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Population Intervention Causal Effects Based
on Stochastic Interventions

Ivan Diaz Munoz and Mark J. van der Laan

Abstract

Estimating the causal effect of an intervention on a population typically involves
defining parameters in a nonparametric structural equation model (Pearl, 2000,
NPSEM) in which the treatment or exposure is deter- ministically assigned in a
static or dynamic way. We define a new causal parameter that takes into account
the fact that intervention policies can result in stochastically assigned exposures.
The statistical parameter that identifies the causal parameter of interest is estab-
lished. Inverse probability of treatment weighting (IPTW), augmented IPTW (A-
IPTW), and targeted maximum likelihood estimators (TMLE) are developed. A
simulation study is performed to demonstrate the properties of these estimators,
which include the double robustness of the A-IPTW and the TMLE. An applica-
tion example using physical activity data is presented.



1 Introduction
Most causal inference problems are addressed by defining parameters of the distribution of the counter-
factual outcome that one would obtain in a controlled experiment in which an exposure variable A is set
to some pre-specified value a deterministically. A widely used example of this framework is the causal
effect for a binary treatment, in which the expectation of the outcome in a hypothetical world in which
everybody receives treatment is compared with its counterpart in a world in which nobody does. Other
common way of addressing causal problems consists in considering parameters that reflect the difference
between the distribution of a counterfactual outcome in such hypothetical intervened world and the distri-
bution of the actual outcome; these parameters are often referred to as population intervention parameters
(Hubbard and van der Laan, 2005).

In order to estimate such exposure-specific counterfactual parameters from observational data,
one has to assume that all subjects in the population have a positive probability of receiving the exposure
level a under consideration. This assumption is often referred to as experimental treatment assignment
(ETA) and can be a highly unrealistic assumption in most cases. Additionally, when the exposure of
interest is not a variable that can be directly manipulated (e.g., social or behavioral phenomena), any
intervention targeting a change in the exposure distribution will result in a population whose exposure is
stochastic rather than deterministic. Furthermore, in most practical cases, deterministic interventions are
not feasible and their causal effect on the outcome as described in the previous paragraph loses its appeal
as a measure of the gain obtained by implementing a given policy that intends to indirectly modify the
exposure mechanism.

An example that illustrates these ideas is presented in Section 6. These data were collected by
Tager, Hollenberg, and Satariano (1998) and analyzed by Bembom and van der Laan (2007) with the
main goal of assessing the effect of vigorous physical activity on mortality in the elderly. Firstly, as
argued by Bembom and van der Laan (2007), ETA assumptions as needed to identify the causal effect
of a static treatment are quite unrealistic since health problems are expected to prevent an important
proportion of the population from high levels of physical activity. Secondly, it is clear that it is not
possible to intervene in the population in a way such that each subject is enforced to a pre-specified
physical activity level, even if that level is a deterministic function of measured covariates such as health
status or socioeconomic level. Therefore, any intervention on the population that targets changes in
physical activity level will induce a random post-intervention exposure. These and other reasons why
deterministic interventions are not always the best approach to estimate causal effects are discussed in
Korb, Hope, Nicholson, and Axnick (2004) and Eberhardt and Scheines (2006). Korb et al. (2004) define
an intervention on a variable A in a causal model as an action that intends to change the distribution of A.
This general definition includes as special cases static and dynamic deterministic interventions (through
degenerate distributions), but it also allows the definition of the causal effect in terms of a non degenerate
distribution, as exploited in this article.

In our example, the question of whether higher levels of Leisure-Time Physical Activity (LTPA)
cause a reduction in mortality rates in the elderly can be better addressed by considering the effect of
a policy that aims to cause an increase in the mean of LTPA, possibly depending on covariates such as
health status or socioeconomic level. As we will see in Section 2, this problem corresponds to considering
the effect of an intervention that shifts the location of the treatment mechanism.

Despite these considerations, current developments and applications have almost exclusively fo-
cused on deterministic interventions. Among the few works using stochastic interventions figure Cain,
Robins, Lanoy, Logan, Costagliola, and Hernán (2010), who used a stochastic intervention in the context
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of comparing dynamic treatment regimes with a grace period; and Taubman, Robins, Mittleman, and
Hernán (2009), who consider an intervention in the BMI defined by a truncation of the original exposure
distribution.

In this paper, we focus the discussion on the definition and estimation of the effect of interventions
that are intended to cause a shift in the conditional mean of the exposure given the covariates, such as
the LTPA example. Other type of stochastic interventions of interest arises in applications in which the
interest relies in estimating the effect of a policy that enforces the level of exposure below a certain
threshold. Such policies can modify the distribution of the exposure in various ways. For example, if the
interest relies on estimating the effect of a policy that constrains air pollution emissions below a cutoff
point, it is reasonable to think that the probability mass associated with values above that cutoff in the
original exposure mechanism will be relocated around the cutoff after the intervention. This is because
under such a policy, high-polluting companies will not have any incentive to go below the enforced cutoff
point.

Alternative threshold-like interventions can lead to a distribution of the exposure that acts like a
truncation (i.e., relocating the mass across all values of the exposure distribution below the threshold).
In fact, as proven by Stitelman, Hubbard, and Jewell (2010), the intervention obtained by considering
a dichotomous version of a continuous treatment and defining a usual static intervention (e.g., the BMI
intervention in Taubman et al. (2009)), corresponds to a stochastic intervention on the original continuous
treatment that truncates the exposure below the value defining the dichotomization.

Our major goal is to introduce stochastic intervention causal parameters as a way of measuring
the effect that certain policies have on the outcome of interest. As we will see, estimation of the these
parameters requires weaker assumptions than estimation of other causal parameters (e.g., marginal struc-
tural models), relaxing assumptions about positivity and consistency of the initial estimators, and thus
providing a more flexible way of estimating causal effects. We will start in Section 2 by defining the
parameter of interest, in Section 3 we present its efficient influence curve, and discuss the double ro-
bustness of estimators that solve the efficient influence curve equation. This section also provides the
tools for defining the targeted maximum likelihood estimators in Section 4.3. In Section 5, we present a
simulation study, and in Section 6 we present an application example.

2 Data and Parameter of Interest
Consider an experiment in which an exposure variable A, a continuous or binary outcome Y and a set of
covariates W are measured for n randomly sampled subjects. Let O = (W,A,Y ) represent a random vari-
able with distribution P0, and O1, . . . ,On represent n i.i.d. observations of O. Assume that the following
NPSEM holds:

W = fW (UW )

A = fA(W,UA) (1)
Y = fY (A,W,UY ),

where UW , UA and UY are exogenous random variables such that UA⊥⊥UY holds, and either UW⊥⊥UY or
UW⊥⊥UA holds (randomization assumption). The true distribution P0 of O can be factorized as

P0(O) = P0(Y |A,W )P0(A|W )P0(W ),

where we denote g0(A|W )≡ P0(A|W ), Q̄0(A,W )≡ E0(Y |A,W ), and QW,0(W )≡ P0(W ).
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Counterfactual outcomes under stochastic interventions are denoted by YPδ
, and are defined as the

outcome of a causal model in which the equation in the SCM (1) corresponding to A is removed, and A is
set equal to a with probability Pδ (g0)(A = a|W ). The latter is called the intervention distribution, which
we allow to depend on the true exposure mechanism g0. Although any stochastic intervention of interest
can be defined in this way, in this paper we focus on the discussion of the intervention distribution:

Pδ (g0)(A = a|W ) = g0(A−δ (W )|W ), (2)

for a known function δ (W ). Note that this is a shifted version of the current treatment mechanism, where
the shifting value is allowed to vary across strata defined by the covariates. As discussed in Section 6,
one can be interested in the effect of a policy that encourages people to exercise more, leading to a popu-
lation where the distribution of physical activity is shifted according to certain health and socioeconomic
variables. As implicitly stated in (2), we will assume that the functional form of the exposure mechanism
induced by the intervention differs from the original exposure mechanism only through its conditional
expectation given the covariates.

2.1 Identification

Let APδ
denote the exposure variable under the intervened system (i.e., APδ

is distributed according to
Pδ (g)). We have that

P(YPδ
= y) = ∑

a∈A
∑

w∈W
P(YPδ

= y|APδ
= a,W = w)Pδ (g)(A = a|W = w)P(W = w),

where A and W are the support of A and W respectively. From the NPSEM (1) we have that P(YPδ
=

y|APδ
= a,W = w) = P(Ya = y|APδ

= a,W = w), where Ya is the counterfactual outcome when the expo-
sure is set to level a with probability one. Note also that the usual randomization assumption A⊥⊥Ya|W
implies APδ

⊥⊥Ya|W , and therefore P(Ya = y|APδ
= a,W = w) = P(Ya = y|W = w). Under the consis-

tency assumption (A = a implies Ya = Y ) the latter quantity is identified by P(Y = y|A = a,W = w). Our
counterfactual distribution can be written as

P(YPδ
= y) = ∑

a∈A
∑

w∈W
P(Y = y|A = a,W = w)Pδ (g)(A = a|W = w)P(W = w).

We define the parameter of interest as mapping Ψ : M → R that takes any element in a statistical
model M and maps it into a number in the reals. The true value of the parameter is given by the mapping
evaluated at the true distribution P0 ∈M . The parameter of the counterfactual distribution that we are
interested in estimating is E(YPδ

). This parameter can be written as a function of the distribution of the
observed data as

E(YPδ
) = Ψ(P) = ∑

A∈A
∑

W∈W
Q̄(A,W )Pδ (g)(A|W )QW (W ).

Note that this parameter only depends on Q = (Q̄,g,QW ), and therefore can also be written as some
mapping Ψ1 : Q→R. In an abuse of notation, we will denote these two mappings indistinctly by Ψ. We
are interested in estimating ψ0 = Ψ(Q0).
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3 Efficient Influence Curve
In this section we derive the efficient influence curve for the parameter of interest presented in the pre-
vious section. The efficient influence curve is a key element in semi-parametric efficient estimation,
since it defines the linear approximation of any efficient and regular asymptotically linear estimator (see
Appendix A), and therefore provides an asymptotic bound for the variance of all regular asymptotically
linear estimators (Bickel, Klaassen, Ritov, and Wellner, 1997).

For the particular case of the stochastic intervention defined in (2) the parameter of interest is

Ψ(P) = ∑
A∈A

∑
W∈W

Q̄(A,W )g(A−δ (W )|W )QW (W ) = EP{Q̄(A+δ (W ),W )}, (3)

evaluated at P = P0. The last equality can be checked by changing the index in the summation to
A− δ (W ). Equation (3) corresponds exactly with computing the marginal mean of Y from the joint
distribution of (W,A,Y ) with A replaced by A+δ (W ). Note also that if δ (W ) = 0, equation (3) is equal
to the expectation of Y .

Result 1. The efficient influence curve of (3) is

D(P)(O) =
g(A−δ (W )|W )

g(A|W )
{Y − Q̄(A,W )}+ Q̄(A+δ (W ),W )−Ψ(P). (4)

Since this influence curve as well as the parameter of interest depend only on Q, we will use the
notations D(P)(O) and D(Q)(O) interchangeably.

Proof. First of all, notice that the nonparametric estimator of (3) is given by

Ψ̂(Pn) = ∑
y∈Y

∑
a∈A

∑
w∈W

yPn(y|a,w)Pn(a−δ (w)|w)Pn(w)

= ∑
y∈Y

∑
a∈A

∑
w∈W

y
Pn fy,a,w

Pn fa,w
Pn fa−δ (w),w, (5)

where Pn =
1
n ∑

n
i=1 δoi is the empirical measure, fy,a,w = I(Y = y,A = a,W = w), fa,w = I(A = a,W = w)

, fa−δ (w),w = I(A = a−δ (w),W = w), and I(·) denotes the indicator function. Here P f denotes
∫

f dP.
Recall that the efficient influence curve in a non-parametric model corresponds with the influence

curve of the non-parametric estimator. This is true because the influence curve of any regular estimator is
also a gradient, and a non-parametric model has only one gradient. Rose and van der Laan (2011) show
that if Ψ̂(Pn) is a substitution estimator such that ψ0 = Ψ̂(P0), and Ψ̂(Pn) can be written as Ψ̂∗(Pn f : f ∈
F ) for some class of functions F and some mapping Ψ∗, the influence curve of Ψ̂(Pn) is equal to

IC(P0)(O) = ∑
f∈F

dΨ̂(P0)

dP0 f
( f (O)−P0 f ).

Applying this result to (9) with F = { fy,a,w, fa,w, fa−δ (w),w} gives the desired result.
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Note that this efficient influence curve can be decomposed in three parts corresponding to the
orthogonal decomposition of the tangent space implied by the factorization of the likelihood:

D1(P)(O) =
g(A−δ (W )|W )

g(A|W )
{Y − Q̄(A,W )}

D2(P)(O) = Q̄(A+δ (W ),W )−EP{Q̄(A+δ (W ),W )|W} (6)
D3(P)(O) = EP{Q̄(A+δ (W ),W )|W}−Ψ(P).

This decomposition of the score is going to be useful later on during the construction of a tar-
geted maximum likelihood estimator of ψ0. The following result provides the conditions under which an
estimator that solves the efficient influence curve equation is consistent.

Result 2. Let D(O|ψ0, Q̄,g) be the estimating function implied by the efficient influence curve D(P)(O):

D(O|ψ0, Q̄,g) =
g(A−δ (W )|W )

g(A|W )
{Y − Q̄(A,W )}+ Q̄(A+δ (W ),W )−ψ0,

let w(g)(a,w) = g(a− δ (w)|w)/g(a|w), and let g(a|w) > 0 for all a ∈ A and w ∈ W . We have that
EP0D(O|ψ0, Q̄,g) = 0 if either g is such that w(g) = w(g0), or Q̄ = Q̄0

Proof. Conditioning first on (A,W ) and then on W we get

EP0D(O|ψ0, Q̄,g) = EP0

{
∑

a∈A

g0(a|W )

g(a|W )
g(a−δ (W )|W ){Q̄0(a,W )− Q̄(a,W )}

}

+EP0

{
∑

a∈A
g0(a−δ (W )|W )Q̄(a,W )

}
−EP0

{
∑

a∈A
g0(a−δ (W )|W )Q̄0(a,W )

}
.

which completes the proof.

As a consequence of result 2, under regularity conditions stated in Theorem 1 of van der Laan
and Rubin (2006), a substitution estimator of Ψ(P0) that solves the efficient influence curve equation
PnD(·|ψ0, Q̄,g) will be consistent if either one of w(g0) and Q0 is estimated consistently, and it will be
efficient if and only if both w(g0) and Q0 are estimated consistently. We only rely on consistent estimation
of the weight function w(g0), which can be easier to obtain than consistent estimation of the density g0,
which is required for double robustness of parameters in marginal structural models (Neugebauer and
van der Laan, 2007). This double robustness is a very interesting result, since Ψ(P) depends on both Q̄
and g. Intuition on this double robustness can be obtained by looking at the definition of the parameter in
(3): if Q̄0 is known, a consistent estimator can always be obtained by computing the empirical mean of
Q̄0(A+δ (W ),W ); on the other hand, if the weight function w(g0) is known, a consistent estimate of ψ0
would be given by a weighted average of the outcome, with weights w(g0)(A,W ).

3.1 Positivity Assumption

Alternatives to definition and estimation of causal effects in the context of continuous or categorical mul-
tilevel treatments are given by marginal structural models (MSM) and risk differences like the parameters
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presented in Petersen, Porter, Gruber, Wang, and van der Laan (2010). One of the assumptions required
to estimate those parameters (the positivity assumption) is given by

sup
a∈A

h(a)
g0(a|W )

< ∞,− a.e.,

for a user-specified weight function h. The function h(a) = 1 is commonly used, since it implies giving
equal weights to all the possible treatment values.

From the formula of the efficient influence curve, the positivity assumption needed to identify and
estimate our parameter of interest is given by

sup
a∈A

g0(a−δ (W )|W )

g0(a|W )
< ∞,− a.e. (7)

This means that if infa∈A g0(a|W ) > ε for some small ε , we can always choose a function δ that while
being of interest to the research problem, is never large enough to produce unstable weights. As a result,
the positivity assumption as needed to estimate our parameter of interest is more easily achievable than
the positivity assumption as required to estimate other causal parameter for continuous exposures.

4 Estimators
In this section we present three possible estimators for the parameter of interest. A brief review of
concepts in semiparametric efficient estimation can be found in the Appendix A. The TMLE and the A-
IPTW estimators solve the efficient influence curve equation, and therefore, from Result 2, are consistent
estimators if either one of Q0(A,W ) and g0(A|W ) is estimated consistently. Also from Result 2, the
TMLE and the A-IPTW are efficient if and only if both of these quantities are estimated consistently. The
IPTW is inefficient, and will be consistent only if the estimator of g0(A|W ) is consistent. The TMLE is
expected to perform better than the A-IPTW in situations in which the positivity assumption as described
in (7) is violated, which will be the case, for example, if δ takes on very large values. The TMLE is also
a better alternative than the A-IPTW when the efficient estimating equation has multiple solutions, or the
solution of the influence curve goes out of the natural bounds for the parameter of interest.

The estimators presented in this section require initial estimates of Q0(A,W ) and g0(A|W ), which
can be obtained through machine learning techniques, parametric or semi-parametric models. The con-
sistency of these initial estimators will determine the consistency and efficiency of the estimators of ψ0,
as discussed previously. Parametric models are commonly used for the sole sake of their nice analyt-
ical properties, but they encode assumptions about the distribution of the data that are not legitimate
knowledge about the phenomenon under study and usually cause a large amount of bias in the estimated
parameter. As an alternative, we recommend the use of machine learning techniques such as the super
learner (van der Laan, Polley, and Hubbard, 2007). Super learner is a methodology that uses cross-
validated risks to find an optimal linear combination of candidate estimators in a user-supplied library.
One of its most important theoretical properties is that its solution converges to the oracle estimator (i.e.,
the candidate in the library that minimizes the loss function with respect to the true probability distribu-
tion). Proofs and simulations regarding these and other asymptotic properties of the super learner can be
found in van der Laan, Dudoit, and Keles (2004) and van der Laan and Dudoit (2003).
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4.1 IPTW

Given an estimator g0
n of the exposure density, the IPTW estimator of ψ0 is defined as

ψn,1 =
1
n

n

∑
i=1

g0
n(Ai−δ (Wi)|Wi)

g0
n(Ai|Wi)

Yi.

The IPTW is an asymptotically linear estimator with influence curve

DIPTW (O|ψ0,g0) =
g0(A−δ (W )|W )

g0(A|W )
Y −ψ0,

therefore the variable
√

n(ψn,1−ψ0) converges in distribution to N(0,P0D2
IPTW (g0)), whose variance can

be estimated as
1
n

n

∑
i=1

D2
IPTW (Oi|ψn,1,g0

n).

This variance estimator is conservative, as proved in van der Laan and Robins (2003) and corroborated
in the simulation section.

4.2 Augmented IPTW

The augmented IPTW is the value ψn,2 that solves the equation ∑
n
i=1 D(Oi|ψ0, Q̄0

n,g
0
n) = 0, for initial

estimates Q̄0
n and g0

n of Q̄0 and g0.

ψn,2 =
1
n

n

∑
i=1

g0
n(Ai−δ |Wi)

g0
n(Ai|Wi)

{Yi− Q̄0
n(Ai,Wi)}+ Q̄0

n(Ai +δ (Wi),Wi).

The A-IPTW is an asymptotically linear estimator with influence curve D(O|ψ0, Q̄0,g0). As in the
case of the IPTW, the variable

√
n(ψn,2−ψ0) converges in law to a random variable with distribution

N{0,P0D2(·|ψ0, Q̄0,g0)}, whose variance can be estimated as

1
n

n

∑
i=1

D2(Oi|ψn,2, Q̄0
n,g

0
n).

4.3 Targeted Maximum Likelihood Estimator

Targeted maximum likelihood estimation (van der Laan and Rubin, 2006) is a loss-based semiparametric
estimation method that yields a substitution estimator of a target parameter of the probability distribution
of the data that solves the efficient influence curve estimating equation, and thereby yields a double robust
locally efficient estimator of the parameter of interest, under regularity conditions.

In order to define a targeted maximum likelihood estimator for ψ0, we need first to define three
elements: (1) A loss function L(Q) for the relevant part of the likelihood required to evaluate Ψ(P),
which in this case is Q = (Q̄,g,QW ). This function must satisfy Q0 = argminQ EP0L(Q)(O), where Q0
denotes the true value of Q; (2) An initial estimator Q0

n of Q0; (3) A parametric fluctuation Q(ε) through
Q0

n such that the linear span of d
dε

L{Q(ε)}|ε=0 contains the efficient influence curve D(P) defined in (4).
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These elements are defined below:

Loss Function
As loss function for Q, we will consider L(Q) = LY (Q̄)+LA(g)+LW (QW ), where for continuous Y we
set LY (Q̄) = {Y − Q̄(A,W )}2, for binary Y we set LY (Q̄) =Y log{Q̄(A,W )}+(1−Y ) log{1− Q̄(A,W )},
LA(g) =− logg(A|W ), and LW (QW ) =− logQW (W ). It can be easily verified that this function satisfies
Q0 = argminQ EP0L(Q)(O).

Parametric Fluctuation
Given an initial estimator Qk

n of Q0, with components (Q̄k
n,g

k
n,Q

k
W,n), we define the (k+1)th fluctuation

of Qk
n as follows:

Q̄k+1
n (ε1)(A,W ) = Q̄k

n(A,W )+ ε1Hk
1(A,W )

gk+1
n (ε1)(A|W ) =

exp{ε1Hk
2(A,W )}gk

n(A|W )∫
A exp{ε1Hk

2(A,W )}gk
n(A|W )

Qk+1
W,n (ε2)(W ) =

exp{ε2Hk
3(W )}Qk

W,n(W )∫
W exp{ε2Hk

3(W )}Qk
W,n(W )

,

where Hk
1(A,W ) = gk

n(A− δ (W )|W )/gk
n(A|W ), Hk

2(A,W ) = D2(Pk)(O) and H3(W ) = D3(Pk)(O), with
D2 and D3 defined as in (6). We define these fluctuations using a two-dimensional ε with two different
parameters ε1 and ε2, though it is theoretically correct to define these fluctuations using any dimension
for ε , as far as the condition D(P) ∈< d

dε
L{Q(ε)}|ε=0 > is satisfied, where < · > denotes linear span.

The convenience of the particular choice made here will be clear once the targeted maximum likelihood
estimator (TMLE) is defined.

Targeted Maximum Likelihood Estimator
The TMLE is defined by the following iterative process:

1. Initialize k = 0.
2. Estimate ε as εk

n = argminε PnL{Qk
n(ε)}.

3. Compute Qk+1
n = Qk

n(ε
k
n).

4. Update k = k+1 and iterate steps 2 through 4 until convergence (i.e., until εk
n = 0)

First of all, note that the value of ε2 that minimizes the part of the loss function corresponding to the
marginal distribution of W in the first step (i.e., −Pn logQ1

W,n(ε2)) is ε1
2 = 0. Therefore, the iterative

estimation of ε only involves the estimation of ε1. The kth step estimation of ε1 is obtained by minimizing
Pn(LY (Q̄k

n(ε1))+LA(gk
n(ε1))), which implies solving the estimating equation

Sk(ε1) =
n

∑
i=1

[
Yi−{Q̄k

n(Ai,Wi)+ ε1Hk
1(Oi)}

]
Hk

1(Oi)+D2(Pk
n )(Oi)−

∑
A∈A

D2(Pk
n )(Oi) exp{ε1D2(Pk

n )(Oi)} gk
n(Ai|Wi)

∑
A∈A

exp{ε1D2(Pk
n )(Oi)} gk

n(Ai|Wi)
(8)
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where
D2(Pk

n )(O) = Qk
n(A+δ (W ),W )− ∑

A∈A
Qk

n(A+δ (Wi),Wi)gk
n(A|Wi).

The TMLE of ψ0 is defined as ψn,3 ≡ limk→∞ Ψ(Pk
n ), assuming this limit exists. In practice, the

iteration process is carried out until convergence in the values of εk is achieved, and an estimator Q∗n
is obtained. Under the conditions of Theorem 2.3 of van der Laan and Robins (2003), a conservative
estimator of the variance of ψn,3 is given by

1
n

n

∑
i=1

D2(Oi|ψn,3, Q̄∗n,g
∗
n).

5 Simulation Study
In order to assess the finite sample properties of the proposed estimators, a simulation study was per-
formed. Consider the following data generating distribution:

W1 ∼U{0,1}
W2 ∼ Ber{0.7}

A|W1,W2 ∼ Poisson{exp(3+ .3log(W1)− .2exp(W1)W2}
Y |A,W1,W2 ∼ N{1+ .5A− .2AW2 +2A tan(W 2

1 )−2W1W2 +AW1W2, 1}.

Assuming that we are interested in estimating the effect of a constant shift of δ (W1,W2) = 2, the true
parameter value for this data generating distribution is ψ0 = 22.95, and the efficiency bound equals
{VarP0D(P0)(O)}1/2 = 17.81.

For sample sizes n = 50,100,200 and 500, we simulated 2000 samples from the previous data
generating distribution, and estimated ψ0 using the three estimators proposed in the previous section.
As initial estimators of Q̄0(A,W ) and g0(A|W ) we considered four cases: 1) correctly specified model
for both Q̄0(A,W ) and g0(A|W ), 2) incorrectly specified model for Q̄0(A,W ) but correctly specified
for g0(A|W ), 3) correctly specified model for Q̄0(A,W ) but incorrectly specified for g0(A|W ), and 4)
incorrectly specified model for both Q̄0(A,W ) and g0(A|W ); where misspecification of the models was
performed by considering the correct distribution and link function but only main terms in the linear
predictor.

TML estimation of ψ0 was performed using the R tmle.shift() function presented in Appendix
B. The average and variance of the estimates across the 2000 samples was computed as an approximation
to the expectation and variance of the estimator (Table 1), respectively.

The results in Table 1 confirm the double robustness of the TMLE and A-IPTW, which had been
proven analytically in Result 2. The TMLE and A-IPTW are unbiased even for small sample sizes,
whereas the IPTW needs larger sample sizes to achieve unbiasedness.

Regarding the variance of the estimators, Table 2 shows that the IPTW estimator is inefficient,
and its influence-curve-based variance estimator is very conservative.

The variances of the TMLE and A-IPTW are approximately equal to the efficiency bound if
the models for Q̄0 and g0 are correctly specified, although the same equality is observed if only Q̄0

n is
misspecified. This is because, as stated in Result 2, we only need consistent estimation of the weights
w(g0)(A,W ), which can be obtained through a possibly misspecified estimator of g0. On the other hand,
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Table 1: Expectation of the estimators for different sample sizes and model specifications. True value is
22.95.

n Model TMLE IPTW A-IPTW

50

1 22.99 22.66 22.99
2 22.99 22.49 22.99
3 22.88 22.66 22.91
4 22.01 22.49 22.04

100

1 22.95 22.81 22.95
2 22.96 22.61 22.95
3 22.89 22.81 22.92
4 21.97 22.61 22.00

200

1 22.99 22.89 22.99
2 22.99 22.68 22.99
3 22.94 22.89 22.96
4 21.99 22.68 22.02

500

1 22.97 22.93 22.97
2 22.97 22.71 22.97
3 22.93 22.93 22.96
4 21.97 22.71 22.00

the variance of these estimators is considerably affected by misspecification of the model for Q̄0 (models
3 and 4), even if g0

n is correctly specified. Influence-curve-based estimators of the variance seem to do a
good job for these two estimators.

Since all estimators considered are asymptotically linear, 95% normal-based confidence intervals
can be computed. Their coverage probabilities are presented in Table (3). The conservativeness of the
IPTW can also be appreciated here. The consistent TMLE and A-IPTW based confidence intervals have
perfect asymptotic coverage probability. In this simulation we do not observe significant differences
between the TMLE and the A-IPTW.

6 Application
With the objective of illustrating the procedure described in the previous sections, we revisit the problem
analyzed by Bembom and van der Laan (2007) of assessing the extent to which physical activity in the
elderly is associated with reductions in cardiovascular morbidity and mortality, and improvement in, or
prevention of metabolic abnormalities. Tager et al. (1998) followed a group of people over 55 years of
age living around Sonoma, CA, over a time period of about ten years as part of a longitudinal study of
physical activity and fitness (Study of Physical Performance and Age Related Changes in Sonomans -
SPPARCS). The goal in analyzing the data that were collected as part of this study is to examine the effect
of baseline vigorous LTPA (Leisure Time Physical Activity) on subsequent five-year all-cause mortality.

In this paper, we use the same measure of LTPA used by Bembom and van der Laan (2007),
which is a continuous score based on the number of hours that the participants were engaged in vigorous
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Table 2: Standard error of the estimator (times
√

n). Expectation of the influence curve based estimator
of the variance (times

√
n) in parentheses. Efficiency bound is 17.81

n Model TMLE IPTW A-IPTW

50

1 17.94 (17.66) 20.33 (26.80) 17.94 (17.66)
2 17.94 (17.67) 19.16 (25.03) 17.94 (17.66)
3 18.92 (17.81) 20.33 (26.80) 18.94 (18.08)
4 18.21 (18.07) 19.16 (25.03) 18.25 (17.77)

100

1 17.93 (17.74) 20.36 (27.63) 17.93 (17.74)
2 17.93 (17.75) 19.04 (25.72) 17.93 (17.75)
3 18.96 (18.14) 20.36 (27.63) 18.98 (18.45)
4 18.34 (18.37) 19.04 (25.72) 18.35 (18.06)

200

1 17.77 (17.77) 20.17 (28.00) 17.77 (17.77)
2 17.77 (17.78) 18.93 (25.97) 17.77 (17.77)
3 18.62 (18.35) 20.17 (28.00) 18.64 (18.68)
4 17.98 (18.57) 18.93 (25.97) 18.00 (18.24)

500

1 17.38 (17.79) 20.40 (28.37) 17.39 (17.79)
2 17.38 (17.80) 18.94 (26.24) 17.39 (17.80)
3 18.50 (18.49) 20.40 (28.37) 18.52 (18.84)
4 17.74 (18.71) 18.94 (26.24) 17.76 (18.36)

physical activities such as jogging, swimming, bicycling on hills, or racquetball in the last seven days,
and the standard intensity values in metabolic equivalents (MET: Metabolic Equivalent of Task) of such
activities, where one MET is approximately equal to the oxygen consumption required for sitting quietly.

The primary confounding factors that we adjust for are described in Table 4. Age and gender are
natural confounders, and the rest of the variables intend to account for the subject’s underlying level of
general health. Of the 2092 subjects enrolled in the SPPARCS study, 40 were missing information in at
least on of this variables; our analysis is based on the remaining 2052 subjects.

In the sequel of this section, the vector containing the confounders will be denoted by W , the
continuous MET score by A, and the indicator of five-year all-cause mortality by Y . In this paper, we are
interested in estimating the effect of a policy that will produce an increase of 12 METs (corresponding,
for instance, to bicycling during three hours at less than 10mph per week) in the average of the conditional
distribution physical activity, given the covariates. Note that our intervention could also be defined by
using different values of MET in each strata defined by the covariates W .

Initial estimators of the conditional density g0(A|W ) and the conditional expectation Q̄0(A,W )
are presented below.

6.1 Initial estimator of g0

For the estimation of the density g0(A|W ), we consider the estimator presented in Dı́az and van der
Laan (2011). We now provide a summary of the rationale behind this estimator. Consider k+ 1 values
α0,α1, . . . ,αk spanning the range of the data and defining k bins. Now, consider the following class of
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Table 3: .

n Model TMLE IPTW A-IPTW

50

1 0.93 0.97 0.93
2 0.93 0.96 0.93
3 0.92 0.97 0.92
4 0.90 0.96 0.89

100

1 0.94 0.98 0.94
2 0.94 0.98 0.94
3 0.93 0.98 0.94
4 0.89 0.98 0.89

200

1 0.95 0.98 0.95
2 0.95 0.97 0.95
3 0.94 0.98 0.95
4 0.87 0.97 0.87

500

1 0.95 0.99 0.95
2 0.95 0.98 0.95
3 0.94 0.99 0.95
4 0.78 0.98 0.78

histogram-like candidate estimators of the conditional density g0(A|W )

gn,α(A = a|W ) =
Prn{A ∈ [αm−1,αm)|W}

αm−αm−1
, for αm−1 ≤ a < αm−1,

where the choice of the location of α values and the number of bins index the candidates in the class,
and the probabilities in the numerator are estimated through super learner. The final estimator of the den-
sity consists of a convex combination of these estimators found through minimization of cross-validated
empirical risks. One of the most important properties of this method is that its solution converges to the
oracle estimator (i.e., the candidate in the library that minimizes the loss function with respect to the true
probability distribution). For further reference and properties of this estimator in the context of estimation
of causal effects, the reader is referred to the original paper.

As an example, Figure 1 shows an estimated density gn(A|W ) for a particular profile W . As
pointed out in Dı́az and van der Laan (2011), we note that this methodology allows the detection of high
density areas in the exposure mechanism, like the one detected at zero in Figure 1. This spike appears
because this is a “zero-inflated” exposure, in which a large proportion of the population do not practice
any amount of physical activity.

6.2 Initial estimator of Q̄0

For the initial estimator of Q̄0 we used the super learner (van der Laan et al., 2007). Super learner is a
machine learning technique that uses cross-validation to choose a convex combination of estimators in a
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Table 4: Confounders.

Variable Description

Gender
Female
Male

Age Age in years

Health

Self-rated health status:
Excellent
Fair
Poor

NRB Score of self-reported physical functioning rescaled between 0 and 1
Card Previous occurrence of any of the following cardiac events: Angina, myocar-

dial infarction, congestive heart failure, coronary by-pass surgery, and coro-
nary angioplasty

Chron Presence of any of the following chronic health conditions: stroke, cancer,
liver disease, kidney disease, Parkinson’s disease, and diabetes mellitus

Smoking
Never smoked
Current smoker
Ex-smoker

Decline Activity decline compared to 5 or 10 years earlier

library of candidate estimators. This estimator was also proven to perform asymptotically as well as the
oracle selector.

Table 5 shows the candidates used, their cross-validated risks and the weight that the super learner
assigns to each of them. It is worth to note that in order to get a consistent estimator of Q̄0 (sufficient
condition for the TMLE of ψ0 to be asymptotically unbiased), the library of candidate estimators should
be as large as possible. Since this is an illustrating example, we allow ourselves to use this small library.

Table 5: Super learner output for estimation of Q̄0.

Cross-validated Risk Coef.
GLM main effects 0.1079 0.0000
GLM main eff. and two way interactions 0.1143 0.0835
GAM degree 2 0.1073 0.0000
GAM degree 3 0.1071 0.9165
Bayes GLM main effects 0.1078 0.0000
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Figure 1: Estimated conditional density of A given the profile age = 73, gender = male, health = fair, nrb
= 1, card = yes, smoke = never smoked, decline = yes, and chron = yes.

6.3 Estimators of ψ0

Table 6 shows the three estimates of ψ0 with their standard errors, as described in Section 4.
As an example, the TML estimated value of ψn,3 = 0.16 indicates that if a policy that increases

the average leisure time physical activity by the equivalent of 12 METs is implemented, the estimated
risk of death in the intervened will be 16%.

If the objective is to perform a comparison with the current risk of death, we can define a popula-
tion intervention parameter ψ1

0 as
ψ

1
0 = ψ0−EP0(Y ).

This is a parameter that compares the expected risk of death in the intervened population with the current
risk of death, and therefore describes the gain obtained by carrying out the intervention of interest. For a
given estimator ψn of ψ0, an asymptotically linear estimator of ψ1

0 is given by ψ1
n = ψn−Ȳ . Its influence

curve can be computed as
D1(P)(O) = D(P)(O)−{Y −EP(Y )},

and its variance is estimated through the sample variance of D1(P)(O). Here D(P)(O) is the influence
curve of each of the estimators defined in Section 4. The estimates of ψ1

0 and their standard errors are
presented in table 6. Confidence intervals and p-values for hypothesis testing can be computed based on
the normal approximations for asymptotically linear estimator described in Section 4 and Appendix A.
In light of the results from the simulation section and the theoretical properties of the estimators, we rely
on the TMLE and A-IPTW to measure the effect of the intervention of interest. The estimated value of
ψ1

n means that if a policy increasing the average time of physical activity by the equivalent of 12 METs
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Table 6: Estimates of ψ0.

TMLE A-IPTW IPTW
ψ0 0.1600(0.0104) 0.1599(0.0105) 0.1454(0.0135)
ψ1

0 −0.0179(0.0071) −0.0179(0.0071) −0.0324(0.0117)

(corresponding, for instance, to bicycling during three hours per week at less than 10mph) is put in place,
the risk of all-cause mortality in the elderly would be reduced by 1.79%. These results are consistent
with the findings of Bembom and van der Laan (2007).

7 Discussion
In this paper we define a new parameter for the causal effect of a population intervention that, opposed
to most of the parameters presented in the literature, accounts for the fact that in most cases, even after
the implementation of the intervention, the exposure continues to be a random variable. We argue that
this parameter makes more intuitive sense when the objective is to assess the causal effect of policies
intending to modify an exposure variable that cannot be directly intervened upon. For example, as argued
in Bembom and van der Laan (2007), it makes little sense to talk about the effect of a static intervention
in which every subject in a population of elderly people is required to increase their levels of physical
activity to the maximum. It is well known that such intervention will never be possible due to health
status and physical functioning constraints, and therefore the causal effect of of such intervention will
over estimated the effect of any realistic intervention.

An alternative to overcome this issue, which deals with defining realistic individualized treatment
and intention to treat rules is presented in van der Laan and Petersen (2007), and is used in Bembom and
van der Laan (2007) to analyze the physical activity data used in Section 6. The choice between that
alternative and the one presented in this paper depends on the type of policy for which the effect needs
to be estimated. For example, assume that the exposure under study is air pollutants. In that case, we
can define individualized pollution regimes for each type of factory, and design a policy intervention that
enforces them by law. Under that situation, the effect of individualized deterministic treatment regimes
might be more appealing as a way of measuring the effect that such intervention will have in a given
outcome. However in examples like the one presented in Section 6, since no deterministic intervention is
possible in practice, the causal effect of any population intervention might be better reflected by a causal
parameter that takes into account the randomness of the intervention. Three estimators of the parameter
were proposed, two of which are double robust to misspecification of the models for the treatment mech-
anism g0 and the conditional expectation Q̄0, even when the parameter depends on these two quantities.
This double robustness property is proven analytically, and corroborated in a simulation study.
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Appendices

A Review of Efficiency Estimation in Semiparametric Models
The objective of this section is to provide an intuitive explanation of certain elements of efficient estima-
tion in semiparametric models. We do not pretend to give a comprehensive or rigorous review, instead
we intend to provide the non trained reader with the basic intuition for understanding why the methods
described in the paper work. Careful and detailed definitions of the concepts described here, and rigorous
proofs of most of the claims can be found in Bickel et al. (1997) and van der Vaart (1998).

A.1 Asymptotically Linear Estimators

Let X ∼ P0 ∈M , where M is a statistical (semi or non parametric) model, and let Ψ : M 7→ R be a
parameter defined as a mapping that takes elements in the model and maps them into the reals (e.g., the
mean Ψ(P) =

∫
xdP(x)). An estimator ψn of ψ0 = Ψ(P0) is called asymptotically linear if there exist a

function IC : X ×M 7→ R such that IC(·,P0) ∈ L2(P0),
∫

IC(x,P0)dP0(x) = 0 (Bickel et al., 1997), and

ψn−ψ0 =
1
n

n

∑
i=1

IC(Xi,P0)+oP(n−1/2).

The function IC is called the influence function of the estimator, and plays an important role in esti-
mation and inference, since it defines the asymptotic variance of the estimator. From the central limit
theorem, we conclude that if ψn is asymptotically linear with influence curve IC, then

√
n(ψn−ψ0)

d→
N{0,P0IC2(·,P0)}.

A.2 Efficiency

Consider a family of parametric submodels Mε = {Pε : ε} ⊂M that covers M and satisfies Pε=0 = P0.
A typical choice of family of parametric submodels is {{pε(x) = [1+ εs(x)]p0(x) : ε} : P0s = 0}, where
each parametric submodel is indexed by a function s, which is also its score. The tangent space is defined
as the closed linear span of the scores of all parametric submodels. A parameter Ψ is called pathwise
differentiable if there exists a function ν such that for each submodel

dΨ(Pε)

dε

∣∣∣∣
ε=0

= P0νs.

The function ν is called a gradient of the pathwise derivative. The only gradient D that is an element of
the tangent space is called the efficient influence function, and corresponds with the influence function
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of any regular asymptotically linear (RAL) efficient estimator, i.e., any RAL estimator whose asymptotic
variance equals the efficiency bound (van der Vaart, 1998), which is the semiparametric generalization to
the Cramer-Rao lower bound. The efficiency bound is then equal to EP0D2(X).

The efficient influence function has been used by several authors (Bickel et al., 1997, van der
Laan and Robins, 2003, Scharfstein, Tsiatis, and Robins, 1997, van der Laan and Rubin, 2006) to con-
struct RAL efficient estimators. The basic idea to optimally estimate the parameter of interest is to find
estimators that solve the efficient influence curve equation. The properties of estimators that solve a
system of equations have been extensively studied in the literature and are provided by the theory of M-
estimators. Important references in M-estimation include Bickel et al. (1997), van der Laan and Robins
(2003), Tsiatis (2006) and Rose and van der Laan (2011).

A.3 Proofs

Proof. Result 1. First of all, notice that the nonparametric estimator of ψ0 is given by

Ψ̂(Pn) = ∑
y∈Y

∑
a∈A

∑
w∈W

yPn(y|a,w)Pn(a−δ (w)|w)Pn(w)

= ∑
y∈Y

∑
a∈A

∑
w∈W

y
Pn fy,a,w

Pn fa,w
Pn fa−δ (w),w, (9)

where Pn =
1
n ∑

n
i=1 δoi is the empirical measure, fy,a,w = I(Y = y,A = a,W = w), fa,w = I(A = a,W = w)

, fa−δ (w),w = I(A = a−δ (w),W = w), and I(·) denotes the indicator function. Here P f denotes
∫

f dP.
Recall that the efficient influence curve in a non-parametric model corresponds with the influence

curve of the non-parametric estimator. This is true because the influence curve of any regular estimator is
also a gradient, and a non-parametric model has only one gradient. Rose and van der Laan (2011) show
that if Ψ̂(Pn) is a substitution estimator such that ψ0 = Ψ̂(P0), and Ψ̂(Pn) can be written as Ψ̂∗(Pn f : f ∈
F ) for some class of functions F and some mapping Ψ∗, the influence curve of Ψ̂(Pn) is equal to

IC(P0)(O) = ∑
f∈F

dΨ̂∗(P0)

dP0 f
{ f (O)−P0 f}.

Applying this result to (9) with F = { fy,a,w, fa,w, fa−δ (w),w} gives the desired result.

Proof. Result 2. Conditioning first on (A,W ) and then on W we get

EP0D(O|ψ0, Q̄,g) = EP0

[
∑

a∈A

g0(a|W )

g(a|W )
g(a−δ (W )|W ){Q̄0(a,W )− Q̄(a,W )}

]

+EP0

[
∑

a∈A
g0(a−δ (W )|W )Q̄(a,W )

]
−EP0

[
∑

a∈A
g0(a−δ (W )|W )Q̄0(a,W )

]
,

which completes the proof.
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B R function tmle.shift()

B.1 Arguments

Argument Description
Y Outcome vector.
A Treatment vector.
W Covariates matrix.
Qn An initial estimator of Q̄0 in the form of a function that takes a vector A

and a matrix W and returns the vector of conditional expectations of Y
given A and W.

gn An initial estimator g0 that takes as input a vector A and a matrix W
and returns the density of A conditional on W at points A.

delta A function of W defining the parameter of interest.
tol Tolerance value for the convergence of ε .
max.iter Maximum of iterations allowed.
Aval A vector with equally spaced values indicating a partition of the support

of A over which to compute Riemann sums to approximate the integrals
involved in the estimation process.

Table 7: Arguments of the R function tmle.shift

B.2 Code

tmle.shift <- function(Y, A, W, Qn, gn, delta, tol = 1e-5, iter.max = 5, Aval){

# interval partition length

h.int <- Aval[3]-Aval[2]

# this function takes as input initial estimator of Q and g and returns

# their updated value

f.iter <- function(Qn, gn, gn0d = NULL, prev.sum = 0, first = FALSE){

# numerical integrals and equation (7)

Qnd <- t(sapply(1:nrow(W), function(i)Qn(Aval + delta, W[i,])))

gnd <- t(sapply(1:nrow(W), function(i)gn(Aval, W[i,])))

gnd <- gnd/rowSums(gnd)

if(first) gn0d <- gnd

EQnd <- rowSums(Qnd*gnd)*h.int

D2 <- Qnd - EQnd

QnAW <- Qn(A, W)

H1 <- gn(A - delta, W)/gn(A, W)

# equation (8)

est.equation <- function(eps){

sum((Y - (QnAW + eps*H1)) * H1 + (Qn(A + delta, W) - EQnd) -

rowSums(D2*exp(eps*D2 + prev.sum)*gn0d)/rowSums(exp(eps*D2 + prev.sum)*gn0d))

}

eps <- uniroot(est.equation, c(-1, 1))$root

# updated values
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gn.new <- function(a, w)exp(eps*Qn(a + delta, w)) * gn(a, w)

Qn.new <- function(a, w)Qn(a, w) + eps * gn(a - delta, w)/gn(a, w)

prev.sum <- prev.sum + eps*D2

return(list(Qn = Qn.new, gn = gn.new, prev.sum =

prev.sum, eps = eps, gn0d = gn0d))

}

ini.out <- f.iter(Qn, gn, first = TRUE)

gn0d <- ini.out$gn0d

iter = 0

# iterative procedure

while(abs(ini.out$eps) > tol & iter <= iter.max){

iter = iter + 1

new.out <- f.iter(ini.out$Qn, ini.out$gn, gn0d, ini.out$prev.sum)

ini.out <- new.out

}

Qnd <- t(sapply(1:nrow(W), function(i)ini.out$Qn(Aval + delta, W[i,])))

gnd <- t(sapply(1:nrow(W), function(i)ini.out$gn(Aval, W[i,])))

gnd <- gnd/rowSums(gnd)

# plug in tmle

psi.hat <- mean(rowSums(Qnd*gnd)*h.int)

# influence curve of tmle

IC <- (Y - ini.out$Qn(A, W))*ini.out$gn(A - delta, W)/ini.out$gn(A, W) +

ini.out$Qn(A + delta, W) - psi.hat

var.hat <- var(IC)/length(Y)

return(c(psi.hat = psi.hat, var.hat = var.hat, IC = IC))

}

B.3 Example

Here is an example of how to use the previous function based on the data generating mechanism presented
in the simulation

n <- 100

W <- data.frame(W1 = runif(n), W2 = rbinom(n, 1, 0.7))

A <- rpois(n, lambda = exp(3 + .3*log(W$W1) - .2*exp(W$W1)*W$W2))

Y <- rbinom(n, 1, plogis(-1 + .05*A - .02*A*W$W2 + .2*A*tan(W$W1^2) -

.02*W$W1*W$W2 + 0.1*A*W$W1*W$W2))

fitA.0 <- glm(A ~ I(log(W1)) + I(exp(W1)):W2, family = poisson, data = data.frame(A, W))

fitY.0 <- glm(Y ~ A + A:W2 + A:I(tan(W1^2)) + W1:W2 + A:W1:W2, family =

binomial, data = data.frame(A, W))

gn.0 <- function(A = A, W = W)dpois(A, lambda = predict(fitA.0, newdata = W,

type = "response"))

Qn.0 <- function(A = A, W = W)predict(fitY.0, newdata = data.frame(A, W,

row.names = NULL), type = "response")

tmle00 <- tmle.shift(Y, A, W, Qn.0, gn.0, delta=2, tol = 1e-4, iter.max = 5,

Aval = seq(1, 60, 1))
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