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Abstract 
 
A resolution is offered to Koopmans’ (1965, 1967a) “paradox of the indefinitely 

postponed splurge” – i.e. the incompatibility of undiscounted utilitarianism and population 
weighting in the context of the infinite-horizon neoclassical growth model with exponential 
population growth. The resolution builds on the conflict between splurging (i.e. dissaving) and 
sustainability. Consumption paths which contain splurges are not sustained, because they involve 
reductions in consumption at some point. Thus disallowing unsustained paths removes the 
incentive to save for a splurge. 

A modified utilitarian objective is presented which embodies the commitment to 
sustainability, as well as impartiality and the golden rule. Maximization over the neoclassical 
technology yields a monotonically increasing path to the golden rule. The underlying ethical 
position is described as an intergenerational contract: early generations are willing to sacrifice 
some consumption to build up the capital stock while future generations are morally obligated to 
limit consumption to the golden rule.   
 
(JEL D6, D9, E6; keywords: population weighting, impartiality, utilitarianism, neoclassical 
growth model) 
 
 

Résumé 
 

On propose une solution au problème d’optimisation d’une fonction de bien-être 
utilitariste avec un taux d’escompte nul et une pondération temporelle par le niveau de 
population dans le contexte du modèle de croissance néoclassique.  Ce problème fut d’abord 
soulevé par Koopmans (1965, 1967a).  La solution se base sur le conflit entre la tendance à 
augmenter la consommation au prix d’une réduction du capital – dite la désépargne – et la 
durabilité. Interdire les sentiers de consommation qui incluent des épisodes de désépargne 
élimine la tendance à épargner pour de tels épisodes, ce qui est à la source du problème.  

On présente une fonction utilitariste modifiée qui répond aux critères de durabilité, 
d’équité et de la règle d’or.  La maximisation de cette fonction sous contrainte de la technologie 
néoclassique donne une solution monotone qui mène à la règle d’or. Cette fonction peut être 
assimilée à un contrat intergénérationnel : les générations présentes consentent à sacrifier de la 
consommation pour augmenter le stock de capital pourvu que les générations futures se limitent 
à consommer au niveau de la règle d’or.  
 
(JEL D6, D9, E6; mots clés : pondération par le niveau de population, équité, utilitarisme, 
modèle de croissance néoclassique) 
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I. Introduction 

In one of the most influential papers in modern economics, Koopmans (1965) sought to 

delineate the scope for ethical considerations in the choice of an optimal growth path under an 

infinite planning horizon. Employing a utilitarian objective, Koopmans identified time 

discounting of utility and the possibility of weighting utility by population size as the major 

points of ethical concern. Most people, including many economists, believe that discounting the 

utilities of future generations by a positive rate of social time preference is unethical because it 

discriminates against those generations a priori. In addition, many find it compelling to weight 

by population size when utility is defined in terms of a representative individual enjoying 

average consumption. This practice ensures impartiality among individuals, as each individual 

receives equal weight in the objective. In contrast, the alternative practice of not weighting by 

population means that individuals in more populous generations receive less weight than those in 

less populous generations, as each generation receives an equal weight. 

The challenge of finding an optimal growth path under an undiscounted utilitarian 

objective and infinite horizon was rigorously treated for the first time by Ramsey (1928). The 

problem is that the undiscounted objective does not converge over an infinite horizon for many 

consumption paths. Ramsey sought to address this problem with the device of minimizing 

aggregate deviations from bliss, defined as the maximum attainable utility level. Koopmans 

(1965) generalized this device by substituting the golden rule for bliss, where the golden rule is 

defined as the maximum level of utility which can be sustained indefinitely by the given 

technology. Simultaneously von Weizsacker (1965) provided an alternative solution to the 

convergence problem in the form of the overtaking criterion, which redefined optimality in terms 

of the infinite sequence of finite-horizon problems. 
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The results of these experiments were mixed. In particular, Koopmans (1965) showed 

that, given constant-returns-to-scale technology, substitutability of capital and labour, concave 

utility, and constant exponential population growth, an optimal growth path exists only if utility 

is not weighted by population. Thus the twin ethical objectives of zero utility discounting and 

population weighting appear incompatible.  

The reason for this negative result is the strength of the incentive for saving under 

population weighting. Not only does saving yield a stream of returns from the increased capital 

stock, but it also affords the opportunity for a splurge of consumption from dissaving at some 

future date. The more people partake in the dissaving, the greater the payoff in terms of 

aggregate utility. But with constant exponential population growth, any population size can be 

arranged simply by delaying the time of the splurge. In the interim, the planner must maintain a 

rate of investment at least as great as the rate of population growth in order to maintain or 

increase the per capita level of the stock. This situation yields two contradictory effects. On the 

one hand, the payoff of the splurge, and therefore the incentive to save for it, can be made 

arbitrarily large by arranging for an arbitrarily large population to enjoy it. On the other hand, the 

splurge is never taken, since it always pays to delay it further. In the limit, everything is saved, a 

phenomenon which Koopmans calls “the paradox of the indefinitely postponed splurge” (1967a, 

p.8).  

A separate problem is that, under an infinite horizon, the undiscounted utilitarian 

objective yields a quasi-ordering; i.e. the objective cannot rank all feasible growth paths 

notwithstanding the Ramsey-Koopmans device or von Weizsacker’s overtaking criterion. 

Koopmans obtains the mitigating result, in the case without population weighting, that any path 

which cannot be ranked is infinitely worse than any path which can be ranked. Thus it is still 

possible to obtain an optimal path in this case. Nonetheless, most economists agree that it is 
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desirable to represent social preferences with a complete ordering, so that all feasible paths can 

be ranked. 

In light of this problem, and in light of the proven existence of a solution without 

population weighting, the literature has focused on the challenge of finding a complete, ethical 

ordering in the absence of population growth. Earlier papers, particularly Koopmans (1960) and 

Diamond (1965), argued that such an ordering does not exist. More recently, Svensson (1980) 

and Fleurbaey and Michel (2003) have proven that an ordering does exist but the proofs rely on 

non-constructive elements such as the axiom of choice and the concept of free ultrafilters. As a 

consequence, the ordering cannot be represented explicitly. 

In contrast, the problem of an undiscounted optimum with population weighting has not 

come up again in the literature, no doubt due to a widespread belief that Koopmans’ (1965) 

treatment was definitive. At present, most economists apparently regard this dilemma as 

unfortunate but unavoidable, as in the statement by Koopmans that “ethical principles … need 

mathematical screening to determine whether in given circumstances they are capable of 

implementation” (1967b, p. 125). Nonetheless, the concept of impartiality remains compelling, 

and therefore this topic must be regarded as an important challenge for research.  

In a related development, Chichilnisky (1996) has proposed an ordering which balances 

the interests of present and future generations through a requirement that neither play a 

dictatorial role. This ordering is represented by a weighted objective composed of discounted 

utilitarianism and long-run average utility. This approach has the indisputable merits of 

completeness and balance between present and future. However, it does not satisfy impartiality 

between either individuals or generations and therefore it is not entirely satisfactory.  

The present paper approaches the problem of an undiscounted optimum with population 

weighting by noting the key role of sustainability. For this purpose, a sustainable path is defined 
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as one in which consumption is non-decreasing over time. Splurging results in a path which 

cycles around the golden rule, which is not sustainable. This observation points to a potential 

solution. Sustainability is regarded by many today as a compelling normative principle. The fact 

that the conventional utilitarian objective with population weighting yields solutions which do 

not satisfy sustainability indicates that it does not reflect everything that is valued. The present 

paper proposes a revised utilitarian objective which (i) embodies an explicit preference for 

sustainability, (ii) makes the golden rule an explicit target for policy, and (iii) determines an 

optimal transition path to the golden rule. The ethical position underlying the revised objective is 

characterized as an intergenerational contract, in which early generations are willing to sacrifice 

some of their consumption in order to build up the capital stock while later generations are 

obligated to claim no more than the golden rule. This contractual ethic replaces the conventional 

Pareto principle: more is not always better under the revised objective.  

The paper is organized as follows. Sections II and III introduce notation for the familiar 

neoclassical technology and for the undiscounted utilitarian objective with and without 

population weighting. Section III then presents an alternative proof of Koopman’s 

incompatibility result. Section IV demonstrates the importance of sustainability. When growth 

paths are pre-screened for sustainability, a solution is obtained under population weighting. 

Section V characterizes splurging in terms of the phenomenon of cycling around the golden rule. 

Section VI brings together the three ethical precepts of the intergenerational contract – 

impartiality, golden rule and sustainability – in the revised objective. Optimization under this 

constraint is shown to yield the same solution as optimization of the standard objective with a 

sustainability constraint. Finally, section VII shows how the introduction of a parameter for 

inequality aversion can be used to address concerns that early generations may be called upon to 

shoulder too great a burden of saving for the well-being of future generations.   
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II. Neoclassical Technology 

The model, which follows Koopmans (1965), is cast in continuous time. All quantities 

are real valued. At time  there are N(t) people alive, each enjoying the per capita level of 

consumption c(t), which yields instantaneous utility according to the function his 

function is assumed to be strictly concave, continuously differentiable, and bounded above, with 

,  and lim  (Inada condition).

0t ≥

→
u

0c

)).t(c(u  T

0)0(u = 0)c(u >′ ∞=′ )c( 1 

Population dynamics are summarized by the equation , such that initial 

population is normalized to unity.  

nte)t(N =

The productive inputs are capital K(t) and labour. For simplicity, labour is assumed equal 

to the population N(t). Output is produced according to a production function, , which is 

assumed to be strictly concave, continuously differentiable and linearly homogeneous. Each 

input is essential to production and exhibits positive but diminishing marginal product; i.e. 

( N,KF )

                                                

( ) 0N,0F =   ( ) 00,KF =

0FK >    0FKK <

0FN >    0FNN <

where the subscript notation has the standard interpretation as a partial derivative. 

At each moment in time, output is divided between aggregate consumption C(t) and 

investment, which gives rise to a law of motion for the capital stock  

( ) )t(C)t(N),t(KF)t(K −=&          (1) 

where the dot notation is used to indicate the time derivative. Capital is assumed not to 

depreciate. 
 

1 Rather than  and the Inada condition, Koopmans assumes 0)0(u = −∞=
→

)c(ulim
0c

. 
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Per-capita variables are indicated by lowercase; i.e. NKk ≡  and NCc ≡ . Since F is 

linearly homogeneous, per capita output is defined 

( )
N

)N,K(F1,F)k(f N
K =≡ . 

It is a simple matter to convert the law of motion (1) to per-capita form: 

)t(c)t(nk))t(k(f)t(k −−=& .         (2) 

The golden rule, associated with Phelps (1961) and others, is defined as the highest level 

of consumption (alternatively highest level of utility) which can be sustained indefinitely, i.e. in 

a steady state. From (2), the steady state is characterized by  

)t(nk))t(k(f)t(c −= .    

Choosing k to maximize the right-hand side of this expression yields golden rule capital, *k ; i.e. 

*k  solves the first-order condition . 0n)k(f * =−′

 

III. Population Weighting in the Social Objective 

Koopmans (1965) considers an undiscounted utilitarian objective with and without 

population weighting, as in respectively  

∫=
T

0

nt
N dt))t(c(ue)T(W  and   , ∫=

T

0

dt))t(c(u)T(W

where T represents a finite planning horizon.  

The absence of time discounting reflects impartiality. But the absence of time discounting 

is not enough; the planner must also decide whether impartiality is a matter of neutrality among 

population units, as in W , or among time periods, as in W. The equal weighting of time periods 

in W implies a diminishing weighting of population units, as total population grows over time. 

N
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Since a benevolent planner cares more about people than time,  is regarded as more 

compelling.  

NW

dt

− *u

The discussion of impartiality would be more natural in discrete time, with integer-valued 

N. In that case, population units would correspond with individuals and time periods with 

generations. The argument is that impartiality among individuals is more compelling than 

impartiality among generations. In social choice theory, this argument is based upon the concept 

of a permutation – a simple rearrangement of allocations among individuals. The principle of 

anonymity requires that an alternative be considered socially indifferent to a permutation of 

itself.2 

Impartiality is also linked with the choice of planning horizon. Assuming society will last 

indefinitely, the choice of an infinite time horizon is most appropriate, as impartiality entails that 

the interests of all individuals should be taken into account. In this light, the objectives become 

respectively   

∫
∞

=∞
0

nt
N dt))t(c(ue)(W  and    . ∫

∞

=∞
0

))t(c(u)(W

But of course, these forms diverge for many consumption paths. The Ramsey-Koopmans 

device partially solves this problem by substituting deviations from a value , representing bliss 

(Ramsey) or the golden rule (Koopmans). The objectives are now  

*u

[∫
∞

−=∞
0

*nt*
N dtu))t(c(ue)(W ]

                                                

    . [ ]∫
∞

=∞
0

* dt))t(c(u)(W

 
2 Fleurbaey and Michel (2003) provide a discussion of the compatibility of standard axioms with different types of 
permutations. 
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)(W*
N ∞  and  provide quasi-orderings of the set of feasible consumption paths 

rather than orderings.

)(W* ∞

Wlim
T ∞→

3 Clearly, the ability to rank a consumption path depends on the 

convergence of the objective. In the case of , Koopmans (1965) shows that any divergent 

path diverges to  (Proposition B, i.e. ) and therefore any convergent path 

(i.e. a path for which  exists) is preferred to any divergent path. Furthermore, an 

optimal path exists. In the special case of , the constant golden-rule path 

)(W* ∞

∞
)T(W*

*k)0( =

∞− −∞=
→

lim
T

k

)T(*

( )** c,k  is 

optimal, yielding u  in each period. In the more general case of , the golden rule 

emerges as a saddle point of the optimization problem, and the optimal path coincides with the 

stable branch leading to a steady state at the golden rule (Proposition C). Cass (1965) arrives at 

the same conclusion independently, and Dutta (1991) generalizes this result to other economic 

environments. 

* *k)0(k ≠

In contrast, Koopmans shows that an optimal path does not exist under W  for the 

neoclassical technology. Given any feasible path, society can do better by reducing consumption 

and saving more in every period. The form of the proof (Proposition K) is to show that  

is not bounded from above on the set of feasible consumption paths. The result can also be 

demonstrated by the limiting behaviour of the solution to the related finite-horizon optimization 

problem. This approach will prove useful in later sections, and so it will be presented here. 

)(*
N ∞

)(W*
N ∞

Under finite T,  can be used instead of , since  is a constant. The 

planner’s problem is to maximize  subject to (2) and suitable terminal conditions; i.e. 

)T(WN )T(W*
N

*u

)T(WN

{ }T
0)t(c

max ∫
T

0

nt dt))t(c(ue   subject to:  

                                                 
3 A quasi-ordering is defined as a reflexive and transitive set of binary relations on the set of feasible consumption 
paths. An ordering is a complete quasi-ordering. 
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(i)        (P1) )t(c)t(nk))t(k(f)t(k −−=&

(ii) k(0), T given  

(iii) . 0)T(k ≥

The problem is amenable to solution by optimal control theory, with c as the control variable, k 

as the state, and a co-state variable denoted λ. The corresponding Hamiltonian function is 

[ cnk)k(f)c(ueH nt −−λ+= ]         

where the time subscripts have been suppressed. Pontryagin’s Maximum Principle yields 

necessary conditions which, in the present context, are also sufficient: 

(i)  Hmax
}c{

(ii) [ n)k(f
k
H

−′λ−=λ⇒
∂
∂

−=λ && ]       (3) 

(iii) cnk)k(fkHk −−=⇒
λ∂

∂
= &&  

(iv)  0)T(k)T( =λ

A solution of (3) will be an interior solution with respect to the control c, since H is non-

linear and continuously differentiable, utility is bounded, and c is unconstrained above. 

Therefore, condition (3.i) can be replaced with 

nte)c(u0
c
H ′=λ⇒=
∂
∂ .         ( )i.3 ′  

Condition (3.iv) is a transversality condition associated with the free terminal stock k(T). 

But since we know by  that  must be positive (assuming non-satiation), it follows that 

 at a solution. 

)i.3( ′ )T(λ

0)T(k =

Combining (  and (3.ii) yields a differential equation in c: )i.3 ′

c)k(f)c(c ′σ=&           (4) 
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where 0c)c(u)c(u)c( >′′′−≡σ  is the instantaneous elasticity of substitution of . Condition 

(3.iii) just gives back the law of motion of capital from (2).  

)c(u

Taken together, (2) and (4) give a dynamic system in the variables k and c, which can be 

analyzed with the help of the phase diagram shown in Figure 1. The demarcation for  is 

given by the equation , derived from (2). This demarcation exhibits the standard 

properties of the neoclassical growth model: namely it intersects the origin, rises to a maximum 

at the golden rule level of capital, 

0k =&

nk)k(fc −=

*k , and then declines to the horizontal axis at k . *k  is 

implicitly defined by the relationship n)k(f =′ , as shown in section II, while k  is defined by 

. nk)k(f = k  is the maximum amount of capital that can be accumulated starting from an initial 

value k<)0(k . Below the demarcation, k is increasing, while above the demarcation k is 

decreasing. 

Inspection of (4) reveals that the only possibility for a demarcation corresponding with 

 would be if the production function exhibited capital satiation; i.e. if there existed a value 0c =&

k~  such that f . In the remainder of the paper, it is assumed that, if such a value exists, it 

is greater than 

0)k~( =′

k , the maximum attainable capital level. It follows then that there is no 

demarcation corresponding with c  in the feasible region defined by 0=& kk ≤ . Therefore  

according to (4) for any non-zero c and feasible k. 

0c >&

The possibility of a trajectory solving (2) and (4) along the horizontal axis, i.e. with 

, depends upon the limiting behaviour of 0cc == & c)c(σ . If 0c)c(lim
0c

=σ
→

, then (4) is defined 

and such a trajectory exists. Such is the case for utility functions that exhibit constant elasticity 

of substitution, i.e. . Note that this trajectory leads to a steady state at c)c( ∀σ=σ ( )0,k , since it 

intersects with the  demarcation at this point. Note also that this trajectory would never be a 0k =&
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solution to (P1), owing to the Inada condition and owing to the failure of the transversality 

condition along this path. Nonetheless, it constitutes a limit of the set of feasible trajectories 

which solve (2) and (4). If  is undefined, then this trajectory is not a solution of (2) and 

(4). However, it is still a solution of (2) and it still constitutes a limit of the set of feasible 

trajectories for the system. In both cases, this trajectory will be referred to as the null trajectory. 

c)c(lim
0c
σ

→

(u ⋅

         
[ n))t(k(f −′

The phase diagram is divided into two regions, above and below the  demarcation. 

The directional arrows indicate the tendency of trajectories in the corresponding regions. Any 

non-null trajectory that starts below the demarcation must pass through it, moving first in a 

northeasterly direction, becoming vertical at the point of intersection, and then switching to a 

northwesterly direction, as indicated by the arrows. Each non-null trajectory reaches the vertical 

axis (  in finite time.

0k =&

)0k = 4  

The fact that each non-null trajectory reaches the vertical axis in finite time means that it 

satisfies the transversality condition and therefore is the solution to (P1) when T is set equal to 

that time. For convenience, denote the solution as ( )T 0t)t(c,)t(k)T( =≡S , or more compactly as 

. Strict concavity of ))t(c),t(k( TT )  and )(f ⋅  ensure that the solution is unique.  

The concept of a policy is introduced to distinguish between solutions of the optimization 

problem (P1) and more general paths. Denoted ( )T 0t)t(c,)t(k)T(P =≡ , a policy is consistent with 

the law of motion (2) but may or may not be consistent with condition (4). If it does satisfy (4), 

then it is equivalent to the solution S(T). The null trajectory is denoted P . 0/

                                        
4 Proof: From (2), derive . Near the vertical axis, both ] )t(c)t(k)t(k &&&& −= k&  and k&&  are negative. Thus, 
capital is diminishing and the rate of diminution is increasing. It follows that the stock of capital is exhausted in 
finite time. 
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Three trajectories have been sketched in Figure 1 as examples, starting from an initial 

capital stock . The non-crossing property entails that a reduction in initial consumption, 

, corresponds with higher terminal consumption, , and higher maximum capital, 

attained just as the trajectory intersects the demarcation. A reduction in  also results in an 

increase in the time necessary to reach the vertical axis. Thus, trajectory 1 corresponds with 

longer elapsed time than trajectory 2, which in turn corresponds with longer elapsed time than 

trajectory 3.  

*k)0(k <

)0(c )T(c

)0(c

The last point is essential to the main result of this section, and therefore it is stated 

formally now. The proof relies on the concept of an isochrone, which is discussed at length in the 

appendix.  

Lemma 1: Given ,  if and only if T . 0T̂,T > )0(c)0(c T̂T < T̂>

Proof: Follows from the vertically increasing property of the isochrone map (see the appendix) 

and the non-crossing property of solutions.  

The following theorem presents the main result.  

Theorem 1:  

(A)  0T
P)T(Slim /∞→

=

(B)  for all ∞<T ,  .0)0(cT >

Proof: (A) Lemma 1. 

(B) Inada condition, i.e. ∞=′
→

)c(ulim
0c

.  

The theorem establishes the asymptotic approach of S(T) to the null trajectory. In the limit, 

everything is saved, leading society to the degenerate steady state at )0,k( .  
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The source of the problem is the absence of a 0c =&

*

 demarcation for (P1). In contrast, in 

the case without population weighting (optimization of W ), equation (4) becomes  )(∞

[ ] cn)k(f)c(c −′σ=&  

which yields a c  demarcation corresponding with the condition 0=& n)k(f =′ ; i.e. a vertical line 

at the golden-rule level of capital. To the left of this demarcation, consumption is rising while to 

the right it declines. In this case, the intersection of the  and 0k =& 0c =&  demarcations yields a 

steady state at the golden rule, ( . Further, there is a unique stable branch leading from the 

initial state k  to the steady state. The steady state has the saddle point property, such that the 

only way to get there is to get on the stable branch at the outset. This stable-branch path is 

optimal for . 

)c,k **

)0

∞=

(

T

Koopmans’ paradox also explains the result of Marini and Scaramozzino (2000). These 

authors define an optimal level of the social rate of time preference as that which induces the 

system to converge to the golden rule over an infinite horizon. Clearly, this is only possible 

under population weighting if the social objective exhibits time discounting sufficient to offset 

the growth of population and productivity.5 This case is equivalent to maximizing  in the 

present paper. As discussed, this choice is not impartial with respect to individuals, and therefore 

it is less compelling. Marini and Scaramozzino couch their discussion in terms of impartiality 

among generations without commenting on the treatment of individuals. 

)(W* ∞

 

IV. Sustainability and the Golden Rule 

Koopmans’ Paradox does not in any way compromise the existence of the golden rule in 

the neoclassical economy. Given the appeal of this allocation, one is led to inquire whether there 

                                                 
5 Marini and Scaramozzino include labour-augmenting productivity growth in their model, whereas the present 
paper does not. 
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is not some coherent and ethically compelling way of getting there, starting from the 

exogenously given initial value of capital . The present section provides an affirmative 

answer under the condition of sustainability. 

)0(k

The discussion begins with the general concept of a policy, introduced in the previous 

section. Some additional vocabulary will prove useful. A finite (infinite) policy is defined over a 

finite (infinite) horizon. A golden rule policy is an infinite policy which either starts at the golden 

rule allocation, ( )** c,k , or follows a transition path to it and then remains there indefinitely.  

A policy may be stationary, monotonic, or cyclical in terms of k(t). A stationary policy 

starts on the k  demarcation and stays there. A monotonic policy starts at a non-stationary 

point , follows a transition path to the  demarcation, then stays there. A cyclical 

policy passes through the demarcation, which results in a change of direction (  changes 

sign). In order to cycle again, the policy must cross the demarcation again; otherwise it comes to 

rest on the demarcation or proceeds to capital exhaustion (

0=&

))0(c,)0(k( 0k =&

)t(k&

).0k =  

A cyclical policy can be illustrated on trajectory 1 in Figure 1. Starting at point α, the 

policy follows the trajectory through β, continues to γ, jumps back down to β, then resumes its 

path along the trajectory. This pattern could repeat or the policy could proceed in some other 

fashion. Policies may be discontinuous, as in the present example which jumps from one side of 

the demarcation to the other, or continuous. Note that the policy just described does not represent 

a solution to the optimization problem (P1). 

A sustainable policy is defined as an infinite policy with non-decreasing consumption 

(alternatively utility) over time.6 Stationary policies are sustainable by definition. Cyclical 

                                                 
6 Pezzey (1997) refers to this definition as a sustained policy, reserving the term sustainable for policies in which 
consumption is always no greater than a level which could be sustained indefinitely from that period forward. In this 
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policies violate sustainability, as they entail fluctuations in consumption. Some monotonic 

policies are sustainable. The following lemma yields a useful result for monotonic policies.  

Lemma 2: Given an initial state k , a sustainable monotonic policy (i.) starts below the 

 demarcation, and (ii.) is increasing in k on the transition path. 

*k)0( <

0k =&

Proof: (i.) By contradiction. A starting point above the demarcation is characterized by k . 

Sustainability entails non-decreasing consumption which entails the policy remains above the 

demarcation and reaches capital exhaustion in finite time. (ii.) k  below the demarcation.   

0<&

0>&

The desirability of policies will be assessed with von Weizsacker’s (1965) overtaking 

criterion, based on the finite objective . Consider two policies P and  which correspond 

with consumption paths  and c  respectively. P is said to overtake  if there exists some 

 such that ∫  for all T . P is said to be overtaking optimal if it 

overtakes all other feasible policies. 

)T(WN

dt))

P̂

)t(c

>dt

)t(ˆ

t(ĉ(u

P̂

*T ∫
T

0

nt
T

0

nt e))t(c(ue *T>

The appeal of the golden rule seems fundamental to most people. The impartiality 

embodied in  also seems appealing. Yet the failure of (P1) to yield a golden-rule solution 

suggests an incompatibility between the ethical content of  and that of the golden rule. 

The following result indicates that this incompatibility is removed when candidate policies are 

pre-screened for sustainability.  

)T(WN

)T(WN

Lemma 3: Among sustainable policies, any golden-rule policy overtakes any non-golden rule 

policy. 

                                                                                                                                                             
view, sustainedness is a stronger concept than sustainability, since the latter is a necessary but not sufficient 
condition for the former.  
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Proof: Trivial for stationary policies. Cyclical policies violate sustainability. For monotonic 

policies, consider separately the cases  and .  *k)0(k < *k)0(k >

For , Lemma 2 indicates that monotonic policies start below the  

demarcation and are increasing in k on the transition path. Consider two such policies:  

*k)0(k < 0k =&

( )
( )





≥

<≤
=

Ttc,k

Tt0)t(c,)t(k
P

**
 

and  

( )
( )





≥

<≤
=

T̂t)T̂(ĉ),T̂(k̂

T̂t0)t(ĉ,)t(k̂
P̂  

P is a golden-rule policy; i.e. the economy follows an arbitrary increasing path , that 

obeys the law of motion (2), until it reaches the golden rule, , at time T and then remains 

there. P  is a non-golden-rule policy. It follows the arbitrary path 

( ))t(c),t(k

)c,k( **

ˆ ( ))t(ĉ),t

k =&

(k̂ , increasing in k and 

non-decreasing in c, that obeys the law of motion (2), until it reaches the  demarcation at 

time T  and point 

0

ˆ ( ))T̂(ĉ),T̂(k̂ , and then remains there. By definition . )T̂(ĉc* >

Consider the case with T . P has a value over [  of . Over the 

same interval,  has a value of . Let ∆ represent the difference 

between these two values: 

T̂>

∫
T̂

0

NW

+dt))

]T,0

dt))

∫
T

0

nt dt))t(c(ue

P̂ PW ∫
T

T̂

ntnt T̂(ĉ(uet(ĉ(ue

[ ] [ ] ∞<−+−=∆ ∫∫
T

T̂

nt
T̂

0

nt dt))T̂(ĉ(u))t(c(uedt))t(ĉ(u))t(c(ue  

As indicated ∆ is finite, since T is finite. Now consider the difference on the interval )T,T( ′ , 

where T  is an arbitrary value greater than T. In particular, the limit of this difference is   ′

 17



[ ] ∞=−∫
′

∞→′
dt))T̂(ĉ(u)c(uelim

T

T

*nt

T
.        (5) 

Thus whatever the finite value ∆, it is overwhelmed by the expression in (5). It follows, then, that 

there exists a value  such that T′ [ ] ∆=−∫
′

dt))T̂(ĉ(u)c(ue
T

T

*nt

P̂ NW

, and therefore the golden rule policy 

P overtakes the non-golden rule policy  according to . The case with  follows in a 

similar fashion. 

TT̂ >

For , consider the policy *k)0(k >

( )
( )





≥

<≤
=

Ttc,k

Tt0c,)t(k
P

**

*

 

which consists of setting consumption to  at the outset. The capital stock declines from its 

initial high level, reaching 

*c

*k at T. Since  represents the highest level of consumption that can 

be sustained indefinitely, P overtakes all other sustainable policies.  

*c

This result follows directly from the observation that the overtaking criterion ranks 

policies with different long-run values of c in order of these values.  

The contrast between Koopmans’ Paradox and Lemma 3 suggests that, as a prescription 

for policy choices, the golden rule entails a commitment to sustainability which is lacking in 

 on its own. It is thus natural to inquire whether pre-screening for sustainability might 

prove useful in determining an optimal transition path based on . To this end, consider 

the problem: 

)T(WN

)T(WN

{ }T
0)t(c

max ∫
T

0

nt dt))t(c(ue   subject to:  

(i)  )t(c)t(nk))t(k(f)t(k −−=&
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(ii) k(0), T given          (P2) 

(iii)        *k)T(k =

(iv)   *c)t(c ≤

This problem is identical to (P1) with the exception of the transversality condition (iii) 

and the inequality constraint (iv). The new transversality constraint fixes terminal capital at the 

golden-rule level, *k . The inequality constraint provides a parsimonious way of imposing 

sustainability, as it rules out solutions which get to the golden rule in a cyclical fashion.7  

The inequality constraint (iv) introduces the possibility of a corner solution with respect 

to c(t). Thus the Maximum Principle becomes 

*nt ccand0e)c(u
c
H

≤≥λ−′=
∂
∂ with complementary slackness,8 

plus conditions (3.ii) and (3.iii). 

Solutions will be discussed separately for k  and . In both cases, a 

minimum time horizon is necessary for a solution, given the law of motion (2), the constraints on 

consumption , and the amount of capital which must be accumulated or dissipated, 

i.e. 

*k)0( < *k)0(k >

)cc0( *≤≤

)0(kk* − . This is a minor issue, since we are interested in the limiting behaviour of the 

solutions as T is increased. Thus, it is assumed henceforth that T is sufficiently large for a 

solution.  

For , the problem requires dissipating capital down to the golden rule level, *k)0(k > *k . 

This objective is compatible with choosing the maximum permitted consumption, , at the 

outset, which represents a corner solution of (P2). Let represent the duration of the transition, 

*c

*T

                                                 
7 The definition of sustainability is . It is convenient to use the weaker condition  in (P2) since it is 
more tractable mathematically and it yields a solution path which satisfies the definition.  

0)t(c ≥& *c)t(c ≤

8 A non-negativity constraint has not been imposed explicitly for c. 
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defined as the time to reach *k (which in this case is also the minimum horizon necessary for a 

solution). For T , the solution is denoted *T>

( )
( ) Tc

0c,)
*

*

T

T*

c),0(k

*

*

*TT >

( )
( )c

)t(c,)
*

*

≤

<

t

t







≤≤

<≤
=

t,k

tt(k
)T(S

**

*  

The solution is represented in Figure 1 by the horizontal line segment , leading 

leftward from 

δθ

( )*  at δ to the golden rule ( )** c,k  at θ. The limit is denoted S . An 

interior solution is also feasible but, since it is characterized by lower consumption during the 

transition, it is dominated by S . 

)(* ∞

)T(

The more relevant case occurs for . When the inequality constraint (P2.iv) is 

non-binding over the whole planning interval, an interior solution is obtained, characterized by 

equations (2) and (4), plus the terminal conditions k  and c . The special case 

 is obtained for a particular value of the horizon, T ; i.e. 

*k)0(k <

*k)T( =

*

*c)T( ≤

*c)T(c = 0=
c

)T(H *

∂
∂  and c  

simultaneously. For T , terminal consumption is strictly less than the golden rule; i.e. 

. Such a case is illustrated in Figure 1 by the segment αβ of trajectory 1. As T 

approaches T , the solution shifts upward in the diagram until it is contiguous with segment φθ 

on trajectory 2.

** c)T( =

*T<

*c)T(c <

9  

When , the inequality constraint binds on the sub-interval  but not on 

. In this case, a piece-wise solution is obtained: 

]T,T( *

]T,0[ *







≤

≤
=

TT,k

T0t(k
)T(S

**

**
*  

                                                 
9 This result follows from the vertically increasing property of isochrones, discussed in the Appendix. 
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The limiting solution is denoted S . Graphically, this solution consists of the segment φθ on 

trajectory 2 in Figure 1 followed by the golden rule.  

)(* ∞

The following optimality result is immediate. 

Lemma 4: Among sustainable golden-rule policies, S  is overtaking optimal according to 

. 

)(* ∞

)T(WN

Proof: )S  is the solution to (P2) for any T .  T(* *T>

A more general optimality result follows. 

Theorem 2: Among sustainable policies, S  is overtaking optimal according to W . )(* ∞ )T(N

Proof: Follows from Lemmas 3 and 4.  

 

V. The Problem of Cycling 

The previous section demonstrated the optimality of the monotonic golden-rule policy 

, obtained under the assumption of sustainability. The present section demonstrates the 

importance of sustainability in suppressing cycling. If permitted, cyclical golden-rule policies 

dominate S , leading to Koopmans’ Paradox. 

)(S* ∞

)(* ∞

To demonstrate, consider general notation for a golden-rule policy 

 

( )
( )





≥

<≤
=∞

Ttc,k

Tt0)t(c,)t(k
)(S

**

T  
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where (  is the transition path, T is the transition time, and the horizon is infinite.))t(c),t(k 10 This 

notation is consistent with the continuous policy S , for which T)(* ∞ *T= , and it is also 

consistent with discontinuous policies which jump to the golden rule at some other value of T.  

The transition path and time are generated by the general golden-rule optimization 

problem: 

{ }T
0)t(c

max ∫
T

0

ntdte))t(c(u   subject to:  

(i)  )t(c)t(nk))t(k(f)t(k −−=&

(ii) k(0), T given          (P3) 

(iii)          *k)T(k =

which differs from (P1) in the transversality condition and from (P2) in the absence of the 

sustainability constraint.  

For simplicity, this section focuses on the case of . When , the problem is 

identical to (P2), since the sustainability constraint is not binding in that case. The transition path 

attains 

*k)0(k < *TT <

*k  but falls short of c ; i.e. c . Such a path is illustrated in Figure 1 by the 

segment αβ on trajectory 1. Having attained 

* *c)T( <

*k , the policy then jumps to the golden rule (  

and stays there.  

)c,k **

When , the solution is identical to S .  *TT = )(* ∞

When , S  is a cyclical policy as illustrated in Figure 1 by the segment αβγ on 

trajectory 1.

*TT > )(T ∞

11 At T, the policy jumps down from γ to the golden rule, located at θ, and then stays 

                                                 
10 In contrast, in the previous section T was used to denote the horizon. 
11 Proof: Isochrones are vertically increasing in k-c space. 

 22



there. Clearly this policy violates sustainability, since it entails a reduction in consumption 

between points γ and θ.  

It will be useful to compare two policies for which the transition times are arbitrarily 

close, i.e. S  and S  where )(T ∞ )(T̂ ∞ TTT̂ ∆+=  and 0T >∆ . The following proposition shows 

the effect of a small increase in the transition time.  

Theorem 3: S  overtakes S , for any feasible T, according to .  )(T̂ ∞ )(T ∞ )T(WN

Proof: Denote the maximized  value for (P3) as ; i.e. . The 

effect on  of increasing the transition time by 

NW )T(V

T

∫≡
T

0

nt

)}t(c{
dt))t(c(uemax)T(V

T
0

)T(V ∆ can be approximated with a second-order 

Taylor series; i.e.  

2
2
1 )T()T(VT)T(V)T(V)T̂(V ∆′′+∆′=− .      

Following Seierstad (1984), )T(H)T(V =′ , which in the present context yields 

[ ])]T(cnk)k(f))[T(c(u))T(c(ue)T(V **nT −−′+=′  .      (6) 

It follows from the definition of the golden rule that f . Therefore, (6) can be re-

written as 

*** cnk)k( =−

[ ])]T(cc))[T(c(u))T(c(ue)T(V *nT −′+=′ . 

When , , since the solution is cyclical in this case. Thus *TT > *c)T(c >

[ ]












′−′+=

−′−=′

∫
)T(c

*c

*nT

*nT

dv))]T(c(u)v(u[)c(ue

]c)T(c))[T(c(u))T(c(ue)T(V

      

This expression is strictly positive by virtue of the concavity of )(u ⋅ .  

The second derivative is 
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[ )T(cc
dT

)T(dc)(ue)T(Hn

)T(H)T(V

*nT −⋅′′+=

′=′′

]       (7) 

When , this expression is also positive, since *TT > 0u <′′ , 0
dT

)T(dc
>  (vertically increasing 

isochrones), and . Since both *c)T(c > )T(V′  and V )T(′′  are positive in this case, it follows that 

 is positive.  )T(V−)T̂(V

This result also holds for T . In this case  and 

.  

* 0)c(ue)T(V *nT* *

>=′

0)c(uen)T(V *nT* *

>=′′

When ,  and therefore *TT < *c)T(c <












′−′+=′ ∫

*c

)T(c

*nT dv)]v(u))T(c(u[)c(ue)T(V  

which is strictly positive due to the concavity of )(u ⋅ . The second derivative is unchanged from 

(7) but now the second term is negative, which makes the sign of the whole expression unclear. 

Nonetheless,  must still be positive for small )T(V)T̂(V − T∆ owing to the dominance of the 

first-order effect.  

The fact that  is positive for any T indicates that V  can always be 

increased by increasing the transition time. Now increasing the transition time will also delay 

arrival at the golden rule. This delay corresponds with a loss of welfare approximately equal to 

. Thus the total effect on welfare of delaying the transition time is  

)T(V)T̂(V − )T(

T)c(ue *nT ∆

T)c(ue)T()T(VT)T(V
T)c(ue)T(V)T̂(VW

*nT2
2
1

*nT

∆−∆′′+∆′=

∆−−=∆
 

When , substitution for *TT > )T(V′  and simplification yield  
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2
2
1

)T(c

*c

nT )T()T(VTdv))]T(c(u)v(u[eW ∆′′+∆












′−′=∆ ∫  

which is positive.  

When , the integral term vanishes, leaving only *TT = 2
2
1 )T()T(V ∆′′ , which is also 

positive. The importance of the second-order approximation is now apparent: with a first-order 

approximation,  becomes zero in the present context, which is misleading. W∆

When , the expression becomes *TT <

2
2
1

c

)T(c

nT )T()T(VTdv)]v(u))T(c(u[eW
*

∆′′+∆












′−′=∆ ∫ . 

The integral term is positive, as discussed above, while the second term may be positive or 

negative. Lemma 4 implies that  in this case, which circumvents the difficulty of the 

indeterminacy of the second term. 

0W >∆

The positive value of indicates that society always benefits from delaying the 

transition time.  

W∆

This result implies that any cyclical golden-rule policy overtakes S , which suggests 

that the planner should prefer a policy of this type. However, it also follows that there does not 

exist an optimal policy of this type: whatever the transition date, it will always be desirable to 

increase it. In the limit, as T , S  degenerates to the null policy, which is Koopmans’ 

Paradox.  

)(* ∞

∞→ )(T ∞

 

VI. Sustainability and Social Preferences 

In Koopmans (1965), the ethical content of social preferences is embodied in the 

utilitarian objective function, in particular the concept of impartiality. There is no commitment a 
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priori to the golden rule as a prescription for policy. Rather, the golden rule enters as a deus ex 

machina to retrieve convergence of the utilitarian objective function by means of the Ramsey-

Koopmans device (i.e. converting )(W ∞  into W ). But this device is not necessary, since, as 

observed in section III, the solution to the problem without population weighting can be obtained 

as the limiting case of the solution of W(T). Nonetheless, the solution converges to the golden 

rule, which is regarded as an agreeable result. 

)(* ∞

In contrast, in section IV above, the golden rule is given prominence as an explicit 

prescription for policy. The impartiality ethics of the utilitarian objective are then invoked to find 

a transitional path to the golden rule. Moreover, it is shown that these two loci of ethical content 

are rendered perfectly consistent when policies are pre-screened for sustainability. To be 

specific, under the sustainability constraint, (i.) golden rule policies overtake non-golden rule 

policies according to the utilitarian objective, and (ii.) an optimal golden rule policy, including 

transitional path, can be obtained as the solution of a utilitarian maximization problem.  

These results are encouraging, as sustainability commands wide support as an ethical 

principle in itself. However, the implementation of sustainability as a side constraint is 

controversial, for, if the principle has merit, why would it not be embodied in the social objective 

function? Pezzey (1997) and Dasgupta (1994) provide opposing views on this question. More 

generally, the investment of ethical content in a variety of different instruments – golden rule 

transversality condition, utilitarian objective, sustainability constraint – seems to indicate that we 

have not adequately refined the social objective to reflect what is truly valued. In effect, the 

utilitarian objective is not quite right, and we are patching it up to avoid disagreeable solutions. 

The present paper proposes a refined version of the social objective which reflects all 

desired values without patching up. In particular, consider the following variation on the 

population weighted utilitarian objective: 
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∫
∞

−−=∞
0

*nt*
N dtu))t(c(ue)(Ŵ .       

Like W ,  represents a quasi-ordering on the set of feasible consumption 

paths. However, unlike ,  is bounded above, a result analogous to Koopmans’ 

(1965) Proposition A. Inspection reveals that the upper bound is zero, which corresponds with 

the constant golden rule path . Furthermore, every divergent path diverges to , by 

construction, a result analogous to Koopmans’ Proposition B. Therefore, any convergent path is 

preferred to any divergent path, and one can focus on the subset of convergent paths to find an 

optimum.

)(*
N ∞ )(Ŵ*

N ∞

(W*
N ∞)

*c

)(Ŵ*
N ∞

∞−

12  

Maximization of  subject to the neoclassical technology yields a sustainable, 

monotonic, golden-rule solution without requiring a golden-rule transversality condition or a 

sustainability side constraint. To demonstrate, consider the associated finite horizon problem: 

*
NŴ

{ }T
0)t(c

max ∫ −−
T

0

*nt dtu))t(c(ue   subject to:  

(i)        (P4) )t(c)t(nk))t(k(f)t(k −−=&

(ii) k(0), T given  

(iii) . 0)T(k ≥

This problem differs from (P1) in the objective only and from (P2) in the objective, the 

free terminal stock (iii) and the absence of the sustainability side constraint. The problem is 

amenable to solution by optimal control theory. The Hamiltonian function is  

                                                 
12 Note also that a necessary condition for a path to converge (i.e. a path for which  exists) is that 

, which reproduces Koopmans’ Lemma 3 (Appendix, p.271).  

)T(Ŵlim *
NT ∞→

*

T
c)t(clim =

∞→
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[ ]cnk)k(fu)c(ueH *nt −−λ+−−=    

and the Maximum Principle once again yields necessary conditions based on (3).  

The Hamiltonian is non-differentiable at . If this is an optimal value, then the solution 

is characterized by conditions (3.ii) and (3.iii) – the latter equivalent to equation (2) – but not 

equation (4). For an optimal value of consumption less than , condition (3.i) translates to 

, in which case the trajectory is characterized by equations (2) and (4).  

*c

*c

)i.3( ′

It is never optimal to have consumption greater than , since deviations from  are bad 

in themselves and positive deviations bring no offsetting advantages. Formally, an optimal value 

would correspond with a condition  

*c *c

*cc >

0)c(ue0
c
H nt <′−=λ⇒=
∂
∂ ,  

which indicates a negative shadow value of capital. Clearly this result cannot be optimal, since it 

indicates an over-accumulation of capital has occurred in previous periods.  

For , the solution to (P4) is to choose consumption equal to  at the outset. 

Capital diminishes from its initial high level and eventually reaches the steady state at 

*k)0(k > *c

*k , given 

enough time. Similarly for , it is optimal to choose c  in every period. Denote this 

solution 

*k)0(k = *

( )
( )





≤≤

<≤
=

TtTc,k

Tt0c,)t(k
)T(Ŝ

***

**

 

where T  represents, as above, the transition time to attain golden-rule capital, * *k  (equal to 0 

when ). This solution is equivalent to S , from (P2). *k=)0(k )T(*

For the more realistic case of , it is only optimal to choose  at the outset if T 

is sufficiently small. This case is illustrated in Figure 2 by the horizontal line segment starting at 

*k)0(k < *c
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α and moving leftward. However, for larger values of T, this policy leads to premature 

exhaustion of capital. In this case, it is preferable to choose initial consumption . 

Consumption then grows according to (4) until either it reaches c  or capital is exhausted. If it 

reaches c  first, it then remains at this level with capital diminishing to zero at T. This case is 

illustrated in Figure 2 by the trajectories starting at points β and γ, with respectively longer 

horizons. The lower value of consumption in early periods slows down the dissipation of capital, 

allowing for a longer horizon. For still larger values of T, it becomes necessary to start with  

below the demarcation, in which case capital is accumulated initially and then dissipated. Such 

trajectories are illustrated by starting values η, π, ψ and ω in the figure. Lemma 1 applies in this 

context: the lower the value of c , the larger the value of T. 

*c)0(c <

*

*

=

)0(c

)0(

0(c

*k

0(k(

*

)T(lim =λ

This process of lowering  in response to increases in T continues until a threshold 

value T  is reached, where  represents, as before, the elapsed time along the golden-

rule transition path  (both Figures 1 and 2), and 

)

T*TTˆ +′ *

φθ T′  represents the elapsed time along the 

horizontal path leading leftward from θ to capital exhaustion (i.e. the time required to fully 

dissipate all capital, starting at  and consuming  throughout). T*c ′  is implicitly defined by the 

equation  

[ ]dtc)t(kn))tfk
T

0

** =−−− ∫
′

 

where the expression in square brackets is the law of motion of capital, (2). 

For , it is better to start with c  greater than φ, so that consumption arrives at c  

sooner. For , it is optimal to follow the trajectory 

T̂T <

T̂T ≥

)0(

φθ  to the golden rule and then stay there. 

In this case, the corresponding transversality condition, adapted from (3.iv), is 0
T ∞→

. It 
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would never be optimal to choose c  below φ, since such a path (not shown in the diagram) 

would take longer to reach c  and would be characterized by a lower value of c at every time 

along the transition path.

)0(

*

≤

<

t

t

        

13  

For , denote the solution  T̂T ≥

( )
( )





≤

≤
=

TTc,k

T0)t(c,)t(k
)T(Ŝ

***

***

 

which is identical to S . The limiting solution is denoted S .  )T(* )(ˆ ∞

The following optimality result is immediate. 

Theorem 4: Among all policies satisfying the law of motion (2), S  is overtaking optimal 

according to . 

)(ˆ ∞

*
NŴ

Proof: S  is the solution to (P4) for any T .  )T(ˆ T̂>

*
NŴ

*

 establishes the golden rule utility level, u , as a target. Both deviations below 

and deviations above are considered undesirable, in contrast with conventional utilitarianism 

for which more is always better. Despite the symmetry, some deviations are more productive 

than others and are therefore less bad. In particular, when , deviations of consumption 

below c  are necessary to build up the capital stock leading to sustainable increases in future 

consumption. Thus, though bad in themselves, such deviations are useful, and therefore a good 

policy under  includes them. In contrast, deviations of consumption above c  lead to 

dissipation of capital, and therefore they cannot be sustained. Not only are they bad in 

themselves, but they cause future consumption to fall below c , in some periods at least, which 

is also bad. Thus, a good policy under  does not include deviations above . 

* *u  

*u

*k)0(k <

*

*
NŴ *

*c*
NŴ

                                         
13 Proof: negatively sloped isochrones. See the Appendix. 
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A justification for this ethical position may be offered in the form of an inter-generational 

contract. Individuals in early generations are willing to sacrifice some of their consumption in 

order to build up the capital stock and thus provide sustainable increases in consumption for 

future generations. However, individuals in the future who take consumption greater than  are 

viewed as having broken the contract by arrogating unto themselves resources in excess of what 

was intended for them. Their action, characterized by Koopmans as a splurge, is considered bad 

in itself from a social perspective, even though it increases their individual utility.  

*c

This view imputes a moral dimension to sustainability which rings true with popular 

discourse on the topic. Future individuals are morally entitled to consume  because it does not 

impinge on the ability of subsequent individuals to consume the same amount. In contrast, 

consumption in excess of  is not morally justified because it dissipates capital and thus entails 

a reduction in the consumption of some subsequent individuals. 

*c

*c

This contractual ethic supersedes both the strong and weak Pareto principles. On the 

surface this result may seem obvious since any increase in consumption above c  reduces the 

value of W . However, the proof is in fact more complex as not all consumption paths which 

rise above c  are feasible with the neoclassical technology. For the purpose of definition, 

consider two consumption paths, 

*

)(ˆ *
N ∞

*

)t(cc 11 = and c )t(c22 = , which are both feasible for the given 

technology. The following definitions are standard. 

strong Pareto: If  for all  and there exists at least one time  such that 

, then  is socially preferred to c . 

)t(c)t(c 12 ≥

2c

0t ≥ t′

)t(c)t(c 12 ′>′ 1

weak Pareto: If  for all , then c  is socially preferred to . )t(c)t(c 12 > 0t ≥ 2 1c

Note that satisfaction of strong Pareto entails satisfaction of weak Pareto. 
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To see the result for W , assume c  cycles repeatedly around the golden rule, such 

that 

)(ˆ *
N ∞ 2


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)t(c  

The exact mechanism which generates the cycling is as follows. During the first interval, the 

social planner takes away units from individuals and invests them. The capital stock starts out 

slightly below *k  at the beginning of the interval and rises slightly above it as successive units 

are invested. The average marginal product of capital during this interval is equal to the marginal 

product of *k , which is n, the growth rate of population. Thus, by compounding the investment 

returns, the planner has just enough in the second interval to give one additional unit to each 

individual. The process repeats.  

Now suppose that the other path, , falls short of  by varying amounts, depending 

whether the deviation in c  is above or below c . If below, then c  falls short of  by a 

differentially small amount ε. If above, then c  falls short of  by the full amount of the 

deviation, i.e. c . To summarize 

1c 2c

2
*

1

1 2c

2c

*
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The capital stock is assumed to be identical along both paths. Thus, the differences between  

and c  are due to wastage, which is assumed costless.  

1c

2

Weak Pareto entails that  is preferred to c , since  for all . In 

contrast, under , c  is worse than  because the aggregate of deviations from  is 

larger. In c , not only is one group of individuals consuming below the golden rule, but another 

group is consuming above. These increments above c  do not make society better off since they 

involve breaking the intergenerational contract. The violation of weak Pareto entails the violation 

of strong Pareto by modus tollens (indirect proof), since strong Pareto entails weak Pareto.  

2c 1 )t(c)t(c 12 > 0t ≥

)(Ŵ*
N ∞ 2 1c *c

2

*

While unusual, the violation of the conventional Pareto criteria under  is 

consistent with the golden-rule contract ethics and therefore it is not problematic if one supports 

those ethics. What is more problematic is that  is explicitly defined in terms of the 

technology, through the golden rule utility level, . It seems persuasive to argue that the 

validity of an ethical precept should be independent of production possibilities. Yet, it is also 

conceivable that a rational planner might choose to adjust ethical precepts in response to the 

contingencies of new technologies. Further reflection is required on this question. 

)(Ŵ*
N ∞

)(Ŵ*
N ∞

*u

 

VII. Inequality Aversion 

Some economists, including Arrow (1999), have expressed reservations about using an 

undiscounted objective function in growth problems on the grounds that it imposes unreasonably 

high rates of saving in early periods.14 However, it would seem preferable to address this concern 

by means of an inequality aversion parameter rather than a positive utility discount rate, since the 

                                                 
14 This concern is only relevant when . *k)0(k <
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latter biases solutions against future generations a priori. An extended specification of golden-

rule contract preferences takes the form 

1,dtu))t(c(ue)(Ŵ
0

*nt*
N ≥ρ−−=∞ ∫

∞
ρ

     

where ρ is a curvature parameter related to the elasticity of substitution of utility, ε, as follows:15 

1
1
−ρ

=ε . 

ρ is interpreted as an index of inequality aversion. The lowest permissible value, 1=ρ , 

corresponds with an infinite elasticity of substitution, which is the standard utilitarian case. A 

larger value translates into a lower elasticity, which favours early generations, as welfare weights 

are imputed in inverse proportion to the consumption level. To demonstrate, consider the revised 

Hamiltonian for the optimization problem: 

[ ]cnk)k(fu)c(ueH *nt −−λ+−−=
ρ

. 

For an optimal value of consumption less than c , the corresponding necessary condition is *

[ ] 0)c(u)c(uue
c
H 1*nt =λ−′−ρ=
∂
∂ −ρ . 

Comparison with earlier results reveals the welfare weight to be [ ] 1* )c(uu −ρ
−ρ , which varies 

inversely with c when .  1>ρ

Further solution, in combination with the other necessary conditions, yields a generalized 

version of equation (4): 

c)k(f)c(Ac ′σ=&  where 
1

* 1)c(
)c(uu

c)c(u)1(
−







+σ

−
′

−ρA 


= .    ( )4′  

                                                 
15 Population weights are omitted from the calculation of ε, since the operation of substitution is between individuals 
rather than generations. In contrast, an inter-generational elasticity of substitution would involve population weights.  
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Inspection of  establishes that )4( ′ 1A0 << ; therefore consumption grows more slowly than in 

the case of ρ . The slower growth rate is accompanied in the solution by a higher initial 

consumption value, c , and the transition time, , is delayed. 

1=

)0( *T

In the limit, as ρ , the elasticity of substitution reduces to zero, and  

translates into Rawls’ criterion . The optimization is then an exercise in maxi-min. 

The solution is the constant policy 

∞→ )(Ŵ*
N ∞

{ }∞0)t(cmin

t)0(
0k
∀

=&
c)t( =c ; i.e. choose initial consumption on the  

demarcation – point δ in Figure 2 – and stay there forever. This case is most favourable to the 

first generation: c  is maximized subject to sustainability and saving is just enough to keep the 

capital-labour ratio constant in the face of population growth; i.e. 

0k =&

)0(

)0(nk−))0(k(f)0(c = , from 

(2). However, this policy forsakes growth, and therefore even members of the first generation are 

not likely to advocate it, assuming they are sufficiently altruistic toward future generations.  

 

VIII. Conclusion 

The paper has sought to reconcile the incompatibility of undiscounted utilitarianism with 

population weighting in the context of the neoclassical growth model under an infinite planning 

horizon. Koopmans (1965) has identified the source of the problem as the perverse economics of 

saving for a splurge. In the context of population weighting and constant exogenous population 

growth, the payoff to a splurge can be made arbitrarily large by waiting for an arbitrarily large 

population. As a consequence, the incentive to save for a splurge dominates all other 

considerations. In the limit, everything is saved. And yet the splurge is never taken, since it is 

always optimal to delay it.  

The paper highlights the conflict between splurging and sustainability. A splurge entails 

dissipation of capital, and therefore it is not compatible with a sustained path of consumption. It 
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follows that disallowing unsustainable paths removes the incentive to save for a splurge and thus 

puts investment for productive returns back on centre stage. 

A modified utilitarian objective has been presented which embodies the three ethical 

precepts of impartiality, the golden rule and sustainability. Maximization of the objective 

involves minimizing the aggregate deviations from the golden rule level of consumption. Both 

positive and negative deviations are bad, but negative deviations can nonetheless be useful as 

they allow for capital accumulation and therefore sustainable increases in consumption. In 

contrast, positive deviations entail capital dissipation, which entails reduced consumption in 

subsequent periods. An optimal program may include negative deviations but never positive. 

For low initial capital, maximization of the modified objective over the neoclassical 

technology yields a monotonically increasing path to the golden rule, which contrasts favourably 

with Koopmans’ paradox of total saving. Given a sufficiently long horizon, this outcome is 

equivalent to maximization of the standard objective subject to a sustainability constraint. This 

equivalence may prove useful in computational problems, as most computer-based algorithms 

can easily handle a standard constrained optimization problem while the incidence of non-

differentiabilities in the modified objective could cause problems.  

The ethical position underlying the modified objective is described as an 

intergenerational contract. Individuals in early generations are willing to sacrifice some of their 

consumption in order to build up the capital stock, while individuals in future generations are 

morally obligated to limit their consumption to the golden rule level, since to consume more 

would impose a cost of reduced consumption on subsequent individuals. An inequality aversion 

parameter can be introduced to prevent an excessive burden of saving on early generations. This 

approach respects impartiality, since welfare weights are based on endogenous consumption 
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levels rather than exogenous calendar time. In contrast, discounted utilitarianism discriminates 

against future generations a priori, as the discount factor is based on calendar time.  

The paper has not considered the possibility of technological change. It would be a 

simple matter to account for labour-augmenting technological change in the standard manner 

(see Barro and Sala-i-Martin 2004), in which case values would be measured per unit of effective 

labour, rather than per capita. The results of the paper would then go through without further 

change. However, while the mathematics would be formally identical, the ethical content would 

be obscured by such a treatment. For example, what meaning should be attached to utility 

defined over consumption per effective labour unit? Who actually enjoys this utility? What is the 

ethical claim of effective labour units? If one remains convinced that a benevolent social planner 

should care about real people, then this approach must be regarded as problematic. Thus further 

reflection is required before a compelling treatment of impartiality can be presented in a context 

of technological change. 
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Appendix: Isochrones 

Several results in the paper can be easily proven with the concept of isochrones. An 

isochrone, , is the locus of all solution points of (P1) at time t. Formally, )t(I

{ }0T))t(k()t(I TT >= c),t( .  

Define  as the set of k values and )t(κ )t(χ  as the set of c values contained in I(t); i.e. 

{ }0>T)t(k)t( T≡κ  and { 0T)t(c)t( T >≡ }χ . I(t) describes a mapping )t()t(:)t( χ→κϕ  

provided .0t > 16 For , the mappings 0t̂ >,t )t(ϕ  and   would be said to cross if they 

assigned the same range element to a common domain element, i.e. if, for any k , 

. 

)t̂(ϕ

)t(κ)t̂( ∩κ∈

)t,k(ϕ)t̂,k( =ϕ

Lemma A1 (non-crossing property of isochrones): Given , the mappings  and  ϕ  

do not cross. 

0t̂,t > )t(ϕ )t̂(

Proof: A given solution point cannot be a member of more than one isochrone.   

It will now be proven that ϕ  is continuous and decreasing over its domain. The 

following lemma provides some preliminary results.  

)t(

Lemma A2: For any  and 0 ,  0T̂,T > ]T̂,Tmin[t ≤≤

(A)  and k  if and only if c , )t(c)t(c T̂T > )t(k)t( T̂T < )0(c)0( T̂T >

(B)  there exists T 0~ >  such that c  and )t(c)t(c)t( T̂T~T >> )t(k)t(k)t(k T̂T~T << . 

Proof: (A) If c , it follows from (2) and (4) that  and ; 

i.e. at the outset capital grows more slowly and consumption more quickly for S  than S . 

)0(c)0( T̂T > )0(k)0(k T̂T
&& < )0(c)0(c T̂T && >

)T( T̂( )

                                                 
16 When , I(0) associates multiple elements of 0t = )0(χ  with the single domain value , given exogenously. )0(k
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These trends are self-perpetuating by virtue of (2) and (4). Thus k  and  

for all t , which proves sufficiency.  

)t(k)t( T̂T
&& <

)T̂(S

)t(c)t(c T̂T && >

)t(c)t( T̂T >

]T̂,Tmin[≤

)t(k)t( T̂T <

)0(cT̂<

)t(κ

)t(

)t(

]T̂,Tmin[

)

)0(c)0(c T~T > )0(

)t

)t()t̂( κ∩κ

)t,k() ϕ>

Necessity is proven by contradiction. Consider S  and  such that (i.) c  

and  for all , and (ii.) c

)T(

(cT̂k ]T̂,Tmin[t ≤ )0)0(T < . But by the argument above, 

 entails c  and  for all .  )0(cT )t(c)t T̂<(T )t(T̂ tk)t(kT > ≤

(B) Assume without loss of generality that c . Since c is real, there exists an 

intermediate value, c , associated with a solution S ; i.e. . The 

result then follows from (A).  

0(c)0( T̂T >

)T~()0(T~ cT̂>

Theorem A1: 

(A)  is a convex set, 

(B) ϕ  is continuous, and 

(C) ϕ  is decreasing in k. 

Proof: (A) Lemma A2, Part B,  

(B) Lemma A2, Part B, 

(C) Lemma A2, Part A.  

Finally, it will be proven that the isochrone map defined in k-c space by ϕ  is vertically 

increasing in t.  

(

Theorem A2: For any , ϕ  lies above 0tt̂ >> )t̂( )t(ϕ  in k-c space; i.e. for any k , 

. 

∈

t̂,k(ϕ

Proof: Consider two solutions S  and S  such that . The transversality 

condition requires k , and the non-crossing property of solutions entails 

)T(

)T̂( =

)T̂( )T̂(c)T(c T̂T <

0k)T( T̂T =
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)0(c)0(c T̂T >

]T̂,Tmin[t ≤

. It follows from Lemma A2 (A) that  and  for all 

.  

)t(c)t(c T̂T > )t(k)t(k T̂T <

k0)T(k T <=

k)T(k T <

)T

T̂T >

)T(k T

t(I))T̂(cT̂ =∈

))T(c,0( T

T̂T <

∈

t(I))T̂(c,0( T̂ ∈ c)T(c T̂T < T̂<

)t(

Consider the possibility that T̂T < . It follows in this case that , which 

is consistent with S  being a solution of (P1). In contrast,  entails , 

in which case S  cannot be a solution to (P1) since  cannot be negative. Therefore, 

.  

)T(T̂

)T̂(T̂)T̂(

)

0=

T(

Now  (  and , which is equivalent by 

virtue of the transversality condition to the statement 

)Tt(I))T(c),T(k TT =∈ )T̂),T̂(k( T̂

t(I =  and 

. The result then follows from (i.) , (ii.) T  and (iii.) 

Lemma A1.    

)T̂= )T̂(

To summarize, for (P1), the isochrone map represented in k-c space by ϕ  is non-

crossing and continuous, with c decreasing in k, and the map vertically increasing in t. 
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