Z p-value 𝑥1 y 𝑧1, 𝑧2, 𝑥2, 𝑥3, 𝑥4, 𝑥5 0.033 𝑥2 y 𝑧1, 𝑧2, 𝑥1, 𝑥3, 𝑥4, 𝑥5 0.476 𝑥3 y 𝑧1, 𝑧2, 𝑥1, 𝑥2, 𝑥4, 𝑥5 0.043 𝑥4 y 𝑧1, 𝑧2, 𝑥1, 𝑥2, 𝑥3, 𝑥5 0.226 𝑥5 y 𝑧1, 𝑧2, 𝑥1, 𝑥2, 𝑥3, 𝑥4 0.810 

Supplementary Table 16 | Results of kernel-based conditional independence test for 
confirmed cases. 

 

In order to be consistent with our Poisson model (3), we use the logarithmic 
transformation of confirmed cases for an alternative test. The overall test results become more 
significant as follows:  
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X Y Z p-value 𝑥1 log(y+1) 𝑧1, 𝑧2, 𝑥2, 𝑥3, 𝑥4, 𝑥5 0.000 𝑥2 log(y+1) 𝑧1, 𝑧2, 𝑥1, 𝑥3, 𝑥4, 𝑥5 0.020 𝑥3 log(y+1) 𝑧1, 𝑧2, 𝑥1, 𝑥2, 𝑥4, 𝑥5 0.012 𝑥4 log(y+1) 𝑧1, 𝑧2, 𝑥1, 𝑥2, 𝑥3, 𝑥5 0.022 𝑥5 log(y+1) 𝑧1, 𝑧2, 𝑥1, 𝑥2, 𝑥3, 𝑥4 0.259 

Supplementary Table 17 | Results of kernel-based conditional independence test for the 
logarithm transformation of confirmed cases. 

 

Results show that non-returning-resident outflow from Wuhan (i.e., 𝑥1, most of whom are 
likely Wuhan residents) contributed significantly more than returning resident outflow from 
Wuhan (𝑥2) and population outflow from Hubei (𝑥3) to local confirmed cases (though both 𝑥2 
and 𝑥3 are significant at 95% confidence level for the logarithmic transformed cases). In other 
words, population outflow from Wuhan in particular, rather than even neighboring locales, was 
the primary predictor of COVID-19 infections. Indeed, Wuhan residents should have had a 
longer potential exposure to the virus and were thus relatively more likely to be infected than 
mere visitors to Wuhan.  

Compared with the total population outflow from Wuhan during January 1-24 (𝑥1+𝑥2), 
the additional outflow from Wuhan from January 25 – February 6 ( 𝑥4) had either no significant 
effect or a limited effect on confirmed cases (though it was significant at 95%  for the latter case 
of logarithmic transformation). The additional population outflow from Hubei (excluding 
Wuhan) during January 25 – February 6 (𝑥5) had no significant effect on confirmed cases when 
other outflow variables were considered. These results suggest that the quarantine of Hubei 
province was effective in controlling and preventing further spread of COVID-19 (i.e., SARS-
CoV-2 infections) to other parts of the country. 

 

5.2 Random forest tree analysis 

We used random forest (RF) models to assess the relative contribution of the outflow 
variables to number of confirmed cases.70-71 RF models use bagging (bootstrap aggregating) of 
decision trees in order to reduce variance of single trees, and thus improve prediction accuracy. A 
random forest consists of a large number of regression trees; the overall prediction of the forest is 
the average of predictions from the individual trees. Since individual trees produce 
multidimensional step functions, their average is a multidimensional step function that can 
nevertheless predict smooth functions.  

Our RF model consists of 300 trees, and we use 296 prefecture samples to fit our model, 
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the vector X (= [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]) is regarded as the inputs, and vector Y 
(=[log(confirmed_cases y + 1)] is regarded as the target. The test error of RF models is estimated 
on the out-of-bag (OOB) data, and the function to measure the quality of a tree split is MSE 
(mean squared error), which is equal to using variance reduction as the feature selection 
criterion. After multiple iterations of training, the optimal value of MSE is 0.0861 (R2=0.9639) 
calculated by predicted Y and actual Y. 

The variable importance metric in CART trees and random forests is called Gini 
importance for classification problems, but the MSE reduction is used as the regression random 
forest importance criterion. The MSE reduction (as factor importance indicator) according to 
regressor Xj for the complete forest is obtained as the average over all N (=300) trees of these 
differences. And for comparison purposes, all variable importance metrics have been normalized 
to sum to 1. Results are provided in the following table. 

 

Variables Importance (sum to 1) 

Non-returning-resident outflow from Wuhan – Jan 1-24 (𝑥2) 0.564 

Returning resident outflow from Wuhan – Jan 1-24 (𝑥1) 0.159 

Local population (𝑧1) 0.116 

Local GDP (𝑧2) 0.052 

Population outflow from Hubei – Jan 1-24 (𝑥3) 0.049 

Additional outflow from Hubei – Jan 25–Feb 6 (𝑥5) 0.031 

Hubei dummy 0.016 

Additional outflow from Wuhan – Jan 25–Feb 6 (𝑥4) 0.015 

Supplementary Table 18 | Importance of different outflow variables by RF. 

 

Similar to the CI test, non-returning-resident outflow from Wuhan (i.e., Wuhan residents) 
is the most important factor in predicting confirmed cases. The returning resident outflow from 
Wuhan is ranked second in importance, and is 3.55 times less important than non-returning-
residents. Thus, again, non-returning-resident outflow from Wuhan (i.e., likely Wuhan residents) 
were primarily responsible to the spread of SARS-CoV-2 in prefectures in China. Other outflow 
variables are much less important (during January 1-24). 

When we combine resident and non-returning-resident outflow from Wuhan together 
(𝑥1+𝑥3), the total population outflow from Wuhan takes 70.3% of the importance score (see 
Supplementary Table 19). The population outflow from Wuhan during January 1-24 is 41 times 
more important than that of the additional population outflow from Wuhan after the quarantine in 
predicting confirmed cases. Thus, the quarantine of Wuhan seemed relatively successful in 
controlling spread of the virus.  
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Variables Importance (sum to 1) 

Total outflow from Wuhan – Jan 1-24 (𝑥1+𝑥2) 0.703 

Local population (𝑧1) 0.119 

Local GDP (𝑧2) 0.057 

Population outflow from Hubei – Jan 1-24 (𝑥3) 0.056 

Additional outflow from Hubei – Jan 25–Feb 6 (𝑥5) 0.031 

Hubei dummy 0.018 

Additional outflow from Wuhan – Jan 25–Feb 6 (𝑥4) 0.017 

Supplementary Table 19 | Importance of combined outflow variables by RF. 

 

6.  Tencent data analyses 

As noted in our discussion in the main text, our methodology may be applied to any form 
of relatively representative population outflow data whether it is toll-booth data, traffic data, 
mobile app data, cell tower triangulation or GPS data, etc. 

Therefore, as a robustness check, in order to show that our data was representative of 
national travel patterns (as discussed above), we further replicate our analyses using Tencent 
mobility data (i.e., mobile app geolocation data from the most popular Chinese social media and 
communications ecosystem) from the chunyun migration of 2017. We show, by replicating our 
general pattern of results, that our data and methodology is not sensitive to our sample; the 
carrier’s estimation procedure; or the kind of telecommunications data.  

These data are available online and describe human mobility and population outflow 

from Wuhan to other prefectures in China from December 3, 2016 to January 24, 2017 (Lunar 

New Year’s Eve was January 27, 2017) using Tencent user geolocation data (e.g., from mobile 

phone apps such as WeChat, QQ, Tencent Map).72 Although this Tencent mobility dataset was 

from 2017 and did not capture contemporaneous population outflows like our own data from 

2020, we believe the general pattern of travel should be similar across years. Although one might 

expect inbound travel to Wuhan to have decreased as a result of the virus, Wuhan residents who 

were visiting other prefectures during the holiday had additional reasons to leave town in 2020. 

Since travel during migration and emergencies is commonly determined by the presence of 

social connections73-75, we expected travel patterns to be similar across years. In addition, the 

fact that the Lunar New Year also occurred in late January (January 22) in 2017 helps account for 
seasonality effects. 

We choose the same 296 prefectures for this comparative analysis between our dataset 

and the Tencent dataset. As hypothesized, the two datasets have a high correlation in mobility 

flows, r = 0.943.  For new confirmed COVID-19 cases, the correlations with the two datasets are 

similar, especially at a later stage of the spread of the virus, r = 0.951 for the Tencent dataset and 

r = 0.952 for our telecom data. However, after including local population and GDP in the model 
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analysis, Tencent data had poorer performance than our telecommunications data, with R2 = 

0.932 and 0.933 for EL and EG models respectively; compared to R2 = 0.957 and 0.958 for the 

respective models using the mobile telecommunications data. Detailed results for the 

Exponential-Logistic model (6) and Exponential-Gompertz model (7) are provided in 

Supplementary Table 20.  

The high predictive utility of the Tencent data also implies that chunyun migration 
patterns out of Wuhan from 2017 was very similar (but not identical) to chunyun or Wuhan 
population outflow in 2020 (as we hypothesized). This result also has implications for 
policymakers, particularly in China, since it suggests that (1) prior years’ non-emergency holiday 
travel patterns may be predictive of future travel patterns during emergencies (particularly if 
mobility during those holidays is motivated by the location of family ties), and (2) traditional 
cultural migration patterns are highly robust to disruption, for better or worse. Future researchers 
could examine if migrations in other countries, such as Christmas travel in Western countries, 
Thanksgiving travel in the United States, or recurring religious pilgrimages, are similarly 
predictive of post-disaster travel patterns and investigate their role in the spread of epidemic 
outbreaks. 

 

 
Tencent mobility data from 2017 

chunyun 

Telecom mobility data from main 

analyses 

  
Exponential-

Logistic (EL) 

Exponential-

Gompertz (EG) 

Exponential-

Logistic 

Exponential-

Gompertz 

R2 0.932 0.933 0.957 0.958 

α 0.244 0.250 0.930 0.559 

γ/a 0.277 0.004 0.274 0.004 

ω/b 3.408 0.849 3.386 0.850 

β1 2.693 2.693 1.360 1.360 

β2 -0.085 -0.085 0.106 0.106 

β3 0.115 0.115 0.273 0.273 

Fixed effects Yes Yes Yes Yes 

N 7,992 7,992 7,992 7,992 

Supplementary Table 20 | Comparison between Tencent data with our data in model fitting. 
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7.  Code for model estimation and data availability 

Our data for our main analyses is available online at this journal’s website, as supplementary 
information.   
 

Our code is below. 
 

import pandas as pd 

from sklearn.metrics import r2_score 

from scipy import stats 

import numpy as np 

import warnings 

from lmfit import Model  # solve non-linear optimization by Levenberg-Marquardt algorithm 

 

''' 
We use the source code library of lmfit in python 

“LMFIT: Non-linear least-square minimization and curve-fitting for Python” (Newville et al. 
2016) 
to estimate the parameters in our models. The relevant codes are provided as follows. 
''' 
 

data_path = "pneumonia_panel_296_cities(submit).csv"  
INF = 99999999999999 

NAN = 0 

 

def standardization(data, variables): 
    for var in variables:  

        try: 
            ln_var = "%s(Ln)" % var 
            mean_var = "%s(Ln_Mean)" % var 
            std_var = "%s(Ln_Std)" % var 
            data[ln_var] = np.log(data[var] + 1) 
            group = data.groupby("day", as_index=False)[ln_var].mean() 
            group.columns = ["day", mean_var] 
            data = pd.merge(data, group, on="day", how="left") 
            group = pd.DataFrame(data.groupby("day")[ln_var].std()) 
            group.columns = [std_var] 
            group["day"] = group.index 

            group.reset_index(drop=True, inplace=True) 
            data = pd.merge(data, group, on="day", how="left") 
        except Exception as e: 
            print(e) 
    return data 

 

def normalization(data, variables): 
    for var in variables: 
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        sum_var = "%s(Sum)" % var 
        group = data.groupby("day", as_index=False)[var].mean() 
        group.columns = ["day", sum_var] 
        data = pd.merge(data, group, on="day", how="left") 

return data 

 

def province_dummies(data): 
return np.array(data[["Shanghai", "Yunnan", "Neimenggu", "Beijing", "Jilin", "Sichuan", 

"Tianjin", "Ningxia", "Anhui","Shandong", "Shanxi", "Guangdong", "Guangxi", "Xinjiang", 
"Jiangsu", "JIangxi", "Hebei", "Henan", "Zhejiang", "Hainan", "Hubei", "Hunan", "Gansu", 
"Fujian", "Xizang", "Guizhou", "Liaoning", "Chongqing", "Shaanxi", "Qinghai", 
"Heilongjiang"]].values) 
 

# Daily Exponential Static Model 
def exponential_model(X, alpha, beta_1, beta_2, beta_3, beta_4, beta_5, lambda_1, 
lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, lambda_8, lambda_9, 
lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, lambda_16, 
lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, lambda_23, 
lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, lambda_30, 
lambda_31): 
    # province effect fixed 

    lambdas = [lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31] 
    betas = [beta_1, beta_2, beta_3, beta_4, beta_5] 
    N = len(X) - 31 

    fix = 1 

    for i in range(len(lambdas)): 
        fix = fix * np.exp(lambdas[i] * X[i + N]) 
    R = alpha 

    for i in range(N): 
        R = R * np.exp(betas[i] * X[i]) 
    R = R * fix 

    R[np.isinf(R)] = INF 

    R[np.isnan(R)] = NAN 

    return R 

 

def exponential_static_model_estimate(date="2020-01-28", y="confirmed", 
x=["wuhan_outflow", "gdp", "population"]): 

data = pd.read_csv(data_path) 
    province = pd.read_csv("province_fix.csv") 
    data = pd.merge(data, province, on="province", how="left") 
    data.fillna(0, inplace=True) 
    data = standardization(data, x) 
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    data = data[data["date"] == date] 
    Y = data[y] 
    X = [] 
    for k in x: 
        X.append((data["%s(Ln)" % k] - data["%s(Ln_Mean)" % k]) / data["%s(Ln_Std)" % k]) 
    fix = province_dummies(data) 
    X.append(fix.T) 
    X = np.vstack(X) 
    model = Model(exponential_model) 
    params = model.make_params(alpha=0, beta_1=0, beta_2=0, beta_3=0, beta_4=0, beta_5=0, 
lambda_1=0, lambda_2=0, lambda_3=0, lambda_4=0, lambda_5=0, lambda_6=0, lambda_7=0, 
lambda_8=0, lambda_9=0, lambda_10=0, lambda_11=0, lambda_12=0, lambda_13=0, 
lambda_14=0, lambda_15=0, lambda_16=0, lambda_17=0, lambda_18=0, lambda_19=0, 
lambda_20=0, lambda_21=0, lambda_22=0, lambda_23=0, lambda_24=0, lambda_25=0, 
lambda_26=0, lambda_27=0, lambda_28=0, lambda_29=0, lambda_30=0, lambda_31=0) 
    result = model.fit(Y, X=X, params=params) 
    Y_pred = result.best_fit 
    data["confirmed_pred"] = Y_pred 

    r2 = r2_score(Y, Y_pred) 
    print(result.fit_report()) 
    print("R square of Exponential model is ", r2) 
    data["actual-pred"] = data[y] - data["%s_pred" % y] 
    data["risk_index"] = (data["actual-pred"] - data["actual-pred"].mean()) / data["actual-
pred"].std() 
    x = data["actual-pred"] 
    mean, std = x.mean(), x.std(ddof=1) 
    conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std) 
    print(conf_intveral[1], conf_intveral[0]) 
    data = data.sort_values("actual-pred", ascending=False) 
    data = data[["city_cn", "city_en", "province", y, "%s_pred" % y, "actual-pred", "risk_index"]] 

data.to_csv("exponential_prediction_%s.csv" % date, encoding="utf-8-sig", index=False) 
 

# Exponential-Logistic Dynamic Model 
def exponential_logistic_model(X, gamma, omega, alpha, beta_1, beta_2, beta_3, beta_4, 
beta_5, lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, 
lambda_15, lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, 
lambda_22, lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, 
lambda_29, lambda_30, lambda_31): 
    lambdas = [lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31] 
    betas = [beta_1, beta_2, beta_3, beta_4, beta_5] 
    N = len(X) - 31 
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    fix = 1 

    for i in range(len(lambdas)): 
        fix = fix * np.exp(lambdas[i] * X[i + N]) 
    R = alpha / (1 + np.exp(-1 * gamma * X[0] + omega)) 
    for i in range(1, N): 
        R *= np.exp(betas[i - 1] * X[i]) 
    R *= fix 

    R[np.isinf(R)] = INF 

    R[np.isnan(R)] = NAN 

    return R 

 

# Exponential-Gompertz Dynamic Model 
def exponential_gompertz_model(X, a, b, alpha, beta_1, beta_2, beta_3, beta_4, beta_5, 
lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, lambda_8, 
lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31): 

lambdas = [lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31] 

betas = [beta_1, beta_2, beta_3, beta_4, beta_5] 
    N = len(X) - 31 

    fix = 1 

    for i in range(len(lambdas)): 
        fix = fix * np.exp(lambdas[i] * X[i + N]) 
    R = alpha * np.power(a, np.power(b, X[0])) 
    for i in range(1, N): 
        R *= np.exp(betas[i - 1] * X[i]) 
    R *= fix 

    R[np.isinf(R)] = INF 

    R[np.isnan(R)] = NAN 

return R 

 

# Exponential-Richards Dynamic Model 
def exponential_richards_model(X, g, r, ti, alpha, beta_1, beta_2, beta_3, beta_4, beta_5, 
lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, lambda_8, 
lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31): 

lambdas = [lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
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lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31] 

betas = [beta_1, beta_2, beta_3, beta_4, beta_5] 
    N = len(X) - 31 

    fix = 1 

    for i in range(len(lambdas)): 
        fix = fix * np.exp(lambdas[i] * X[i + N]) 
    R = alpha / np.power((1 + g * np.exp(-r * (X[0] - ti))), 1 / g) 
    for i in range(1, N): 
        R *= np.exp(betas[i - 1] * X[i]) 
    R *= fix 

    R[np.isinf(R)] = INF 

    R[np.isnan(R)] = NAN 

    return R 

 

def exponential_dynamic_model_estimate(end_day=27, y="confirmed", 
x=["wuhan_outflow", "gdp", "population"]): 
    data = pd.read_csv(data_path) 
    data.fillna(0, inplace=True) 
    data = standardization(data, x) 
    data = data[data["day"] <= end_day] 
    prov = pd.read_csv("province_fix.csv") 
    data = pd.merge(data, prov, on="province", how="left") 
    data.fillna(0, inplace=True) 
    Y = data[y] 
    T = data["day"] 
    X = [T] 
    for k in x: 
        X.append((data["%s(Ln)" % k] - data["%s(Ln_Mean)" % k]) / data["%s(Ln_Std)" % k]) 
    fix = province_dummies(data) 
    X.append(fix.T) 
    X = np.vstack(X) 
    # fit the EL model 
    ELmodel = Model(exponential_logistic_model) 
    params = ELmodel.make_params(gamma=0.5, omega=1, alpha=1, beta_1=0, beta_2=0, 
beta_3=0, beta_4=0, beta_5=0, lambda_1=0, lambda_2=0, lambda_3=0, lambda_4=0, 
lambda_5=0, lambda_6=0, lambda_7=0, lambda_8=0, lambda_9=0, lambda_10=0, 
lambda_11=0, lambda_12=0, lambda_13=0, lambda_14=0, lambda_15=0, lambda_16=0, 
lambda_17=0, lambda_18=0, lambda_19=0, lambda_20=0, lambda_21=0, lambda_22=0, 
lambda_23=0, lambda_24=0, lambda_25=0, lambda_26=0, lambda_27=0, lambda_28=0, 
lambda_29=0, lambda_30=0, lambda_31=0) 
    result = ELmodel.fit(Y, X=X, params=params) 
    Y_pred = result.best_fit 
    r2 = r2_score(Y, Y_pred) 
    print(result.fit_report()) 
    print("R square of EL model is ", r2) 
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    data["confirmed_pred"] = Y_pred 

    # fit the EG model 
    EGmodel = Model(exponential_gompertz_model) 
    params = EGmodel.make_params(a=0.5, b=0.5, alpha=1, beta_1=0, beta_2=0, beta_3=0, 
beta_4=0, beta_5=0, lambda_1=0, lambda_2=0, lambda_3=0, lambda_4=0, lambda_5=0, 
lambda_6=0, lambda_7=0, lambda_8=0, lambda_9=0, lambda_10=0, lambda_11=0, 
lambda_12=0, lambda_13=0, lambda_14=0, lambda_15=0, lambda_16=0, lambda_17=0, 
lambda_18=0, lambda_19=0, lambda_20=0, lambda_21=0, lambda_22=0, lambda_23=0, 
lambda_24=0, lambda_25=0, lambda_26=0, lambda_27=0, lambda_28=0, lambda_29=0, 
lambda_30=0, lambda_31=0) 
    params["a"].set(min=0, max=1) 
    params["b"].set(min=0, max=1) 
    result = EGmodel.fit(Y, X=X, params=params) 
    Y_pred = result.best_fit 
    r2 = r2_score(Y, Y_pred) 
    print(result.fit_report()) 

print("R square of EG model is ", r2) 
# fit the ER model 

    ERmodel = Model(exponential_richards_model) 
    params = ERmodel.make_params(g=0.5, r=1, ti=1, alpha=1, beta_1=0, beta_2=0, beta_3=0, 
beta_4=0, beta_5=0, lambda_1=0, lambda_2=0, lambda_3=0, lambda_4=0, lambda_5=0, 
lambda_6=0, lambda_7=0, lambda_8=0, lambda_9=0, lambda_10=0, lambda_11=0, 
lambda_12=0, lambda_13=0, lambda_14=0, lambda_15=0, lambda_16=0, lambda_17=0, 
lambda_18=0, lambda_19=0, lambda_20=0, lambda_21=0, lambda_22=0, lambda_23=0, 
lambda_24=0, lambda_25=0, lambda_26=0, lambda_27=0, lambda_28=0, lambda_29=0, 
lambda_30=0, lambda_31=0) 
    result = ERmodel.fit(Y, X=X, params=params) 
    Y_pred = result.best_fit 
    r2 = r2_score(Y, Y_pred) 
    print(result.fit_report()) 
    print("R square of ER model is ", r2) 

 

 

# Daily Power Static Model 
def power_model(X, alpha, beta_1, beta_2, beta_3, beta_4, beta_5, lambda_1, lambda_2, 
lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, lambda_8, lambda_9, lambda_10, 
lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, lambda_16, lambda_17, 
lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, lambda_23, lambda_24, 
lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, lambda_30, lambda_31): 
    lambdas = [lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31] 

betas = [beta_1, beta_2, beta_3, beta_4, beta_5] 
    N = len(X) - 31 
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    fix = 1 

    for i in range(len(lambdas)): 
        fix = fix * np.exp(lambdas[i] * X[i + N]) 
    R = alpha 

    for i in range(N): 
        R *= np.power(X[i], betas[i]) 
    R *= fix 

    R[np.isinf(R)] = INF 

    R[np.isnan(R)] = NAN 

    return R 

 

def power_static_model_estimate(date="2020-01-28", y="confirmed", 
x=["wuhan_outflow", "gdp", "population"]): 

data = pd.read_csv(data_path) 
    province = pd.read_csv("province_fix.csv") 
    data = pd.merge(data, province, on="province", how="left") 
    data.fillna(0, inplace=True) 
    data = normalization(data, x) 
    data = data[data["date"] == date] 
    Y = data[y] 
    X = [] 
    for k in x: 
        X.append(data[k] / data["%s(Sum)" % k]) 
    fix = province_dummies(data) 
    X.append(fix.T) 
    X = np.vstack(X) 
    model = Model(power_model) 
    params = model.make_params(alpha=1, beta_1=0.5, beta_2=0.5, beta_3=0.5, beta_4=0.5, 
beta_5=0.5, lambda_1=0, lambda_2=0, lambda_3=0, lambda_4=0, lambda_5=0, lambda_6=0, 
lambda_7=0, lambda_8=0, lambda_9=0, lambda_10=0, lambda_11=0, lambda_12=0, 
lambda_13=0, lambda_14=0, lambda_15=0, lambda_16=0, lambda_17=0, lambda_18=0, 
lambda_19=0, lambda_20=0, lambda_21=0, lambda_22=0, lambda_23=0, lambda_24=0, 
lambda_25=0, lambda_26=0, lambda_27=0, lambda_28=0, lambda_29=0, lambda_30=0, 
lambda_31=0) 
    result = model.fit(Y, X=X, params=params) 
    Y_pred = result.best_fit 
    data["confirmed_pred"] = Y_pred 

    r2 = r2_score(Y, Y_pred) 
    print(result.fit_report()) 
    print("R square of Power model is ", r2) 
 

# Power-Logistic Dynamic Model 
def power_logistic_model(X, gamma, omega, alpha, beta_1, beta_2, beta_3, beta_4, beta_5, 
lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, lambda_8, 
lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
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lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31): 
    lambdas = [lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31] 
    betas = [beta_1, beta_2, beta_3, beta_4, beta_5] 
    N = len(X) - 31 

    fix = 1 

    for i in range(len(lambdas)): 
        fix = fix * np.exp(lambdas[i] * X[i + N]) 
    R = alpha / (1 + np.exp(-1 * gamma * X[0] + omega)) 
    for i in range(1, N): 
        R *= np.power(X[i], betas[i - 1]) 
    R *= fix 

    R[np.isinf(R)] = INF 

    R[np.isnan(R)] = NAN 

    return R 

 

# Power-Gompertz Dynamic Model 
def power_gompertz_model(X, a, b, alpha, beta_1, beta_2, beta_3, beta_4, beta_5, 
lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, lambda_8, 
lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31): 

lambdas = [lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31] 

betas = [beta_1, beta_2, beta_3, beta_4, beta_5] 
N = len(X) - 31 

    fix = 1 

    for i in range(len(lambdas)): 
        fix = fix * np.exp(lambdas[i] * X[i + N]) 
    R = alpha * np.power(a, np.power(b, X[0])) 
    for i in range(1, N): 
        R *= np.power(X[i], betas[i - 1]) 
    R *= fix 

    R[np.isinf(R)] = INF 

    R[np.isnan(R)] = NAN 

return R 

 

# Power-Richards Dynamic Model 
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def power_richards_model(X, g, r, ti, alpha, beta_1, beta_2, beta_3, beta_4, beta_5, 
lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, lambda_8, 
lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31): 

lambdas = [lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31] 
    betas = [beta_1, beta_2, beta_3, beta_4, beta_5] 
    N = len(X) - 31 

    fix = 1 

    for i in range(len(lambdas)): 
        fix = fix * np.exp(lambdas[i] * X[i + N]) 
    R = alpha / np.power((1 + g * np.exp(-r * (X[0] - ti))), 1 / g) 
    for i in range(1, N): 
        R *= np.power(X[i], betas[i - 1]) 
    R *= fix 

    R[np.isinf(R)] = INF 

    R[np.isnan(R)] = NAN 

    return R 

 

def power_dynamic_model_estimate(end_day=27, y="confirmed", x=["wuhan_outflow", 
"gdp", "population"]): 

data = pd.read_csv(data_path) 
    data.fillna(0, inplace=True) 
    data = normalization(data, x) 
    data = data[data["day"] <= end_day] 
    province = pd.read_csv("province_fix.csv") 
    data = pd.merge(data, province, on="province", how="left") 
    Y = data[y] 
    T = data["day"] 
    X = [T] 
    for k in x: 
        X.append(data[k] / data["%s(Sum)" % k]) 
    fix = province_dummies(data) 
    X.append(fix.T) 
    X = np.vstack(X) 
    # fit the PL model 
    PLmodel = Model(power_logistic_model) 
    params = PLmodel.make_params(gamma=1, omega=1, alpha=0.5, beta_1=0.5, beta_2=0.5, 
beta_3=0.5, beta_4=0.5, beta_5=0.5, lambda_1=0, lambda_2=0, lambda_3=0, lambda_4=0, 
lambda_5=0, lambda_6=0, lambda_7=0, lambda_8=0, lambda_9=0, lambda_10=0, 
lambda_11=0, lambda_12=0, lambda_13=0, lambda_14=0, lambda_15=0, lambda_16=0, 
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lambda_17=0, lambda_18=0, lambda_19=0, lambda_20=0, lambda_21=0, lambda_22=0, 
lambda_23=0, lambda_24=0, lambda_25=0, lambda_26=0, lambda_27=0, lambda_28=0, 
lambda_29=0, lambda_30=0, lambda_31=0) 
    result = PLmodel.fit(Y, X=X, params=params) 
    Y_pred = result.best_fit 
    r2 = r2_score(Y, Y_pred) 
    print(result.fit_report()) 
    print("R square of PL model is ", r2) 
    # fit the PG model 
    PGmodel = Model(power_gompertz_model) 
    params = PGmodel.make_params(a=0.5, b=0.5, alpha=0.5, beta_1=0.5, beta_2=0.5, 
beta_3=0.5, beta_4=0.5, beta_5=0.5, lambda_1=0, lambda_2=0, lambda_3=0, lambda_4=0, 
lambda_5=0, lambda_6=0, lambda_7=0, lambda_8=0, lambda_9=0, lambda_10=0, 
lambda_11=0, lambda_12=0, lambda_13=0, lambda_14=0, lambda_15=0, lambda_16=0, 
lambda_17=0, lambda_18=0, lambda_19=0, lambda_20=0, lambda_21=0, lambda_22=0, 
lambda_23=0, lambda_24=0, lambda_25=0, lambda_26=0, lambda_27=0, lambda_28=0, 
lambda_29=0, lambda_30=0, lambda_31=0) 
    params["a"].set(min=0, max=1) 
    params["b"].set(min=0, max=1) 
    result = PGmodel.fit(Y, X=X, params=params) 
    Y_pred = result.best_fit 
    r2 = r2_score(Y, Y_pred) 
    print(result.fit_report()) 

print("R square of PG model is ", r2) 
# fit the PR model 

    PRmodel = Model(power_richards_model) 
    params = PRmodel.make_params(g=0.5, r=1, ti=1, alpha=0.5, beta_1=0.5, beta_2=0.5, 
beta_3=0.5, beta_4=0.5, beta_5=0.5, lambda_1=0, lambda_2=0, lambda_3=0, lambda_4=0, 
lambda_5=0, lambda_6=0, lambda_7=0, lambda_8=0, lambda_9=0, lambda_10=0, 
lambda_11=0, lambda_12=0, lambda_13=0, lambda_14=0, lambda_15=0, lambda_16=0, 
lambda_17=0, lambda_18=0, lambda_19=0, lambda_20=0, lambda_21=0, lambda_22=0, 
lambda_23=0, lambda_24=0, lambda_25=0, lambda_26=0, lambda_27=0, lambda_28=0, 
lambda_29=0, lambda_30=0, lambda_31=0) 
    result = PRmodel.fit(Y, X=X, params=params) 
    Y_pred = result.best_fit 
    r2 = r2_score(Y, Y_pred) 
    print(result.fit_report()) 

print("R square of PR model is ", r2) 
 

def negative_number_to_zero(x): 
    if x < 0: 
        return 0 

    else: 
        return x 

 

# df(x)/dt, Exponential-Logistic Dynamic Increased Model 
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def exponential_logistic_increased_model(X, gamma, omega, alpha, beta_1, beta_2, beta_3, 
beta_4, beta_5, lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, 
lambda_7, lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, 
lambda_14, lambda_15, lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, 
lambda_21, lambda_22, lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, 
lambda_28, lambda_29, lambda_30, lambda_31): 
    lambdas = [lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31] 
    betas = [beta_1, beta_2, beta_3, beta_4, beta_5] 
    N = len(X) - 31 

    fix = 1 

    for i in range(len(lambdas)): 
        fix = fix * np.exp(lambdas[i] * X[i + N]) 
    R = alpha * np.exp(-1 * gamma * X[0] + omega) * gamma / np.power((1 + np.exp(-1 * 
gamma * X[0] + omega)), 2) 
    for i in range(1, N): 
        R *= np.exp(betas[i - 1] * X[i]) 
    R *= fix 

    R[np.isinf(R)] = INF 

    R[np.isnan(R)] = NAN 

    return R 

 

# df(x)/dt, Exponential-Gompertz Dynamic Increased Model 
def exponential_gompertz_increased_model(X, a, b, alpha, beta_1, beta_2, beta_3, beta_4, 
beta_5, lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, 
lambda_15, lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, 
lambda_22, lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, 
lambda_29, lambda_30, lambda_31): 

lambdas = [lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31] 
    betas = [beta_1, beta_2, beta_3, beta_4, beta_5] 
    N = len(X) - 31 

    fix = 1 

    for i in range(len(lambdas)): 
        fix = fix * np.exp(lambdas[i] * X[i + N]) 
    R = alpha * np.power(a, np.power(b, X[0])) * np.power(b, X[0]) * np.log(a) * np.log(b) 
    for i in range(1, N): 
        R *= np.exp(betas[i - 1] * X[i]) 
    R *= fix 
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    R[np.isinf(R)] = INF 

    R[np.isnan(R)] = NAN 

return R 

 

def exponential_dynamic_increased_model_estimate(end_day=27, y="confirmed", 
x=["wuhan_outflow", "gdp", "population"]): 
    data = pd.read_csv(data_path) 
    data.fillna(0, inplace=True) 
    data = standardization(data, x) 
    data = data[data["day"] <= end_day] 
    prov = pd.read_csv("province_fix.csv") 
    data = pd.merge(data, prov, on="province", how="left") 
    data.fillna(0, inplace=True) 
    data[y] = data[y] - data["%s_pre" % y] 
    data[y] = data[y].map(negative_number_to_zero) 
    Y = data[y] 
    T = data["day"] 
    X = [T] 
    for k in x: 
        X.append((data["%s(Ln)" % k] - data["%s(Ln_Mean)" % k]) / data["%s(Ln_Std)" % k]) 
    fix = province_dummies(data) 
    X.append(fix.T) 
    X = np.vstack(X) 
    # fit the EL model 
    ELmodel = Model(exponential_logistic_increased_model) 
    params = ELmodel.make_params(gamma=0.5, omega=1, alpha=1, beta_1=0, beta_2=0, 
beta_3=0, beta_4=0, beta_5=0, lambda_1=0, lambda_2=0, lambda_3=0, lambda_4=0, 
lambda_5=0, lambda_6=0, lambda_7=0, lambda_8=0, lambda_9=0, lambda_10=0, 
lambda_11=0, lambda_12=0, lambda_13=0, lambda_14=0, lambda_15=0, lambda_16=0, 
lambda_17=0, lambda_18=0, lambda_19=0, lambda_20=0, lambda_21=0, lambda_22=0, 
lambda_23=0, lambda_24=0, lambda_25=0, lambda_26=0, lambda_27=0, lambda_28=0, 
lambda_29=0, lambda_30=0, lambda_31=0) 
    result = ELmodel.fit(Y, X=X, params=params) 
    Y_pred = result.best_fit 
    r2 = r2_score(Y, Y_pred) 
    print(result.fit_report()) 
    print("R square of EL model is ", r2) 
    # fit the EG model 
    EGmodel = Model(exponential_gompertz_increased_model) 
    params = EGmodel.make_params(a=0.5, b=0.5, alpha=1, beta_1=0, beta_2=0, beta_3=0, 
beta_4=0, beta_5=0, lambda_1=0, lambda_2=0, lambda_3=0, lambda_4=0, lambda_5=0, 
lambda_6=0, lambda_7=0, lambda_8=0, lambda_9=0, lambda_10=0, lambda_11=0, 
lambda_12=0, lambda_13=0, lambda_14=0, lambda_15=0, lambda_16=0, lambda_17=0, 
lambda_18=0, lambda_19=0, lambda_20=0, lambda_21=0, lambda_22=0, lambda_23=0, 
lambda_24=0, lambda_25=0, lambda_26=0, lambda_27=0, lambda_28=0, lambda_29=0, 
lambda_30=0, lambda_31=0) 
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    params["a"].set(min=0, max=1) 
    params["b"].set(min=0, max=1) 
    result = EGmodel.fit(Y, X=X, params=params) 
    Y_pred = result.best_fit 
    r2 = r2_score(Y, Y_pred) 
    print(result.fit_report()) 
    print("R square of EG model is ", r2) 

 

# df(x)/dt, Power-Logistic Dynamic Increased Model 
def power_logistic_increased_model(X, gamma, omega, alpha, beta_1, beta_2, beta_3, 
beta_4, beta_5, lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, 
lambda_7, lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, 
lambda_14, lambda_15, lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, 
lambda_21, lambda_22, lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, 
lambda_28, lambda_29, lambda_30, lambda_31): 
    lambdas = [lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31] 
    betas = [beta_1, beta_2, beta_3, beta_4, beta_5] 
    N = len(X) - 31 

    fix = 1 

    for i in range(len(lambdas)): 
        fix = fix * np.exp(lambdas[i] * X[i + N]) 
    R = alpha * np.exp(-1 * gamma * X[0] + omega) * gamma / np.power((1 + np.exp(-1 * 
gamma * X[0] + omega)), 2) 
    for i in range(1, N): 
        R *= np.power(X[i], betas[i - 1]) 
    R *= fix 

    R[np.isinf(R)] = INF 

    R[np.isnan(R)] = NAN 

    return R 

 

# df(x)/dt, Power-Gompertz Dynamic Increased Model 
def power_gompertz_increased_model(X, a, b, alpha, beta_1, beta_2, beta_3, beta_4, 
beta_5, lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, 
lambda_15, lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, 
lambda_22, lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, 
lambda_29, lambda_30, lambda_31): 

lambdas = [lambda_1, lambda_2, lambda_3, lambda_4, lambda_5, lambda_6, lambda_7, 
lambda_8, lambda_9, lambda_10, lambda_11, lambda_12, lambda_13, lambda_14, lambda_15, 
lambda_16, lambda_17, lambda_18, lambda_19, lambda_20, lambda_21, lambda_22, 
lambda_23, lambda_24, lambda_25, lambda_26, lambda_27, lambda_28, lambda_29, 
lambda_30, lambda_31] 
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    betas = [beta_1, beta_2, beta_3, beta_4, beta_5] 
    N = len(X) - 31 

    fix = 1 

    for i in range(len(lambdas)): 
        fix = fix * np.exp(lambdas[i] * X[i + N]) 
    R = alpha * np.power(a, np.power(b, X[0])) * np.power(b, X[0]) * np.log(a) * np.log(b) 
    for i in range(1, N): 
        R *= np.power(X[i], betas[i - 1]) 
    R *= fix 

    R[np.isinf(R)] = INF 

    R[np.isnan(R)] = NAN 

return R 

 

def power_dynamic_increased_model_estimate(end_day=27, y="confirmed", 
x=["wuhan_outflow", "gdp", "population"]): 
    data = pd.read_csv(data_path) 
    data.fillna(0, inplace=True) 
    data = normalization(data, x) 
    data = data[data["day"] <= end_day] 
    prov = pd.read_csv("province_fix.csv") 
    data = pd.merge(data, prov, on="province", how="left") 
    data.fillna(0, inplace=True) 
    data[y] = data[y] - data["%s_pre" % y] 
    data[y] = data[y].map(negative_number_to_zero) 
    Y = data[y] 
    T = data["day"] 
    X = [T] 
    for k in x: 
        X.append(data[k] / data["%s(Sum)" % k]) 
    fix = province_dummies(data) 
    X.append(fix.T) 
    X = np.vstack(X) 
    # fit the PL model 
    PLmodel = Model(power_logistic_increased_model) 
    params = PLmodel.make_params(gamma=0.5, omega=1, alpha=1, beta_1=0, beta_2=0, 
beta_3=0, beta_4=0, beta_5=0, lambda_1=0, lambda_2=0, lambda_3=0, lambda_4=0, 
lambda_5=0, lambda_6=0, lambda_7=0, lambda_8=0, lambda_9=0, lambda_10=0, 
lambda_11=0, lambda_12=0, lambda_13=0, lambda_14=0, lambda_15=0, lambda_16=0, 
lambda_17=0, lambda_18=0, lambda_19=0, lambda_20=0, lambda_21=0, lambda_22=0, 
lambda_23=0, lambda_24=0, lambda_25=0, lambda_26=0, lambda_27=0, lambda_28=0, 
lambda_29=0, lambda_30=0, lambda_31=0) 
    result = PLmodel.fit(Y, X=X, params=params) 
    Y_pred = result.best_fit 
    r2 = r2_score(Y, Y_pred) 
    print(result.fit_report()) 
    print("R square of PL model is ", r2) 
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    # fit the PG model 
    PGmodel = Model(power_gompertz_increased_model) 
    params = PGmodel.make_params(a=0.5, b=0.5, alpha=1, beta_1=0, beta_2=0, beta_3=0, 
beta_4=0, beta_5=0, lambda_1=0, lambda_2=0, lambda_3=0, lambda_4=0, lambda_5=0, 
lambda_6=0, lambda_7=0, lambda_8=0, lambda_9=0, lambda_10=0, lambda_11=0, 
lambda_12=0, lambda_13=0, lambda_14=0, lambda_15=0, lambda_16=0, lambda_17=0, 
lambda_18=0, lambda_19=0, lambda_20=0, lambda_21=0, lambda_22=0, lambda_23=0, 
lambda_24=0, lambda_25=0, lambda_26=0, lambda_27=0, lambda_28=0, lambda_29=0, 
lambda_30=0, lambda_31=0) 
    params["a"].set(min=0, max=1) 
    params["b"].set(min=0, max=1) 
    result = PGmodel.fit(Y, X=X, params=params) 
    Y_pred = result.best_fit 
    r2 = r2_score(Y, Y_pred) 
    print(result.fit_report()) 
    print("R square of PG model is ", r2) 
 

if __name__ == "__main__": 
    exponential_static_model_estimate() 
    exponential_dynamic_model_estimate() 
    exponential_dynamic_increased_model_estimate() 
    power_static_model_estimate() 
    power_dynamic_model_estimate() 
    power_dynamic_increased_model_estimate() 
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