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POPULATION GENETICS MODELS WITH SKEWED
FERTILITIES: A FORWARD AND BACKWARD ANALYSIS

THIERRY HUILLET, MARTIN MÖHLE

Abstract. Discrete population genetics models with unequal (skewed) fertil-
ities are considered, with an emphasis on skewed versions of Cannings models,
conditional branching process models in the spirit of Karlin and McGregor, and
compound Poisson models. Three particular classes of models with skewed fer-
tilities are investigated, the Wright-Fisher model, the Dirichlet model, and the
Kimura model. For each class the asymptotic behavior as the total population
size N tends to infinity is investigated for power law fertilities and for geomet-
ric fertilities. This class of models can exhibit a rich variety of sub-linear or
even constant effective population sizes. Therefore, the models are not neces-
sarily in the domain of attraction of the Kingman coalescent. For a substantial
range of the parameters, discrete-time coalescent processes with simultaneous
multiple collisions arise in the limit.

Running title: Population genetics models with skewed fertilities.

Keywords: Ancestral process; Cannings model; Compound Poisson model;
Dirichlet model; Dirichlet–Kingman coalescent; Duality; Evolutionary pro-
cesses; Exchangeable coalescent; Karlin and McGregor model; Kimura model;
Kingman coalescent; Population dynamics; Simultaneous multiple collisions;
Wright-Fisher model

1. Introduction

The well-known neutral discrete Wright-Fisher model describes the evolution of a
population of constant size N from generation to generation forwards in time. One
of the main features of this model (and similar models such as the discrete Moran
model) is that each individual has the same propensity to produce offspring.

In this paper discrete population models are studied, in which individuals may have
unequal propensities to reproduce. We shall speak of models with skewed fertilities.
The terminology ‘skewed’ means here ‘asymmetric’ or ‘unequal’ and should be not
confused with the skewness of a distribution. These models turn out to be of
interest mainly because of the following two reasons. First of all, it turns out that
the effective population size Ne (a precise definition of Ne is provided after Eq. (8))
of these models may differ significantly from the actual total population size N
and may not even depend linearly on N . The fact that models with this behavior
may have importance for biological applications, is for example indicated in papers
of Eldon and Wakeley [6] and Wakeley and Sargsyan [34]. Models with effective
population sizes smaller than N occur also in a different context of age-structure
of populations in a paper of Sagitov and Jagers [30]. Secondly, in the limit as
the total population size N tends to infinity, these models are not necessarily in
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the domain of attraction (see Definition 2.1) of the Kingman coalescent [14]. The
limiting coalescent may have simultaneous multiple collisions of ancestral lineages.
Ancestral processes of this form are a major research area in coalescent theory and
have been studied intensively since at least ten years (see, for example, [24] or [31]).

The models we are mainly interested in are obtained by conditioning a sequence
ξ1, ξ2, . . . of independent random variables on the event that ξ1 + · · · + ξN = N ,
with the interpretation that the outcome of ξn, under the constraint that ξ1 +
· · · + ξN = N , is the number of children of the nth individual, n ∈ {1, . . . , N}.
Since the random variables ξ1, ξ2, . . . are not necessarily assumed to be identically
distributed, this construction results in unequal propensities of the individuals to
produce offspring. In the spirit of Karlin and McGregor [13] we call this model the
skewed conditional branching process model.

Schweinsberg [32] studies models, in which N individuals are sampled without
replacement from SN := X1 + · · · + XN offspring, where X1, . . . , XN are given
i.i.d. random variables. The effective population sizes of these models satisfy Ne =
O(N) (see [32, Eq. (18)]), and, in particular, Ne can exhibit a rich variety of
sub-linear behavior (see, for example, [32, Lemma 13]), however, these models are
different from our models, which are based on conditioning instead of sampling.

The paper is organized as follows. In Section 2 a skewed Cannings model is intro-
duced and analyzed. This model essentially coincides with an associated standard
exchangeable Cannings model [3, 4]. Section 2 therefore heavily gains from the
theory on Cannings models. The results of Section 2 are applied in Section 3 to
the skewed conditional branching process model. Since this huge class of condi-
tional models has in general a quite complicated probabilistic structure, we further
specialize in Section 4 to a subclass of skewed compound Poisson models. Exact
formulae for the transition probabilities of the forward and the backward process
are derived. It is furthermore shown (Theorem 4.3) that, in the unbiased (non-
skewed) case, the model is in the domain of attraction (see Definition 2.1) of the
Kingman coalescent. In all cases we obtain exact and asymptotic formulae for the
effective population size Ne, which can deviate substantially from the total popula-
tion size N . The following Sections 5 and 6 are devoted to two particular compound
Poisson models, the skewed Wright-Fisher model and the skewed Dirichlet model.
In both models the effective population size Ne is less than or equal to the total
population size N , and, depending on the parameter choices, can indeed be sub-
stantially smaller than N , for example Ne ∼ ρN with ρ ∈ (0, 1), Ne = O(Nβ) with
β ∈ (0, 1), Ne = O(log N), or even Ne = O(1). These two models are in particular
analyzed for power law skewed fertilities and for geometrically skewed fertilities. It
turns out that for a wide range of parameter choices, these models are not anymore
in the domain of attraction of the Kingman coalescent. Coalescents allowing for
simultaneous multiple collisions arise in the limit as the total population size tends
to infinity. The paper finishes in Section 7 with an analog analysis of the skewed
Kimura model, a model which does not belong to the compound Poisson class, but
nevertheless exhibits similarities with the previously studied models.

Throughout the paper the notation N := {1, 2, . . .}, N0 := {0, 1, 2, . . .}, and [N ] :=
{1, . . . , N}, N ∈ N, is used. We furthermore use, for fixed N ∈ N, the symbol
S := {0, . . . , N} for the state space of several discrete processes considered in this
paper. Moreover, for k ∈ N0 and x ∈ R, (x)k := x(x − 1) · · · (x − k + 1) and
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[x]k := x(x + 1) · · · (x + k − 1) denote the descending and ascending factorials
respectively, with the convention that (x)0 = [x]0 = 1.

2. Skewed Cannings models

Consider a population with constant population size N ∈ N evolving in discrete non-
overlapping generations t ∈ N0. The nth individual, n ∈ [N ], of the tth generation
gives birth to a random number µn(t) of children. Since the population is assumed
to have constant population size N , for each fixed generation t ∈ N, the random
vector µ(t) := (µ1(t), . . . , µN (t)) must take values in the discrete N -simplex ∆(N)
consisting of all k = (k1, . . . , kN ) ∈ NN

0 satisfying k1 + · · · + kN = N . Note that
the random variable µn(t) = µn,N (t) is allowed to depend on the total population
size N . However, for simplicity, this dependence on N is usually not indicated
throughout the paper. It is assumed that the random vectors µ(0), µ(1), . . . are
i.i.d., so the model is time-homogeneous. We write µn := µn(0), n ∈ [N ], and
µ := µ(0) for convenience. Note that the model is in principle defined in the
same way as an exchangeable Cannings model [3, 4]. The only slight modification
is that, for each fixed generation t ∈ N0, the offspring variables µ1(t), . . . , µN (t)
are not necessarily assumed to be exchangeable. Models of this form have been
studied in [19] even in the time-inhomogeneous setting when the total population
size is not necessarily constant equal to N . Particular examples, such as the skewed
Wright-Fisher model, which is studied in Section 5 in more detail, have been the
source of recurrent interest in the literature (see, for example, [2] and [18]). A main
tool exploited in this section is the following shuffling procedure. For each fixed
generation t ∈ N0 let ν(t) = (ν1(t), . . . , νN (t)) be a random permutation (shuffling)
of µ(t) = (µ1(t), . . . , µN (t)). Then ν(t) is exchangeable with distribution

(1) P(ν(t) = k) =
1

N !

∑
π

P(πµ(t) = k), k ∈ ∆(N),

where πµ(t) := (µπ1(t), . . . , µπN (t)) and the sum extends over all permutations π of
[N ]. We interpret νn(t) as the number of offspring of the nth individual of the tth
generation in an exchangeable Cannings model [3, 4]. Again we write νn := νn(0),
n ∈ [N ], and ν := ν(0) for convenience. As we will see soon, this exchangeable
Cannings population model will turn out to be very helpful to analyze the original
skewed Cannings model. More precisely, since all assignments of offspring to parents
are assumed to be equally likely, there is essentially no difference between the
skewed model and the associated shuffled exchangeable Cannings model. However,
we are interested in these skewed Cannings models since (as the following sections
will show) starting with not necessarily exchangeable offspring variables µ1, . . . , µN

naturally leads to interesting subclasses and examples of Cannings models, which
to the best of our knowledge have not been introduced so far. Most of the results
provided in this section are well known from the literature on Cannings models
and from coalescent theory. We chose to present these results, since we interpret
them in terms of the original skewed model we started with at the beginning of this
section. For example, we clarify how the forward and backward processes of these
models depend on the original offspring variables µ1, . . . , µN .

2.1. Looking forwards in time. Take a sample of n ∈ S individuals of generation
0 and, for t ∈ N0, let Xt denote the number of descendants of these n individuals
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in generation t. The process X := (Xt)t∈N0 , called the forward process, is a time-
homogeneous Markov chain with state space S and initial state X0 = n. The
transition probabilities Pi,j := P(Xt+1 = j |Xt = i), i, j ∈ S, must coincide with
those of the associated exchangeable Cannings model with offspring distributions
(1), since in the considered skewed model all assignments of offspring to parents are
assumed to be equally likely. From the literature on exchangeable models (Cannings
[3, p. 267]), it follows that Pi,j = P(ν1 + · · · + νi = j) =

∑
k P(ν = k), where the

sum extends over all k ∈ ∆(N) satisfying k1 + · · · + ki = j. Plugging in (1) and
interchanging the two sums involved yields

Pi,j =
1

N !

∑
π

∑

k

P(πµ = k) =
1

N !

∑
π

P(µπ1 + · · ·+ µπi = j).

Introducing n1 := π1, . . . , ni := πi, and noting that there exist exactly (N − i)!
permutations π leaving π1, . . . , πi fixed, it follows that

(2) Pi,j =
1

(N)i

N∑
n1,...,ni=1
all distinct

P
( i∑

k=1

µnk
= j

)
=

1(
N
i

)
∑

1≤n1<···<ni≤N

P
( i∑

k=1

µnk
= j

)

for i, j ∈ S. One may rewrite (2) as Pi,j =
(
N
i

)−1 ∑
M P(

∑
m∈M µm = j), i, j ∈ S,

where the sum
∑

M extends over all subsets M of [N ] satisfying |M | = i. The chain
X is a martingale, since E(Xt+1 |Xt = i) =

∑
j∈S jPi,j =

∑
j∈S jP(ν1 + · · ·+ νi =

j) = E(ν1 + · · ·+ νi) = iE(ν1) = i, i ∈ S. Since X is bounded (0 ≤ Xt ≤ N for all
t ∈ N0), Xt converges almost surely to some random variable X∞ as t → ∞, and
(Xt)t∈N0∪{∞} is still a martingale. If P(µk = 1) < 1 for some k ∈ [N ], then (see,
for example, Section 2.1 of [20]) X∞ takes the two values 0 and N with probability
P(X∞ = 0) = 1− n/N and P(X∞ = N) = n/N respectively.

The associated Cannings model with exchangeable offspring variables ν1, . . . , νN

is useful in many respects. For instance, in terms of the so-called coalescence
probability (see, for example, [21])

(3) cN :=
E((ν1)2)
N − 1

=
Var(ν1)
N − 1

= 1− E(ν1ν2) = −Cov(ν1, ν2),

the variance of Xt+1, given Xt = i, can be expressed as

Var(Xt+1 |Xt = i) = Var(ν1 + · · ·+ νi) = iVar(ν1) + i(i− 1)Cov(ν1, ν2)
= i(N − 1)cN − i(i− 1)cN = i(N − i)cN .

Defining the heterogeneity of the population at generation t as 2(Xt/N)(1−Xt/N),
we have 2E((Xt/N)(1−Xt/N) |X0 = i) = 2(1− cN )t(i/N)(1− i/N), t ∈ N0, i ∈ S,
showing that, if cN > 0, the mean heterogeneity tends to 0 exponentially fast as
t → ∞. We will provide further information on cN when the model is studied
backwards in time.

2.2. Looking backwards in time. Instead of looking forwards in time let us now
look backwards in time and count, starting with all N individuals from some gener-
ation t0 ∈ N0, the number of ancestors of these N individuals t ∈ {0, . . . , t0} genera-
tions backward in time. More precisely, let X̂t denote the number of ancestors of the
N individuals of generation t0 in generation t0−t. The process X̂ := (X̂t)t∈{0,...,t0},
called the backward process, is a time-homogeneous Markov chain with state space
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S and initial state N . The transition probabilities P̂i,j := P(X̂t+1 = j | X̂t = i),
i, j ∈ S, coincide with those of the associated Cannings model with exchangeable
offspring vector ν having distribution (1). Therefore, from the literature on ex-
changeable models (Cannings [3, Theorem 11], Gladstien [9, Examples]), it follows
that

P̂i,j =

(
N
j

)
(
N
i

)
∑

l1,...,lj∈N
l1+···+lj=i

E
( j∏

k=1

(
νk

lk

))

=
1(
N
i

)
∑

1≤n1<···<nj≤N

∑

l1,...,lj∈N
l1+···+lj=i

E
( j∏

k=1

(
µnk

lk

))
, i, j ∈ S,(4)

with the convention that P̂i,0 = δi0 (Kronecker symbol). Note that the last equality
follows from (1) via a similar argument as already used to derive the formula (2)
for Pi,j . The states 0 and 1 are absorbing.

The matrix P̂ = (P̂i,j)i,j∈S is lower left triangular and has hence eigenvalues
λi := P̂i,i, i ∈ S. From (4) it follows that λ0 = 1 and that λi = P̂i,i =(
N
i

)−1 ∑
1≤n1<···<ni≤N E(µn1 · · ·µni), i ∈ [N ]. Note that λ1 = 1 and that λ2 =(

N
2

)−1 ∑
1≤n1<n2≤N E(µn1µn2) = E(ν1ν2) = 1 − cN . Since the forward and back-

ward transition matrices P = (Pi,j)i,j∈S and P̂ = (P̂i,j)i,j∈S coincide with those of
the associated Cannings model with exchangeable offspring vector ν, it is allowed to
apply results on exchangeable Cannings models, in particular duality results such
as the duality relation PH = HP̂ ′, where H = (Hij)i,j∈S is (see, for example, [20])
the matrix with entries Hij =

(
i
j

)
/
(
N
j

)
, i, j ∈ S. Since H is non-singular, P has the

same eigenvalues as P̂ . In particular, cN = 1− λ2 is the spectral gap of P and P̂ .

The random variable X̂t counts the number of ancestors in generation t0 − t, but
it gives no information about whether two individuals i and j, randomly picked
from generation t0, share a common parent in generation t0− t. In order to encode
this information, a more enriched ancestral process has to be considered, which
is now described. Take a random sample of n ∈ [N ] individuals from generation
t0 ∈ N0 and, for t ∈ {0, . . . , t0}, define a random relation Rt on {1, . . . , n} by
saying that (i, j) ∈ Rt if and only if the individuals i and j have a common parent
in generation t0 − t. Note that Rt = (N)R(n)

t depends on the sample size n and
on the total population size N . The process (Rt)t∈{0,...,t0} is called the ancestral
process or a discrete coalescent process. It is well known (see, for example, [19])
that (Rt)t∈{0,...,t0} is a Markov chain with state space En, the set of equivalence
relations (partitions) on {1, . . . , n}, and transition probabilities

(5) P(Rt+1 = η |Rt = ξ) = Φj(l1, . . . , lj), ξ, η ∈ En, ξ ⊆ η,

where

(6) Φj(l1, . . . , lj) :=
1

(N)l1+···+lj

N∑
n1,...,nj=1
all distinct

E((µn1)l1 · · · (µnj )lj ).



6 THIERRY HUILLET, MARTIN MÖHLE

Here j := |η| denotes the number of equivalence classes (blocks) of η and l1, . . . , lj ∈
N are the group sizes of merging classes of ξ. Note that l1 + · · ·+ lj is the number
of classes (blocks) of ξ. Comparing (6) with (4) shows that

(7) P̂i,j =
i!
j!

∑

l1,...,lj∈N
l1+···+lj=i

Φj(l1, . . . , lj)
l1! · · · lj ! , i, j ∈ {1, . . . , N}.

For j = 1, (4) and (7) reduce to

P̂i,1 = Φ1(i) =
1

(N)i

N∑
n=1

E((µn)i), i ∈ {1, . . . , N}.

The coalescence probability cN , i.e. the probability that two individuals, randomly
chosen from some generation, have a common parent, is hence

(8) cN := P̂2,1 = Φ1(2) =
1

(N)2

N∑
n=1

E((µn)2),

in agreement with (3), and the effective population size is Ne := 1/cN . We will
later also make use of the probability that three individuals, randomly chosen from
some generation, share a common parent, which is given by

dN := P̂3,1 = Φ1(3) =
1

(N)3

N∑
n=1

E((µn)3).

The transition probabilities (5) do not depend on t and t0. It is hence allowed
to choose t0 arbitrary large. We can therefore think of a process (Rt)t∈N0 with
transition probabilities (5) and time t ∈ N0. A fundamental result from coalescent
theory (see, for example, [21, p. 989)] or [25, Lemma 5.5]) states that, if dN/cN → 0,
then cN → 0 and, moreover (see [24] or [21, Theorem 4 (b)]), if dN/cN → 0, then, for
each sample size n ∈ N, the time-scaled process (R(n)

[t/cN ])t∈[0,∞) converges weakly

to Kingman’s n-coalescent (R(n)
t )t∈[0,∞) as the total population size N tends to

infinity. In [24] there is also a criterion in terms of the quantities (6) provided
ensuring that, for each n ∈ N, the time-scaled process (R(n)

[t/cN ])t∈[0,∞) converges
weakly as N → ∞ to a more general process (%nRt)t∈[0,∞), where %n denotes the
restriction from E , the set of all equivalence relations on N, to En, and R = (Rt)t≥0 is
a continuous-time coalescent process allowing for simultaneous multiple collisions of
ancestral lineages. This asymptotic behavior can only occur if cN → 0. If, instead,
cN converges to a positive constant, then, a similar criterion for the quantities (6),
also provided in [24], ensures that, for each sample size n ∈ N, the process (R(n)

t )t∈N0

(without any time-scaling involved) converges weakly to a discrete-time process
(%nRt)t∈N0 , where (Rt)t∈[0,∞) is a discrete-time coalescent allowing for simultaneous
multiple collisions of ancestral lineages.

Definition 2.1. a) Let R = (Rt)t∈[0,∞) be a continuous-time coalescent with simul-
taneous multiple collisions. We say that the considered population model is in the
domain of attraction of R, if, for each sample size n ∈ N, the time-scaled ancestral
process (R(n)

[t/cN ])t∈[0,∞) converges weakly to (%nRt)t∈[0,∞) as N →∞.

b) Let R = (Rt)t∈N0 be a discrete-time coalescent with simultaneous multiple colli-
sions. We say that the considered population model is in the domain of attraction
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of R, if, for each sample size n ∈ N, the ancestral process (R(n)
t )t∈N0 converges

weakly to (%nRt)t∈N0 as N →∞.

In both cases we call R the attractor of the considered population model.

Example 2.2. (extended Moran model) Let U be a random variable taking
values in {0, . . . , N}. Define the offspring vector µ = (µ1, . . . , µN ) via µn := 1 if
n ∈ {1, . . . , N − U}, and, on {U > 0}, µn := 0 if n ∈ {N − U + 1, . . . , N − 1}, and
µN := U . The associated shuffled exchangeable Cannings model was considered by
Eldon and Wakeley [6]. For U ≡ 0 (and as well for U ≡ 1), we obtain the trivial
model in which every individual has one offspring (µn = 1 for all n ∈ [N ]). For
U ≡ N in this model the Nth individual is the parent of all the N children of the
next generation (µN = N). If U ≥ 1 almost surely, then, by (2), the forward chain
X has transition probabilities

Pi,j =
1(
N
i

)
( ∑

1≤n1<···<ni<N

P(
i∑

k=1

µnk
= j) +

∑

1≤n1<···<ni=N

P(
i−1∑

k=1

µnk
= j − U)

)

=
1(
N
i

)E((
N−U

j

)(
U−1
i−j

)
+

(
N−U
j−U

)(
U−1

(i−1)−(j−U)

))

=





E
((

N−U
j

)(
U−1
i−j

))/(
N
i

)
if j < i,

E
((

N−U
j

)
+

(
N−U
N−j

))/(
N
i

)
= E

( (i)U+(N−i)U

(N)U

)
if j = i,

E
((

N−U
N−j

)(
U−1
j−i

))/(
N
i

)
if j > i.

If P(U = 0) > 0, then in the above expressions for Pi,j each U has to be replaced
by max(U, 1). For U ≡ 2 this model reduces to the standard Moran model with
forward transition probabilities Pi,i−1 = i(N − i)/(N)2, i ∈ {1, . . . , N}, Pi,i+1 =
i(N − i)/(N)2, i ∈ {0, . . . , N − 1}, Pi,i = 1− 2i(N − i)/(N)2, i ∈ {0, . . . , N}, and
Pi,j = 0 otherwise. From (4), it follows similarly that, for i, j ∈ [N ],

P̂i,j =




E

((
N−U
j−1

)(
U

i−j+1

))/(
N
i

)
if j < i,

E
((

N−U
i

)
+ U

(
N−U
i−1

))/(
N
i

)
if j = i,

0 if j > i.

Note that P̂i,1 = E((U)i)/(N)i, i ∈ {2, . . . , N}. In particular, cN = P̂2,1 =
E((U)2)/(N)2, in agreement with [6, Eq. (2)], and dN = P̂3,1 = E((U)3)/(N)3.
The model is in the domain of attraction of the Kingman coalescent if and only if
E((U)3)/(NE((U)2)) → 0 as N → ∞. If U is binomially distributed with param-
eters N and p ∈ [0, 1], then cN = p2. Note that p = pN may depend on N , so
this model can have a wide variety of effective population sizes Ne = 1/p2

N . For
instance, if pN = N−α, α > 0, then Ne = N2α is sub-linear for α < 1/2 and
super-linear for α > 1/2. If pN = λN , λ < 1, then Ne = λ−2N grows exponentially.
We will come back to this model in Proposition 3.1.

In the following section we will introduce a skewed conditional branching process
model, which can be viewed as a particular Cannings model. We will later identify
the attractor R of several concrete such population models.
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3. Skewed conditional branching process models

Let ξ1, ξ2, . . . be independent non-negative integer valued random variables and let
fn denote the probability generating function (pgf) of ξn, n ∈ N. For any pgf g
and l ∈ N0 we use the standard notation gl for the lth power of g (g0 = 1) and the
notation g(l) for the lth derivative of g. Moreover, [xl]g(x) denotes the coefficient
in front of xl in the Taylor expansion of g around zero. For N ∈ N assume that
P(ξ1 + · · · + ξN = N) > 0 and let µ = (µ1, . . . , µN ) be a random vector with
distribution

P(µ = k) :=
P(ξ1 = k1) · · ·P (ξN = kN )
P(ξ1 + · · ·+ ξN = N)

=
[xk1 ]f1(x) · · · [xkN ]fN (x)

[xN ](f1 · · · fN )(x)
,

k = (k1, . . . , kN ) ∈ ∆(N). The distribution of µ is hence that of (ξ1, . . . , ξN )
conditioned on the event that ξ1 + · · · + ξN = N . Note that, for n ∈ [N ], the
marginal variable µn has distribution

P(µn = k) =
P(ξn = k)P(

∑
m∈[N ]\{n} ξm = N − k)

P(ξ1 + · · ·+ ξN = N)

=
([xk]fn(x))([xN−k](

∏
m∈[N ]\{n} fm(x)))

[xN ](f1 · · · fN )(x)
, k ∈ {0, . . . , N}.

For each n ∈ [N ] one may interpret µn as the number of offspring of individual n
in a population with non-overlapping generations of constant population size N .
Note that µ has pgf

(9) E(zµ1
1 · · · zµN

N ) =
[xN ](f1(xz1) · · · fN (xzN ))

[xN ](f1 · · · fN )(x)
, |z1|, . . . , |zN | ≤ 1.

Let l1, . . . , lN ∈ N0 and put l := l1 + · · · + lN . Applying the ‘derivative operator’
(∂l1/∂l1z1) · · · (∂lN /∂lN zN ) to the left-hand side and the right-hand side of (9), and
noting that it is allowed to interchange this derivative operator with the ‘coefficient
operator’ [xN ] in the numerator on the right-hand side of (9), it follows that

E((µ1)l1z
µ1−l1
1 · · · (µN )lN zµN−lN

N ) =
[xN−l](

∏N
i=1 f

(li)
i (xzi))

[xN ](f1 · · · fN )(x)
.

Taking the limit z1 ↗ 1, . . . , zN ↗ 1 shows that µ has descending factorial moments

(10) E((µ1)l1 · · · (µN )lN ) =
[xN−l](

∏N
i=1 f

(li)
i (x))

[xN ](f1 · · · fN )(x)
, l1, . . . , lN ∈ N0.

If the random variables ξ1, ξ2, . . . are identically distributed, then the model reduces
to the conditional branching process model first introduced by Moran and Watter-
son [26] and further investigated for example by Karlin and McGregor [13]. In this
case, for each fixed N ∈ N, the random variables µ1, . . . , µN are exchangeable. Note
however, that in general it is not assumed here that the random variables ξ1, ξ2, . . .
are identically distributed. In this sense the model is a bit more general than the
conditional branching process model of [26]. Particular classes and examples of the
model, which to the best of our knowledge are new or only briefly mentioned in
the literature, are introduced and analyzed in the following sections, among them
the skewed Wright-Fisher model (Section 5), the skewed Dirichlet model (Section
6), and the skewed Kimura model (Section 7). One may think that, at least for
fixed N , the model can be reduced to a simpler model by randomly permutating
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the random variables ξ1, . . . , ξN . However, this is not the case. If η1, . . . , ηN de-
notes a random permutation of ξ1, . . . , ξN , then the random variables η1, . . . , ηN are
identically distributed but in general not independent (not even uncorrelated) any-
more. In this sense the model is indeed more general than the conditional branching
process model of Karlin and McGregor.

On the other hand, for arbitrary but fixed N ∈ N, the model is well known from
the literature in the following sense. Fix N ∈ N and let ν = (ν1, . . . , νN ) be a
random permutation of µ = (µ1, . . . , µN ). As explained in Section 2, the model
can be interpreted as an exchangeable Cannings model with population size N and
offspring vector ν. Note that, for k = (k1, . . . , kN ) ∈ ∆(N),

P(η1 = k1, . . . , ηN = kN )
P(η1 + · · ·+ ηN = N)

=
1

N !

∑
π

P(ξπ1 = k1, . . . , ξπN = kN )
P(ξ1 + · · ·+ ξN = N)

=
1

N !

∑
π

P(πµ = k) = P(ν = k),

so permutating the random variables ξ1, . . . , ξN (and conditioning) leads to the same
exchangeable Cannings model as permutating the random variables µ1, . . . , µN .
Essentially all results known for exchangeable Cannings models apply to our model,
which simplifies our further analysis significantly. For example, as explained in
Section 2, the transition matrix of the forward process has entries (2). Noting that,
for any subset M of [N ],

P(
∑

m∈M

µm = j) =
P(

∑
m∈M ξm = j)P(

∑
m∈[N ]\M ξm = N − j)

P(ξ1 + · · ·+ ξN = N)

=
([xj ](

∏
m∈M fm)(x))([xN−j ](

∏
m∈[N ]\M fm)(x))

[xN ](f1 · · · fN )(x)
,

it follows that the forward transition matrix P = (Pi,j)i,j∈S has entries

(11) Pi,j =
1(
N
i

)
∑

M

([xj ](
∏

m∈M fm)(x)) ([xN−j ](
∏

m∈[N ]\M fm)(x))

[xN ](f1 · · · fN )(x)
, i, j ∈ S,

where the sum
∑

M extends over all subsets M of [N ] satisfying |M | = i. We
now turn to the backward chain. From (4) and (10), it follows that the backward
transition probabilities are of the form

P̂i,j =
1(
N
i

)
∑

1≤n1<···<nj≤N

∑

l1,...,lj∈N
l1+···+lj=i

[xN−i](f (l1)
n1 (x) · · · f (lj)

nj (x)
∏

m∈[N ]\{n1,...,nj} fm(x))

l1! · · · lj ! [xN ](f1 · · · fN )(x)
, i, j ∈ S,(12)

with the convention that P̂i,0 = δi0, i ∈ S. In particular,

P̂i,1 = Φ1(i) =
1

(N)i

N∑
n=1

[xN−i](f (i)
n (x)

∏
m∈[N ]\{n} fm(x))

[xN ](f1 · · · fN )(x)
, i ∈ S,
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and the coalescence probability is given by

cN = P̂2,1 =
1

(N)2

N∑
n=1

[xN−2](f ′′n (x)
∏

m∈[N ]\{n} fm(x))

[xN ](f1 · · · fN )(x)
.

Moreover, the eigenvalues λi := P̂i,i = Φi(1, . . . , 1), i ∈ S, of the matrix P̂ are given
by λ0 = 1 and

λi =
1(
N
i

)
∑

1≤n1<···<ni≤N

[xN−i](f ′n1
(x) · · · f ′ni

(x)
∏

m∈[N ]\{n1,...,ni} fm(x))

[xN ](f1 · · · fN )(x)

for i ∈ {1, . . . , N}.
Remark. One may write P̂i,j in the form

P̂i,j =
1(
N
i

) 1
[xN ](f1 · · · fN )(x)

∑

1≤n1<···<nj≤N

[xN−i](Sfn1 ,...,fnj
,x(i, j)

∏

m∈[N ]\{n1,...,nj}
fm(x)),

where (see, for example, [23, Eq. (18)])

Sg1,...,gj ,x(i, j) :=
i!
j!

∑

l1,...,lj∈N
l1+···+lj=i

g
(l1)
1 (x)
l1!

· · · g
(lj)
j (x)
lj !

are some sort of generalized Stirling numbers of the second kind, with the convention
that, for j = 0, Sg1,...,gj ,x(i, j) = δi0, i ∈ N0.

Remark. The class of the conditional branching process models leads to a wide va-
riety of Cannings models. However (see the following proposition), not all Cannings
models are conditional branching process models.

Proposition 3.1. The extended Moran model (see Example 2.2) is not a condi-
tional branching process model, provided that P(2 ≤ U ≤ N − 1) = 1.

Proof. Suppose that the extended Moran model with population size N is a condi-
tional branching process model. Then, there exist i.i.d. random variables ξ1, ξ2, . . .
such that P(ξ1+ · · ·+ξN = N) 6= 0 and P(ν = k) = pk1 · · · pkN /P(ξ1+ · · ·+ξN = N)
for k = (k1, . . . , kN ) ∈ ∆(N), where pk := P(ξ1 = k), k ∈ N0. In particular,

0 6= E
(

1
N

(
N−1
U−1

)
)

= P(ν1 = · · · = νN−U = 1, νN−U+1 = · · · = νN−1 = 0, νN = U)

=
E(pU−1

0 pN−U
1 pU )

P(ξ1 + · · ·+ ξN = N)
,

and, hence, p1 6= 0, since P(N − U ≥ 1) = 1 by assumption. On the other hand,

0 = P(ν1 = · · · = νN = 1) =
P(ξ1 = 1) · · ·P(ξN = 1)
P(ξ1 + · · ·+ ξN = N)

=
pN
1

P(ξ1 + · · ·+ ξN = N)
,

and, hence, p1 = 0, an obvious contradiction. In particular, for N ≥ 3, the standard
Moran model (U ≡ 2) is not a conditional branching process model. ¤
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It seems to be hard to derive further exact or asymptotic results as N → ∞ for
the general skewed conditional branching process model. We therefore focus in the
following sections on important subclasses.

4. The skewed compound Poisson class

Let φ be a given power series of the form φ(z) =
∑∞

m=1 φmzm/m!, |z| < r with
positive radius r ∈ (0,∞] of convergence and with non-negative coefficients φm ≥ 0,
m ∈ N. We also assume that φ1 > 0. Let furthermore θ1, θ2, . . . ∈ (0,∞) be given
strictly positive real parameters. In this section it is assumed that, for each n ∈ N,
the random variable ξn of the skewed conditional branching process model (as
described in the previous section) has pgf

(13) fn(x) = E(xξn) = exp
(
− θnφ(z)

(
1− φ(zx)

φ(z)

))
, |x| ≤ 1.

In (13), z is viewed as a fixed parameter. However, for the following approach we
also see z as a variable satisfying |z| < r. In order to state the following lemma we
need to introduce, for θ > 0, the Taylor expansion

(14) exp(θφ(z)) =
∞∑

k=0

σk(θ)
k!

zk, |z| < r,

of exp(θφ(z)), seen as a function of z. Note that the coefficients σk(θ) are strictly
positive and they depend on the sequence φ. := (φn)n∈N. More precisely, the
coefficients σk(θ) satisfy the recursion σ0(θ) = 1 and

(15) σk+1(θ) = θ

k∑

l=0

(
k

l

)
φk−l+1σl(θ), k ∈ N0,

i.e. σ1(θ) = θφ1, σ2(θ) = θφ2 + θ2φ2
1, σ3(θ) = θφ3 + 3θ2φ1φ2 + θ3φ3

1, and so on.
Note that, for each fixed k ∈ N, σk(θ) ∼ (θφ1)k as θ →∞.

Proposition 4.1. If, for each n ∈ N, the random variable ξn has a pgf of the form
(13), then the forward process X of the associated skewed conditional branching
process model has transition probabilities

(16) Pi,j =

(
N
j

)
(
N
i

)
∑

M

σj(
∑

m∈M θm)σN−j(
∑

m∈[N ]\M θm)

σN (ΘN )
, i, j ∈ S,

where ΘN := θ1+· · ·+θN , the sum
∑

M extends over all subsets M ⊆ [N ] satisfying
|M | = i, and the coefficients σk(θ) are recursively defined via (15).

Proof. For j ∈ [N ], θ > 0 and |x| ≤ 1, it follows from (14) that

[xj ] exp(θφ(zx)) = [xj ]
∞∑

k=0

σk(θ)
k!

(zx)k = zj σj(θ)
j!

.

Using, for M ⊆ [N ], the shortage θ :=
∑

m∈M θm, it follows that

[xj ](
∑

m∈M

fm)(x) = [xj ] exp
(
− θφ(z)

(
1− φ(zx)

φ(z)

))

= exp(−θφ(z))[xj ] exp(θφ(zx)) = exp(−θφ(z))zj σj(θ)
j!

.
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Thus, (16) follows from (11). ¤

Remark. For the unbiased case, when the parameter θn = θ does not depend on
n ∈ N, (16) reduces to

Pi,j =
(

N

j

)
σj(iθ)σN−j((N − i)θ)

σN (Nθ)
, i, j ∈ S.

Let us now turn to the backward process.

Proposition 4.2. If, for each n ∈ N, the random variable ξn has a pgf of the form
(13), then the backward process X̂ of the associated skewed conditional branching
process model has transition probabilities

(17) P̂i,j =
i!

σi(ΘN )

∑

1≤n1<···<nj≤N

∑

l1,...,lj∈N
l1+···+lj=i

σl1(θn1) · · ·σlj (θnj )
l1! · · · lj ! , i, j ∈ S,

with the convention that P̂i,0 = δi0, i ∈ S. Here ΘN := θ1 + · · · + θN and the
coefficients σk(θ) are recursively defined via (15). In particular,

P̂i,1 =
1

σi(ΘN )

N∑
n=1

σi(θn), i ∈ {1, . . . , N}.

Proof. From Kolchin’s representation formula [15] (see also [28, Chapter 1, Theorem
1.2]), it follows that µ = (µ1, . . . , µN ) has distribution

P(µ = k) =
N !

σN (ΘN )

N∏
n=1

σkn(θn)
kn!

, k = (k1, . . . , kN ) ∈ ∆(N).

Therefore, µ has joint descending factorial moments

E((µ1)l1) · · · (µN )lN ) =
(N)l1+···+lN

σl1+···+lN (ΘN )

N∏
n=1

σln(θn), l1, . . . , lN ∈ N0.

The probability (6) is therefore of the form

Φj(l1, . . . , lj) =
1

(N)l1+···+lj

N∑
n1,...,nj=1
all distinct

E((µn1)l1 · · · (µnj )lj )

=
1

σl1+···+lj (ΘN )

N∑
n1,...,nj=1
all distinct

σl1(θn1) · · ·σlj (θnj ), l1, . . . , lj ∈ N.



POPULATION GENETICS MODELS WITH SKEWED FERTILITIES 13

Using (7), it follows that

P̂i,j =
i!
j!

∑

l1,...,lj∈N
l1+···+lj=i

Φj(l1, . . . , lj)
l1! · · · lj !

=
i!

j!σi(ΘN )

N∑
n1,...,nj=1
all distinct

∑

l1,...,lj∈N
l1+···+lj=i

σl1(θn1) · · ·σlj (θnj
)

l1! · · · lj !

=
i!

σi(ΘN )

∑

1≤n1<···<nj≤N

∑

l1,...,lj∈N
l1+···+lj=i

σl1(θn1) · · ·σlj (θnj )
l1! · · · lj ! . ¤

Remark. The previous proposition in particular shows that

cN = P̂2,1 =
1

σ2(ΘN )

N∑
n=1

σ2(θn) =
φ2ΘN + φ2

1

∑N
n=1 θ2

n

φ2ΘN + φ2
1Θ

2
N

.

Since N
∑N

n=1 θ2
n ≥ Θ2

N , it follows that cN ≥ 1/N , or, equivalently, that Ne ≤ N .

Let us now focus on the unbiased case, when all the parameters θn = θ are equal to
some constant θ ∈ (0,∞). It turns out to be convenient to introduce, for any formal
series a(z) =

∑∞
k=1 akzk/k! or, equivalently, for any sequence a. := (a1, a2, . . .), the

Bell polynomials

(18) Bi,j(a.) :=
i!
j!

[zi](a(z))j =
i!
j!

∑

l1,...,lj∈N
l1+···+lj=i

al1 · · · alj

l1! · · · lj ! , i, j ∈ N0.

Note that B0,0(a.) = 1, Bi,0(a.) = B0,i(a.) = 0, Bi,1(a.) = ai and Bi,i(a.) = ai
1 for

i ∈ N. For more information on these polynomials we refer the reader to [1] and
Chapter 1 of Pitman [28].

The following theorem provides exact and asymptotic formulae for the transition
probabilities P̂i,j and clarifies that the unbiased compound Poisson class is in the
domain of attraction of the Kingman coalescent.

Theorem 4.3. If θn = θ ∈ (0,∞) for all n ∈ N, then

(19) P̂i,j =
(N)j

σi(θN)
Bi,j(σ.(θ)) i, j ∈ S,

where the Bi,j(σ.(θ)) are the Bell polynomials of σ.(θ) := (σ1(θ), σ2(θ), . . .). In
particular,

(20) P̂i,1 =
Nσi(θ)
σi(θN)

, i ∈ {1, . . . , N}.

Moreover, for i, j ∈ N with i ≥ j,

(21) P̂i,j ∼ Bi,j(σ.(θ))
(θφ1)i

1
N i−j

, N →∞,

and the model is in the domain of attraction of the Kingman coalescent in the sense
of Definition 2.1 a).
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Proof. Since θn = θ does not depend on n, the formula (17) reduces to (19) thanks
to the formula (18) for the Bell polynomials. For j = 1, (19) reduces to (20), since
Bi,1(σ.(θ)) = σi(θ). For i, j ∈ N with i ≥ j and for all N ≥ i it follows that

P̂i,j =
(N)j

σi(θN)
Bi,j(σ.(θ)) ∼ N j

(θNφ1)i
Bi,j(σ.(θ)) =

Bi,j(σ.(θ))
(θφ1)i

1
N i−j

,

which is (21). For j = 1, Eq. (21) reduces to P̂i,1 ∼ σi(θ)/((θφ1)iN i−1) as N →∞.
Thus, dN/cN = P̂3,1/P̂2,1 ∼ (σ3(θ)/(θφ1σ2(θ))N−1 → 0, which ensures that the
model is in the domain of attraction of the Kingman coalescent. ¤

Remark. Theorem 4.3 in particular provides explicit exact formulae for the coa-
lescence probability cN = P̂2,1 and for dN = P̂3,1, namely

(22) cN =
Nσ2(θ)
σ2(θN)

=
N(θφ2 + θ2φ2

1)
θNφ2 + (θN)2φ2

1

and

dN =
Nσ3(θ)
σ3(θN)

=
N(θφ3 + 3θ2φ1φ2 + θ3φ3

1)
θNφ3 + 3(θN)2φ1φ2 + (θN)3φ3

1

.

Example 4.4. (Wright-Fisher model) For the Wright-Fisher model, φ(z) = z,
σk(θ) = θk. From Bi,j(θ, θ2, . . .) = θiBi,j(1, 1, . . .) = θiS(i, j), where the S(i, j) are
the Stirling numbers of the second kind, it follows that

P̂i,j =
(N)j

σi(θN)
Bi,j(σ.(θ)) =

(N)j

(θN)i
θiS(i, j) = (N)jN

−iS(i, j),

which is well known. For results concerning the skewed Wright-Fisher model we
refer the reader to Section 5.

Example 4.5. (Dirichlet model) Suppose that φ(z) = − log(1− z), |z| < 1, i.e.
φm = (m− 1)!, m ∈ N. Then, σk(θ) = [θ]k, k ∈ N, and, hence,

P̂i,j =
(N)j

[θN ]i
Bi,j([θ].) =

i!
[θN ]i

(
N

j

) ∑

l1,...,lj∈N
l1+···+lj=i

[θ]l1 · · · [θ]lj
l1! · · · lj ! .

Results on the skewed Dirichlet model are presented in Section 6.

We briefly mention two further examples, showing the wide variety of models we
are concerned with.

Example 4.6. Let α ∈ (0, 1] and assume that φ(z) = 1− (1− z)α, |z| < 1. Then,
φm = (−1)m−1(α)m = α[1 − α]m−1 ≥ 0, m ∈ N. Note that φ(z) → 1 as z → 1, a
smoothness property of φ. For z → 1 the random variable ξ1 has a discrete stable
distribution with pgf E(xξ1) = exp(−θ(1− x)α) (see, for example, Steutel and van
Harn [33, Eq. (3.7)]) and tail asymptotics P(ξ1 > y) ∼ θcαy−α as y → ∞, where
cα := sin(πα/2) cos(πα/2)Γ(α)/(π/2) (apply, for example, Pitman [27, Theorem
1]). Note that φ1 = α and that φ2 = αβ with β := 1 − α. Thus, from (22), it
follows that

cN = P̂2,1 =
N(θαβ + θ2α2)

θNαβ + (θN)2α2
∼

(
1 +

β

θα

)
1
N

.

Thus, Ne = 1/cN ∼ ρN with ρ := (1 + β/(θα))−1 < 1.
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Example 4.7. Let α ∈ (0,∞) and assume that φ(z) = (1 − z)−α − 1, |z| < 1.
Then, φm = [α]m, m ∈ N. Note that φ(z) → ∞ as z → 1. The random variable
ξ1 has a compound Poisson distribution with negative binomial jumps and pgf
E(xξ1) = exp(−θφ(z)(1− φ(zx)/φ(z))), |x| ≤ 1. By (22),

cN =
N(θα(α + 1) + θ2α2)

θNα(α + 1) + (θN)2α2
∼

(
1 +

α + 1
θα

)
1
N

.

Thus, Ne ∼ ρN with ρ := (1 + (1 + α)/(θα))−1 < 1.

Theorem 4.3 clarifies that a large class of unbiased conditional branching process
models is in the domain of attraction of the Kingman coalescent. For the skewed
situation the asymptotical behavior of (17) as N → ∞ is much more involved. In
the following sections we focus on particular skewed population models. It will
turn out that these models are not necessarily in the domain of attraction of the
Kingman coalescent.

5. Skewed Wright-Fisher model

Let m1,m2, . . . ∈ (0,∞) be given parameters and assume that ξn is Poisson dis-
tributed with parameter mn, n ∈ N. Since ξn has pgf fn(x) = E(xξn) = e−mn(1−x),
n ∈ N, it follows that this model belongs to the skewed compound Poisson class
(13) with φ(z) := z and θn := mn/z. Moreover, from (9) and (10) it follows that
µ has a multinomial distribution with parameters N and s1,N , . . . , sN,N , where
sn,N := mn/(m1 + · · · + mN ), n ∈ {1, . . . , N}. We shall often drop the in-
dex N and use sn instead of sn,N for notational convenience. Note that µ has
pgf E(zµ1

1 · · · zµN

N ) = (s1z1 + · · · + sNzN )N , |z1|, . . . , |zN | ≤ 1, and descending
factorial moments E((µ1)l1 · · · (µN )lN ) = (N)ls

l1
1 · · · slN

N , l1, . . . , lN ∈ N0, where
l := l1 + · · · + lN . The pgf of the nth marginal µn is E(zµn

n ) = (1 − sn + znsn)N ,
|zn| ≤ 1, showing that µn has a binomial distribution with parameters N and sn.
In particular, E(µn) = Nsn and σ2

n := Var(µn) = Nsn(1 − sn), n ∈ {1, . . . , N}.
From the above formula for the descending factorial moments of µ, it follows that
E(µn1µn2) = N(N − 1)sn1sn2 for n1, n2 ∈ {1, . . . , N} with n1 6= n2. In particular,
Cov(µn1 , µn2) = −Nsn1sn2 for n1 6= n2.

The expression (11) for the forward transition probabilities Pi,j simplifies to

(23) Pi,j =
1(
N
i

)
∑

1≤n1<···<ni≤N

(
N

j

)( i∑

k=1

snk

)j(
1−

i∑

k=1

snk

)N−j

, i, j ∈ S.

Similarly, (12) reduces to

(24) P̂i,j = i!
∑

l1,...,lj∈N
l1+···+lj=i

1
l1! · · · lj !

∑

1≤n1<···<nj≤N

sl1
n1
· · · slj

nj
, i, j ∈ S,

which, for j = 1, yields P̂i,1 =
∑N

n=1 si
n, i ∈ {1, . . . , N}. For i = 2 and i = 3,

we obtain cN = P̂2,1 =
∑N

n=1 s2
n and dN = P̂3,1 =

∑N
n=1 s3

n. Note that cN =∑N
n=1 s2

n ≥ 1/N . In particular, Ne := 1/cN ≤ N , so the effective population size is
smaller than or equal to the effective population size in the unbiased case. Applying
the Hölder inequality

∑
n |anbn| ≤ (

∑
n a2

n)1/2(
∑

n b2
n)1/2 with an := s

1/2
n and
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bn := s
3/2
n shows that cN ≤ d

1/2
N , or, equivalently, that cN ≤ dN/cN . On the other

hand, since the Euclidian 2-norm is larger than or equal to the Euclidian 3-norm,
we obtain c

1/2
N ≥ d

1/3
N , or, equivalently, dN/cN ≤ c

1/2
N . Thus, cN ≤ dN/cN ≤ c

1/2
N

and, consequently, cN → 0 is equivalent to dN/cN → 0. The model is hence in the
domain of attraction of the Kingman coalescent if and only if cN → 0.

Choosing i = j in (24) shows that the backward matrix P̂ has eigenvalues λ0 = 1
and

λi := P̂i,i = i!
∑

1≤n1<···<ni≤N

sn1 · · · sni
, i ∈ {1, . . . , N}

By duality [20], these are also the eigenvalues of the forward transition matrix P .
Note that 1 = λ0 = λ1 > λ2 = 1 − cN > λ3 > · · · > λN . In particular, the
eigenvalues λ1, . . . , λN are pairwise distinct. Coming back to the random variables
µ1, . . . , µN we see that the average covariances of the µn’s is

1(
N
2

)
∑

1≤n1<n2≤N

Cov(µn1 , µn2) = − 2
N − 1

∑

1≤n1<n2≤N

sn1sn2 = −1− cN

N − 1
.

Let

SN :=
1
N

N∑
n=1

E(µn)
N

µn =
1
N

N∑
n=1

snµn

be the size-biased relative mean offspring fertility. Since µ has a multinomial dis-
tribution with parameters N and s1, . . . , sN , it is readily checked that E(SN ) = cN

and that Var(SN ) = (dN − c2
N )/N , which provides an alternative proof of the

inequality dN ≥ c2
N .

For the Wright-Fisher model, the moments of Xt+1, given Xt = i, can be related
to the backward probabilities as follows. For j ∈ N, we have

E(Xj
t+1 | Xt = i) =

1(
N
i

)
∑

1≤n1<···<ni≤N

E
(( i∑

k=1

µnk

)j)

=
1(
N
i

)
j∑

l=1

S(l, j)(N)l

∑

1≤n1<···<ni≤N

( i∑

k=1

snk

)l

.

Using
∑

1≤n1<···<ni≤N

( i∑

k=1

snk

)l

=
l∑

k=1

(
N − k

i− k

)
P̂l,k,

where P̂l,k is defined in (24), we get

E(Xj
t+1 | Xt = i) =

1(
N
i

)
j∑

l=1

S(l, j)(N)l

l∑

k=1

(
N − k

i− k

)
P̂l,k

=
j∑

l=1

S(l, j)(N)l

l∑

k=1

(i)k

(N)k
P̂l,k,

which is a polynomial of degree j in i.

For the Wright-Fisher model, there are the following two alternative representations
of the backward transition probabilities (24).



POPULATION GENETICS MODELS WITH SKEWED FERTILITIES 17

(i) It can easily be checked that

(25) P̂i,j = N−i(N)jS(i, j, Ns),

where s := (s1, . . . , sN ) and

(26) S(i, j, s) :=
i!
j!

[xi]
1(
N
j

)
∑

1≤n1<···<nj≤N

j∏

k=1

(exsnk − 1)

are generalized second kind Stirling numbers. Note that, when E(µn) = Nsn = 1
for all n ∈ [N ], (26) reduces to the usual second kind Stirling numbers S(i, j) =
(i!/j!)[xi](ex − 1)j (see [5, vol. I, p. 144]). The unbiased version of (25) is thus
P̂i,j = N−i(N)jS(i, j), which is well-known. Note that (25) and (26) also yield

P̂i,j = i![xizj ]
N∏

n=1

(1 + z(exsn − 1))

showing that, as shown in [18],

E(z bXt+1 |X̂t = i) = i![xi]
N∏

n=1

(1 + z(exsn − 1)),

and for the double pgf

∑

i

xi

i!
E(z bXt+1 |X̂t = i) =

N∏
n=1

(1 + z(exsn − 1)).

This leads in particular to E(X̂t+1|X̂t = i) =
∑N

n=1(1− (1− sn)i) and

E
((

X̂t+1

2

)
| X̂t = i

)

=
N∑

n=1

(n− 1)(1− (1− sn)i)−
∑

1≤n2<n1≤N

(
(1− sn1)

i − (1− (sn1 + sn2))
i
)
.

(ii) There is a second obvious representation taking into account repetitions, in
the spirit of the Ewens sampling formula [8]. Assume there are al individuals at
generation t, numbered 1 ≤ n1,l < · · · < nal,l ≤ N , producing exactly l offspring,
l ∈ {0, . . . , N}. Clearly, there is no overlap of the above number of sequences for
different values of l. Then, using (24)

(27) P̂i,j = i!
∑

Pi
l=1 lal=i

Pi
l=1 al=j

;

i∑

l=1

∑
n1,l<···<nal,l

i∏

l=1

al∏

k=1

(
sl

nk,l

l!

)
.

In (27), there are
i∏

l=1

(
N −∑l−1

k=1 ak

al

)
=

(N)j∏i
l=1 al!
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sums of the type
∑i

l=1

∑
n1,l<···<nal,l

1 so that when sn = 1/N for all n ∈ [N ] (the
unbiased case),

P̂i,j = N−i(N)j

∑
Pi

l=1 lal=i
Pi

l=1 al=j

;

i!∏i
l=1 al!l!al

,

where the last sum is an alternative representation of the second kind Stirling
numbers S(i, j) (see [5, vol. I, p. 145]).

Example 5.1. (power law growth) Fix a constant α ∈ R and assume that mn :=
E(ξn) = n−α, n ∈ N. The unbiased case (mn = 1 for all n ∈ N) corresponds to
α = 0. In the following seven ranges for the parameter α are distinguished.

(i) If α < 1/3, then MN :=
∑N

n=1 mn ∼ N
∫ 1

0
(Nx)−αdx = N1−α/(1− α),

(28) cN =
1

M2
N

N∑
n=1

n−2α ∼
(

1− α

N1−α

)2
N1−2α

1− 2α
=

(1− α)2

(1− 2α)N

and, similarly,

dN =
1

M3
N

N∑
n=1

n−3α ∼
(

1− α

N1−α

)3
N1−3α

1− 3α
=

(1− α)3

1− 3α

1
N2

.

(ii) If α = 1/3, then (28) still holds, i.e. cN ∼ 4/(3N), but

dN =
1

M3
N

N∑
n=1

1
n
∼

(
1− α

N1−α

)3

log N =
8
27

log N

N2
.

(iii) If 1/3 < α < 1/2, then (28) still holds, but

dN =
1

M3
N

N∑
n=1

n−3α ∼
(

1− α

N1−α

)3

ζ(3α) = (1− α)3ζ(3α)
1

N3(1−α)
,

where ζ denotes the Riemann zeta function.

In all three cases, i.e. for α < 1/2, we have Ne = 1/cN ∼ ρN with 0 < ρ :=
(1 − 2α)/(1 − α)2 ≤ 1. The effective population size is hence asymptotically of a
factor ρ smaller than the effective population size N in the unbiased case (α = 0).

Moreover, from (24), it follows that the eigenvalues satisfy

λi = P̂i,i =
i!

M i
N

∑

1≤n1<···<ni≤N

(n1 · · ·ni)−α ∼
(

1− α

N1−α

)i

i!
(N)i∑

n=i!

n−αMN (n, i),

where MN (n, i) is the number of multiplicative partitions of n into i ordered distinct
factors each belonging to {1, . . . , N}.
We will now see that Ne can increase of order slower than N .

(iv) When α = 1/2, it is readily checked that MN ∼ 2N1/2, cN ∼ (log N)/(4N),
and dN ∼ ζ(3/2)/(8N3/2). Thus, Ne = 1/cN ∼ (4N)/ log N is asymptotically
of a factor 4/ log N smaller than the standard effective population size N in the
unbiased case.
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(v) Assume now that 1/2 < α < 1. Then, still MN =
∑N

n=1 n−α ∼ N1−α/(1− α),

cN =
1

M2
N

N∑
n=1

n−2α ∼ (1− α)2

N2(1−α)
ζ(2α)

and, similarly,

dN =
1

M3
N

N∑
n=1

n−3α ∼ (1− α)3

N3(1−α)
ζ(3α)

Note that, with ρ := 1/((1 − α)2ζ(2α)) < 1, Ne ∼ ρN2(1−α) grows algebraically
and the order is slower than N .

(vi) For α = 1 it is straightforward to check that MN ∼ log N , cN ∼ ζ(2)/(log N)2,
and dN ∼ ζ(3)/(log N)3. Note that Ne ∼ (log N)2/ζ(2) grows quite slow (logarith-
mically).

For all six cases (i) - (vi) considered so far, i.e. for α ≤ 1, we have cN → 0 and
dN/cN → 0. Thus, in the sense of Definition 2.1 a), the model is in the domain
of attraction of the Kingman coalescent. Thus, for each sample size n ∈ N, the
time-scaled backward process (R(n)

[t/cN ])t∈[0,∞) converges weakly to the Kingman n-
coalescent as N → ∞. All that is left about the details of the original discrete
fertility model (mn = n−α) is enclosed in the parameter Ne = 1/cN ≤ N , where N
is the time-scale of the unbiased Wright-Fisher model (mn = 1).

(vii) Assume now that α > 1. Then, MN =
∑N

n=1 n−α → ζ(α) =: M , and,

P̂i,1 = Φ1(i) =
N∑

n=1

si
n =

1
M i

N

N∑
n=1

n−iα → ζ(iα)
(ζ(α))i

, i ∈ N.

In particular cN → ζ(2α)/(ζ(α))2 > 0 and dN → ζ(3α)/(ζ(α))3 > 0. The regime
α > 1 thus differs significantly from the previously studied cases, since cN converges
to a positive constant as N → ∞. More generally, for l1, . . . , lj ∈ N, we have to
analyze the behavior of

Φ(N)
j (l1, . . . , lj) =

N∑
n1,...,nj=1
all distinct

sl1
n1,N · · · slj

nj ,N

as N → ∞. For each fixed n ∈ N we have sn,N = n−α/MN → n−α/M =
n−α/ζ(α) =: pn as N → ∞. Note that

∑∞
n=1 pn = 1. Moreover, sn,N ≤ n−α

uniformly for all N , since MN ≥ 1. Thus, by dominated convergence, for each
l1, . . . , lj ∈ N, the limit φj(l1, . . . , lj) := limN→∞ Φ(N)

j (l1, . . . , lj) exists and is of
the form

(29) φj(l1, . . . , lj) =
∑

n1,...,nj∈N
all distinct

pl1
n1
· · · plj

nj
.

For arbitrary i, j ∈ N it therefore follows from (24) that

(30) lim
N→∞

P̂i,j =
i!
j!

∑

l1,...,lj∈N
l1+···+lj=i

φj(l1, . . . , lj)
l1! · · · lj ! .
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It is convenient (see, Schweinsberg [31]) to rewrite (29) in integral form as

φj(l1, . . . , lj) =
∫

∆

∑

n1,...,nj∈N
all distinct

xl1
n1
· · ·xlj

nj

Ξ(dx)
(x, x)

,

where ∆ := {(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,
∑∞

n=1 xn ≤ 1}, (x, x) :=
∑∞

n=1 x2
n for

x ∈ ∆ and the measure Ξ on ∆ assigns its total mass Ξ(∆) := (p, p) =
∑∞

n=1 p2
n =

ζ(2α)/(ζ(α))2 to the single point p = (p1, p2, . . .) ∈ ∆. Theorem 2.1 of [24] ensures
that the model, without any time-scaling involved, is in the domain of attraction
(in the sense of Definition 2.1 b)) of the discrete-time Ξ-coalescent with the measure
Ξ as just defined.

Example 5.2. (geometric growth) Fix a constant λ ∈ (0,∞) and assume that
mn = λn, n ∈ N. The unbiased case corresponds to λ = 1, so without loss of
generality we assume that λ 6= 1. The distribution of µ when λ > 1 is exactly
the same as the distribution of µ when the parameter is 1/λ, just with the order
of the N associated random variables µ1, . . . , µN reversed. Both distributions are
multinomial with the same parameters. Therefore, without loss of generality, we do
the calculations only for λ ∈ (0, 1). Then, MN =

∑N
n=1 λn = λ(1− λN )/(1− λ) →

λ/(1− λ) =: M as N →∞ and

P̂i,1 =
1

M i
N

N∑
n=1

λin =
(

1− λ

λ(1− λN )

)i
λi(1− λiN )

1− λi

=
(1− λ)i

1− λi

1− λiN

(1− λN )i
∼ (1− λ)i

1− λi
.(31)

In particular,

cN = P̂2,1 =
(1− λ)2

1− λ2

1− λ2N

(1− λN )2
∼ 1− λ

1 + λ
.

For arbitrary i, j ∈ N it follows similarly as in the previous Example 5.1 (vii) that
the limiting formula (30) for P̂i,j holds, but in the formula (29) for φj(l1, . . . , lj),
the parameter pn has to be replaced by pn := λn/M = (1 − λ)λn−1, n ∈ N. For
instance, the diagonal entries P̂i,i of the matrix P̂ satisfy

lim
N→∞

P̂i,i = φi(1, . . . , 1) =
∑

n1,...,ni∈N
all distinct

pn1 · · · pni

=
(

1− λ

λ

)i ∑

n1,...,ni∈N
all distinct

λn1+···+ni =
(

1− λ

λ

)i ∑

n≥i(i+1)/2

λnA(n, i),

where A(n, i) is the number of vectors (n1, . . . , ni) ∈ Ni with pairwise distinct
components satisfying n1 + · · · + ni = n. This example essentially coincides with
Example 5.1 (vii). Again (see [24, Theorem 2.1]) the model is the domain of at-
traction (in the sense of Definition 2.1 b)) of a discrete-time Ξ-coalescent, where
the measure Ξ assigns its total mass Ξ(∆) = (p, p) = (1− λ)/(1 + λ) to the single
point p := (p1, p2, . . .) ∈ ∆. The same result holds for λ > 1, but (see the comment
at the beginning of this example) in the definition of pn above, the parameter λ
has to be replaced by 1/λ.
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6. Skewed Dirichlet model

Consider the model where ξn has a negative binomial distribution with pgf fn(x) =
(p/(1 − qx))an , where an > 0, p ∈ (0, 1), q := 1 − p. Note that mn := E(ξn) =
(q/p)an, n ∈ N, and that this model belongs to the skewed compound Poisson class
(13) with θn := an, φ(z) := − log(1− z) =

∑∞
m=1 zm/m, and z := q. In this case µ

has the Dirichlet multinomial distribution

P(µ = k) =

(
a1+k1−1

k1

) · · · (aN+kN−1
kN

)
(
AN+N−1

N

) =
N !

k1! · · · kN !
[a1]k1 · · · [aN ]kN

[AN ]N
,

k = (k1, . . . , kN ) ∈ ∆(N), where AN := a1 + · · ·+aN . In other words, the distribu-
tion of µ is multinomial with parameters N and p1, . . . , pN , where the parameters
p1, . . . , pN are random and Dirichlet distributed with parameters a1, . . . , aN . The
symmetric Dirichlet model is for example studied in [29, p. 847]. From (11), it
follows that the forward process X has transition probabilities

Pi,j =
1(
N
i

)
∑

1≤n1<···<nj≤N

(an1+···+anj

j

)(AN−(an1+···+anj
)

N−j

)
(
AN+N−1

N

) , i, j ∈ S.

Note that µ has joint descending factorial moments

E((µ1)l1 · · · (µN )lN ) =
(N)l

[AN ]l

N∏
n=1

[an]ln , l1, . . . , lN ∈ N0,

where l := l1 + · · · + lN . In particular, E(µn) = Nan/AN , n ∈ {1, . . . , N}. We
conclude from (12) that the backward process X̂ has transition probabilities

P̂i,j =
i!

[AN ]i

∑

1≤n1<···<nj≤N

∑

l1,...,lj∈N
l1+···+lj=i

j∏

k=1

[ank
]lk

lk!
, i, j ∈ S,

with the convention that P̂i,0 = δi0. In particular, P̂i,1 = ([AN ]i)−1
∑N

n=1[an]i,
i ∈ {1, . . . , N}, and hence, cN = P̂2,1 = ([AN ]2)−1

∑N
n=1[an]2 > 0. From an/AN ≤

(an + 1)/(AN + 1) it follows that cN ≥ ∑N
n=1(an/An)2 ≥ 1/N , or, equivalently,

Ne = 1/cN ≤ N . Moreover, dN = P̂3,1 = ([AN ]3)−1
∑N

n=1[an]3 > 0.

It is now verified that cN → 0 if and only if dN/cN → 0. The basic idea of the
proof is the same as for the skewed Kimura model, however, the technical details
are a bit more involved. We have

max
1≤n≤N

(
an

AN

)2

≤
N∑

n=1

(
an

AN

)2

≤ cN .
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Thus, max1≤n≤N (an/AN ) ≤ c
1/2
N . Moreover,

dN =
N∑

n=1

an(an + 1)(an + 2)
AN (AN + 1)(AN + 2)

≤
N∑

n=1

an(an + 1)
AN (AN + 1)

(
an

AN
+

2
AN

)

≤
(

max
1≤n≤N

an

AN

) N∑
n=1

an(an + 1)
AN (AN + 1)

+
2

AN

N∑
n=1

an(an + 1)
AN (AN + 1)

=
(

max
1≤n≤N

an

AN

)
cN +

2
AN

cN ≤ c
3/2
N +

2
AN

cN .

Thus, dN/cN ≤ c
1/2
N + 2/AN . Suppose now that cN → 0. From the formula for cN

it is readily seen that cN ≥ a2
1/[AN ]2. Thus, [AN ]2 ≥ a2

1/cN →∞. It follows that
AN →∞ and, hence, dN/cN ≤ c

1/2
N + 2/AN → 0. Conversely, if dN/cN → 0, then

cN → 0 (see Section 2). Thus, cN → 0 if and only if dN/cN → 0.

Example 6.1. (power law growth) Suppose that an := n−α for some constant
α ∈ R. Five ranges for the parameter α are distinguished. For α ∈ (−∞, 0),
AN ∼ N1−α/(1− α) →∞,

cN ∼ 1
A2

N

N∑
n=1

a2
n ∼ (1− α)2

1− 2α

1
N

and dN ∼ 1
A3

N

N∑
n=1

a3
n ∼ (1− α)3

1− 3α

1
N2

.

For α = 0 we have cN = 2/(N +1) ∼ 2/N and dN = 6/((N +1)(N +2)) ∼ 6/N2. If
α ∈ (0, 1), then cN ∼ 1/AN ∼ (1− α)/N1−α and dN ∼ 2/A2

N ∼ 2(1− α)2/N2−2α.
If α = 1, then cN ∼ 1/ log N → 0 and dN ∼ 2/ log2 N . In all these four cases
considered so far we have cN → 0 and dN/cN → 0, so the model is in the domain
of attraction of the Kingman coalescent. Suppose now that α ∈ (1,∞). Then,
AN =

∑N
n=1 n−α → A := ζ(α) > 1,

∑N
n=1 an(an + 1) =

∑N
n=1(n

−2α + n−α) →
ζ(2α) + ζ(α), and, hence, cN → (ζ(2α) + ζ(α))/[ζ(α)]2 > 0. Similarly, it follows
that dN → (ζ(3α) + 3ζ(2α) + 2ζ(α))/[ζ(α)]3 > 0.

For l1, . . . , lj ∈ N \ {1} and N ≥ i := l1 + · · ·+ lj ,

Φj(l1, . . . , lj) =
1

[AN ]i

N∑
n1,...,nj=1
all distinct

[an1 ]l1 · · · [anj ]lj

→ 1
[A]i

∑

n1,...,nj∈N
all distinct

[an1 ]l1 · · · [anj ]lj =
∑

n1,...,nj∈N
all distinct

E(Dl1
n1
· · ·Dlj

nj
),

where (Dn1 , . . . , Dnj , 1 −
∑j

k=1 Dnk
) has a Dirichlet distribution with parameters

an1 , . . . , anj , A−∑j
k=1 ank

. Thus, the limit φj(l1, . . . , lj) := limN→∞ Φj(l1, . . . , lj)
exists and is of the form φj(l1, . . . , lj) =

∫
∆j

xl1
1 · · ·xlj

j Mj(dx1, . . . , dxj), where
∆j := {(x1, . . . , xj) ∈ [0, 1]j : x1 + · · ·+ xj ≤ 1}, and the symmetric measure

(32) Mj :=
∑

n1,...,nj∈N
all distinct

Pn1,...,nj

on ∆j is an infinite mixture of the distributions Pn1,...,nj of (Dn1 , . . . , Dnj ). The
measures M1,M2, . . . completely characterize the limiting discrete-time coalescent
process and the model is in the domain of attraction of this coalescent. We now



POPULATION GENETICS MODELS WITH SKEWED FERTILITIES 23

determine the characterizing measure Ξ of this coalescent. For j ∈ N let Qj denote
the probability measure on ∆j with density

(33) fj(x) :=
Γ(A)

Γ(a1) · · ·Γ(aj)Γ(A−Aj)
xa1−1

1 · · ·xaj−1
j

(
1−

j∑

k=1

xk

)A−Aj−1

,

x = (x1, . . . , xj) ∈ ∆j , with respect to the Lebesgue measure on ∆j . Liouville’s inte-
gration formula shows that

∫ 1−(x1+···+xj)

0
fj+1(x1, . . . , xj+1) dxj+1 = fj(x1, . . . , xj)

for j ∈ N and (x1, . . . , xj) ∈ ∆j , so the sequence (Qj)j∈N is consistent. Kolmogo-
roff’s extension theorem ensures that there exists a probability measure Q on RN
such that, for each j ∈ N, the projection of Q on Rj coincides with Qj . The proba-
bility measure Q is called (see, for example, [11, Section 4]) the Dirichlet-Kingman
distribution with parameter (an)n∈N. Let D1, D2, . . . be random variables with
joint distribution Q and let D(1) ≥ D(2) ≥ · · · denote the D1, D2, . . . in decreasing
order. Note that Dn has a beta distribution with parameters an and A−an, n ∈ N.
In particular, E(Dn) = an/A for n ∈ N. Now let ν denote the joint distribution of
(D(1), D(2), . . .) and define Ξ(dx) := (x, x)ν(dx). Then, for j, l1, . . . , lj ∈ N,
∫

∆

∑

n1,...,nj∈N
all distinct

xl1
n1
· · ·xlj

nj

Ξ(dx)
(x, x)

=
∑

n1,...,nj∈N
all distinct

E(Dl1
(n1)

· · ·Dlj
(nj)

)

=
∑

n1,...,nj∈N
all distinct

E(Dl1
n1
· · ·Dlj

nj
) =

∑

n1,...,nj∈N
all distinct

[an1 ]l1 · · · [anj ]lj
[A]l1+···+lj

= φj(l1, . . . , lj),

which shows that Ξ is the characterizing measure of this coalescent. Note that for all
Mj-integrable functions g it follows that E(

∑
n1,...,nj

g(Dn1 , . . . , Dnj )) =
∫
∆j

g dMj ,
where the sum

∑
n1,...,nj

extends over all pairwise distinct n1, . . . , nj ∈ N. Hence,
the measure Mj , defined in (32), is the jth correlation measure (see, for example,
Handa [10, Eq. (2.1)]) of the point process

∑∞
n=1 δDn .

Example 6.2. (geometric growth) Suppose that an = λn for some λ ∈ (0,∞).
The unbiased case corresponds to λ = 1.

(i) If λ < 1, then AN → A := λ/(1−λ), so AN converges. We are hence essentially
in the situation of Example 6.1 with α > 1. All results there are valid, but now with
A = λ/(1 − λ) (instead of A = ζ(α)) and with an = λn (instead of an = nα). In
particular, the correlation measures M1,M2, . . . of the limiting coalescent process
with simultaneous multiple collisions are again infinite mixtures of the form (32).

(ii) If λ > 1, then AN =
∑N

n=1 λn ∼ λN+1/(λ−1), so AN does not converge. We are
hence essentially in the situation of Example 5.2 with λ > 1, and it follows that the
measure Ξ of the limiting Ξ-coalescent assigns its total mass Ξ(∆) = (λ−1)/(λ+1)
to the single point p = (p1, p2, . . .) ∈ ∆ defined via pn := (λ− 1)/λn, n ∈ N.

Remark. (Dirichlet–Kingman coalescent) Examples 6.1 and 6.2 (i) lead to the
following more general example of a Ξ-coalescent. Let a = (an)n∈N be a con-
vergent sequence of positive real numbers. Define Aj :=

∑j
n=1 an, j ∈ N, A :=

limj→∞Aj =
∑∞

n=1 an, and, for j ∈ N, define the function φj : Nj → R via

(34) φj(l1, . . . , lj) :=
1

[A]l1+···+lj

∑

n1,...,nj∈N
all distinct

[an1 ]l1 · · · [anj ]lj .
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Note that φ1(1) = 1 and that the functions φj , j ∈ N, are consistent in the sense that
φj(l1, . . . , lj) = φj+1(l1, . . . , lj , 1) +

∑j
i=1 φj(l1, . . . , li−1, li + 1, li+1, . . . , lj) for all

j, l1, . . . , lj ∈ N. Thus, there exists a discrete-time Ξ-coalescent R = (Rk)k∈N0 such
that, if R is in a state with l ∈ N blocks, any (l1, . . . , lj)-collision (j, l1, . . . , lj ∈ N
with l1 + · · · + lj = l) occurs with probability (34). The measure Ξ is obtained
as described in Example 6.1. More precisely, ν(dx) := Ξ(dx)/(x, x) is the joint
distribution of the ordered random variables D(1) ≥ D(2) ≥ · · · , where the random
variables D1, D2, . . . are such that, for each j ∈ N, (D1, . . . , Dj) has density (33).
The random partition (D1, D2, . . .) of the unit interval is (see, for example, [11, Sec-
tion 4]) the Dirichlet-Kingman partition with parameter a. One may therefore call
R the discrete-time Dirichlet–Kingman coalescent with parameter a. A standard
method for example well described in [7, p. 163, Eq. (2.3)]) allows to transform
the discrete-time coalescent R into a continuous-time coalescent Π = (Πt)t≥0 such
that, if this coalescent is in a state with l ∈ N blocks, any (l1, . . . , lj)-collision
(j, l1, . . . , lj ∈ N with l1 + · · · + lj = l > j) occurs at rate (34). Note however
that Π has total rates 1− φj(1, . . . , 1), j ∈ N. One may call Π the continuous-time
Dirichlet–Kingman coalescent with parameter a. This coalescent has many prop-
erties in common with the Poisson–Dirichlet coalescent [22]. For example, both
measures ν and Ξ are concentrated on the subset ∆∗ of points x ∈ ∆ satisfying
|x| := ∑∞

n=1 xn = 1. In particular,
∫ |x|ν(dx) = ν(∆) = 1 < ∞, showing that these

coalescents, if started in the partition of N into singletons, do not have proper
frequencies and, hence, cannot come down from infinity.

7. Skewed Kimura model

In this section an example is presented which (in contrast to the models in Sections 5
and 6) does not belong to the compound Poisson class. Suppose that for each n ∈ N
the random variable ξn has a binomial distribution with pgf fn(x) = (px + q)an ,
where an ∈ N, p ∈ (0, 1) and q := 1 − p. Note that mn := E(ξn) = pan, n ∈ N.
Then, µ = (µ1, . . . , µN ) has a multi-hypergeometric distribution of the form P(µ =
k) =

(
a1
k1

) · · · (aN

kN

)
/
(
AN

N

)
, k = (k1, . . . , kN ) ∈ ∆(N), where AN := a1 + · · · + aN .

From (11), it follows that the forward process X has transition probabilities

Pi,j =
1(
N
i

)
∑

1≤n1<···<ni≤N

(an1+···+ani
j

)(AN−(an1+···+ani
)

N−j

)
(
AN

N

) , i, j ∈ S.

Note that µ has joint factorial moments

E
((

µ1

l1

)
· · ·

(
µN

lN

))
=

(
N

l1+···+lN

)
(

AN

l1+···+lN

)
(

a1

l1

)
· · ·

(
aN

lN

)
, l1, . . . , lN ∈ N0,

In particular, E(µn) = Nan/AN , n ∈ {1, . . . , N}. From (12), it follows that the
backward process X̂ has transition probabilities

P̂i,j =
1(

AN

i

)
∑

1≤n1<···<nj≤N

∑

l1,...,lj∈N
l1+···+lj=i

(
an1

l1

)
· · ·

(
anj

lj

)
, i, j ∈ S,

with the convention that P̂i,0 = δi0, i ∈ S. Note that P̂i,1 = ((AN )i)−1
∑N

n=1(an)i,
i ∈ {1, . . . , N}, and, hence, cN = P̂2,1 = ((AN )2)−1

∑N
n=1(an)2 and dN = P̂3,1 =
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((AN )3)−1
∑N

n=1(an)3. The coalescence probability cN can be smaller than 1/N
(choose for example an = 2 for all n ∈ N leading to cN = 1/(2N − 1)), so the
effective population size Ne = 1/cN can be larger than N . We have cN = 0 if and
only if an = 1 for all n ∈ {1, . . . , N}. For the rest of this section it is assumed
that an > 1 for at least one index n ∈ N such that cN > 0 for sufficiently large
N . In the following it is verified that cN → 0 if and only if dN/cN → 0. From
(an − 2)/(AN − 2) ≤ (an − 1)/(AN − 1) ≤ an/AN it follows that

max
1≤n≤N

(
an − 2
AN − 2

)2

≤ max
1≤n≤N

an(an − 1)
AN (AN − 1)

≤
N∑

n=1

an(an − 1)
AN (AN − 1)

= cN .

Thus, max1≤n≤N ((an − 2)/(AN − 2)) ≤ c
1/2
N , and consequently

dN =
N∑

n=1

an(an − 1)(an − 2)
AN (AN − 1)(AN − 2)

≤
(

max
1≤n≤N

an − 2
AN − 2

) N∑
n=1

an(an − 1)
AN (AN − 1)

=
(

max
1≤n≤N

an − 2
AN − 2

)
cN ≤ c

3/2
N ,

or, equivalently, dN/cN ≤ c
1/2
N . Therefore, if cN → 0, then dN/cN → 0. As already

mentioned in Section 2, the converse holds for arbitrary Cannings models, so if
dN/cN → 0, then cN → 0. In particular, the model is in the domain of attraction
of the Kingman coalescent if and only if cN → 0 as N →∞.

Example 7.1. (power law growth) Fix K ∈ N0 and suppose that an = nK , n ∈ N.
Then, AN =

∑N
n=1 nK ∼ NK+1/(K + 1) and, hence,

cN =
1

(AN )2

N∑
n=1

(nK)2 ∼ 1
A2

N

N∑
n=1

n2K ∼
(

K + 1
NK+1

)2
N2K+1

2K + 1
=

(K + 1)2

2K + 1
1
N

.

Thus Ne = ρN with ρ := (2K + 1)/(K + 1)2 < 1. Similarly,

dN ∼ 1
A3

N

N∑
n=1

n3K ∼
(

K + 1
NK+1

)3
N3K+1

3K + 1
=

(K + 1)3

3K + 1
1

N2
.

In particular, cN → 0, so the model is in the domain of attraction of the Kingman
coalescent. This example essentially coincides with Example 5.1 (i) with α := −K.

Example 7.2. (geometric growth) Fix λ ∈ {2, 3, . . .} and suppose that an = λn,
n ∈ N. Then, AN =

∑N
n=1 λn = λ(λN − 1)/(λ− 1) ∼ λN+1/(λ− 1). Now proceed

as in Example 5.2 with λ > 1. Define b := 1/λ and pn := (1− b)bn−1 = (λ− 1)/λn,
n ∈ N. For l1, . . . , lj ∈ N, it follows that

Φj(l1, . . . , lj) =
1

(AN )i

N∑
n1,...,nj=1
all distinct

(an1)l1 · · · (anj )lj

∼ 1
Ai

N

N∑
n1,...,nj=1
all distinct

λn1l1+···+nj lj →
∑

n1,...,nj∈N
all distinct

pl1
n1
· · · plj

nj
,
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where the proof of the last convergence works as in Example 5.2. The measure Ξ
of the limiting Ξ-coalescent assigns its total mass Ξ(∆) = (λ − 1)/(λ + 1) to the
single point p = (p1, p2, . . .) ∈ ∆.
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Auf der Morgenstelle 10
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