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Palmer amaranth (Amaranthus palmeri) is a major weed in United States cotton and

soybean production systems. Originally native to the Southwest, the species has

spread throughout the country. In 2004 a population of A. palmeri was identified

with resistance to glyphosate, a herbicide heavily relied on in modern no-tillage and

transgenic glyphosate-resistant (GR) crop systems. This project aims to determine the

degree of genetic relatedness among eight different populations of GR and glyphosate-

susceptible (GS) A. palmeri from various geographic regions in the United States by

analyzing patterns of phylogeography and diversity to ascertain whether resistance

evolved independently or spread from outside to an Arizona locality (AZ-R). Shikimic acid

accumulation and EPSPS genomic copy assays confirmed resistance or susceptibility.

With a set of 1,351 single nucleotide polymorphisms (SNPs), discovered by genotyping-

by-sequencing (GBS), UPGMA phylogenetic analysis, principal component analysis,

Bayesian model-based clustering, and pairwise comparisons of genetic distances were

conducted. A GR population from Tennessee and two GS populations from Georgia

and Arizona were identified as genetically distinct while the remaining GS populations

from Kansas, Arizona, and Nebraska clustered together with two GR populations from

Arizona and Georgia. Within the latter group, AZ-R was most closely related to the GS

populations from Kansas and Arizona followed by the GR population from Georgia. GR

populations from Georgia and Tennessee were genetically distinct from each other. No

isolation by distance was detected and A. palmeri was revealed to be a species with

high genetic diversity. The data suggest the following two possible scenarios: either

glyphosate resistance was introduced to the Arizona locality from the east, or resistance
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evolved independently in Arizona. Glyphosate resistance in the Georgia and Tennessee

localities most likely evolved separately. Thus, modern farmers need to continue to

diversify weed management practices and prevent seed dispersal to mitigate herbicide

resistance evolution in A. palmeri.

Keywords: Palmer amaranth, population genetics, glyphosate, herbicide resistance, genetic relatedness, SNP

molecular markers, phylogeography

INTRODUCTION

Since the introduction of transgenic soybean, corn, and cotton
in the mid-1990s, herbicide-resistant varieties of these crops
have largely replaced conventional varieties in the United States
(Coupe and Capel, 2016). In 1996, glyphosate-resistant (GR)
(Roundup Ready) crops were commercialized and as a result
global glyphosate usage rose by about 15-fold (Benbrook, 2016),
dominating the current herbicide market (Duke, 2017). The
widespread reliance on glyphosate to the exclusion of all other
weed control methods has resulted in high selection pressure
and the evolution of GR weeds, including Palmer amaranth
(Amaranthus palmeri S. Wats.) (Culpepper et al., 2006), which
is now a major threat to many U.S. food production systems
(Beckie, 2011).

Amaranthus palmeri is a dioecious, annual species with
prolific seed production, pollen-mediated gene flow due to
obligate outcrossing, and high genetic variability (Franssen et al.,
2001; Sellers et al., 2003; Ward et al., 2013). As a member
of the Amaranthaceae family, A. palmeri is native to the
southwestern United States and northwestern Mexico, having
first been documented in Sonora, California, Arizona, New
Mexico, and Texas in the late 19th century. During the early
20th century, the species started to spread east and northeast,
probably because of humanmediated seed dispersal (Sauer, 1957;
Ward et al., 2013). In recent years, A. palmeri has expanded its
distribution as far north as Ontario, Canada and as far east as
Massachusetts, United States (Kartescz, 2014). The species made
its first occurrence on the annual listing of most troublesome
weeds in South Carolina in 1989 (Webster and Coble, 1997). By
2009 the weed was ranked the most troublesome weed in cotton
in the Southern United States (Webster and Nichols, 2012; Ward
et al., 2013).

Resistance to glyphosate in A. palmeri was first reported from
a GR cotton field in Georgia in 2004. Shortly after, another case
was reported from North Carolina in 2005 (Culpepper et al.,
2006, 2008). As of 2017, GR A. palmeri was found in 27 U.S.
states, Argentina, and Brazil (Scott et al., 2007; Norsworthy
et al., 2008; Steckel et al., 2008; Berger et al., 2016; Heap, 2017;
Küpper et al., 2017). The primary mechanism of glyphosate
resistance in A. palmeri has been identified as the amplification
of the gene encoding the target enzyme 5-enolpyruvylshikimate-
3-phosphate synthase (EPSPS) which produces increased EPSPS
transcription and protein activity (Gaines et al., 2010). The same
glyphosate resistance mechanism has independently evolved in
six other species (Salas et al., 2012; Jugulam et al., 2014; Lorentz
et al., 2014; Chatham et al., 2015; Chen et al., 2015; Wiersma
et al., 2015; Malone et al., 2016; Ngo et al., 2017). EPSPS gene

amplification has also transferred via pollen-mediated inter-
specific hybridization from A. palmeri to A. spinosus (Nandula
et al., 2014).

Evolutionary models have identified that herbicide resistance
dynamics are largely influenced by gene flow, seed immigration,
and fitness cost (Maxwell et al., 1990). Further factors include
mutation rate, the mode of inheritance, dominance of the
resistance trait, seed bank turnover rate, herbicide chemistry
and persistence, as well as herbicide usage patterns (Georghiou
and Taylor, 1986; Jasieniuk et al., 1996; Neve, 2008). For
instance, glyphosate used prior to crop emergence is predicted
to have a low risk of resistance evolution while post-emergence
use increases the risk, and reliance on glyphosate exclusively
increases the risk even further (Neve, 2008). A simulation model
for A. palmeri predicted that five applications of glyphosate each
year with no other herbicides would result in resistance evolving
in 74% of the simulated populations (Neve et al., 2011).

Amaranthus palmeri management is complicated by the fact
that this species evolved resistance to five different modes of
action (Chahal et al., 2015; Heap, 2017; Nakka et al., 2017;
Schwartz-Lazaro et al., 2017), the lack of discovery of new modes
of action for the past three decades, and the high cost of bringing
new herbicides to the market (Duke, 2012). The overuse of and
sole reliance on glyphosate and the resulting evolution of resistant
weeds exhausted the lifespan of a once-in-a-century herbicide
(Duke and Powles, 2008) and threatens current crop production
practices by diminishing available weed management options
further. Therefore, knowledge about the origin and geographical
pathways of glyphosate resistance in A. palmeri, one of the most
problematic GR weeds in the United States, is crucial to avoid
repeating the same mistakes made with glyphosate with other
modes of action that are still successful at controlling weeds in
the field.

This study focuses on a GR population identified in a no-till
cotton-wheat double crop system near Phoenix, Arizona (AZ),
United States. Glyphosate was used as the sole weed management
technique for the cotton portion of the production cycle for more
than 10 year before glyphosate resistance was first suspected in
2012, 8 years after the first report in the species. The objective
was to determine whether GR A. palmeri immigrated to the AZ
locality from an outside location via seed or pollen-mediated
gene flow, or if resistance evolved at or nearby the location
in AZ independently via parallel evolution. To answer this
question, single nucleotide polymorphisms (SNPs) generated
by genotyping-by-sequencing (GBS) to identify numerous
sequence differences at presumably random parts of the genome
(Brumfield et al., 2003), were used. The GR population from
AZ and seven other populations from different locations in
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the United States were investigated for their degree of genetic
relatedness to identify patterns of phylogeography and variation
on an intraspecific level.

MATERIALS AND METHODS

Plant Material and DNA Isolation
Twelve A. palmeri individuals (six males and six females) from
each of eight different locations in the United States were used
for the analyses (Table 1), except for AZ-S2 for which only eleven
individuals were used to leave a blank on the plate. Locations
AZ-S1, AZ-S2, KS-S, GA-S and NE-S were verified as glyphosate-
susceptible (GS) and locations AZ-R (Molin et al., 2017b), GA-R
(Culpepper et al., 2006), and TN-R (Steckel et al., 2008) were
verified as GR. The populations were collected between 2004 and
2012, except for AZ-S2 which was maintained by the USDA-ARS
Germplasm Resource Information Network (accession number:
Ames 5370) since its collection in 1981 and serves as an outgroup
to prevent ascertainment bias (Wakeley et al., 2001; Akey et al.,
2003). AZ-S1 was collected about 240 km southeast of Buckeye,
AZ (AZ-R) where no agronomic crop production has occurred
since the 1960s to provide a recently collected Arizona-native GS
population that is fairly sympatric with AZ-R.

For DNA extraction, young leaf tissue was collected,
immediately frozen in liquid nitrogen, and stored at −80◦C.
For GR samples only individuals that survived 800 g a.e.
ha−1 glyphosate (Roundup WeatherMAX, Monsanto) were
used. DNA extraction was performed following a modified
cetyltrimethylammonium bromide (CTAB) extraction protocol
(Doyle, 1991; Küpper et al., 2017) and quantified on a
NanoDrop spectrophotometer (Thermo Scientific) followed by
normalization. Gel electrophoresis and enzyme digestion with
HindIII (Thermo Scientific) were performed on all or 10% of the
samples, respectively, to confirmDNAquality and normalization.

Herbicide Resistance Characterization
To confirm glyphosate resistance and susceptibility for the
individuals used for GBS, an in vivo shikimate accumulation
assay with excised leaf tissue (Shaner et al., 2005) was conducted.
Additionally, EPSPS gene copy number was determined for all
samples. Four-mm leaf disks from each individual were exposed
to glyphosate at 0, 100, 500, and 1000 µm glyphosate for 16 h.

TABLE 1 | Amaranthus palmeri populations used in the study, their origin and time

of collection.

Abbreviation Origin Collection year

AZ-R Buckeye, Arizona 2012

AZ-S1 Sahuarita, Arizona 2012

AZ-S2 Tucson, Arizona 1981

GA-R Macon, Georgia 2006

GA-S Worth County, Georgia 2004

KS-S Ottawa, Kansas 2005

NE-S Shickley, Nebraska 2011

TN-R Jackson, Tennessee 2007

Shikimate accumulation was measured on a spectrophotometer
(Synergy 2 Multi-Mode Reader, BioTek). A shikimate standard
curve was used to calculate the ng shikimate µl−1 accumulation
above the background level. Each biological sample was run in
three technical replicates for each dose.

For EPSPS gene copy number determination, DNA
concentrations were adjusted to 5 ng µl−1 and primer
sets (ALSF2 and ALSR2, EPSF1 and EPSR8) and qPCR
conditions were used as previously described (Gaines et al.,
2010). Quantitative PCR was performed using SYBR green
master-mix (BioRad) on a CFX ConnectTM Real-Time PCR
Detection System (BioRad). EPSPS gene copy number relative
to ALS was determined using the 21CT method where
1CT = CT(ALS) − CT(EPSPS). Each biological sample was run in
three technical replicates.

Greenhouse dose response studies were conducted to confirm
pyrithiobac-sodium [acetolactate synthase (ALS inhibitor)]
resistance in AZ-R with AZ-S1 as a susceptible control. The
experiments took place at the University of Arizona Campus
Agricultural Center in Tucson, AZ, United States. Seeds were
planted in artificial soil mix in 10 cm pots and after emergence
seedlings were thinned, fertilized, and irrigated as needed. ALS-
inhibitor treatments included 0, 0.0001, 0.0005, 0.001, 0.002,
0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1 kg a.i. ha−1 pyrithiobac-
sodium (Staple LX, DuPont) with 0.25% v/v non-ionic surfactant
(Activator 90, Loveland Products). Plants were sprayed at the six-
leaf stage using a CO2 pressurized backpack sprayer equipped
with a three nozzle (TeeJet XR8001VS) boom delivering a carrier
volume of 112 L ha−1 at 172 kPa at 4 km h−1. The experimental
design was randomwith five replications per dose. Above-ground
biomass was harvested 27 days after treatment (DAT), dried at
60◦C and dry weight was measured.

The ALS gene was sequenced from three individuals each of
the AZ-R, GA-R, and TN-R populations using the same DNA
used for the EPSPS copy number test and SNP calling. ALS gene
sequencing was conducted as previously described (Küpper et al.,
2017).

Genotyping and SNP Filtering
After DNA extraction, GBS and bi-allelic SNP calling was
conducted by the Biotechnology Resource Center at Cornell
University, Ithaca, NY, United States (Elshire et al., 2011).
A total of 95 samples (eleven samples for AZ-S2 and twelve
samples for the remaining populations) were digested with
ApeKI, individually barcoded, run on an Illumina HiSeq2500
single-end 100 bp sequencing lane, and later trimmed to
64 bp for analysis. The GBS UNEAK pipeline in TASSEL v.
3.0.173 (Bradbury et al., 2007; Lu et al., 2013; Glaubitz et al.,
2014) was used for de novo clustering of the sequences. The
resulting SNP calls were then filtered for depth and missing
values at any given locus with VCFtools v. 0.1.11 (Danecek
et al., 2011) after which 4,566 filtered SNPs remained. Through
further pruning, 70.4% of the filtered SNPs were excluded
due to percentage of missing data points (>5%), minor allele
frequency (MAF) values lower than 0.05, or more than 80%
loci with more than one allele, leaving 1,351 SNPs which
were informative (Supplementary Information Figure 2). Except
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where indicated, all analyses were performed on the panel of
1,351 SNPs.

EPSPS gene copies in GR A. palmeri individuals are
randomly dispersed throughout the whole genome (Gaines
et al., 2010). They can be found embedded in a complex
array of repetitive elements and putative helitron sequences
referred to as the ‘EPSPS cassette’ (Molin et al., 2017a).
Because SNPs are called genome-wide, an overrepresentation
of called SNPs within these sequences could potentially lead
to clustering of GR individuals regardless of their actual
genetic relatedness. To avoid such bias, the sequences flanking
the 1,351 SNPs were aligned to the A. palmeri 1,044 bp
EPSPS sequence (Gaines et al., 2010) and the 297,445 bp
A. palmeri EPSPS cassette (Molin et al., 2017a). The 1,351 SNP
sequences were also aligned to the chloroplast genome of spinach
(Spinacia oleracea) and the mitochondrial genome of sugar
beet (Beta vulgaris) to identify SNPs specific to the cytoplasmic
regions.

Analysis of Genetic Structure
The putative population genetic structure was explored using
themodel-based Bayesian analysis implemented in STRUCTURE
v2.3.4 (Pritchard et al., 2000). The number of sub-populations
K in the dataset was determined by the averaged likelihood
at each K

[

ln Pr (X |K) or ln (Kn)
]

and the variance between
replicates was determined by running a continuous series of
K = 1–15 to determine the optimal number of populations
present within the 95 individuals. The analysis was carried
out using a burn-in of 30,000 iterations and a run length
of 100,000 Markov Chain Monte Carlo (MCMC) replications
in ten independent runs. Prior knowledge about the number
of populations was not included. The optimum number of
clusters was predicted following the ad hoc statistic 1K (Evanno
et al., 2005) using Structure Harvester v0.6.94 (Earl, 2012).
For the final K analysis a burn-in of 30,000 with a run
length of 500,000 MCMC replications and 20 independent
runs were used. To be conservative, the analyses were run
assuming admixture and correlated allele frequencies (Porras-
Hurtado et al., 2013). The Greedy algorithm by CLUMPP
v1.1.2 (Jakobsson and Rosenberg, 2007) was used to obtain the
individual and cluster membership coefficient matrices over the
20 runs which were then plotted using distruct 1.1 (Rosenberg,
2004).

The following information and tests were calculated in
R v3.4.1. The number of alleles (Na) and allelic richness
(AR) per population were calculated using the package
‘PopGenReport.’ Observed (HO) and expected heterozygosity
(HE) were calculated with ‘adegenet’ (Jombart and Ahmed,
2011; Adamack and Gruber, 2014). The inbreeding coefficient
(FIS) was calculated following the formula 1 −

(

Ho
/

HE
)

.
Principal component analysis (PCA) was conducted using
‘SNPRelate’ and ‘gdsfmt’ (Zheng et al., 2012). Calculations
for Nei’s distance (DST) (Nei, 1972) and pairwise fixation
index (FST) among populations were performed with 1,000
bootstrap replications using ‘StAMPP’ (Pembleton et al.,
2013). The analysis of molecular variance (AMOVA) (10,000
permutations) and the Mantel test (10,000 permutations) for

isolation by distance analysis were performed using ‘poppr’
(Kamvar et al., 2014) and ‘adegenet’ (Dray and Dufour, 2007),
respectively. The phylogenetic analysis was based on the
UPGMA clustering method using the Hasegawa-Kishino-Yano
(HKY) genetic distance model in the software Geneious
v10.0.6.

RESULTS

Herbicide Resistance Characterization
Glyphosate-susceptible A. palmeri populations showed
higher shikimate accumulation (11.8–146.3 ng µl−1 at
500 µm glyphosate) than GR populations (0–3.8 ng µl−1)
(Figure 1A) while GR populations showed higher genomic
EPSPS copy number (individuals measured from 25- to
250-fold) than GS populations (individuals measured from
onefold to twofold) (mean EPSPS copy number shown in
Figure 1B). Thus, the mechanism of glyphosate resistance
was determined to be EPSPS gene duplication in all the
sampled GR populations (Gaines et al., 2010). The average
copy numbers for the GR populations were within a similar
range (Figure 1B). The 500 µm glyphosate concentration
was a clear discriminating dose between GR and GS
individuals.

Resistance to the ALS-inhibitors, commonly used in cotton,
was suspected in AZ-R as well, thus a dose response with
pyrithiobac-sodium and sequencing of the ALS gene was
conducted. The ED50 values for dry weight (pyrithiobac-sodium
dose causing 50% reduction in dry weight) were 6.9 and
1.3 g a.i. ha−1 for AZ-R and AZ-S1, respectively (P = 0.027)
(Supplementary Information Figure 1).

Sequencing the ALS gene in three GR individuals each from
AZ-R, GA-R and TN-R, showed that one TN and one AZ
plant were heterozygous for a mutation from TGG → TTG
resulting in an amino acid change from tryptophan to leucine
at position 574 (W574L). A different AZ plant was heterozygous
for a AGC → AAC mutation resulting in a change from
serine to asparagine at position 653 (S653N). No individual
carried both mutations within the same allele. The remaining
individuals tested showed no mutations at these positions
(Supplementary Information Table 1). Both mutations have been
reported before in A. palmeri from Mississippi, United States,
and Brazil (Molin et al., 2016; Küpper et al., 2017) while only
S653N was reported from GA (Berger et al., 2016). The mutation
at W574L is known to confer resistance to triazolopyrimidines,
sulfonylureas, imidazolinones, and pyrimidinylthio-benzoates
(including pyrithiobac-sodium), whereas the S653N mutation
confers resistance to imidazolinones and the pyrimidinylthio-
benzoates only (McNaughton et al., 2005; Whaley et al., 2006;
Patzoldt and Tranel, 2007; Laplante et al., 2009; Yu et al., 2012).
Both mutations are known to be inherited as a dominant trait
(Tranel and Wright, 2002; Powles and Yu, 2010). It is suspected
that a non-target site mechanism conferring resistance to ALS
inhibitors exists (Küpper et al., 2017) and such a mechanism
may also be present in AZ-R ALS-resistant individuals that lack
target-site ALS mutations.
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FIGURE 1 | Correlation of shikimate accumulation and EPSPS genomic copy number in all individuals of each of the glyphosate-resistant and -susceptible

A. palmeri populations. Shikimate accumulation was measured after incubation in 500 µm glyphosate in an in vivo leaf disk assay Increase in genomic copy number

of EPSPS is relative to ALS as measured using qPCR on genomic DNA (A). EPSPS genomic copy number by population (B).

Influence of Glyphosate Resistance
Mechanism on GBS Analysis
The EPSPS gene was found to have five potential cutting sites for
the enzyme ApeKI used in this GBS study, while the entire EPSPS
cassette has 289 potential cutting sites. No SNPs were called
within the EPSPS gene and only one SNP was called from within
the EPSPS cassette which was removed from further analysis.
Thus, the mechanism of glyphosate resistance (repetitive EPSPS
gene copies) is not expected to influence the analysis of genetic
relatedness in this case.

Within Population Genetic Diversity
The 1,351 loci used for this study had an average percentage of
missing data of 1.07% and an average MAF of 0.159. A high
degree of polymorphism (MAF ≥ 0.30) was found in 14.41%
of the dataset. The proportion of MAF < 0.1 was 45.37%.
One AZ-S2 individual was removed from all future analysis
because it was an extreme outlier. The observed number of
alleles within a population ranged from 2,017 (AZ-S2) to 2,395
(KS-S), with an average of 2,217. Levels of heterogeneity were
compared among populations to examine genetic variability
within populations. Allelic richness (AR) ranged from 1.445
(AZ-S2) to 1.654 (KS-S) with an average of 1.560. The observed
(HO) and expected heterozygosity (HE) values ranged from 0.161
(AZ-S1) to 0.219 (TN-R) and from 0.163 (AZ-S2) to 0.211
(KS-S/GA-R), respectively, with an average of 0.193. Low values
for HO indicate small effective population sizes or population
bottlenecks. The HO values in most populations were less than
the HE values (Supplementary Information Figure 3), with the
exception of GA-S, TN-R and AZ-S2. The inbreeding coefficient
(FIS) for these three populations was negative. AZ-R was the
population with the highest FIS value (0.121) (Table 2).

Consensus Tree
The consensus tree separated GA-S, TN-R, NE-S, and AZ-S2
with over 86% certainty with GAS, TN-R, and AZ-S2 being the

most divergent populations. AZ-S1, AZ-R, and KS-S clustered
together. Except for KS-S and AZ-R, all individuals clustered
within their sampling location (Figure 2), The long branch
lengths for the individuals indicate high within-individual genetic
variability.

Principal Component Analysis
To confirm this clustering, a similar pattern of differentiation
among populations was constructed using PCA which is used to
bring out strong patterns in the dataset based on their variance.
The first two principal component (PC) axes cumulatively
accounted for 16.69% of the total variation. PCA showed that
all individuals clustered according to their collection site. Three
distinct outgroups (GA-S, TN-R, and AZ-S2) emerged while the
remaining individuals from the other five populations clustered
into one group. The first dimension (PC 1) accounted for 8.91%
of the variation and roughly separated GR from GS individuals
(Figure 3A). After removing GA-S, TN-R, and AZ-S2, AZ-R
did not separate from the cluster with KS-S and AZ-S1, while
GA-R and NE-S clustered distinctively according to PC 2,

TABLE 2 | Population information and genetic variability estimates based on

1,351 SNP loci in eight populations of A. palmeri.

Population n Na AR HO HE FIS

AZ-R 12 2,381 1.650 0.182 0.207 0.121

AZ-S1 12 2,299 1.581 0.161 0.181 0.110

GA-R 12 2,307 1.617 0.193 0.211 0.085

GA-S 12 2,031 1.474 0.191 0.183 −0.044

NE-S 12 2,245 1.579 0.184 0.199 0.075

KS-S 12 2,395 1.654 0.194 0.211 0.081

TN-R 12 2,059 1.477 0.219 0.183 −0.197

AZ-S2 10 2,017 1.445 0.180 0.163 −0.104

n, number of individuals per population; Na, observed number of alleles; AR,

allelic richness; observed (HO) and expected (HE) heterozygosity; FIS, inbreeding

coefficient.
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FIGURE 2 | Unrooted UPGMA consensus tree after 1,000 bootstrap replications depicting the relationships of A. palmeri individuals from eight populations.

Bootstrap values > 70% at nodes are indicated.

FIGURE 3 | Clustering of A. palmeri populations based on principal component analysis (PCA) using the filtered and pruned whole dataset of 1,351 SNPs. Analysis

was done on all eight populations (A) and on a subset of populations removing the three outlier groups AZ-S2, GA-S, and TN-R (B). Each point represents an

individual colored according to the collection site. Glyphosate-resistant individuals are marked by filled symbols and susceptible individuals are marked by empty

symbols. Individuals from the same U.S. state have the same symbols.
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supporting the UPGMA consensus tree. PC 1 in the second
PCA on the subset of populations accounted for 6.87% of the
variation in the dataset and again roughly separated GR from
GS individuals. Individuals from the same population occupied
different areas of the cluster, which indicates a population
substructure (Figure 3B).

Bayesian Analysis
Model based clustering was used to assign individuals to sub-
populations based on allele frequency differences. Initially, the
putative number of populations (K) in the dataset required
to explain the total sum of genetic variation observed was
determined. Evanno’s test (Evanno et al., 2005) on the whole
dataset of 1,351 SNPs indicated that the K distribution
was bimodal and that the most informative numbers of
subpopulations were four and six with K = 6 being most probable
(Supplementary Information Figure 4). At K = 4, consistent with
the previous findings, sub-population structure analysis revealed
that individuals from GA-S, TN-R, and AZ-S2 appeared distinct
from the other populations. The same analysis also showed
that individuals from AZ-R and GA-R shared a proportion of
their alleles with TN-R while AZ-S1 shared a small proportion
with AZ-S2. At K = 6, AZ-R, KS-S, and AZ-S1 showed the
highest membership coefficient for a shared cluster (beige) while
the remaining populations contained unique alleles. This is
supported by a high number of shared alleles among these three
populations at K = 8 where KS-S displayed a high degree of
admixture with AZ-R and AZ-S1. Although less than with KS-S
and AZ-S1, AZ-R still shared alleles with GA-R while AZ-S1 and
GA-R shared none (Figure 4). Investigating the dataset without
the three outgroups GA-S, TN-R, and AZ-S2 at K = 5 supports
that AZ-R shares alleles with KS-S, AZ-S1, and GA-R and very
few with NE-S (Supplementary Information Figure 5).

Pairwise Comparison of Genetic
Distances
As expected, very high genetic distances (DST) (Nei, 1972) and
FST values were found for the three outgroups (TN-R, AZ-S2,
and GA-S) while the genetic distance was lower among AZ-
R, AZ-S1, and KS-S. Thus, AZ-R was most closely related to
AZ-S1 (FST = 0.052, DST = 0.026) and KS-S (FST = 0.049,
DST = 0.028) and most distantly related to the three outgroups
GA-S (FST = 0.201, DST = 0.079), TN-R (FST = 0.176,
DST = 0.067), and AZ-S2 (FST = 0.179, DST = 0.067). This was
further visualized by a heatmap in Supplementary Information
Figure 6. The bootstrap analysis of FST values indicated that all
populations were significantly different from each other, except
for AZ-R and KS-S, where only 5% of the genetic differences
between populations were attributable to their geographic origin
(Table 3).

Analysis of Molecular Variance and
Isolation by Distance
An AMOVA revealed that 17.78% (P < 0.001) of the total
genetic variation was among populations, 4.87% was among
individuals within a population (P < 0.01) and the remaining

77.35% (P < 0.001) of the genetic variation was within
individuals (Supplementary Information Figure 7). Population
differentiation exists at all levels but the variation within
individuals was the largest. The high genetic variation within
individuals suggests a lack of population structure, even
though FST values up to 0.324 (Table 3) indicate that genetic
differentiation between populations was high.

The geographical distance between any two populations
ranged from about 60 to 1,930 km. The Mantel test revealed that
no pattern of isolation by distance was evident between genetic
and geographic distance (R2 = 0.006, P = 0.259). The observed
correlation of 0.076 further suggests that the two distances are
not associated (Supplementary Information Figure 8).

Genetic Relatedness Based on SNPs
within the Chloroplast and Mitochondrial
Genome
Forty-two SNPs specific to the chloroplast genome and fifty-
four SNPs specific to the mitochondrial genome were identified.
PCA with chloroplast SNPs identified GA-S and TN-R as distinct
groups (Figure 5A). Structure analysis with the identified sub-
populations of K = 4 and K = 5 (Supplementary Information
Figure 9A) supported this observation. AZ-S2, however, shared
considerably more alleles with NE-S, AZ-S1, KS-S, and GA-
R than previously observed when including the loci from the
nuclear and mitochondrial genomes (Figure 6A). At K = 8
AZ-R was closest related to AZ-S1 (FST = 0.058, DST = 0.279)
(Supplementary Information Table 2).

Consistent with the analysis with all 1,351 SNPs,
mitochondrial SNPs identified GA-S, TN-R, NE-S, and also
AZ-S2 as distinct groups (Figure 5B), while the remaining
populations AZ-R, AZ-S1, GA-R, and KS-S clustered together
(Figure 6B) leaving K = 5 identifiable clusters among the eight
populations (Supplementary Information Figure 9B). At K = 8,
AZ-R was closest related to KS-S (FST = 0.053, DST = 0.23)
(Supplementary Information Table 3).

DISCUSSION

Previous population genetics studies investigating the
phylogeographic structure of pesticide resistant organisms
reveal either a single origin (Raymond and Callaghan, 1991;
Linda and Alan, 1997; Daborn et al., 2002) or, more frequently,
redundant independent, parallel evolution events shaped by
variations in selection pressure (Cavan et al., 1998; Anstead
et al., 2005; Menchari et al., 2006; Chen et al., 2007; Pinto
et al., 2007; Délye et al., 2010). As an example, it was found
that glyphosate resistance in horseweed (Conyza canadensis)
from California had multiple independent origins within the
Central Valley and evolved many years before its first detection.
From there it spread, possibly due to increased selection by the
herbicide (Okada et al., 2013). The resistance mechanism(s) for
the C. canadensis populations used in this study were unknown
but most likely involved reduced translocation (Wang et al.,
2014) and vacuolar sequestration (Ge et al., 2010). Similarly,
investigations into the frequency of target site mutations in
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FIGURE 4 | Population structure analysis with K = 4, K = 6, and K = 8 based on 1,351 SNPs of eight A. palmeri populations. Each individual is represented by a

vertical bar that is divided by K colored segments representing the likelihood of a membership to each cluster.

the EPSPS gene of GR Italian ryegrass (Lolium perenne L. ssp.
multiflorum) populations (Karn and Jasieniuk, 2017) as well
as simple sequence repeats (SSR) genotyping of GR common
morning glory (Ipomoea purpurea) (Kuester et al., 2015), and
GR Johnsongrass (Sorghum halepense L. Pers) (Fernández
et al., 2013) found multiple evolutionary origins for glyphosate
resistance.

Two previous studies have examined population genetics
in A. palmeri with glyphosate resistance due to EPSPS
gene amplification. An investigation using four genomic loci
as markers of GR A. palmeri from several sampling sites
within North Carolina suggested that adaptation to glyphosate
application took place in parallel. The authors based this

conclusion on the fact that four out of five identified population
clusters were statistically associated with increased glyphosate
resistance (Beard et al., 2014). In contrast, sequencing of selected
regions of the 287 kb EPSPS cassette in GR populations from
geographically distant locations within the United States showed
strong homology between sequences and the authors concluded
that the conserved nature of the cassette indicated that glyphosate
resistance via amplification evolved once from a point source and
then rapidly spread across the United States (Molin et al., 2017b).

Information on the factors that influence the evolutionary
origin, demographic history, and geographical pathways of
glyphosate resistance in A. palmeri is crucial for the formulation
of successful strategies to delay and manage herbicide resistance.

TABLE 3 | Pairwise estimates of FST and Nei’s standard genetic distance (DST) between eight A. palmeri populations.

AZ-R AZ-S1 GA-R GA-S NE-S KS-S TN-R AZ-S2

AZ-R 0.052 0.080 0.201 0.106 0.049† 0.176 0.179

AZ-S1 0.026 0.126 0.202 0.108 0.051 0.215 0.170

GA-R 0.038 0.050 0.225 0.154 0.100 0.209 0.228

GA-S 0.079 0.072 0.090 0.233 0.196 0.316 0.308

NE-S 0.046 0.042 0.064 0.090 0.085 0.257 0.228

KS-S 0.028 0.026 0.046 0.077 0.039 0.191 0.171

TN-R 0.067 0.077 0.082 0.125 0.101 0.074 0.324

AZ-S2 0.067 0.058 0.088 0.115 0.084 0.064 0.122

Pairwise estimates of FST and DST are shown above and below the diagonal, respectively. †Non-significant value (P > 0.05).
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FIGURE 5 | Clustering of A. palmeri populations based on principal component analysis (PCA) for SNPs found in all eight populations in the chloroplast genome

(A) and the mitochondrial genome (B) using the filtered and pruned whole dataset. Each point represents an individual colored according to the collection site.

Glyphosate-resistant individuals are marked by filled symbols and susceptible individuals are marked by empty symbols. Individuals from the same U.S. state have

the same symbols.

The aim of this study was to investigate population structure
and genetic differentiation among eight geographically distant
A. palmeri populations to assess if glyphosate resistance
evolved in the southeastern United States and migrated to the
southwestern United States, or if it evolved independently in AZ
as a result of local management practices. Glyphosate resistance
and susceptibility were determined by EPSPS copy number
and shikimate assay test in all sampled individuals confirming
that the resistance mechanism was EPSPS gene amplification.
EPSPS genomic copy number was similar among the resistant
populations; thus, spread of glyphosate resistance from a single
origin is possible. GBS was used to identify numerous genome-
wide sequence differences used as putative neutral markers due
to its fast and simple application, cost-effectiveness and high
resolution (Brumfield et al., 2003; Morin et al., 2004; Deschamps
et al., 2012; Narum et al., 2013). The technique is widely
applicable for studying non-model organisms, such as weeds,
because the consensus of read clusters around the sequence
site becomes the reference sequence and therefore a complete
reference genome sequence is not required (Baxter et al., 2011;
Elshire et al., 2011; Reitzel et al., 2013). For this study, 1,351 SNPs
were used that remained after filtering.

Genetic diversity for each of the A. palmeri populations was
estimated by the number of alleles, allelic richness, observed
and expected heterozygosity, as well as inbreeding coefficient.
The varying levels of heterozygosity found can most likely be
attributed to differing collection dates and subsequent seed
increase events which may have caused inbreeding depression.
In particular AZ-S2, collected in 1981, is expected to have
undergone severe inbreeding.

UPGMA phylogenetic tree analysis, PCA, Bayesian model-
based clustering, and pairwise comparisons of genetic distances
were used to determine the genetic relationship among the eight
different A. palmeri populations and yielded congruent results.

GA-S, TN-R, and AZ-S2 were genetically distinct while the
remaining populations AZ-R, KS-S, AZ-S1, GA-R, and NE-S
clustered together more closely. AZ-R was most closely related to
KS-S, followed by AZ-S1, with GA-R being the next most similar
population to AZ-R.

Cytoplasmic genomes are maternally inherited and do not
undergo recombination. Thus, they permit a more conserved
examination of intraspecific phylogeography in plants. They
further have the potential to allow for higher differentiation
(Petit et al., 2005). Chloroplast and mitochondrial SNPs were
evaluated separately because they might support different
phylogenies (Washburn et al., 2015; Zhu et al., 2016), since
mitochondrial genomes have lower nucleotide sequence variation
than chloroplast genomes (Wolfe et al., 1987). Analyses with
SNPs in cytoplasmic genomes supported GA-S and TN-R to be
genetically distinct. Chloroplast SNPs, however, placed AZ-S2
closer to the remaining populations than NE-S, consistent
with the geographical distribution. AZ-R was closest to AZ-S1
based on chloroplast SNPs while mitochondrial SNPs placed the
population closest to KS-S. Sequencing of the ALS gene revealed
that two out of three AZ-R individuals carried aW574L and S653N
mutation each, showing high diversity of theALS sequence within
the population. Since only the W574L mutation was found in
one out of three individuals from TN-R, while GA-R and GA-S
individuals had none (Küpper et al., 2017), mutations in the ALS
gene do not support clustering of AZ-R and GA-R.

According to the observed population genetic structure, two
scenarios are possible for AZ-R: Either glyphosate resistance
evolved independently in AZ or GR A. palmeri from GA
migrated west via KS to AZ, against the species expansion
direction (Supplementary Information Figure 10). The small
amount of shared sequences with GA-R and the moderate
amount of shared sequences with KS-S individuals support
such an introduction route, as does the chronological order
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FIGURE 6 | Population structure analysis with K = 4, K = 5, and K = 8 based on SNPs from the chloroplast genome for eight A. palmeri populations (A) and K = 5,

and K = 8 based on SNPs from the mitochondrial genome for eight A. palmeri populations (B). Each individual is represented by a vertical bar that is divided by K

colored segments representing the likelihood of a membership to each cluster.

of reports of glyphosate resistance (Georgia: 2004, Kansas:
2011, Arizona: 2012). AZ-R individuals shared alleles with
AZ-S1 which could be attributed to crossing events with
the native, GS population since resistance is likely to have
been reported some time after the introduction event (Cavan
et al., 1998). The high degree of unique sequence in AZ-
R suggests that the exact origin of the population could
not be identified. It can, however, be predicted that AZ-R
individuals were not introduced from around the sampling
location in TN.

Interestingly, TN-R and GA-R did not share any alleles
and seemed unrelated in all analyses. Such strong population
differentiation and monophyly can stem from a past divergence
event and subsequent adaptation to environmental conditions
through intraspecies convergent evolution (Ralph and Coop,
2015) or isolation due to limited dispersal and low connectivity

(Reitzel et al., 2013). Further, agricultural practices might
have strongly modified weed communities and disturbed
genetic equilibrium (Menchari et al., 2007). TN and GA/NC
coastal regions are geographically separated by the Appalachian
mountain range and have dissimilar cropping systems with one
primarily focusing on soybean and corn production and the other
on cotton. As resistance to glyphosate was reported within a
time frame of 2 years in these states, it is very possible that the
populations represent independent glyphosate resistance origins.
GA-R and GA-S, however, were genetically distinct from each
other in all analyses even though collected from about 115 km
apart and without any major geographical obstacles in the way.
If glyphosate resistance evolved at the GA-R location, a more
panmictic structure would have been expected (Chauvel and
Gasquez, 1994). Such differences could be attributed to locally
differing conditions, a high degree of natural spatial genetic
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diversity within the species, or the possibility that glyphosate
resistance did not originate in GA. It is also possible that
continuous selection with glyphosate created a genetic bottleneck
and subsequent inbreeding of resistant individuals.

Amaranthus palmeri is a species with high genetic variability
which makes it a challenge to draw a definite conclusion about
an introduction event without very specific sampling. This study
has shown that genetic relatedness does not decrease with
distance. Hence, if GS individuals collected from within a 50 km
radius can have the high level of genetic differentiation observed
in this study (e.g., AZ-S1 and AZ-S2), it may be difficult to
identify a parallel adaptation event. The nativity of A. palmeri
to the southwestern United States and adaptation to local and
heterogenous environments (Clements et al., 2004) as well as the
species’ obligate outcrossing nature are drivers for heterozygosity.
Genetic diversity, in turn, increases the likelihood of resistance
to evolve, as does high selection pressure due to frequent usage
of glyphosate which has been the case in all areas of GR
A. palmeri collection sites. Future research should incorporate a
more extensive collection of GR A. palmeri populations, always
coupled with at least one geographically close GS population.
Furthermore, all seed should be collected by the exact same
sampling technique to increase the precision and accuracy with
which questions of genetic relatedness and geographic migration
patterns can be answered.

CONCLUSION

A major management question for growers is how much of
the resistance issue results from previous selection intensity
from management practices in their own fields, and how much
results from gene flow from neighboring fields. Although this
study was not able to definitively determine whether AZ-R
evolved independently or if glyphosate resistancemigrated to AZ,
the recent geographical expansion of A. palmeri to the upper
United States Midwest (Kartescz, 2014), Argentina (Berger et al.,
2016), and Brazil (Küpper et al., 2017) shows that migration
via seed movement is an important factor for A. palmeri. Long-
distance seed dispersal is possible through irrigation and rainfall
events (Norsworthy et al., 2014), buying and selling of used
harvest equipment, custom harvesting crews moving around the
country (Schwartz et al., 2016), contaminated crop seed and

feed, as well as transportation through migrating wildlife such
as ducks and geese (Farmer et al., 2017). Aside from harvest
equipment hygiene requirements, it is difficult to prevent such
seed dispersal. Early detection and rapid response approaches
already used in invasive species management (Westbrooks, 2004)
and disease outbreaks (Fasina et al., 2014) could be useful to
adopt for herbicide resistance management. Delaying resistance
evolution and prolonging the utility of remaining effective
modes of actions for which resistance is not yet widespread,
such as synthetic auxins, glutamine synthetase-, and phytoene
desaturase (PDS)-inhibitors, is critical for future A. palmeri
management.
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