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Abstract. How great an effect does self-generated spatial structure have on logistic
population growth? Results are described from an individual-based model (IBM) with
spatially localized dispersal and competition, and from a deterministic approximation to
the IBM describing the dynamics of the first and second spatial moments. The dynamical
system incorporates a novel closure that gives a close approximation to the IBM in the
presence of strong spatial structure. Population growth given by the spatial logistic model
can differ greatly from that of the nonspatial logistic equation. Numerical simulations show
that populations may grow more slowly or more rapidly than would be expected from the
nonspatial model, and may reach their maximum rate of increase at densities other than
half of the carrying capacity. Populations can achieve asymptotic densities substantially
greater than or less than the carrying capacity of the nonspatial logistic model, and can
even tend towards extinction. These properties of the spatial logistic model are caused by
local dispersal and competition that affect spatial structure, which in turn affects population
growth. Accounting for these local spatial processes brings the theory of single-species
population growth a step closer to the growth of real spatially structured populations.

Key words: competition kernel; dispersal kernel; equilibrium; extinction; individual-based model;
logistic equation; moment dynamics; population dynamics; spatial covariance function; spatial dy-
namics.

INTRODUCTION

The logistic equation has a long and distinguished
history in ecology. First formulated by P.-F. Verhulst
in 1838, and rediscovered by Pearl and Reed (1920),
the equation was promoted to the status of a predictive
law of population growth in writings by Pearl. As a
law it proved somewhat controversial (Kingsland 1985:
77 et seq.); widely cited data on population growth
rarely give a close fit to the logistic equation (Hall
1988). Even the famous example by Gause (1934) of
growth of populations of the protist Paramecium au-
relia, reanalyzed by Leslie (1957), contains some sys-
tematic departures from the logistic equation in the
distribution of residuals (Leslie 1957, Williamson
1972:37).

There are at least three reasons why the logistic equa-
tion may fail to give an adequate description of pop-
ulation growth. First, the per capita effect of density
on population growth may not increase linearly with
density. This is the cause of the discrepancy in Gause’s
experiment on Paramecium: the logistic equation un-
derestimates the strength of density dependence at high
density (Williamson 1972:37). Such problems can be
corrected by introducing a third parameter into the lo-
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gistic equation, the u-logistic class of models, allowing
the maximum rate of population growth to be achieved
at densities other than half of the carrying capacity
(Gilpin and Ayala 1973). Second, there may be a time
delay in the operation of density dependence (Hutch-
inson 1948); time delays can occur in structured pop-
ulations when density affects vital rates at particular
ages or sizes. A time-delayed version of the logistic
equation has been used with some success to describe
the periodic time series found in certain species such
as blowflies (May 1975:94 et seq., Gurney et al. 1980).

Third, spatial structure may make it impossible for
organisms to encounter each other in proportion to their
average density. The random collision of individuals
assumed in the logistic equation, often referred to as
the ‘‘mean-field’’ assumption (e.g., Law et al. 2000),
may not represent interactions among organisms well.
Harper (1977:4) was explicit in how unsatisfactory this
assumption is in plant population biology, pointing out
that plants develop clumped spatial patterns and, in
such clumps, individuals can experience strong effects
of competition with their neighbors, even though there
may be unexploited resources nearby. Empirical studies
have shown that the ‘‘plant’s-eye view’’ of its popu-
lation density can be far from the density averaged over
space (Turkington and Harper 1979, Mahdi and Law
1987, Purves and Law 2002a).

Doubts about the validity of the mean-field assump-
tion lead to the question: How great a departure from
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logistic population growth does spatial structure cause?
To date there have been very few studies extending
logistic population growth to a continuous spatial set-
ting (Bolker and Pacala 1997, Bolker et al. 2000, see
also Law and Dieckmann 2000a). Bolker and Pacala
(1997) constructed an individual-based model (IBM)
of birth, death, and dispersal processes, derived a dy-
namical system of spatial moments (moment dynamics)
from the IBM, and examined some asymptotic prop-
erties of the dynamical system. By doing this, they
showed how the spatial structure at the asymptotic state
was affected by the intrinsic rates of birth and death
and the neighborhoods over which interactions and dis-
persal take place. Parallel work in a discrete spatial
setting is more tractable (Ellner 2001), although it has
the drawback of being less readily linked to real eco-
logical events that occur in continuous space.

This paper extends the study by Bolker and Pacala
(1997) in several ways. First, we use IBMs to document
some major departures from nonspatial logistic popu-
lation growth that occur when dispersal and interac-
tions are restricted to small neighborhoods of individ-
uals. Second, we change an assumption (a moment clo-
sure) that previously restricted the spatial logistic equa-
tions to relatively small departures from spatial
randomness of individuals; this change is needed be-
cause of the large departures from randomness often
observed in ecological communities (Condit et al.
2000, Purves and Law 2002a). Several moment clo-
sures are tested, including a new one that appears to
provide a good approximation even in populations that
develop strong spatial clustering. Third, we use the new
closure to describe some effects of restricted dispersal
and interaction neighborhoods on transient and asymp-
totic dynamics of a spatially extended population with
logistic-like properties. The study shows the spatial
logistic model has a richness in its dynamics, unantic-
ipated from its nonspatial precursor, and this brings the
theory of single-species population growth a step closer
to the dynamics of real spatially structured populations.

INDIVIDUAL-BASED MODEL (IBM)

At a microscopic scale, population growth is inher-
ently stochastic: birth and death events occur at random
creating and eliminating spatially discrete individuals
(Durrett and Levin 1994); together with dispersal, these
events lead to random variation from one individual to
another in the neighborhoods within which interactions
occur. It is therefore helpful to start with a stochastic
process describing behavior of individuals (often called
an ‘‘IBM’’ in ecology), and to derive deterministic ap-
proximations from it. Both stochastic and deterministic
methodologies have a part to play (Renshaw 1991),
and recent research in spatial aspects of population
dynamics has often followed this dual approach (Mat-
suda et al. 1992, Bolker and Pacala 1997, Law and
Dieckmann 2000b, Ellner 2001).

Stochastic process

We consider a population of organisms of a single
species living in a two-dimensional space; the space is
continuous (as opposed to a discrete spatial lattice),
homogeneous, and large enough for edge effects to be
negligible (for simulations, we use periodic boundar-
ies). An individual i, located at coordinates xi 5 (xi1,
xi2), is denoted by a Dirac delta function (x); the statedxi

of the population at time t is given by the function p(x,
t) which describes the locations of all individuals, this
function being the sum of the delta functions of all
individuals (Dieckmann et al. 1997, Dieckmann and
Law 2000).

The IBM is a stochastic process in continuous time
with events comprising birth, death, and movement;
these events take place in continuous time and may
depend on the current state of the population (a Markov
process). The probability per unit time B(x, x9, p) that
an individual located at x produces an offspring at x9
is given by

B(x, x9, p) 5 bm(x9 2 x) (1a)

where b is an intrinsic per capita birth rate, and m(x9
2 x) is a dispersal kernel describing the probability
density that a newborn individual comes to rest at a
displacement x9 2 x from its mother. The probability
per unit time D(x,p) that an individual located at x dies
is given by

D(x, p) 5 d 1 d9 w(x9 2 x) [ p(x9, t) 2 d (x9)] dx9.E x

(1b)

This death term comes in two parts, the first being an
intrinsic per capita death rate d, and the second mod-
ifying the death rate in the presence of other individuals
in a neighborhood of x. The term w(x9 2 x) is an in-
teraction kernel (normalized so that its integral over x9
is 1) that weights the effect of a neighbor displaced by
an amount x9 2 x from x on the death rate at x. Mul-
tiplying by the density of individuals at x9, and inte-
grating over x9, gives the overall effect of neighbors;
the delta function dx(x9) removes the individual at x,
because it cannot compete with itself.

We construct the IBM in this way to keep a close
connection to the familiar nonspatial logistic equation.
The IBM corresponding to the nonspatial logistic equa-
tion would simply replace the integral in Eq. 1b with
the density of individuals, ignoring their location in
space (Renshaw 1991:59). This would give a density-
independent component to per capita birth and death
rates (parameters b and d ), plus a component to the
per capita death rate that increases linearly with pop-
ulation density (weighted by the parameter d9). The
spatial extension assumes that dispersal of individuals
is linked to births and that competition among indi-
viduals is linked to deaths; this is for the sake of clarity
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FIG. 1. Number of individuals, N, in an
arena of unit area over time from IBMs (indi-
vidual-based models) with contrasting kernel
parameters for dispersal Sm and competition Sw.
All simulations began with 20 individuals ran-
domly dispersed across the unit arena; the time
series shown are averages of 20 realizations of
the IBMs. Kernel parameters are: (a) Sm 5 0.12,
Sw 5 0.12; (b) Sm 5 0.02, Sw 5 0.12; (c) Sm 5
0.12, Sw 5 0.02; (d) Sm 5 0.04, Sw 5 0.04; the
simulation is stopped at t 5 60, after which it
overlaps with (b); (e) Sm 5 0.02, Sw 5 0.02. (f)
Growth of an equivalent nonspatial logistic pop-
ulation, with density (number per unit area)
shown as the dotted line. Parameters held con-
stant throughout are as follows: b (per capita
birth rate) 5 0.4, d (intrinsic per capita death
rate) 5 0.2, and d9 5 0.001.

in developing the arguments, and alternative assump-
tions could readily be made (e.g., Bolker and Pacala
1997).

The dispersal and competition kernels determine the
spatial component of the IBM. For simulating the IBM,
functions for the kernels must be made explicit; we use
bivariate Gaussian functions

21 zx9 2 x z
m(x9 2 x) 5 exp 2 (2a)

21 2M 2Sm

21 zx9 2 x z
w(x9 2 x) 5 exp 2 (2b)

21 2W 2Sw

each having one parameter Sm, Sw, that measures the
width of the kernel. A small value of Sm means that
offspring are usually located close to their mothers,
and a small value of Sw means that competition occurs
predominantly with close neighbors. For practical pur-
poses the tail of each kernel is truncated at 3 times the
parameter value; the effect this has on the dynamics is
very small. The kernels are normalized so that their
integrals over x9 2 x are unity, M and W being the
normalization constants.

Results from IBMs

Fig. 1 shows results of illustrative realizations of the
IBM obtained using a range of kernel parameters, each
continuous line being the spatial mean density (the first
spatial moment) itself averaged over 20 realizations of
the IBM. To see the direct effect of the spatial exten-
sion, the parameters for birth and death rates (b, d, d9)
are kept constant throughout, and only Sm and Sw, af-
fecting the width of the dispersal and competition ker-
nels, are varied. In all cases the IBMs begin with 20
individuals placed at random locations in the unit arena.
The constant birth and death parameters would give an
equilibrium density of 200 individuals per unit area in
the nonspatial logistic equation, shown as the dotted
line in Fig. 1.

It is striking how big a departure from the familiar
nonspatial logistic growth the spatial extension can
cause (Fig. 1): compare the dotted line of the nonspatial
logistic equation (Fig. 1:curve(f)) with results from the
spatial IBM (Fig. 1:curves(a)–(e)). Although popula-
tions do not grow faster than in the nonspatial logistic
equation at low density, they can increase much more
slowly, and can even decrease. Both the asymptotic
and transient dynamics are affected by the spatial ex-
tension. Asymptotic densities averaged over space can
be much greater or smaller than those of the nonspatial
logistic equation; it is even possible for a rapid, re-
peatable decline to extinction to occur. Transient effects
on density include changes in the shape of the growth
curve:populations growing according to the nonspatial
logistic equation would reach their maximum rates of
increase at one half of the equilibrium density, but this
no longer holds under the spatial extension. In some
circumstances, the familiar ‘‘S’’-shaped growth of the
logistic equation is replaced by a growth transient that
is approximately linear. Surprisingly, it is populations
that stop growing at the lowest densities that take lon-
gest to reach the asymptotic state.

These deviations from the nonspatial logistic equa-
tion are generated simply by effects of the dispersal
and interaction kernels on spatial structure. To under-
stand the interplay between vital processes and spatial
structure, it helps to think of two forces that affect
spatial structure in opposite ways. The first force is
local dispersal of offspring: as the distance over which
offspring disperse is made smaller (by reducing Sm),
individuals are increasingly clustered in space. The sec-
ond force is local competition: when the neighborhood
over which individuals compete is made smaller (by
reducing Sw), mortality rates of close neighbors are
increased, with the result that survivors are overdis-
persed. Thus, by altering the parameters Sm and Sw, the
strength of forces for aggregation and overdispersion
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FIG. 2. Effects of dispersal and competition kernels on spatial structure in IBMs. Simulations started under the same
conditions as those in Fig. 1; results are shown at time 100. Row 1 has Sm 5 0.12, Sw 5 0.12: (a) dispersal kernel, (b)
competition kernel, (c) spatial pattern, (d) second radial moment of spatial pattern. Row 2 has Sm 5 0.02, Sw 5 0.12: (e)
dispersal kernel (f) competition kernel, (g) spatial pattern, (h) second radial moment. Row 3 has Sm 5 0.12, Sw 5 0.02: (i)
dispersal kernel (j) competition kernel, (k) spatial pattern, (l) second radial moment. Other parameters are as in Fig. 1. The
second radial moments C(r) are given as functions of the radial distance r of the pair and are normalized such that they
would take value 1 in the absence of spatial structure, as shown by the dashed lines.

are changed. Below, we explain how this leads to the
different kinds of population growth in Fig. 1.

First, when Sm and Sw are both large (Figs. 1:a and
2:a and b), offspring disperse over large distances and

competition occurs with individuals even if they are
quite remote. In these circumstances there is little ten-
dency for spatial structure to build up (Fig. 2c). The
population dynamics come close to satisfying the
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mean-field assumption, and the asymptotic average
density is close to the equilibrium of the non-spatial
logistic equation.

Second, when Sm is small and Sw remains large (Figs.
1:curve(b) and 2e and f), the short distances dispersed
generate a strong force towards aggregation. There is
little to counter this because Sw is still large, and the
outcome is therefore a strongly aggregated spatial pat-
tern (Fig. 2g). Aggregation is strong enough to increase
population density in the region in which the compe-
tition operates above the value expected from the non-
spatial logistic equation, notwithstanding the large val-
ue of Sw. These increased local densities stop popula-
tion growth below the level expected from the non-
spatial logistic equation. Notice also that the
asymptotic state is approached rather slowly because
the space available for the population can only be slow-
ly filled from the foci of the initial colonists due to the
short distances over which offspring disperse (Fig. 1:
curve(b)).

Third, when Sw is small and Sm remains large (Figs.
1:curve(c), and 2i and j), the high rates of mortality of
close neighbors generate a strong force towards ov-
erdispersion. But there is now little to counter over-
dispersion, because newborn offspring are widely dis-
persed over space; the outcome is therefore a spatial
pattern with a strong tendency towards regularity (Fig.
2k). A consequence of regularity is a deficiency of
competitors in the immediate neighborhood of an in-
dividual, and this permits population growth to con-
tinue to densities higher than expected from the non-
spatial logistic equation; there is sense in which local
competition leads to more efficient packing of individ-
uals into the available space. The asymptotic state is
approached quickly because individuals get rapidly to
all parts of the arena due to the large distances over
which offspring disperse (Fig. 1:curve(c)).

Fourth is a remarkable case of extinction when Sm

and Sw are both small (Fig. 1e). At the start it is rare
for individuals to compete; this is because the initial
colonists are low in density and positioned at random
(they would have to be close together to interact). The
population therefore starts to increase. However, off-
spring of the colonists are only dispersed over short
distances, and clusters rapidly develop. Competition in
these clusters is intense because of the small neigh-
borhoods over which individuals interact; mortality
rates are consequently high, so high in fact that they
exceed the rate of reproduction. The spatial mean den-
sity then starts to fall, a decline that continues down
to the last few individuals. It is immaterial that density
averaged over space is small because offspring of the
remaining individuals still come to rest close to their
mothers. Put another way, parents and offspring cannot
escape from competition with one another, so the clus-
ters implode and the population collapses. A mathe-
matical analysis of the conditions for extinction of a

population with local dispersal and competition is giv-
en by Etheridge (2002).

SPATIAL LOGISTIC EQUATIONS

Although a lot can be learned from running reali-
zations of individual-based models (IBMs), it is time
consuming to track every microscopic birth and death
event; moreover, the ecological signal can be hard to
discern beneath the stochastic variation, and hard to
analyze mathematically. A formalism that deals with
the dynamics of macroscopic variables like population
density would help.

In the case of the nonspatial logistic equation, this
scaling up from microscopic events to macroscopic var-
iables replaces a stochastic process of density-depen-
dent birth and death events with the standard logistic
differential equation, with the assumption that the area
occupied by the population, and hence the population
size, is large (Renshaw 1991:59). In the case of the
spatial logistic equations matters are more intricate be-
cause of the coupling of spatial structure to birth and
death events seen in the IBMs above (see Individual-
based model: Results from IBMs); somehow the dy-
namical system has to hold in place some information
on spatial structure and allow this structure to change
over the course of time. Dynamical systems of spatial
moments have recently been derived to do this (Bolker
and Pacala 1997, Dieckmann et al. 1997, Dieckmann
and Law 2000). Here we briefly describe such a system
of equations, and give some numerical results on how
the asymptotic state is affected by dispersal and com-
petition.

Spatial moments

The state variables of the dynamical system are the
first and second spatial moments. These moments are
defined for a spatial pattern p(x, t) as follows.

The first moment N( p) is the density averaged over
the space A in which the population lives:

1
N(p) 5 p(x, t) dx. (3a)EA

The second moment C(j, p) is the average density of
pairs of individuals, the second individual in the pair being
displaced by an amount j 5 x9 2 x from the first:

1
C(j, p) 5 p(x, t)[ p(x 1 j, t) 2 d (x 1 j)] dx.E xA

(3b)

(The delta function removes a degenerate pair in which
the same individual would occur twice.) In the figures
below (Figs. 2, 4, and 6), we normalize the second
moment by dividing by N 2(p). The second moment
holds second-order information about the spatial struc-
ture, as illustrated in Fig. 2d, h, and l, and can be
thought of as a spatial covariance function (although
note that it is not a central moment). The second mo-
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ment has the advantage of being mathematically sim-
ple, which is important for the dynamical system de-
scribed below, and also has been independently de-
veloped and used to summarize the spatial structure of
populations in the field (Condit et al. 2000).

The third moment T(j, j9, p), although not a state
variable, appears in the dynamical system below and
needs to be defined. This moment is the average density
of triplets, where the second individual is displaced by
j from the first, and the third individual is displaced
by j9 from the first:

1
T(j, j9, p) 5 p(x, t)[ p(x 1 j, t) 2 d (x 1 j)]E xA

3 [ p(x 1 j9, t) 2 d (x 1 j9)x

2 d (x 1 j9 2 j)] dx. (3c)x

The integrand here is essentially the product of the
three densities at the given displacements, the delta
functions removing degenerate triplets in which the
same individual would occur more than once.

Dynamical system

We use a dynamical system derived in Dieckmann
and Law (2000); derivation of a similar system was
given earlier by Bolker and Pacala (1997). The system
describes how, on the average, the first two spatial
moments change over the course of time (the average
being over the ensemble of stochastic realisations), the
state variables being N(t) and C(j, t). The differential
equation for the rate of change of the first moment is
given by

Ṅ(t) 5 bN(t) 2 dN(t) 2 d9 w(j9)C(j9, t) dj9. (4)E
This differs from the nonspatial logistic equation only
in that the term N 2 of the logistic equation is replaced
the integral expression. The integral carries informa-
tion about local spatial structure and couples the dy-
namics of the first moment to those of the second.

The differential equation for the rate of change of
the second moment is somewhat more intricate, be-
cause birth and death events happen at both points in
the pair

Ċ(j, t) 5 b m(j9)C(2j 1 j9, t) dj9(a) E
1 b m(j9)C(j 1 j9, t) dj9(b) E
1 2bm(j )N(t) 2 2dC(j, t)(c)

2 d9 w(j9)T(j, j 1 j9, t) dj9(d) E
2 d9 w(j9)T(j, j9, t) dj9(e) E
2 2d9w(j)C(j, t).(f) (5)

Precise geometric interpretations for each expression
in this equation are described in Law and Dieckmann
(2000b). The second moment is a function of j, and
one can think of Eq. 5 as describing how, as time goes
on, the function changes in shape as the spatial struc-
ture of the population changes.

A feature of the dynamical system in Eqs. 4 and 5
is that the rate of change of the first moment depends
on both the first and second moments, and the rate of
change of the second moment depends on the first,
second, and third moments. This means that the dy-
namical system is not yet closed: it contains the third
moment, which, although a variable, is not included in
the dynamical system. The third moment has to be
replaced by some function of the first and second mo-
ments to close the dynamical system; such a function
is called a ‘‘moment closure.’’ (Although not generally
recognized, a similar issue applies in the standard non-
spatial logistic equation; the mean-field assumption is
in effect an assumption that the second spatial moment
can be replaced by N 2). Several closures have been
suggested in the literature (Bolker and Pacala 1997,
Dieckmann and Law 2000, Law et al. 2001); these and
a new closure are evaluated in the Appendix. We use
a new closure,

1 4C(j)C(j9) C(j )C(j9 2 j)
T (j, j9) 5 14 [5 N N

C(j9)C(j9 2 j)
31 2 N (6)]N

because this gives a closer fit to the average of sto-
chastic realizations than solutions using previous clo-
sures in populations that develop strong spatial aggre-
gation (see Appendix), and also works quite well in a
wide range of other spatial structures.

Population dynamics

Fig. 3 shows that the deterministic model captures
to a close approximation the average of the stochastic
realizations in Fig. 1, both in the transient behavior and
in the asymptotic state. To match the initial conditions
of the stochastic realizations in Fig. 1, these numerical
integrations were initially set with the first moment at
20 individuals per unit area, and the second moment
at 202 for all displacements j (equivalent to individuals
being placed uniformly at random in the arena).

The cause of the different kinds of population growth
becomes clearer on examining the time series of the
second moment (Fig. 4). Immediately after the start,
the dispersal term (c) and interaction term (g) in Eq.
5 start to distort the second moment from its initially
flat shape: terms (c) and (g) ensure that uniform spatial
randomness cannot in general be an attracting state
(Bolker and Pacala 2000:396). One can think of (c) and
(g) as the source of spatial structure and the other terms
as distributing the structure across different displace-
ments. Because the population density starts low in the
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FIG. 3. Time series of the first moment N,
obtained by numerical integration of the spatial
logistic equations (Eqs. 4 and 5). The growth
of an equivalent nonspatial logistic population
is shown as a dotted line. Parameter values are
as in Fig. 1; initial conditions are set to match
those in Fig. 1.

simulations illustrated, the effect of dispersal is greater
than that of interactions (b k d9), and the second mo-
ment starts by increasing (how far from the origin this
extends depends on the parameter Sm of the dispersal
kernel). But the interaction parameter Sw can affect
spatial structure as soon as local aggregations start to
develop, and the second moment develops a shape char-
acteristic of the values of Sm and Sw.

A crucial feature of Eqs. 4 and 5 is that information
on the shape of the second moment feeds back to the
first moment through the integral term in Eq. 4: in other
words, population growth is now sensitive to spatial
structure. When the second moment is large at small
spatial displacements (spatial aggregation), the nega-
tive integral term in Eq. 4 becomes greater, slowing
down population growth, and giving eventually a low
equilibrium density; this can be seen in the time series
of the second moment in Fig. 4b, and the corresponding
first moment in Fig. 3:curve(b). When the second mo-
ment is close to N 2, i.e., close to 1 after normalization
(spatial randomness), population growth rate and the
equilibrium density are close to the nonspatial logistic
equation (Fig. 4a, Fig. 3:curve(a)). When the second
moment is small for small spatial displacements (spa-
tial overdispersion), population growth rate and the
equilibrium density are high (Fig. 4c, Fig. 3:curve(c)).

In the transient population dynamics, Sm plays a par-
ticularly important role, because wider dispersal per-
mits more rapid filling of the space available. This is
evident in Fig. 5, which plots the rate of increase of
the first moment (mean density) at half the equilibrium
density ultimately achieved; even near the maximum
value of Sm examined (0.12), the rate of increase shows
little sign of having reached its greatest attainable value
as a function of Sm. It can also be seen from the time
series in Fig. 3 that, in contrast to the nonspatial logistic
equation, the populations do not in general reach their
maximum growth rate at half the equilibrium density.
This is because local density in the neighborhood of

individuals is somewhat uncoupled from the spatial
mean density; under strong spatial aggregation the ef-
fects of high local density are felt early in population
growth when mean density is still low; under strong
overdispersion, mean density has to be much higher
before the local density-dependent processes become
important.

In the long term, equilibrium densities are strongly
affected by both kernel parameters Sm and Sw (Fig. 6a).
These densities range from 0 to values much above the
mean-field value of 200 and are closely related to the
asymptotic spatial structure. The relationship can be
seen from the asymptotic value of the second moment
at the shortest displacement C*(0) in Fig. 6b, which is
roughly the mirror image of Fig. 6a. The greater
logC*(0) is above 0, the more aggregated the asymp-
totic spatial pattern is; the lower logC*(0) is below 0,
the more overdispersed the pattern is (see Fig. 2).

As would be expected, when Sm and Sw are both large,
the equilibrium density is close to the mean-field value
(Fig. 6a). However, individually Sm and Sw have quite
different effects on the equilibrium density. On the one
hand, when Sm is kept small and Sw is increased, the
equilibrium density tends towards that of the nonspatial
logistic equation; this is because, even though spatial
aggregation remains strong, individuals become blind
to this structure as they interact over larger areas. On
the other hand, when Sw is kept small and Sm is in-
creased, the equilibrium density switches from values
smaller than to values greater than those of the non-
spatial logistic equation; this is because, for large
enough Sm, the population is overdispersed in space,
and individuals respond to the low density of neighbors
in the immediate neighborhood. The message is that
wide dispersal at birth is not enough on its own to
recover the mean-field dynamics of the nonspatial lo-
gistic equation (although continual random movement
of individuals during their lives would bring the dy-
namics closer to those of the mean field).
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FIG. 4. Time series of the second radial moment C(r),
given as a function of the radial distance r of pairs, obtained
by numerical integration of the spatial logistic equations (Eqs.
4 and 5). Parameter values are as follows: (a) Sm 5 0.12, Sw

5 0.12; (b) Sm 5 0.02, Sw 5 0.12; (c) Sm 5 0.12, Sw 5 0.02.
Parameters b, d, and d9 are held constant throughout with
values as in Fig. 1; initial conditions are set to match those
in Fig. 1.

FIG. 5. Rate of change of population density dN/dt at half
the equilibrium density, as a function of the width Sm of the
dispersal kernel and width Sw of the interaction kernel. Pa-
rameters b, d, and d9 are held constant throughout with values
as in Fig. 1.

The shape of Fig. 6a also matches predictions of the
lattice pair approximation model of Ellner (2001:443).
Corresponding to Ellner’s prediction 1a, the equilib-
rium density crosses from below to above the mean-
field value, as Sm increases (for small enough Sw). Cor-
responding to his prediction 2, the equilibrium density
crosses from above to below the mean-field value as
Sw increases (for large enough Sm).

DISCUSSION

The results demonstrate a wide range of dynamical
behavior in the spatial logistic equations and in the
IBM (individual-based model) from which they are de-
rived, depending on the shape of the dispersal and in-
teraction kernels. Populations differ in their transient
dynamics, growing at different rates and having growth
curves of different shapes. Populations also differ in
their asymptotic states, with equilibrium densities rang-
ing from zero to values much greater than the equilib-
rium density of the nonspatial logistic equation. Evi-
dently, the effects of the spatial extension are funda-
mental. These results match and extend those of Bolker
and Pacala (1997) on the spatial logistic equations, and
are in keeping with many studies that point to the great
importance of the spatial extension for ecological dy-
namics (e.g., Boerlijst and Hogeweg 1991, Hassell et
al. 1991, 1994, Matsuda et al. 1992, Keeling et al. 1997,
Levin et al. 1997, van Baalen and Rand 1998).

Evidently, a dynamical system of spatial moments,
the spatial logistic equations, can provide a close ap-
proximation to average behavior of the spatial moments
of the IBM over a wide range of spatial structures.
Although the new closure described above (see Spatial
logistic equation: Dynamical system) makes mathe-
matical analysis difficult, there are several reasons why
such analysis would be worth the effort, perhaps with
the help of some simplifications. Quite apart from ad-
vantages for simulation, some basic questions are hard
to answer from the IBM itself, and could be resolved
by analysis of the equations of moment dynamics. For
instance, is there a single asymptotic state, or are there
alternative attractors that depend on the initial state?
We have no evidence for the latter, but this cannot be
ruled out from simulations alone. Can the asymptotic
state(s) be characterized in terms of the parameters of
the model, in particular the kernel parameters Sm and
Sw? In taking the mathematics forward, it needs to be
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FIG. 6. Asymptotic properties of the spatial logistic equa-
tions. (a) Equilibrium values N* of the first moment for a
range of values of Sm and Sw; the grid of dotted lines shows
the equilibrium value of the equivalent nonspatial logistic
equation. (b) Asymptotic values logC*(r) of the second radial
moment at zero displacement; a value 0 (equivalent to 1 be-
fore the logarithmic transformation) indicates an absence of
structure. Parameters b, d, and d9 are held constant throughout
with values as in Fig. 1; integrations terminated when the
change in N over an integration step 0.1 falls to 1025.

remembered that the new closure for the third moment
at present is only justified by the closeness of the fit
of the spatial logistic equations to the IBM; a firmer
foundation for choosing closures would be desirable.
It should also be remembered that a dynamical system
of first and second spatial moments can never be more
than an approximation; if higher-order moments are
important, the approximation will be poor.

Another reason why the mathematics of the spatial
logistic equations is worth developing is that it brings
the modeling of population growth a step closer to
dispersal processes that matter and can be measured in
real populations. Dispersal is obviously limited in
many, if not most, plant and animal populations, and
the results show how important the shape of the dis-
persal kernel (of offspring) is for population growth.
Dispersal kernels can be measured and indeed much
effort has gone into their study in plant ecology (Harper
1977:33 et seq.) with the spatial spread of species in
mind (e.g., Clark et al. 1998); yet we are not aware
that the role of these kernels in transient and asymptotic
densities of populations has been investigated. Our re-

sults suggest the dispersal kernel has a strong effect on
the mean density at which population growth rate
reaches its maximum (densities other than half the car-
rying capacity). Such an asymmetry is known from
empirical studies, and has led to the u-logistic class of
models (Gilpin and Ayala 1973); the spatial extension
in this paper suggests a mechanistic foundation for
these models.

The spatial logistic equations also point to the im-
portance of interaction kernels in population growth.
These are less well documented, although investigated
by foresters interested in growth of wood volume (e.g.,
Biging and Dobbertin 1992, Soares and Tomé 1999);
our present study highlights the need for such infor-
mation to tackle basic matters of population growth. A
qualifier is that, in many plants at least, interactions
depend on size as well as on distance; interaction ker-
nels need eventually to be thought of as dynamic en-
tities changing as competing individuals grow in size
(Purves and Law 2002b). We do not deal with size
variation here, and there is some way to go to put
dynamic kernels in place (but see Law et al. 2001).

As a practical matter, the importance of spatial struc-
ture has long been recognized in microbial population
growth, to the extent that microbial cultures are rou-
tinely stirred. Pearsall and Bengry (1940) compared
the growth of Chlorella cultures in darkness without
shaking (where the cells settled at the bottom of the
flasks), and with shaking twice a day. Population
growth continued to higher densities in the presence of
shaking, analogous to the difference between graphs
(b) and (a) of Fig. 1; Pearsall and Bengry (1940) at-
tributed this to local depletion of oxygen in the absence
of shaking. Hansford and Humphrey (1966) noted that,
in continuous culture of yeast at low dilution rates, cell
yields can be increased by feeding the culture vessel
from multiple points, and by mixing. Results of this
kind point to the depressive effects of local aggrega-
tions on population growth.

A striking feature of the spatial logistic equations is
the extinction of populations in which offspring and
parents cannot escape from competition (Etheridge
2002) and, more generally, the slow growth of popu-
lations with strong aggregation. The width of the dis-
persal kernel relative to the interaction kernel is evi-
dently critical for population growth. In the context of
evolution, mutants with traits that cause greater dis-
persal escape more of the effects of competition and
would be expected to replace residents with lower dis-
persal; this is consistent with evidence from observa-
tions and from simulation studies (Waser 1985, Ezoe
1998). Yet some formal analyses of diffusion rates
show evolution of lower dispersal in a wide range of
spatially heterogeneous environments (Dockery et al.
1998). These findings are less contradictory that might
be supposed, because the model here deals with local
spatial structure generated by the organisms them-
selves, whereas the diffusion models deal with spatial
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heterogeneity in the external environment (dispersing
organisms then run the risk of ending up in places bad
for survival or reproduction). In reality no doubt both
aspects of spatial structure matter, and dispersal most
likely evolves to an intermediate value dependent both
on the innate tendency of organisms to develop spatial
structure and also on the structure of the external en-
vironment. A formal framework incorporating both as-
pects of spatial structure would help understanding of
how dispersal evolves and the levels of dispersal to be
expected in nature.
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ERRATUM

The recent paper by Richard Law, David J. Murrell, and Ulf Dieckmann (2003) entitled ‘‘Pop-
ulation growth in space and time: spatial logistic equations,’’ Ecology 84(1):252–262, was published
without information about how to access the Appendix referred to twice on p. 257. We apologize
to the authors and to our readers for this omission.

The following notice should have appeared at the end of the paper:

APPENDIX

An evaluation of several moment closures for the dynamical system in Eqs. 4 and 5 (including the one given
as Eq. 6) is available in ESA’s Electronic Data Archive: Ecological Archives E084-012-A1.



Ecological Archives E084-012-A1  

Richard Law, David J. Murrell, and Ulf Dieckmann. 2003. Population growth in space and time: the 
spatial logistic equations. Ecology 84:252–262.  

Appendix A. On closures for the third moment. 

The dynamical system in Eqs. 4 and 5 has to be closed by replacing the third moment with some function of the first and second 
moments. Several functions have been suggested as possible closures (Bolker and Pacala 1997, Dieckmann and Law 2000). Here we 
evaluate these and another closure by comparing the numerical solutions they give in Eqs. 4 and 5 with the average of many 
realizations of the corresponding individual-based model (IBM). The spatial moments are all functions of time below but, for 
notational simplicity, we omit the time dependence. 

The set of allowable closures is limited by two conditions that have to be satisfied (Dieckmann and Law 2000). First, in a population 
with individuals distributed at random, the closure should take the value N 3, just as the second moment should be N 2 in these 
circumstances. Second, the rate of change over time of C(x) should tend to  as x becomes large, which requires that T(x, x') = N 
C(x') for large enough x (Dieckmann and Law 2000:439). These conditions are necessary, but not sufficient; a closure that satisfies the 
conditions above and used previously by Law and Dieckmann (2000a, b), is now known to generate an inconsistency in the spatial 
logistic equation (V. Hutson, personal communication). Condition 2 applies in the presence of births and deaths; when there are no 
births and deaths other kinds of closure are feasible (Murrell and Law 2000). 

The closures below are called power-1, power-2, and power-3 according to whether they contain products of one, two, or three second 
moments. The power-1 closure, which is equivalent to setting the third central moment to zero (Bolker and Pacala 1997), is 

The power-2 closure is 

The power-3 closure, which has been used in theoretical physics (Kirkwood 1935, Ziman 1979) and results from maximizing the 
information content in the partition of the sample space (D. R. Grey, unpublished manuscript), is 

The closures can be thought of as giving increasing values of T(x, x') close to the origin, in the sequence power-1, power-2, power-3. 

In populations that grow with little spatial structure, all three closures give a pattern of population growth close to that of the 
nonspatial logistic equation. In populations that develop regular spatial patterns, there are somewhat greater differences in population 
growth with these different closures. But the contrast between the closures is greatest when there is strong aggregation, as it is here 
that the third moment can deviate most from N 3. For this reason, populations growing with strong spatial aggregation provide 
especially sensitive tests of closures; on this basis we use sm = sw = 0.04 to evaluate the closures below. 

Figure A1 shows the spatial mean density over time obtained from the IBM (Fig. A1a), together with the results of numerical 
integration of Eqs. 4 and 5 incorporating several closures for the third spatial moment. Growth of the first moment over time increases 
in the sequence of closures: power-1, power-2, power-3 (respectively Fig. A1b, c, d). This sequence is to be expected because the 
value of the closure near the origin increases in the same order: the larger the value of the third moment near the origin, the larger are 
the negative terms (e) and (f) in Eq. 5, the smaller the second moment is, the smaller the negative term is in Eq. 4, and the larger the 
first moment is. It is clear that none of the closures provide a close approximation to the average of the stochastic realisations. The 
power-1 closure leads to a serious overestimate of the second moment at short displacements, and extinction of the population results 
(Fig. A1b). Both the power-2 and the power-3 closures lead to an underestimate of the second moment at short distances, giving too 
great population growth, and too high an equilibrium density (Fig. A1c, d). 

. (A.1)

.
(A.2)

.
(A.3)
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Quite apart from dynamic considerations, we have found that the power-2 closure gives a good approximation to known third 
moments over quite a wide range of aggregated and overdispersed spatial patterns and, in particular, performs better than the other 
closures in the presence of spatial aggregation (R. Law, D. W. Purves, D. J. Murrell, and U. Dieckmann, unpublished results). This 
motivates extending the power-2 closure above to a family of asymmetric power-2 closures that give different weights a, b, g to the 
three corners that make up the triplet 

this family satisfies the necessary conditions for a valid closure given above. [The symmetric power-2 closure, Eq. A.2, is obtained as 
a = b = g = 1.] Our numerical studies have shown that, by giving the first corner a weight about four times that of the others [see Eq. 
6] dynamics close to those of the IBM are obtained (Fig. A1e); this closure is therefore used for numerical integration in the text. In 
earlier studies (Law and Dieckmann 2000a, b), an extreme version was used (a = 1, b = g = 0); this is clearly not satisfactory for 
patterns with strong aggregation, such as the one used here (Fig. A1f). 

Although the asymmetric closure works well, two points should be borne in mind. First, in giving corners of the triplet different 
weights, a sixfold symmetry of the third moment is destroyed. The corners of the triplet are not interchangeable in the dynamical 
system, but the asymmetric power-2 closure should perhaps be seen as no more than a tool that permits computations, until this issue 
is resolved. Second the power-1 and power-2 closures contain a negative term that could lead to negative value under sufficiently 
strong overdispersion; this would be inconsistent with the fact that the third moment, being a product of densities, cannot take negative 
values. 
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   Fig. A1. Numerical integrations of the spatial logistic equation with various closures. (a) Spatial mean density over time from the IBM (average of 
20 realizations, against which the closures are evaluated; (b) symmetric power-1 closure; (c) symmetric power-2 closure; (d) symmetric power-3 
closure; (e) asymmetric power-2 closure with a = 4, b = 1, g = 1; (f) asymmetric power-2 closure with a = 1, b = 0, g = 0. Parameter values: b = 0.4, 
d = 0.2, d' = 0.001, sm = 0.04, sw= 0.04.  
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