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Abstract. Mathematical biology/ecology teaching for undergraduates has generally relied on the
Lotka–Volterra competition and predator-prey models to introduce students to population
dynamics. Students are provided with an understanding of the application of dynamical
system theory in simulating and understanding the behavior of the natural world, and they
are provided with opportunities to practice phase plane analysis techniques such as deter-
mining the stability of equilibrium points and bifurcation analysis. This paper outlines
a course in ecological modeling suitable for all students in the life sciences. The course
is based on realistic ecological principles, such as using nutrient concentration to measure
populations together with explicit resource availability to constrain population growth, and
it considers simple Lotka–Volterra systems within this theoretical framework. An advan-
tage of this approach is that the widely experimentally observed models of mixotrophy and
mutualism can be naturally and simply introduced and analyzed. Continuous variation of
models across a trophic level is now possible. Competitors can smoothly change to mu-
tualist/mixotroph populations, which can further smoothly change to become predators,
synthesizing in simple terms the relationships among trophic interactions within the Lotka–
Volterra framework. Standard texts on mathematical ecology do not include mixotrophy,
which is central to understanding trophic interactions.
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1. Introduction. The need to teach quantitative skills to modern life sciences
undergraduate classes in context has long been recognized (for example, [14]) but
remains a problem for many institutions and disciplines [16, 23]. Many physical
science courses for undergraduate life scientists appear to be reworked discipline-
based courses that have included “biological” examples that biologists do not find
relevant [16]. In contrast, discipline-based mathematics education programs such as
“The Math You Need, When You Need It (TMYN)” are argued to provide a more
beneficial and targeted learning experience for nonmathematics undergraduates [23].

∗Received by the editors March 27, 2014; accepted for publication (in revised form) November 3,
2014; published electronically August 6, 2015.

http://www.siam.org/journals/sirev/57-3/96252.html
†Griffith School of Environment, Griffith University, Nathan, Queensland, 4111, Australia

(r.cropp@griffith.edu.au).
‡Mathematical Institute, University of Oxford, Andrew Wiles Building, ROQ, Woodstock Road,

Oxford OX2 6GG, UK (john.norbury@lincoln.ox.ac.uk).

437



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

438 R. A. CROPP AND J. NORBURY

The objective of this paper is to present a simple conceptual framework for teach-
ing dynamical systems in marine ecology courses at the undergraduate level. This
conceptual framework is based on examining dynamical systems of a particular form
used to model many ecosystems. Although many science students will have had a
basic introduction to graphical methods for studying dynamical systems, including
solutions to linear, first-order, constant coefficient, homogeneous coupled systems and
phase plane analysis (i.e., [15, 2, 11, 18]), it is appropriate to teach these techniques
in parallel to this course.

We present students with a set of ecologically sensible criteria for interacting
populations and map these criteria to mathematical rules that define a differential-
equations-based model of a natural ecology. While it might be argued that simple
physical systems are more accessible to all students of science and medicine, and that
their solutions are informative in many disciplines, we suggest that the derivation
of rules governing living systems, or ecologies, will be more intuitive and useful for
students of life sciences. This is similar to an approach advocated for biology [16].

The form of ecological model considered here is based on physical principles such
as independence of the per capita population growth rates from the population mea-
suring scales and conservation of mass of the recycled nutrient that defines the ecology,
as well as on ecological principles such as the explicit dependence of populations on
finite resources. These principles are encapsulated by the rules of the conservative
normal framework, which ensures that the systems have Kolmogorov form [3]. One
of the objectives of this approach is to show how ecological principles produce dy-
namical systems with particular mathematical properties that both make for easier
analysis allied to interesting results and provide constraints on parameter values to
ensure ecological veracity. A final objective is to leave readers with the realization
that ecological models can be derived logically, and that the usual, somewhat simple
population dynamics models of competition, predation, and mutually supportive be-
havior may be linked both naturally in ecological terms using mixotrophy and, from
a mathematical viewpoint, satisfyingly.

2. A (Very) Brief History of Ecological Modeling. First we note the work of
a very few of the early contributors that laid the foundations of the modern field of
ecosystem modeling.

2.1. Malthus: The Principle of Population. The Reverend Thomas Robert Mal-
thus (1766–1834), a British cleric and economist, is known primarily for the influence
of his work An Essay on the Principle of Population [13], in which he argued that pop-
ulations grow geometrically while food supply grows only arithmetically. This essay
is famous for inspiring Charles Darwin to consider the struggle for existence that all
populations must therefore endure, and how the survival of the fittest might affect the
attributes of a population. The key message in Malthus’s essay for ecosystem model-
ing is that the growth of any population is limited by the availability of its resources.

2.2. Verhulst and Pearl: Carrying Capacity. The Belgian mathematician Pierre
Francois Verhulst (1804–1849) published the equation

(2.1)
dX

dt
= rX

(

1−
X

K

)

,

where X(t) represents the number of individuals in a population at time t, r rep-
resents the intrinsic growth rate of the population, and K represents the “carrying
capacity,” or the maximum number of individuals that the environment can support
[21]. Equation (2.1) came to be called the logistic equation.
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This equation was rediscovered by Raymond Pearl, an American biologist (1879–
1940), who published it in a study of the population of the United States [19]. The
authors proposed on page 287 that

the hypothesis here advanced as to the law of population growth, even when

fitted by a rough and inadequate method, so closely describes the known

facts regarding the past history of that growth, as to make it potentially

profitable to continue the mathematical development and refinement of

this hypothesis further.

Pearl and Reed also cited Malthus in their argument that resources must in-
evitably place limits on population growth, and hence that simple curves of statistical
best fit were of little value in predicting population sizes, even over short time periods.
The logistic equation proposed by Verhulst is occasionally called the Verhulst–Pearl
(or Pearl–Verhulst, with about an equal number of hits on Google) equation in recog-
nition of its “joint” discovery.

2.3. Lotka and Volterra: Predator-Prey Systems. Alfred Lotka (1880–1949),
an American mathematician, chemist, and statistician, and Vito Volterra (1860–1940),
an Italian mathematician and physicist, independently, but almost simultaneously,
published what are now known as the Lotka–Volterra equations for predator-prey
systems [12, 22]. Perhaps not surprisingly, Verhulst’s earlier work was noted as being
a motivation for both publications.

Volterra is said to have become interested in ecological modeling through his
daughter and son-in-law, who were both marine biologists. They had data on Mediter-
ranean fisheries, which indicated that a dramatic increase in the abundance of large
predators (principally sharks) had occurred during World War I. They reasoned that
this may have been due to the decline of fishing activity in the Mediterranean during
the war and sought Volterra’s help to understand their data [11].

Lotka sought to apply the rigor of the physical sciences to biology, and published
several works along these lines. His 1925 book Elements of Physical Biology (reissued
in 1956 as Elements of Mathematical Biology) synthesized much of his work on bio-
logical systems and introduced the Lotka–Volterra equations we know today, which
may be written as

dx

dt
= ax− by,

dy

dt
= cxy − dy,(2.2)

where x is the prey population and y the predator population. Here, a is the intrinsic
prey growth rate, b the rate of predation of the predator on the prey, c the rate at
which the predator population increases as a result of its predation on its prey, and
d is the predator mortality rate. The Lotka–Volterra model makes a number of key
assumptions:

• The prey population is not limited by the availability of food.
• The food supply of the predator population is determined solely by the size
of the prey population.

• The rate of change of population is proportional to its size.
• The predators can eat an unlimited amount of food.

The Lotka–Volterra equations have the unfortunate property that their solution
is a period cycle that is determined by its initial state and repeats unchanged for-
ever. Lotka and Volterra later introduced similar simple models of two competing
populations.
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2.4. Kolmogorov: Dynamics of Lotka–Volterra Systems. An outstanding Rus-
sian mathematician, Andrey Kolmogorov (1903–1987) was interested in (among other
things) the biological and mathematical conditions that would ensure that one
predator—one prey models (such as the Lotka–Volterra equations) had ecologically
reasonable solutions, either a stable equilibrium point or a stable limit cycle. The third
option for these models is an unstable limit cycle, which he considered ecologically
unreasonable because it allows populations to become infinitely large. Kolmogorov
considered general predator-prey systems of the form

dH

dt
= F (H,P )H,

dP

dt
= G(H,P )P,(2.3)

where he stipulated that what we will call the life functions, F (H,P ) and G(H,P ),
are continuous and have first derivatives for H ≥ 0 and P ≥ 0. Such systems are
often known as “Kolmogorov systems” (K-systems). We note that Kolmogorov’s nine
conditions (on the functional forms of F and G) include an inconsistency between two
of the conditions. This ambiguity, and the complexity of implementing Kolmogorov’s
nine conditions [10] for just a two-population model, may be why this approach has
not been much used or extended to more realistic systems by theoretical ecologists
seeking to use mathematical models to understand the dynamics of real ecosystems.
Carrying capacity has instead become the prevalent tool used in ecosystem models
to constrain their populations from becoming infinite. However, the use of linear and
quadratic terms only on the right-hand side (rhs) of (2.3) (known as Lotka–Volterra
modeling) has the great advantage of analytical simplicity and will be used in the
(later) examples.

2.5. Gause: Competitive Exclusion. Based on experimental work with mixed
cultures of yeast and the protozoa Paramecium, Georgii Frantsevich Gause (1910–
1986), a Russian biologist, published his Principle of Competitive Exclusion in 1932
[7]. This stated that no two species with similar ecological niches could coexist in a
state of equilibrium, and the less efficient species would go locally extinct. Although
still considered by some to be a fundamental principle of ecology, in the real world,
many species are often found to coexist in natural ecologies [9].

2.6. Hutchinson: The Paradox of the Plankton. The English-American limnol-
ogist George Evelyn Hutchinson (1903–1991) proposed the Paradox of the Plankton

[9] as many natural water bodies on Earth, including rivers, lakes, and oceans, contain
many species of phytoplankton coexisting in relatively homogeneous environments on
just a few resources such as light and nutrients, in contradiction of Gause’s Law.
Many scenarios have been proposed to resolve the paradox [4], but no general resolu-
tion has been universally accepted, perhaps because plankton coexistence happens in
such varied environments.

2.7. Elton: Food Webs. The English zoologist and animal ecologist Charles
Sutherland Elton (1900–1991) pioneered the concepts of food webs and food chains in
his bookAnimal Ecology [5]. Elton also introduced the concepts of functional groups of
organisms, trophic levels, the trophic pyramid, ecological niches, and invasive species.
Figure 2.1 shows a plankton and fish food web for the North Sea given on page 58
of Elton’s book [5]. The words in boxes in the figure describe the populations that
are identified and (possibly) measured. The lines and arrows between boxes show the
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Fig. 2.1 Redrawing of Hardy’s figure of the North Sea plankton community (with phytoplankton
shown at the base), which is predated on by herring. These are shown along the top row
in their juvenile and adult stages. The middle rows show various zooplankton populations,
while the arrows show “who eats whom” (after Elton [5]).

movement of resources (chemicals, organic matter, and populations that are food for
other populations) between these populations. Modern computational models simplify
these “real” food webs by considering grouped populations and focus on particular
aspects of the food web such as the movement of carbon-based material.

2.8. Bormann: Nutrient Budgets. Developing understanding of ecosystems by
measuring how they cycle nutrients through food webs, such as those described by
Elton, is often attributed to the American ecologist F. Herbert Bormann (1922–2012)
[1]. He insisted upon studying the dynamics of both biotic and abiotic nutrient com-
partments in order to understand an ecosystem.

2.9. Holling: Interactions and Flows. The arrows in Figure 2.1 represent the
qualitative interactions between the populations that they link. Crawford S. (Buzz)
Holling (1930–), a Canadian ecologist, showed that these interactions could be for-
mally modeled using three functional types: linear (Type I), hyperbolic (Type II),
and sigmoidal (Type III) [8]. These interactions between populations x and y are of
the form

axy (Holling Type I),
axy

x+ b
(Holling Type II),(2.4)

ax2y

x2 + b
(Holling Type III).
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The parameters in (2.4) are chosen to fit experimental data obtained in either
the laboratory or the field. This quantifies the flows of nutrients along the arrows
in Figure 2.1 and predicts how these flows will change as the populations change.
Environmental changes cause the parameters a and b to change, and hence affect the
nutrient flows, and eventually alter the behavior of the ecosystem. Holling Type I
models are of Lotka–Volterra form and are used in the remainder of this paper.

3. Resources: The Limits to Growth. The complexity of obtaining analytical
solutions to models with more than two populations has led to much ecological theory
being derived from, and illustrated by, systems with two interacting populations.
Introductory ecological theory usually considers single population models and simple
models of interactions between both two competitors and a predator and its prey.
The absurdity of unlimited growth is addressed early in these discussions, and a
traditional solution is to introduce a parameter called a carrying capacity (section
3.1) to the lowest trophic level in a model [15, 18]. In section 3.2 we introduce the
basis of a new approach, the explicit budgeting of a key nutrient that underpins the
ecology of interest.

3.1. The Ecological Meaning of Carrying Capacity. In this section we outline
the widespread use of carrying capacity to represent the limits imposed on population
growth by the availability of finite resources. Many theoretical and applied models
in ecology include a carrying capacity K for the lowest trophic level, the logistic
equation (2.1) being the simplest example. Here, the equilibrium population size
(X∗, where the population size does not change in time) occurs when X∗ = K,
so the carrying capacity represents the capacity for the environment to sustain the
population indefinitely, and it always recovers the population to the value K.

The modern Lotka–Volterra competition model (as discussed by Pastor [18] and
others) includes a carrying capacity for both populations:

dX1

dt
= r1X1

(

1−
(X1 + a12X2)

K1

)

,

dX2

dt
= r2X2

(

1−
(X2 + a21X1)

K2

)

,(3.1)

where r1 and r2 are the maximum per capita growth rates ofX1 andX2, a12 represents
the per capita effect of population X2 on population X1, and a21 represents the per
capita effect of X1 on X2. This model assumes a different carrying capacity for
each population (K1 for population X1 and K2 for population X2). Here, the X1

equilibrium population size occurs when X∗
1 = K1 − a12X

∗
2 , and similarly the X2

equilibrium population size occurs when X∗
2
= K2 − a21X

∗
1
. The carrying capacities

might sensibly be interpreted to represent the capacity for the environment to sustain
a population, say, X1, indefinitely at X1 = K1 if no other populations are present.
The equilibrium population size X∗

1
is reduced below the carrying capacity K1 if a

competing population X2 is present, and vice versa.
The original Lotka–Volterra predator-prey model is well known to be structurally

unstable, and hence is often modified by including a carrying capacity to constrain
the prey’s growth:

dX1

dt
= r1X1

(

1−
X1

K

)

− hX1X2,

dX2

dt
= βhX1X2 −mX2,(3.2)
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where r represents the maximum per capita growth rate of X1, h represents the rate
of predation of X2 on X1, β represents the fraction of X1 biomass that is converted
to X2, and m is the per capita mortality rate of X2. Again, K may be considered
the carrying capacity of the environment for X1 in the absence of X2. Note that the
equilibrium state of X1 is defined by m/βh, which is not related to K. We will see
later that m/βh must be less than K if X2 is to survive in the system. This places a
rather different interpretation on K, and its role in this system is not consistent with
the previous interpretations.

3.2. Carrying Capacity and Conservation of Nutrient Mass. We now contrast
the carrying capacity approach with an approach commonly used for biogeochemical
modeling, that of conservation of mass of a limiting resource. In the latter approach,
the finite capacity of the environment is represented in the model by a finite amount of
(limiting) resource N that is conserved in the ecology under consideration. By a finite
limiting resource we mean some resource (generally a nutrient or micronutrient which
is essential for the growth of a population) that is available in some finite quantity,
and which causes the growth of the population to cease when it has been used up. We
use N to represent this nutrient in its available dissolved form in a given volume of
the ocean, and refer to it when among the active (living) populations in the ecosystem
being studied simply as the nutrient.

Liebig’s Law of the Minimum (a principle developed in agricultural science by Carl
Sprengel in 1828 and later popularized by Justus von Liebig) states that the nutrient in
least supply constrains the growth of organisms, irrespective of the availability of other
nutrients. This law is often invoked to justify the inclusion of only one limiting nutrient
(usually nitrogen in the ocean) in ecosystem models. Contemporary complex plankton
computer models may, however, resolve several (typically two or three) nutrients, such
as carbon, phosphorous, calcium, and silicon, and micronutrients such as iron, that
may limit the growth of various organisms at different times.

We consider the equivalence of simple Lotka–Volterra models, which use carrying
capacity to reflect the constraints imposed on populations by finite resources, with
equivalent models that include these constraints explicitly. It may be shown that
Lotka–Volterra models with one and two trophic levels that use carrying capacity are
equivalent to Lotka–Volterra models that explicitly include finite resources. Here we
consider a nutrient mass-conserving Lotka–Volterra model with three trophic levels
and leave the one- and two-trophic level cases as an exercise [3]. In the three-trophic
level model an autotroph population x1 consumes a resource (inorganic nutrient N),
and a herbivore x2 consumes x1 and is in turn consumed by a carnivore x3:

ẋ1 = r̂Nx1 − ĉ1x1x2 − d1x1,

ẋ2 = ĉ1x1x2 − ĉ2x2x3 − d2x2,

ẋ3 = ĉ2x2x3 − d3x3,(3.3)

Ṅ = d1x1 + d2x2 + d3x3 − r̂Nx1.

Here x1, x2, x3, and N are measured in the same currency, the mass or concentra-
tion of nutrient in that population or ecological compartment. Then x1 represents the
mass of nutrient that is incorporated into the autotroph population, which feeds (at
a per capita rate r̂ which, as always, will involve the available sunlight, etc.) directly
on the inorganic (available) nutrient N dissolved in the seawater, x2 is a herbivore
that feeds (at a per capita rate ĉ1) on the autotroph x1, and x3 is a carnivore that
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feeds on x2 at a per capita rate ĉ2. The per capita mortality rates of the populations
are given by d1, d2, and d3, respectively.

Conservation of mass means x1 + x2 + x3 + N = NT , where NT is the total
(constant) mass of nutrient that is cycling in the ecology, or equivalently dx1/dt +
dx2/dt + dx3/dt + dN/dt = 0 together with NT . Note that this property of the
model implies the assumption of instantaneous remineralization of nutrient from dead
organic form that is not available to the autotroph, to inorganic form N that is. This
process is represented in the model in the d1x1, d2x2, and d3x3 terms.

Equation (3.3) may be rewritten using dx1/dt+dx2/dt+dx3/dt+dN/dt = 0 ⇐⇒
x1 + x2 + x3 +N = NT (with the usual meaning for NT ) as

ẋ1 = r̂(NT − x1 − x2 − x3)x1 − ĉ1x1x2 − d1x1,

ẋ2 = ĉ1x1x2 − ĉ2x2x3 − d2x2,(3.4)

ẋ3 = ĉ2x2x3 − d3x3.

Equation (3.4) may be written as a Lotka–Volterra system with a carrying capac-
ity K,

ẋ1 = rx1

(

1−
x1

K

)

− c1x1x2 −
r

K
x1x3,

ẋ2 = c1x1x2 − c2x2x3 − d2x2,(3.5)

ẋ3 = c2x2x3 − d3x3,

by defining new parameters K = NT − d1/r̂, r = r̂K, and c1 = r̂ + ĉ1. This model is
not equivalent to the usual three-trophic level Lotka–Volterra system with a carrying
capacity [15, 11, 18],

ẋ1 = rx1

(

1−
x1

K

)

− c1x1x2,

ẋ2 = c1x1x2 − c2x2x3 − d2x2,(3.6)

ẋ3 = c2x2x3 − d3x3,

because the usual form (3.6) does not include the interaction term r̂x1x3 = (r/K)x1x3.
This term in the mass conservation context represents the fact that the nutrient as-
similated into the x3 population is not available to fuel x1’s growth. We note that
the use of a simple carrying capacity in three- (and higher) trophic level models is
unrealistic because, although it constrains the population size of the lowest trophic
level to ecologically reasonable limits, it can allow higher trophic levels to have un-
bounded growth [3]. This can occur because the nutrient is not explicitly budgeted
in the system, even though the population gains and losses are measured in terms of
that nutrient.

As we consider more complicated models with multiple populations, the view that
K represents the “carrying capacity of the environment” becomes increasingly tenu-
ous as the “environment” now includes other populations, and K should formally and
consistently reflect this. More exotic models, such as those representing mutualism
that require negative carrying capacities [18], do not meet this criterion. Rather than
develop tenuous conceptual models to incorporate the influence of other populations
onK, we present a theoretical framework that explicitly represents the finite resources
that each population requires to survive and grow. We refer to this as the conser-
vative normal framework because it conserves total nutrient mass in the system and



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RULE BASED ECOLOGICAL MODELING 445

represents normal (or natural) populations that have smoothly increasing per capita
rate dependencies on resources as the amount of resource increases.

We next formalize the criteria that ensure that all populations have consistent
and realistic ecological properties. This is irrespective of the number of interacting
populations and the number of trophic levels, but we do restrict the form and com-
plexity of the interactions to Holling Type I (see section 2.9). We note that the rules
have been extended to include nonlinear life functions such as Holling Type II and III
in Cropp and Norbury [3].

4. The Conservative Normal Framework. In this chapter we describe the
rules, with their ecological interpretation, that set out a theoretical framework for
constructing realistic ecological models within the Lotka–Volterra setup.

The conservative normal (CN) framework captures sufficient fundamental eco-
logical properties of living marine systems with mathematical rules that computer
models, whose simulations reproduce basic experimental results, may be constructed.
These rules formalize basic ecological concepts, principally that all organisms have
to consume resources to survive, that the availability of more resources improves the
population’s per capita growth rate, and that these resources are finite. We identify
a system by defining a boundary to separate it from the rest of the ecological world.
This may be a physical boundary such as the shore of a pond or the wall of a meso-
cosm, or a conceptual boundary such as considering the dynamics in a representative
cubic meter of ocean. We then consider the ecological constraints that control the
dynamics of populations living in the closed system and encapsulate these basic prin-
ciples in formal mathematical rules. CN systems are population/ecological dynamical
systems that comply with the following five CN rules.

LVCN systems are Lotka–Volterra systems (that is, systems with linear equations
(4.1) for the per capita life functions) that are modified to explicitly include a limit-
ing nutrient and that comply with the CN rules (see sections 4.1–4.5) for ecological
verisimilitude. A general n-population Lotka–Volterra system has the form

(4.1) ẋi = xifi(x1, x2, . . . , xn) = xi

⎛

⎝ri −

n
∑

j=1

aijxj

⎞

⎠ , i = 1, 2, . . . , n,

where the constants ri, aij describe how the populations grow and interact and de-
termine the actual forms of the life functions fi. The ri parameters describe the net
(growth minus losses) interaction rates of the populations xi with inorganic nutrient
N . If xi is an autotroph, ri is positive, indicating that autotrophs utilize inorganic
nutrient to grow and loss processes are relatively small, whereas if xi is a heterotroph,
which cannot utilize inorganic nutrient to grow, ri is negative, indicating that only
loss terms connect heterotrophs to inorganic nutrient. The aij parameters describe
the rates of interactions between the population xi and the population xj . These
parameters may take any sign, or be zero, depending on the nature of the interaction
between the populations. For example, if xj was a predator on xi, aji would be nega-
tive, indicating a transfer of mass from xi to xj , and aij would be positive, indicating
that xi lost mass to xj . We shall return to this topic in greater detail in section 9.1,
where we will consider the parameter profiles for various trophic strategies.

Lotka–Volterra models are often used as conceptual models when n is small, and
for large simulation studies when n > 100 [20], to understand the implications of basic
processes such as species competition on population extinctions.
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We shall, in common with almost all introductory ecological theory, consider the
two-population LVCN system

ẋ1 = x1(r1 − a11x1 − a12x2),

ẋ2 = x2(r2 − a21x1 − a22x2).(4.2)

Every system of the form (4.2) has four equilibrium points in the x1, x2 plane:

(4.3)

C0 : {x∗
1 = 0, x∗

2 = 0} (origin equilibrium point),

C1 :

{

x∗
1
=

r1
a11

, x∗
2
= 0

}

(boundary equilibrium point),

C2 :

{

x∗
1 = 0, x∗

2 =
r2
a22

}

(boundary equilibrium point),

C3 :

{

x∗
1
=

a22r1 − a12r2
a11a22 − a12a21

, x∗
2
=

a11r2 − a21r1
a11a22 − a12a21

}

(coexistence equilibrium point).

4.1. CN Rule 0: How We Measure the System. We assume each interacting
population is sufficiently large in number (millions, billions, . . . ) that we can ignore the
typical individual and instead define a measure of the population mass in the isolated
physical volume that the ecosystem occupies. Plankton ecosystems are exemplars of
these assumptions, and considerable ecological theory has been developed from the
study of such systems. We measure each population by the amount of a key limiting
nutrient that it contains—in marine systems this is typically nitrogen. At time zero
(t = 0) we measure the amount of the limiting nutrient in each living population x̂i

present in the ecosystem, together with the amount of inorganic (dead) nutrient N̂
available to those n interacting populations:

(4.4) x̂1 + x̂2 + · · ·+ x̂n + N̂ = N̂T .

We then scale the measurements x̂i, N̂ by the total measure of nutrient N̂T that
is cycling in the system, so that our populations are measured as fractions of the total
nutrient in the system:

(4.5) x1(0) + x2(0) + · · ·+ xn(0) +N(0) = 1,

with 0 < xi(0), N(0) < 1. Each living population is now measured in terms of the
fraction (of the total amount of cycling nutrient) that is bound into the living tissues
of the individuals of that population. The amount of inorganic nutrient N in the
seawater is also expressed as a fraction of the total cycling nutrient, which has been
scaled to be one. A key limiting nutrient is one in which each population in the ecology
can be suitably measured; further, when the available inorganic nutrient is exhausted
(N = 0), all the other necessary nutrients for population life are still available. The
explicit use of nutrient in the model ecology means that the costs and benefits of
population interactions can be appropriately measured in this common currency.

4.2. CN Rule 1: How Living Populations Change. We make the assumption
that there is no migration into or out of the model domain, that is, no individuals or
inorganic nutrient cross the boundary that defines the model. Since the per capita
population growth rates must be independent of the way in which we measure the
living populations, we assume that the life functions f̂i defined in (4.6) are functions
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only of xi and N . The per capita population growth rate of any population xi

(positive) then satisfies

(4.6)
1

xi

dxi

dt
= f̂i(x1, x2, . . . , xn;N).

Time is usually measured in days in marine plankton modeling and henceforth
we follow this convention. The life functions f̂i describe how each population grows
(or dies) dependent on interactions with the other populations in the system and
with inorganic nutrient. Autotrophs and nonautotrophs have slightly different life
functions:

(4.7)
1

xi

dxi

dt
= f̂i(x1, x2, . . . , xn;N) =

{

riN −
∑n

j=1
âijxj for autotrophs,

ri −
∑n

j=1
aijxj for nonautotrophs.

The life functions will implicitly include parameters that quantify the rates of
these interactions, so that, for instance, sunlight intensity, seawater acidity, etc., are
implicitly included in the f̂i. Note that the form (4.6) ensures that the living pop-
ulation measures xi(t) can never become negative, a fundamental property that all
ecosystem models must share.

4.3. CN Rule 2: Conservation of Nutrient Mass. Consistent with the assump-
tion that there is no population migration into or out of the model domain, we formally
require that the mass of nutrient in the model domain remains constant for all time,
that is, there is no loss or gain of the cycling nutrient (in either organic or inorganic
form) into or from outside the model domain. The living population fractions xi(t)
and the inorganic nutrient fraction N(t) then always satisfy a conservation of total
nutrient mass constraint for all time t > 0,

(4.8) x1(t) + x2(t) + · · ·+ xn(t) +N(t) = 1.

This fundamental constraint allows us to eliminate N(t) from the living popula-

tion equations f̂i(x1, . . . , xn : 1−
∑

xi) ≡ fi(x1, . . . , xn), so that (4.7) may be written,
for all populations xi(t) > 0, as

(4.9)
1

xi

dxi

dt
= fi(x1, x2, . . . , xn) = ri −

n
∑

j=1

aijxj ,

where for autotrophs aij = ri+ âij. This also eliminates the need for a separate equa-
tion to describe the changes in inorganic nutrient, since once all the living populations
are known from (4.9) we can infer the amount of N(t) at any time from (4.8).

4.4. CN Rule 3: The Lid and the Ecospace. The world’s resources are finite,
and this is particularly relevant to marine plankton models, where it is well known that
phytoplankton regularly use up the entire available inorganic nutrient in the ocean
mixed layer during their summer bloom—their population growth then ceases as a
result. We must ensure that our ecosystem models have realistic behavior when the
inorganic nutrient runs out. CN Rule 3 stipulates a lid, defined by {x1+x2+· · ·+xn =
1}, on the model’s state space xi > 0 for all i, which ensures that the inorganic nutrient
measure N(t) in the model cannot become negative. The lid completes the closure
of the state space in which reasonable model solutions exist, and hence defines the
ecospace E (see Figure 4.1).
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Fig. 4.1 The ecospace (E), resources (Ri), and zero isosurfaces (fi = 0) for an autotroph, where
x1 feeds on inorganic nutrient (left panel), and for a nonautotroph, where x3 feeds on x2

(right panel). The dashed line shows the lid, part of the boundary of E, where N = 0. For
the autotroph x1, the origin is the feast and the lid is the famine; for the nonautotroph x3,
the feast is at the point x2 = 1 and the famine is on the face x2 = 0.

We differentiate (4.8) to obtain an equation describing how N changes in accor-
dance with CN Rule 2:
(4.10)

dN

dt
= −

dx1

dt
−

dx2

dt
−· · ·−

dxn

dt
= −

n
∑

i=1

xifi(x1, . . . , xn) = −

n
∑

i=1

xi

⎛

⎝ri −

n
∑

j=1

aijxj

⎞

⎠.

Next, we need to check for sensible behavior on the lid {x1 + x2 + · · ·+ xn = 1}
(i.e., where N = 0), since although N disappears from equations (4.9) we must never
have N(t) < 0 in (4.8), and this requires

∑

xi ≤ 1. This implies a lid condition that
whenever N = 0 we have dN/dt = −

∑

xifi > 0, which amounts to a consistency
condition on equations (4.9) to ensure that N(t) > 0 when it is defined by (4.8).

We can now define an ecospace E for solutions to the dynamical system (4.9) to
be the unit simplex:

(4.11) E ≡ {0 < xi, 0 < x1 + x2, . . . , xn < 1}.

The lid condition guarantees that solutions {x1(t), x2(t), . . . , xn(t)} of equations
(4.9) which start in E do not leave E through the lid.

We check that the nutrient equation Ṅ = −
∑n

i=1
xi(ri −

∑n

j=1
aijxj) is positive

everywhere on the lid {x1 + x2 + · · · + xn = 1}. This condition is not necessarily
satisfied for all parameter values for LVCN systems and must be checked for each
system considered. However, the lid condition does provide one generic condition on
the parameters: Ṅ > 0 holds at each vertex of the lid xj = 1 with xi = 0 for i �= j,
where the vertices are given by j = 1, . . . , n, which implies

(4.12) ajj > rj for each j.

The lid condition therefore places on every population, irrespective of its trophic
interactions or level, the constraint that the dependence of the per capita self-regulating
effect on its increasing population size exceeds its maximum per capita growth rate.
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Whenever a population has a net positive linear growth term rixi, its quadratic mor-
tality term −aiix

2

i must have aii > ri > 0.

4.5. CN Rule 4: Resources and Normal Ecosystems. All living populations xj

require food to survive and grow. This food might be inorganic nutrient in the cases
of autotrophs, or prey (i.e., other living organisms) in the cases of nonautotrophs.
These resources Rj (for population j) are finite and limit the growth of population
xj when they become depleted; hence resources should be explicitly represented in
ecosystem models, otherwise a population could have unlimited growth. We define
two basic criteria with which a living population (measured by xj) must comply:

• when its resources are maximal (Rj = 1), the population xj must be able to
grow; and

• when there is no resource available (Rj = 0), the population xj must die.
This means that each life function must satisfy the natural resource constraints

(4.13) fj|Rj=1 > 0 > fj |Rj=0,

where Rj is the resource that xj requires for survival. Note: for nonautotroph pop-
ulations xj that feed on another population xi, Rj = xi where i < j; conventionally,
the populations are numbered from the lowest trophic level to the highest. In the case
of autotrophs, which feed on inorganic nutrient N , their resource is Rj = x0 = N .
This resource is a maximum at the origin of E (where all living populations are zero
and hence the conservation of mass constraint means that inorganic nutrient must be
maximum) and a minimum on the lid of E, which is defined by N = 0.

The food web description of the ecology implies that each population xj has a
resource Rj (which may be one or more of N, x1, x2, . . . , xj−1). This means that, for
each xj , we can divide the boundary of E into regions of “famine” where Rj = 0 and
regions of “feast” where Rj = 1. These resource constraints mean that the vertex
of E where xj = 1 is always part of the famine boundary, since then all xi = 0 (for
i < j) using (4.8).

The conditions (4.13) mean that each population must have just one zero isosur-
face (defined by fj = 0) that divides the ecospace into two parts: a part in which
the population can grow and a part in which the population declines (see Figure 4.1).
Equilibrium points, where all populations remain constant, occur where these zero
isosurfaces intersect. Note that each population also has a second zero isosurface (de-
fined by xj = 0) which is part the boundary of E; that is, a coordinate boundary of
the ecospace (edge, face, etc.) is also a zero isosurface for the appropriate population.
Boundary equilibrium points are defined by at least one of the xj = 0. LVCN systems
have the property that all zero isosurfaces (or isoclines) fj = rj−aj1−· · ·−ajnxn = 0
are (hyper)planes that cut E into the part adjoining the xj resource maximum, where
fj > 0, and the remaining part where fj < 0. Note that a property of linear functions
is that the life functions always monotonically increase along straight lines from the
famine to the feast boundaries of E. Note further that the CN rules have additional
criteria to deal with nonlinear systems that are not discussed here, but are available
in Cropp and Norbury [3].

4.6. CN Rules and Trophic Status. CN Rule 4 does not provide generic param-
eter constraints (as CN Rule 3 does) because each population is usually evaluated
from a different vertex or face of E. We must therefore derive different constraints
for each population. Here, we shall apply the rules to an autotroph population as an
example, and we consider the properties of other populations (mixotrophs, predators,
etc.) in the later sections.
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Autotrophs utilize inorganic nutrient N as their food source. This is implicitly
represented in LVCN systems. The conservation of mass criterion N = 1− x1 − x2 −
· · · − xn indicates that N is a maximum at the origin of E, where xj = 0 ∀ j, and is
zero on the lid of E, where x1 + x2 + · · ·+ xn = 1. The sign conditions (4.13) place
constraints on the sign of the fj at these extremes (see Figure 4.1). The maximum
resource condition for an autotroph xj feeding on inorganic nutrient N is evaluated
at the origin of E and stipulates

(4.14) fj |Rj=N=1 > 0 ⇒ rj > 0.

The zero resource condition may be evaluated at each of the lid vertices and
stipulates that

(4.15) fj|Rj=N=0 < 0 ⇒ rj < aji, i = 1, 2, . . . , n,

which (as a bonus) ensures that autotrophs will always satisfy the lid condition fol-
lowing (4.10).

Summarizing (4.14) and (4.15) reveals that an autotroph population xj will always
be subject to the parameter constraints

(4.16) 0 < rj < aji, i = 1, 2, . . . , n.

4.7. A Single Autotroph LVCN Model. The one-population LVCN system

(4.17) ẋ = x(r − ax)

is the simplest possible LVCN model. Application of the CN rules to (4.17) provides
the parameter constraint (a simplified version of (4.16))

(4.18) 0 < r < a.

We again check the lid condition (as we did in finding (4.12)), whence it is easily
seen that

(4.19) Ṅ = −x(r − ax) > 0 when x = 1,

that is, Ṅ is always positive on N = 0 for the parameter constraints (4.18). The
lid condition is always satisfied for autotroph-only LVCN systems that satisfy the
resource sign inequalities of CN Rule 4.

Equilibrium points are calculated by putting the rhs of (4.17) to zero. Boundary
equilibrium points are defined to be where at least one xj = 0; here, the only boundary
equilibrium point is the origin x∗ = 0. The interior equilibrium point is where fj = 0;
here, the interior equilibrium point is x∗ = r/a. In what follows, when considering
ecologies with more than one population, these points are known as autotroph points,
because an autotroph population can survive at this size if the other populations are
zero.

To calculate the stability of an equilibrium point we have to linearize the rhs
of (4.17) at the equilibrium point, find the exponential solutions, and define the
eigenvalues to be the exponents of the solutions. Stability occurs when the real parts
of all the exponents are negative. Otherwise, the point is unstable. Here, the linearized
rhs at the origin gives the stability equation ẏ = ry, with solution y = cert. Since
the eigenvalue λ = r > 0, the origin is unstable. Similarly, the stability equation at
x∗ = r/a is ẏ = −ry, with solution y = ce−rt. Here, the eigenvalue λ = −r < 0, so
the point x∗ = r/a is stable.
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The parameter constraint (4.18) means that for all one-population LVCN systems:
• The origin equilibrium point, henceforth labeled C0, is an unstable node with

the eigenvalue λC0
= r > 0. This indicates that an autotroph is always able

to grow in a world composed only of inorganic nutrient (a feast).
• The autotroph-only equilibrium point, henceforth labeled C1, always exists in

the ecospace E as 0 < x∗ = r/a < 1. This point has one attracting eigenvalue
λC1

= −r < 0 and is stable.
The vector fields on the unit interval of the x axis point toward the autotroph

point C1. Note that this property still holds for the autotroph axes in a more general
n-population system, where the multiple autotroph points are now rj/ajj .

5. Predator-Prey LVCN Systems. Our first example of introductory ecological
theory (which also appears in nearly all mathematical biology and ecology texts) is
that of predator-prey systems of the form (4.2). Recall that under the CN framework,
systems of the form (4.2) are always derived from systems of the form (4.7), and we
must remain mindful of the âij parameters. In LVCN systems the lowest trophic level
must always be an autotroph, so here, and by convention, x1 is the prey and x2 is
the predator. Note that a21 is conventionally negative, so that −a21x1x2 represents
the gain of material that the predator receives, and that which the prey loses is
â12x1x2. Since we measure each population in the standard currency of nutrient, and
the predator gains from the prey only by consuming it and converting it with some
less-than-perfect efficiency into predator biomass, then −a21x1x2 ≤ â12x1x2. Hence,
we may include the additional parameter constraint 0 < −a21 ≤ â12. If −a21 > â12,
then the predator gains additional nutrient, which is a form of mutualism with x1

behaving as a catalyst—see section 9.
All autotrophs in LVCN systems have the characteristics of autotrophs described

in (4.16). Here we only have one autotroph, so 0 < r1 < a11, a12. The resource for the
nonautotroph (grazer / predator) population x2 is the prey population x1 upon which
it feeds. This resource R2 has a maximum at the point where x1 = 1 (feast) and a
minimum on the edge of E where x1 = 0 (famine); see Figure 5.1. The maximum
resource condition stipulates

(5.1) f2|R2=x1=1 > 0 ⇒ r2 > a21,

while the zero resource condition evaluated on the zero resource edge at the origin of
E reads

(5.2) f2|R2=0 < 0 ⇒ r2 < 0,

and evaluated at the other end of the zero resource edge where x2 = 1 reads

(5.3) f2|R2=0 < 0 ⇒ r2 < a22.

A predator population x2 feeding on a single prey population x1 is subject to the
parameter constraints (5.1)–(5.3):

(5.4) a21 < r2 < 0 and r2 < a22.

Because nonautotrophs xj grow by consuming prey, the coefficient (in this ex-
ample aji) of their interaction with the prey population xi must be negative, so
that the interaction has a positive effect on the predator population. Note that the
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Fig. 5.1 The cases for a predator-prey system: coexistence (left) and extinction of x2 (right). In
each case, the boundary equilibrium point C0 at the origin {0, 0} is unstable and the prey
point C1 at {x∗

1
= r1/a11, 0} is unstable (left) or stable (right). The coexistence equilibrium

point is stable whenever it exists in E. Stable equilibrium points are shown as black dots
and unstable equilibrium points as white dots.

coefficient of the effect of the predator on the prey population remains positive, rep-
resenting a negative effect of the predator on the prey. Many predator-prey models
take r2 < 0 = a22.

The parameter constraints above have the following ecological interpretations:
• For the prey x1 (which must be an autotroph), 0 < r1 < a11, a12 means
that the maximum rates of intrapopulation competition and interpopulation
predation (achieved when x1 = 1, x2 = 0 and x1 = 0, x2 = 1, respectively)
must exceed the maximum growth rate of the autotroph.

• For the predator x2, a21 < r2 < 0 means that the maximum rate of growth
due to interpopulation predation must be more than the density-independent
mortality rate.

We finally check the lid condition (equation (4.10)) using these parameter constraints.
The lid condition

(5.5) Ṅ = −x1(r1−a11x1−a12x2)−x2(r2−a21x1−a22x2) > 0 when x1+x2 = 1

holds for the restricted case r1 ≤ −r2 and a12 > −a21. This case describes a predator
with a sufficiently large linear mortality with respect to the linear growth rate of the
prey. For the case a12 = −a21 (effectively an example of mutualism) with r2 and a22
very small the lid condition fails (a simple calculation shows that Ṅ = −r2

1
/4a11 plus

very small terms at its minimum value on the lid near where x1 = r1/2a11). This
case describes a predator with very weak mortality terms (i.e., little constraint on its
population growth), in which case conservation of nutrient fails.

For intermediate cases, a simple, pragmatic option is then to numerically evaluate
(5.5). Otherwise, we substitute in the expression for x2 = 1−x1 and find its minimum
for 0 < x1 < 1.

The parameter constraints mean that for all two-population LVCN predator-prey
systems:



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RULE BASED ECOLOGICAL MODELING 453

• The origin equilibrium point (C0) is a saddle with eigenvalues λC0−1 = r1 > 0
and λC0−2 = r2 < 0. This indicates that an autotroph will always be able to
grow along the x1 axis in a world composed only of inorganic nutrient.

• The prey (autotroph) boundary equilibrium point (C1: 0 < x∗
1
= r1/a11 < 1)

has one attracting eigenvalue λC1−1 = −a11x
∗
1 = −r1 < 0. This indicates

that the autotroph by itself always has an ecologically realistic equilibrium,
and

– The stability of C1 is determined by the sign of the predator’s life func-
tion evaluated at that point (λC1−2 = r2 − a21x

∗
1
= r2 − a21(r1/a11)).

This indicates that if a predator (grazer) cannot grow on its prey (the
autotroph), the prey alone will stably survive (as an exercise, verify that
−a21 very small will lead to the eigenvalue λC1−2 ≈ r2 < 0).

• The predator equilibrium point (C2) is not in the boundary of the ecospace
E when a22 > 0 > r2 as x∗

2
< 0, and when r2 < a22 < 0 as x∗

2
> 1. This

indicates that predators cannot exist without their prey.
• The existence of the coexistence equilibrium point (C3) in E depends solely

on the intersection of the zero isoclines f1, f2 = 0 in E. The condition 0 <
r2/a21 < r1/a11 ensures that the f1 = 0 and f2 = 0 isoclines intersect in E
(see Figure 5.1 (left); it is left as an exercise to verify that the slopes of the
isoclines, and their intersections with the x1 axis, are as shown). Otherwise,
C3 cannot exist in E as r2/a21 > r1/a11 and r2/a22 < 0—see Figure 5.1
(right) as an example of an inefficient predator where f2 < 0 at C1. This
predator can only grow at very high prey abundances.

The sign of the predator’s competition eigenvalue at its prey autotroph point
C1 therefore solely determines the major attributes of two-population predator-prey
LVCN systems. Note that the condition λ2 = r2 − a21x

∗
1 = r2 − a21(r1/a11) > 0

is equivalent to r2/a21 > r1/a11, which means that the system will have a stable
predator-prey coexistence point C3 in E if the intercept x̄1 of the predator zero isocline
with x2 = 0, f2 = r2 − a21x̄1 = 0, lies on the origin side of the prey boundary
equilibrium point C1. As an exercise consider the case r2, a21, a22 < 0 and show that
the above still applies.

Generally, we have the familiar result that when a predator is sufficiently weak, so
that its life function f2 is negative at the prey autotroph point C1, then the predator
goes extinct.

6. Competitor LVCN Systems. Our second example is of a system of the form
(4.1) that involves only competitors. In LVCN systems, the lowest trophic level must
be an autotroph, so in the two-population competition LVCN system (4.2) or (4.7),
x1 and x2 are competing autotrophs. Each autotroph has a detrimental effect on the
other autotroph through indirect competition for nutrient; their parameter values are
subject to the constraints in (4.16):

0 < r1 < a11, a12,

0 < r2 < a21, a22.(6.1)

We now check the lid condition (equation (5.5)) for the autotroph-only LVCN
system using these parameter constraints. Since a11 > r1 and a12 > r2, a11x1 +
a12x2 > r1(x1 + x2) = r1 on x1 + x2 = 1. Then, in (5.5), each term is positive for
the parameter constraints (6.1), and therefore the lid condition is always satisfied for
these competitor systems.
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Fig. 6.1 The two cases where the coexistence point for x1 and x2 exists in E for a competitor
LVCN system. In the left panel, the boundary equilibrium point C0 at the origin {0, 0}
is unstable, the boundary autotroph equilibrium points C1 = {x∗

1
= r1/a11, 0} and C2 =

{0, x∗
2
= r2/a22} are stable, and the coexistence equilibrium point C3 is unstable. In the

right panel, the boundary equilibrium points at the origin C0, at C1, and at C2 are unstable,
and the coexistence equilibrium point C3 is stable.

The competitor LVCN system has the equilibrium points described by equations
(4.3), where here both boundary equilibrium points satisfy 0 < x∗

i = ri/aii < 1,
and are autotroph points. The parameter constraints (6.1) mean that for all two-
population LVCN competition systems (see Figure 6.1 for an illustration of the zero
isoclines and equilibrium points) the following hold:

• The origin equilibrium point (C0) is an unstable node with eigenvalues λC0−1 =
r1 > 0 and λC0−2 = r2 > 0. This indicates that both autotrophs will always
be able to grow in a world composed only of inorganic nutrient;

• The autotroph-only boundary equilibrium points (C1: 0 < x∗
1 = r1/a11 < 1

and C2: 0 < x∗
2
= r2/a22 < 1) each have one attracting eigenvalue (λC1−1 =

−a11x
∗
1
= −r1 < 0 and λC2−1 = −a22x

∗
2
= −r2 < 0), so each autotroph

population survives in the absence of the other.
• The existence of the equilibrium point C3 in E depends graphically on the
intersection of the isoclines f1 = 0 and f2 = 0 inside E, and equivalently
algebraically on the signs of the components of C3, a22r1−a12r2, a11r2−a21r1,
and a11a22 − a12a21:

– If intrapopulation competition exceeds interpopulation competition (i.e.,
a11a22 − a12a21 > 0), then C3 exists in E if a22r1 − a12r2 and a11r2 −
a21r1 > 0. The competition eigenvalue of each population is then posi-
tive at its competitor’s boundary equilibrium point, that is, λC1−2 > 0
and λC2−2 > 0, and C3 is stable.

– If interpopulation competition exceeds intrapopulation competition (i.e.,
a11a22 − a12a21 < 0), then C3 exists in E if a22r1 − a12r2 and a11r2 −
a21r1 < 0. The competition eigenvalue of each population is now nega-
tive at its competitor’s boundary equilibrium point, and C3 is unstable.

– Otherwise, C3 does not exist in E and either C2 is stable and C1 is
unstable or vice versa.
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The conditions for coexistence of two populations in a competition LVCN system
are more detailed than those for a two-population predator-prey system, but again are
determined by the signs of the competition eigenvalues at the boundary equilibrium
points. We may synthesize these conditions for this simple system:

(6.2)
a22r1 − a12r2 > 0 ⇒ r1

r2
> a12

a22

a11r2 − a21r1 > 0 ⇒ a11

a21

> r1
r2
,

}

⇒
a12
a22

<
r1
r2

<
a11
a21

⇒ a11a22 > a12a21.

This classic result says that systems in which intrapopulation competition is
stronger than interpopulation competition will have stable coexisting populations.
Similarly, systems with

(6.3) a11a22 < a12a21

will have unstable coexistence points, and the result of competition will depend on the
initial conditions. Note that for systems with more than one autotroph, competitor
populations have to be fitter in order to survive: that is, the population xi must have
its life function positive at its competitor autotroph points in order to persist and
coexist.

Finally, the intermediate cases

(6.4)
r1
r2

>
a11
a21

,
a12
a22

and
r1
r2

<
a11
a21

,
a12
a22

have clear outcomes, where x1 dominates the system and x2 goes extinct in the first
case and the reverse in the latter case. This situation, where the f1 = 0 and f2 = 0
isoclines do not intersect in E, is intermediate to the cases shown in Figure 6.1. In all
the above examples the algebraic inequalities can be related to the isocline geometry,
and this is left as an exercise. In the above two sections we have introduced familiar
population types and their interactions from our new point of view that includes exact
conservation of the recycling nutrient. In the next two sections we introduce new pop-
ulation interactions that are not analyzed in the usual introductory ecological texts.

7. Mixotroph LVCN Systems. We now consider our first new LVCN system of
two competing autotrophs in which one of the autotrophs (x2) also consumes the
other autotroph (x1). Such behavior, where an organism grows both by photosynthe-
sising and by feeding on other phytoplankton, is called mixotrophy. Recent research
has suggested that mixotrophy is common in marine protists [6] and hence it is an
interesting case for two-population LVCN systems, being intermediate between a pure
competition system and a pure predation system.

A mixotroph x2 in an LVCN system utilizes inorganic nutrient N as a food source
via photosynthesis and also grazes upon a second organism x1. The maximum resource
for the mixotroph is located on the x1 axis (0 ≤ x1 ≤ 1) and the point of zero resource
is {0, 1} (see Figure 7.1). The maximum resource condition for the mixotroph x2

evaluated at the origin of E (where it feeds exclusively on inorganic nutrient N) reads

(7.1) f2|R2=N=1 > 0 ⇒ r2 > 0,

while evaluation at x1 = 1, x2 = 0 (where x2 feeds exclusively on x1) gives

(7.2) f2|R2=x1=1 > 0 ⇒ r2 > a21.
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Fig. 7.1 The cases for a mixotroph system: coexistence with an autotroph (left) and coexistence
with another mixotroph (right). In each case, the boundary equilibrium point at the origin
C0: {0, 0}, the autotroph/mixotroph point C1: {x∗

1
= r1/a11, 0}, and the mixotroph point

C2: {0, x∗
2
= r2/a22} are always unstable. In either the autotroph-mixotroph case or the

mixotroph-mixotroph case the coexistence point C3 may exist outside E. If it exists inside
E, the coexistence equilibrium point is stable.

The zero resource condition for a mixotroph x2 is evaluated at x1 = 0, x2 = 1
and provides the condition

(7.3) f2|R2=0 < 0 ⇒ r2 < a22.

Summarizing (7.1)–(7.3) reveals that a mixotroph population (x2, feeding on
nutrient and a prey x1) is subject to the parameter constraints

(7.4) 0 < r2 < a22, a21 < r2.

Here, we restrict our definition of a mixotroph to when a21 ≥ 0 and define a
mixotroph with the property that a21 < 0 to be a mutualist. We discuss mutualist
populations in section 8.

Applying the general parameter constraints imposed by the CN rules for au-
totrophs (4.16) and mixotrophs (7.4) to an autotroph-mixotroph LVCN system pro-
vides the following parameter constraints:

0 < r1 < a11, a12,

0 ≤ a21 < r2 < a22.(7.5)

We now check the lid condition (equation (5.5)) using these parameter constraints.
The first (autotroph) term of the lid condition is, as before, always positive for the
parameter constraints (7.5). The second (mixotroph) term is zero when x2 = 0 and
positive when x2 = 1, but may be negative inbetween. It is convenient to numerically
evaluate (5.5) for an individual parameter set to determine the sign of Ṅ everywhere
on x1 + x2 = 1 (alternatively, a minimization example in elementary calculus). If Ṅ
is positive everywhere on x1 + x2 = 1, then the parameter set gives a valid LVCN
mixotrophy system.

The mixotroph LVCN system has the equilibrium points described by equa-
tions (4.3), where the boundary equilibrium points are now an autotroph point and
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a mixotroph point. The parameter constraints (7.5) mean that for all autotroph-
mixotroph LVCN systems:

• The origin equilibrium point (C0) is an unstable node with eigenvalues λC0−1 =
r1 > 0 and λC0−2 = r2 > 0. This indicates that both the autotroph and the
mixotroph will always be able to grow in a world composed only of inorganic
nutrient.

• The autotroph boundary equilibrium point (C1: 0 < x∗
1 = r1/a11 < 1) has

one attracting eigenvalue (λC1−1 = −a11x
∗
1
= −r1 < 0), so the autotroph

population could survive in the absence of the mixotroph. Note that the pa-
rameter constraints (7.5) ensure that C1 is always unstable as the mixotroph
competition eigenvalue at C1 (λC1−2 = r2 − a21x

∗
1
) is always positive.

• The mixotroph boundary equilibrium point (C2: 0 < x∗
2
= r2/a22 < 1) has

one attracting eigenvalue (λC2−2 = −a22x
∗
2 = −r2 < 0), so the mixotroph

population could survive in the absence of the autotroph. The stability of
this point depends on the sign of the competition eigenvalue of the autotroph
(λC2−1 = r1 − a12x

∗
2
) at this point.

• The existence of the coexistence equilibrium point (C3) in E depends on the
signs of a22r1−a12r2, a11r2−a21r1, and a11a22−a12a21. Observe from Figure
7.1 (left panel) that if r1/a12 < r2/a22, the f1 = 0 and f2 = 0 isoclines will
not intersect in E. If they do intersect, then λC2−1 = r1 − a12x

∗
2
> 0 and C3

exists in E and is stable irrespective of the sign of a21.
The case when both populations are mixotrophs provides the following parameter

constraints:

0 ≤ a12 < r1 < a11,

0 ≤ a21 < r2 < a22.(7.6)

Again, it is convenient to numerically evaluate (5.5) as for an individual parameter
set to determine the sign of Ṅ everywhere on x1 + x2 = 1, again requiring positivity.
It is left as an exercise for the reader to determine the properties of the critical points
as above. The arrangement of the isoclines in Figure 7.1 (right panel) gives a clue to
these properties.

8. Mutualist LVCN Systems. We now consider our second new population in-
teraction, an LVCN system of the form (4.2) for an autotroph x1 and a mutualist
x2 (i.e., a mixotroph with a21 < 0), that is, the mutualist prefers consuming the
autotroph to consuming nutrient. Such behavior is analogous to certain definitions
of mutualism in the literature [18], but is often not treated in depth “in part due to
the fact that simple models in the Lotka–Volterra vein give silly results” [17, p. 99].
We shall show that this is not the case for LVCN systems. As a mutualist, x2 grows
more strongly when there is more x1 present in the ecosystem; i.e., x2 benefits from
x1’s presence, and the relevant interaction coefficient a21 changes sign compared to
the previous two cases.

The autotroph x1 and mutualist x2, respectively, satisfy (4.16) and (7.4) with

0 < r1 < a11, a12,

a21 < 0 < r2 < a22.(8.1)

We again numerically check the lid condition (equation (5.5)), now using param-
eter constraints (8.1). If Ṅ is positive everywhere on x1+x2 = 1, then the parameter
set gives a valid LVCN mutualist system.
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The autotroph-mutualist LVCN system has the equilibrium points described by
equations (4.3), where the boundary equilibrium points are now an autotroph point
and a mutualist point. The parameter constraints (8.1) mean that for these systems:

• The origin equilibrium point (C0) is an unstable node with eigenvalues λC0−1 =
r1 > 0 and λC0−2 = r2 > 0. This indicates that both the autotroph and the
mutualist are always able to grow in a world composed only of inorganic
nutrient.

• The boundary equilibrium points (C1: 0 < x∗
1
= r1/a11, 1 and C2: 0 < x∗

2
=

r2/a22, 1) have one attracting eigenvalue each (λC1−1 = −a11x
∗
1
= −r1 < 0

and λC2−2 = −a22x
∗
2 = −r2 < 0), so each population could survive in the

absence of the other. The parameter constraints ensure that the competition
eigenvalue of the mutualist population (λC1−2 = r2−a21x

∗
1
) at each boundary

point is always positive and the mutualist population can always invade.
• When the boundary points are unstable, the coexistence equilibrium point
(C3) is always stable. The only further consideration is whether the point
exists in E. The condition for existence in E is that x∗

1
+ x∗

2
≤ 1, that is,

a22r1 − a12r2 + a11r2 − a21r1 ≤ a11a22 − a12a21. It can be seen from Figure
8.1 that as the interaction terms a12 and a21 reduce, the interior equilibrium
point C3 moves closer to the lid.

The case when both populations are mutualists provides the following parameter
constraints:

a12 < 0 < r1 < a11,

a21 < 0 < r2 < a22.(8.2)

Similarly to the mixotroph case, it is convenient to numerically evaluate (5.5) for
an individual parameter set to determine the sign of Ṅ everywhere on x1 + x2 = 1,
again requiring positivity. It is again left as an exercise for the reader to determine
the properties of the critical points as above. The arrangement of the isoclines in

Fig. 8.1 The cases for an autotroph-mutualist system (left) and a mutualist-mutualist system
(right). In the left case, the boundary equilibrium points at C0 = {0, 0}, C1 = {x∗

1
=

r1/a11, 0}, and C2 = {0, x∗
2
= r2/a22} are always unstable if r1/a12 > r2/a22; in the right

case they are always unstable. The coexistence equilibrium point C3 is always stable but
only has meaning when it exists in E. The lid condition places limits on useful parameter
values.
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Figure 8.1 (right panel) gives a clue to these properties. Valid LVCN systems of this
form provide examples of facultative mutualism. When the lid condition fails we
might interpret this as one population trying to benefit too enthusiastically from the
presence of the other.

9. Ecological Implications of CN Rules.

9.1. General Properties of Populations in LVCN Systems. CN Rule 4 illumi-
nates dramatic differences between competing autotroph, nonautotroph (predator),
and mixotrophy/mutualist populations in LVCN systems. The comparative parame-
ter constraints are as follows:

• For autotrophs, xi: 0 < ri < aij , j = 1, 2, . . . , n.
• For predators xj feeding on prey xi (i < j): aji < rj < 0 < ajk, k =
1, 2, . . . , n, k �= i.

• For a mutualist xj feeding on nutrient and benefiting from the presence of
another mutualist xi: aji < 0 < rj < ajk, k = 1, 2, . . . , n, k �= i.

A fundamental difference between the properties of autotrophs and predators is re-
flected in the rj , which represent the net rates of density-independent processes in
xj . As predators can only grow by consuming a prey population, they do not have
any density-independent per capita growth processes. Hence, for predators the rj
represent only the rates of density-independent per capita mortality, and rj must be
negative.

A further fundamental difference between autotrophs and predators is seen in
the effect of other populations on the population of interest, say xj . For autotrophs,
all populations, including itself, have a negative effect on growth because they bind
nutrient in organic form that is then not available to the other autotrophs. Similarly,
all populations, apart from prey populations, have a negative effect on predators,
but prey populations have a positive effect on their predator populations. When
mixotrophs become mutualists, they also benefit from their new “prey” population(s).

9.2. Adaptation of Mixotrophs in LVCN Systems. The parameter constraints,
and consequent isocline locations, for mixotrophs/mutualists reveal that their life
strategy is intermediate between autotrophs and predators. Comparison of Figures
6.1, 7.1, and 8.1 reveals the adaptation of a population x2 from autotrophy through
mixotrophy to mutualism by rotation of the f2 = 0 isocline anticlockwise. We com-
mence the rotation by reducing a21 in Figure 6.1, which causes the x1 intercept r2/a21
to move to the right. The autotroph adapts into a mixotroph when r2/a21 exceeds 1
(see Figure 7.1, left panel). As the isocline continues rotating, a21 reduces through
zero when the isocline becomes horizontal.

The major change that occurs for a21 < 0 is that x2 now prefers to consume x1

rather than N (see Figure 8.1); we define x2 as a mutualist due to the similarity of
these isoclines with those of the standard definition of a mutualist [18]. The change
of sign of a21 signifies that the strength of grazing on x1 has increased to the point
where x2 receives a direct net growth benefit from x1 rather than an indirect net
benefit from a reduction of competition due a reduction in the x1 population size.
The properties of the mutualist remain essentially unchanged for further decreases
in a21 until x1 goes extinct, when the interior coexistence point C3 collides with the
mutualist axis.

Decreasing a21 from large positive values through zero to large negative values
fully describes the adaptation options available to x2 in a single trophic level in these
systems. Similar options are available to x1, as may be seen in Figures 6.1, 7.1, and
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Fig. 9.1 The cases for a mutualist, with a21 < 0, adapting to become a predator with a mixotroph
prey (left) and with a mutualist prey (right). In each case, the boundary equilibrium points
at the origin C0 = {0, 0} and C1 = {x∗

1
= r1/a11, 0} are unstable. The coexistence

equilibrium point C3 is always stable but only has meaning when it exists in E. The lid
condition places limits on useful parameter values.

8.1. These options correspond to rotating the population isoclines; in the next section
we consider translations.

9.3. Adaptation of Mutualists in LVCN Systems. Finally, we note that a cer-
tain continuous parameter variation leads to another interesting change of population
behavior. Comparing Figures 5.1 (left panel) and 8.1 we see that a further transition
is possible, that of mutualist, feeding on both N and x1, to predator, feeding only
on x1. For fixed intermediate negative values of a21 (see Figure 8.1), reductions in r2
result in the translation of the zero isocline f2 = 0 in the −x2 direction.

Figure 9.1 shows the result of the mutualist x2 adapting (by making r2 < 0) to be-
come a predator from a mixotroph-mutualist system (left panel) and from a mutualist-
mutualist system (right panel). The outcome of a mutualist x2 adapting to become
a predator from an autotroph-mutualist system is shown in Figure 5.1 (left panel).

When r2 decreases through zero, the isocline f2 = 0 passes through the origin;
then x2 changes from a mutualist to a predator by ceasing to feed on N , and we have
a predator-prey system (see Figure 5.1, left panel). This translation can occur irre-
spective of whether x1 is an autotroph, a mixotroph, or sometimes even a mutualist.
This suggests a mechanism for the creation of new trophic levels.

10. Extension to Higher Dimensions. The CN framework is easily extended to
higher-dimensional systems than the two populations we have used as examples above.
Figure 4.1 provides an example of how the resource sign conditions may be applied
to a three-population model. The CN rules remain the same, but the additional
dimensions provide more options for trophic profiles and interactions and dynamics.
Here, we provide a brief introductory analysis of a generic three-population LVCN
system to demonstrate the application of the CN rules in higher dimensions.



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RULE BASED ECOLOGICAL MODELING 461

10.1. A Three-Population LVCN System. We consider the three-population
LVCN system (see Figure 10.1)

ẋ1 = x1(r1 − a11x1 − a12x2 − a13x3),

ẋ2 = x2(r2 − a21x1 − a22x2 − a23x3),(10.1)

ẋ3 = x3(r3 − a31x1 − a32x2 − a33x3).

Every system of the form (10.1) has eight equilibrium points in the x1, x2, x3

space:

C0 : {x∗
1
= 0, x∗

2
= 0, x∗

3
= 0} (origin equilibrium point),

C1 :

{

x∗
1
=

r1
a11

, x∗
2
= 0, x∗

3
= 0

}

(boundary equilibrium point),

C2 :

{

x∗
1
= 0, x∗

2
=

r2
a22

, x∗
3
= 0

}

(boundary equilibrium point),

C3 :

{

x∗
1 = 0, x∗

2 = 0, x∗
3 =

r3
a33

}

(boundary equilibrium point),

C4 :

{

x∗
1 =

a22r1 − a12r2
a11a22 − a12a21

, x∗
2 =

a11r2 − a21r1
a11a22 − a12a21

, x∗
3 = 0

}

(boundary equilibrium point),(10.2)

C5 :

{

x∗
1
=

a22r1 − a12r2
a11a22 − a12a21

, x∗
2
= 0, x∗

3
=

a11r3 − a31r1
a11a33 − a13a31

}

(boundary equilibrium point),

C6 :

{

x∗
1
= 0, x∗

2
=

a33r2 − a23r3
a22a33 − a23a32

, x∗
3
=

a22r3 − a32r2
a22a33 − a23a32

}

(boundary equilibrium point),

C7 :

{

x∗
1 =

|Ar
1|

|A|
, x∗

2 =
|Ar

2|

|A|
, x∗

3 =
|Ar

3|

|A|

}

(coexistence equilibrium point).

Here, we introduce for C7 the notation for Cramer’s Rule method that may be
used to calculate the locations of all critical points in LVCN systems. The notation
|Ar

i | means the determinant of the matrix of interaction coefficients A, where the ith
column of A has been replaced with the vector r.

10.2. Parameter Constraints from the Resource Sign Conditions. The ex-
tension of LVCN systems to three populations allows for more trophic interactions,
including the possibility of omnivorous predators: we shall only consider a sample
of these here. Application of the resource sign condition (4.13) to x1, an autotroph,
provides the parameter constraints

(10.3) 0 < r1 < a11, a12, a13.

Alternatively, x1 might be a mixotroph feeding on x2, in which case it would have
the parameter constraints

(10.4) 0 < a12 < r1 < a11, a13,

or a mixotroph feeding on x3, with

(10.5) 0 < a13 < r1 < a11, a12,
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Fig. 10.1 The generic case for an autotroph x1, with a herbivore x2 feeding on x1 and a carnivore
x3 feeding on x2. The boundary equilibrium points C0 : {0, 0, 0}, C1 = {x∗

1
, 0, 0}, and

C4 = {x∗
1
, x∗

2
, 0} are unstable.

or perhaps even both x2 and x3, with

(10.6) 0 < a12, a13 < r1 < a11.

Similarly, if x2 predated on x1 and was predated upon by x3, it would have the
parameter constraints

(10.7) a21 < r2 < 0 < a21, a23.

We note that many other trophic interactions, and hence parameter constraints,
are possible in three-trophic level systems. The exhaustive exploration of these trophic
interactions is left as an exercise.

10.3. A Three-Trophic Level LVCN System. We now consider the example of
a three-trophic level LVCN system, where x1 is an autotroph, x2 is a mixotroph that
both photosynthesizes and predates on x1, and x3 is a carnivore that predates on
x2. These populations are identified by the parameter constraints that define their
trophic interactions:

0 < r1 < a11, a12, a13,

0 < a21 < r2 < a22, a23,(10.8)

a32 < r3 < 0 < a33, r3 < a31.

As we have defined x3 as a carnivore, which does not eat plants, we can set a31 = 0
to reflect that there is no direct interaction (transfer of mass) between x1 and x3. The
lid condition in this case is given by

Ṅ = −x1(r1 − a11x1 − a12x2 − a13x3)− x2(r2 − a21x1 − a22x2 − a23x3)

− x3(r3 − a31x1 − a32x2 − a33x3) > 0 when x1 + x2 + x3 = 1.(10.9)
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The lid condition must be checked, as although the first term is always positive
from (10.8), the second and third terms can have either sign depending on the pa-
rameter values. Analytically, we put x3 = 1−x1−x2 and find the minimum of Ṅ for
0 ≤ x1 + x2 ≤ 1, or we check this numerically.

This system has the equilibrium points described by equations (10.2), where the
edge equilibrium points are an autotroph point, a mixotroph point, and a carnivore
point. The parameter constraints (10.8) mean that for this system:

• The origin equilibrium point (C0) is an unstable saddle with eigenvalues
λC0−1 = r1 > 0, λC0−2 = r2 > 0, and λC0−3 = r3 < 0. This indicates
that both the autotroph and the mixotroph will always be able to grow in a
world composed only of inorganic nutrient.

• The autotroph boundary equilibrium point (C1: 0 < x∗
1
= r1/a11 < 1) has

one attracting eigenvalue (λC1−1 = −a11x
∗
1 = −r1 < 0), so the autotroph

population could survive in the absence of the mixotroph. Note that the pa-
rameter constraints (10.8) ensure that C1 is always unstable as the mixotroph
competition eigenvalue at C1 (λC1−2 = r2 − a21x

∗
1
) is always positive.

• The mixotroph boundary equilibrium point (C2: 0 < x∗
2
= r2/a22 < 1) has

one attracting eigenvalue (λC2−2 = −a22x
∗
2 = −r2 < 0), so the mixotroph

population could survive in the absence of the autotroph. The stability of
this point depends on the sign of the competition eigenvalues of the autotroph
and carnivore (λC2−1 = r1 − a12x

∗
2 and λC2−3 = r3 − a32x

∗
2, respectively) at

this point.
• The predator boundary equilibrium point C3 does not exist in E as x∗

3 is
always negative at this point.

• The existence of the boundary equilibrium point (C4) in E depends on the
signs of a22r1 − a12r2, a11r2 − a21r1, and a11a22 − a12a21. If r1/a12 < r2/a22,
the f1 = 0 and f2 = 0 isoclines will not intersect in E. If they do intersect,
then λC2−1 = r1 − a12x

∗
2
> 0 and C4 exists on the boundary of E. It will be

unstable if λC4−3 = r3 − a32x
∗
2 > 0 (as a31 = 0).

• The boundary equilibrium point (C5) does not exist in E as x∗
3
is always

negative at this point.
• The existence of the boundary equilibrium point (C6) in E depends on the
intersection of the zero isoclines f2, f3 = 0 in E. The condition 0 < r3/a32 <
r2/a22 ensures that the f2 = 0 and f3 = 0 isoclines intersect and that C6

exists in E.
The parameter constraints that lead to the existence of C7 in E are not simply ar-
ticulated. We do observe that many more trophic interactions and more complex
dynamical behaviors (including chaos; see [11, p. 216] for an example) are possible in
three-population LVCN systems than in two-population systems. The exploration of
these scenarios and solutions could provide hours of interesting exercises.

11. Discussion. This article proposes a framework for teaching dynamical sys-
tems, using simple examples of ecological models to undergraduate students in marine
science and ecology. More generally, this course provides an example of mathemati-
cal modeling in the life sciences. It establishes a mathematical basis for ecologically
rigorous models of ecosystems based on fundamental concepts such as explicit, natu-
ral dependence of populations on the availability of finite resources, and conservation
of mass of a nutrient that measures the resources that the populations depend on
for their existence. This provides clear linkages between ecological and mathemat-



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

464 R. A. CROPP AND J. NORBURY

ical properties of ecosystem models that ensure the models have realistic ecological
attributes and interesting mathematical behavior.

Our introduction of a new perspective on mixotrophic systems facilitates the un-
derstanding of an extended range of Lotka–Volterra models that is not only rationally
complete with respect to continuous parameter variation, but also has intuitive ecolog-
ical classification properties. Here, mutualistic ecological behavior occurs as a limiting
behavior type, and this (facultative) mutualist behavior then further leads to the cre-
ation of predators and the definition of a new trophic level. All of these stable and
continuously varying interactions may be characterized by rotation and translation
of the population isoclines, which many students prefer to trying to understand basic
concepts from algebra.

The CN properties are a simple set of rules that provide all the constraints nec-
essary to ensure that the models have ecological properties that mathematically con-
strain the dynamics of the system to an ecologically realistic phase space, the ecospace
E. We observe that CN systems all have Kolmogorov form and articulate the simple
general properties of coexistence of populations and certain mathematical benefits
that flow from this form.

We use simple examples of Lotka–Volterra type (LVCN systems) to demonstrate
this approach to understanding these dynamical systems. LVCN systems have the
great advantage that the partial derivatives associated with the Jacobian matrix of
the system are all easily derived; in fact, the second derivatives are constants. This
shifts the emphasis of the analysis for nonmathematical students from the algebraic
challenges of calculating equilibrium points and their local stability using partial
derivatives to the process of understanding the properties of the system. We also
emphasize the benefits of considering the boundary equilibrium points of Kolmogorov
systems rather than the usual focus on the interior equilibrium points.

Finally, we note that the linking of competition to mutualism across a single
trophic level is achieved by means of the intermediate mixotrophic population in-
teractions. These linkages are both smooth and stable with respect to appropriate
parameter variations. There is then the further advantage that mutualist population
interactions may be linked to predator behavior at a new trophic level, again in a
smooth and stable manner. Therefore, not only do we see all the more familiar ele-
ments of population interaction in theoretical ecology, but we also have smooth and
stable population adaptation through the new mixotroph populations, all of which
are underpinned by a strict accounting for the recycling nutrient. In our experience
of teaching such a course, we found that students reacted very positively to this mix-
ture of rule-based ecological axioms, geometry of moving lines, and natural ecological
interpretations of the results.
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