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Abstract

In a population model in continuous space, individuals evolve independently

as branching random walks subject to immigration. If the underlying branching

mechanism is subcritical, the model has a unique steady state for each value of the

immigration intensity. Convergence to the equilibrium is exponentially fast. The

resulting dynamics are Lyapunov stable in that their qualitative behavior does not

change under suitable perturbations of the main parameters of the model.

keywords: spatial population dynamics; branching random walk; immigration; cor-

relation functions; steady state; Lyapunov stability
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1 Introduction

One of the simplest model with a steady state, also known as space-time equilibrium,

is the contact model in Rd (Kondratiev and Skorokhod, 2006; Kondratiev et al., 2008).

For this model, the corresponding point field has multiplicity one, so that the population

dynamics can be described as a Markov process in the space of infinite but locally finite

point configurations in Rd (Kondratiev and Skorokhod, 2006; Kondratiev et al., 2008).

In contrast, the dynamics of lattice point fields of multiplicity one are not Markovian,

which complicates their analysis (Liggett, 1985).

The contact model is instable with respect to small random perturbations, notably

local ones, of the rates of splitting and death. We introduce a related model, where the

steady state is stable in the strongest Lyapunov sense, which means that the stochastic

equilibrium survives under sufficiently small (in L∞-norm) perturbations of the rates. In

section 1.1, we describe the time evolution of a population in Rd, subject to immigration,

and whose individuals evolve independently as branching random walks. We demon-

strate that the qualitative behavior of this model persists under perturbations, possibly

heterogeneous over space, of the key parameters.

We present the main results in section 1.3 with emphasis on the stationary case of

rates constant in space and over time. In section 2, we derive equations for the correlation

functions. As in Kondratiev and Skorokhod (2006) and Kondratiev et al. (2008), the space

is continuous and the field of particles has multiplicity one. In section 3, the uniform

estimates on the correlation functions and the Carleman condition allow us to prove the

existence of a unique steady state. We show that the correlation functions converge to

their limiting values exponentially fast and therefore the initial condition quickly loses

influence on the current state.

Molchanov and Whitmeyer (2017) and Han et al. (2017) review several classes of

population models on discrete graphs, including lattices. Our analysis applies to a large

class of population models in Rd, in particular isotropic models, which do not exist in the

lattice setting.
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1.1 Model

Populations in Rd, d ≥ 1, are realizations of a point field, where n(t,Γ) denotes the total

number of particles in a region Γ ∈ B(Rd) at time t ≥ 0. B(Rd) denotes the Borel sigma-

field in Rd. Initially, the configuration n(0,Γ) is a realization of the Poisson point field in

Rd of constant intensity λ > 0, that is,

P
(
n(0,Γ) = m

)
=

(λ|Γ|)m

m!
e−λ|Γ| (1)

for integer m ≥ 0, where |Γ| is the Lebesgue measure of Γ. Each of the n(t,Γ) individual

particles in Γ evolves independently as a branching random walk. Particles can:

immigrate: given a constant γ > 0, particles independently appear in Rd according to

a Poisson point field of intensity γ, so that a particle appears infinitesimally close to x

during a time interval [t, t+ dt) with probability asymptotically equal to γ dxdt.

move around: given a constant κ > 0 and a symmetric probability kernel a(z), z ∈ Rd,

that is,

a(z) ≥ 0 , a(z) ≡ a(−z) ,

∫

Rd

a(z) dz = 1 , (2)

individual particles jump independently with generator

κLaψ(x) = κ

∫

Rd

(
ψ(x+ z)− ψ(x)

)
a(z) dz . (3)

The probability that a particle at x jumps out of its location during the time interval

[t, t+dt) approximately equals κ dt; the probability that the particle lands infinitesimally

close to x+ z approximately equals a(z) dz. For simplicity, the Fourier transform â(k) of

the kernel a(z) is assumed integrable:

â(k) =

∫

Rd

eikza(z) dz ∈ L1(Rd) , (4)

so that the kernel a(z) is uniformly continuous.

split: the probability that a particle at x generates an offspring during the time interval
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[t, t + dt) approximately equals β dt, with fixed birth rate β > 0. The probability that

offspring appears infinitesimally close to x+z is b(z) dz, where b(z), z ∈ Rd, is a symmetric

probability kernel with properties as in Eq. (2) and (4), that is,

b(z) ≥ 0 , b(z) ≡ b(−z) ,

∫

Rd

b(z) dz = 1 ,

b̂(k) =

∫

Rd

eikzb(z) dz ∈ L1(Rd) .

(5)

As in Eq. (3), we introduce the corresponding generator

βLbψ(x) = β

∫

Rd

(
ψ(x+ z)− ψ(x)

)
b(z) dz . (6)

die: individual particles die independently at constant rate µ > 0, that is, the probability

that a given particle dies within the time interval [t, t + dt) is asymptotically equal to

µ dt. We assume that µ > β, so that the branching mechanism is subcritical.

Unlike in the lattice case, the local limit theorem for densities does not necessarily

follow from the central limit theorem. Pestman et al. (2016) give an example of a density

with compact support (and thus satisfying the central limit theorem) but with unbounded

convolutions of all orders (and thus not satisfying the local limit theorem). The tech-

nical condition of multiplicity one in Kondratiev and Skorokhod (2006) and Kondratiev

et al. (2008), as the condition that â(k) and b̂(k) are integrable, exclude cases where the

local density of particles remains unbounded. Our densities a(z) and b(z) are uniformly

continuous, and hence bounded in Rd, implying that neither migration nor dispersal can

lead to local accumulations of particles.

Sewastjanow (1974, Chap. X) studies diffusive branching random processes in bounded

domains. His analysis does not apply to jump processes in the whole space.

1.2 Correlation functions

Correlation functions encode stochastic properties of the population dynamics. For in-

teger n ≥ 1 and a collection of distinct points {x1, . . . , xn} ⊂ Rd, the n-th correlation
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function k
(n)
t (x1, . . . , xn) is the density of the probability

P
(
n(t, x1 + dx1) = 1, . . . , n(t, xn + dxn) = 1

)
(7)

that an infinitesimal neighborhood of each point x1, . . . , xn contains a single particle. By

the choice of the initial distribution,

k
(n)
0 (x1, . . . , xn) = λn , n ≥ 1 . (8)

In the setting of the contact model, Kondratiev and Skorokhod (2006) and Kondratiev

et al. (2008) define the correlation functions and construct the corresponding dynamics.

The first correlation function k
(1)
t (x) is the density of the particles at location x at

time t,

P
(
n(t, x+ dx) = 1

)
= k

(1)
t (x) dx . (9)

Therefore, the average total number of particles in Γ ∈ B(Rd) at time t is

m1(t,Γ) = E n(t,Γ) =

∫

Γ

k
(1)
t (x) dx . (10)

Write (n)l := n(n− 1) . . . (n− l+1) for the falling factorial of order l ≥ 1. Then the l-th

factorial moment of n = n(t,Γ) is

ml(t,Γ) = E
(
n(t,Γ)

)
l
=

∫

Γ

· · ·

∫

Γ

k
(l)
t (x1, . . . , xl) dx1 . . . dxl . (11)

For the initial configuration,

ml(0,Γ) =
(
λ|Γ|

)l
, l ≥ 1 , Γ ∈ B(Rd) . (12)

1.3 Results

We use the fact that the family of correlation functions k
(n)
t (x1, . . . , xn), n ≥ 1, satisfies

a system of parabolic equations with initial conditions k
(n)
0 (x1, . . . , xn) = λn. Recall the
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stability assumption µ > β.

Theorem 1. For each integer n ≥ 1 and for all (x1, x2, . . . , xn) ∈ (Rd)n with pairwise

distinct xi, there exists k
(n)
∞ (x1, . . . , xn) such that, as t→ ∞,

k
(n)
t (x1, . . . , xn) → k(n)∞ (x1, . . . , xn) . (13)

Moreover, there exists a positive constant C = C(λ, µ, β, γ) such that for each integer

n ≥ 1,
∥∥k(n)

∥∥ := sup
t≥0

sup
x1,...,xn

∣∣k(n)t (x1, . . . , xn)
∣∣ ≤ n!Cn . (14)

The limiting correlation functions
{
k
(n)
∞ (x1, . . . , xn)

}
can be computed in a recursive

way using Eq. (72) and (73) below. The upper bound in Eq. (14) does not depend on

κ, which is consistent with the heuristic argument that more intense diffusion mixes the

configuration faster and prevents the local density of the field from growing too large.

An important corollary of Theorem 1 is that, for all κ ≥ 0 and γ ≥ 0, the model of a

branching random walk with immigration, introduced in section 1.1, possesses a steady

state:

Theorem 2. For all Borel Γ ∈ B(Rd),

n(t,Γ) → n(∞,Γ) (15)

in law, as t → ∞. The distribution of
{
n(∞,Γ) : Γ ∈ B(Rd)

}
is the unique steady state

for the population dynamics of section 1.1.

While deriving an explicit description of the steady state from the limiting correlation

functions
{
k
(n)
∞ (x1, . . . , xn)

}
might not be immediate, we show below that its first moment

is constant in space and its second moment is invariant by translation. The latter property

also persists to higher moments.

Under the key assumption µ > β, by Eq. (11), the factorial moments mn(t,Γ) also
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converge: for each Γ ∈ B(Rd),

mn(t,Γ) → mn(∞,Γ) as t→ ∞ . (16)

Moreover, the uniform estimate of Eq. (14) implies the bound on the factorial moments:

|mn(t,Γ)| ≤ n!
(
C|Γ|

)n
, 0 ≤ t ≤ ∞ , (17)

which, by Carleman’s condition (Feller, 1971, section VII.3):

∑

n≥1

(
m2n(t,Γ)

)− 1

2n = ∞ , (18)

implies the existence of a unique distribution
{
n(t,Γ) : Γ ∈ B(Rd)

}
for each t ∈ [0,∞].

Alternatively, a slightly weaker condition (Feller, 1971, section XV.4, Eq. (4.15)),

lim sup
n→∞

1

n

(
mn(t,Γ)

) 1

n <∞ , (19)

is also applicable here.

Each individual alive at t = 0 as well as each immigrant arriving at t > 0 generates

a subpopulation, which evolves according to the rules of section 1.1 with γ = 0 (no im-

migration). Therefore each of the n(t,Γ) individuals in Γ at time t > 0 can be tracked

back to its earliest ancestor, either present at t = 0 or arrived as an immigrant. Then

n(t,Γ) is the sum of subpopulation sizes, where each subpopulation evolves as a (subcrit-

ical) branching random walk with migration governed by Eq. (3), with birth governed by

Eq. (6) and mortality at fixed rate µ > 0:

n(t,Γ) =
∑

i

n(t− ti, yi,Γ) , (20)

where the sum runs over all individual ancestors, with (yi, ti) ∈ Rd × [0, t] denoting

the location and the time of their individual arrivals, and where n(t − ti, yi,Γ) is the

corresponding number of descendants in the Borel set Γ at time t ≥ 0. The choice of
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the initial population and the immigration process guarantee that the total number of

possible ancestors arriving during the time interval [0, t] is countable.

When combined with stochastic monotonicity of the solution n(t,Γ), Theorems 1

and 2 imply stability of the evolution with respect to small perturbations of the rates (a

random variable X is stochastically smaller than a random variable Y (denoted X 4 Y )

if P(X ≥ z) ≤ P(Y ≥ z) for all z ∈ R). Indeed, if βx and µx satisfy

βx = β + εξx , µx = µ+ εηx , where sup
x∈Rd

(
|ξx|, |ηx|

)
≤ 1 , (21)

with possibly random (ξx, ηx)x∈Rd , for the particle field n(t,Γ) corresponding to birth

and death rates (βx, µx)x∈Rd , the particle field n∗(t,Γ) corresponding to the constant

rates (β + ε, µ − ε), and the particle field n∗(t,Γ) corresponding to the constant rates

(β − ε, µ+ ε), we have Theorem 3:

Theorem 3. If µ−β > 2ε > 0 and the rates (ξx, ηx)x∈Rd are given by Eq. (21), then, for

all t ≥ 0 and Γ ∈ B(Rd), the stochastic order

n∗(t,Γ) 4 n(t,Γ) 4 n∗(t,Γ) (22)

holds.

We verify the stochastic order of Eq. (22) by constructing the three processes n∗, n,

and n∗ on a common probability space; this procedure is known as coupling (Lindvall,

1992). Thanks to the decomposition in Eq. (20) into the sum of the subpopulations, it

is sufficient to verify the stochastic comparison of Eq. (22) for individual subpopulations

with common ancestor. Because

β − ε ≤ βx ≤ β + ε and µ+ ε ≥ µx ≥ µ− ε , (23)

this comparison is achieved as described in (Lindvall, 1992). This implies the Lyapunov

stability of Theorem 3.

We present the construction on the example of n∗ and n∗ for a single subpopulation
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starting from x ∈ Rd at time t = 0. Then n∗(0,Γ) 4 n∗(0,Γ) and we show that the

point field for the process n∗ is a subset of the point field for the process n∗ for all t ≥ 0.

Because, until extinction, the total number of particles n∗(t,Rd) in a single subpopulation

forms a linear continuous-time birth-and-death process, at every time t ≥ 0 its size is

almost surely finite, which implies that the processes n∗ and n∗ are well defined.

Assume that, for fixed t ≥ 0, the configuration n∗ is contained in that of n∗ and that

the next jump occurs at time s > t. If this jump occurs at a location belonging to n∗

only, it follows the rules of section 1.1 with γ = 0. Otherwise, it originates at a location

y common to both processes, and is determined by the smallest of the five independent

exponential variables

ξ1 ∼ Exp(µ− ε) , ξ2 ∼ Exp(β − ε) , ξ3 ∼ Exp(κ) ,

ξ4 ∼ Exp(2ε) , ξ5 ∼ Exp(2ε) .

(24)

If ξ1 is the smallest, the particle at y dies in both processes n∗ and n∗. If it is ξ2, an

offspring is created in both processes at location y+ z, where z is generated by the kernel

b( · ). If it is ξ3, the particle moves in both processes from y to y+ z, where z is generated

by the kernel a( · ). If it is ξ4, the particle dies in n∗ (but not in n∗). If it is ξ5, an offspring

is created in n∗ at location y+z, where z is generated by the kernel b( · ). Then the changes

in n∗ have rates (β − ε, µ+ ε) while the changes in n∗ have rates (β + ε, µ− ε); after the

jump, all particles are almost surely in distinct locations, and the configuration of n∗ is

still a subset of n∗. This construction goes further by induction until the subpopulation

dies out in both processes. Because individual subpopulations evolve independently of

one another, the full configuration of n∗ is a subset of the full configuration of n∗, and

therefore n∗(t,Γ) 4 n∗(t,Γ) for all t ≥ 0. The argument for Eq. (22) is analogous.

The stochastic order in Eq. (22) also results from varying the immigration rate. In-

deed, consider the particle field n(t,Γ) corresponding to birth, death and immigration

rates (β, µ, γx)x∈Rd , the particle field n∗(t,Γ) corresponding to the constant rates (β, µ, γ∗),
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and the particle field n∗(t,Γ) corresponding to the constant rates (β, µ, γ∗). Then

γ∗ ≤ γx ≤ γ∗ , (25)

where (possibly random) γx can depend on x ∈ Rd, implies the stochastic order of

Eq. (22). Furthermore, the stochastic order of Eq. (22) is true if the birth and death

rates satisfy Eq. (23) and the immigration rates satisfy Eq. (25).

The Lyapunov stability of Theorem 3 can fail at criticality, where µ = β (Kondratiev

and Skorokhod, 2006; Kondratiev et al., 2008). Indeed, if the random rates βx and µx in

Eq. (21) satisfy the criticality assumption

Eβx ≡ β = µ ≡ Eµx , (26)

while the joint distribution of (βx, µx) allows the existence of large enough regions Γ where

βx − µx > ε > 0 with positive probability, then the population count n(t,Γ) may keep

growing as t→ ∞. Kondratiev et al. (2017) use spectral analysis to derive this result for

a general class of Schrödinger operators.

We now prove Theorem 1.

2 Time evolution of correlation functions

We derive parabolic equations for the family of the correlation functions k
(n)
t (x1, . . . , xn),

n ≥ 1, defined in section 1.2, with initial conditions k
(n)
0 (x1, . . . , xn) = λn. A key feature of

the resulting system is that the equation for k
(n)
t (x1, . . . , xn) includes correlation functions

of lower orders.

To study the first correlation function k
(1)
t (x1), consider the events

A
(1)
t,t+dt =

{
n(t+ dt, x+ dx) = 1

∣∣ n(t, x+ dx) = 1
}
,

B
(1)
t,t+dt =

{
n(t+ dt, x+ dx) = 1

∣∣ n(t, x+ dx) = 0
}
.

(27)

9



Then, up to the errors of higher order,

k
(1)
t+dt(x) dx = P

(
n(t+ dt, x+ dx) = 1

)

= P
(
A

(1)
t,t+dt

)
k
(1)
t (x) dx+ P

(
B

(1)
t,t+dt

)(
1− k

(1)
t (x) dx

)
.

(28)

As the leading contribution to the event A
(1)
t,t+dt comes from the trajectories in which the

state of the infinitesimal neighborhood of x does not change during the time interval

[t, t+ dt), at the first order:

P
(
A

(1)
t,t+dt

)
= 1− (κ+ µ) dt . (29)

The splitting move at x during the time interval [t, t+dt) is not excluded, as the parental

particle stays at its location. Likewise, the leading contribution to the event B
(1)
t,t+dt comes

from the arrival of a single particle in the infinitesimal neighborhood of x (due to either

immigration, migration, or a splitting event at a different location). We thus get

P
(
B

(1)
t,t+dt

)
=

(
γ + κ

∫

Rd

k
(1)
t (x− z) a(z) dz + β

∫

Rd

k
(1)
t (x− z) b(z) dz

)
dt dx

=
(
γ + κLak

(1)
t (x) + βLbk

(1)
t (x) + (κ+ β)k

(1)
t (x)

)
dt dx ,

(30)

where the last equality follows by symmetry of the kernels a( · ) and b( · ),

∫

Rd

k
(1)
t (x− z) a(z) dz =

∫

Rd

k
(1)
t (x− z) a(−z) dz =

∫

Rd

k
(1)
t (x+ z) a(z) dz . (31)

Putting all this together, we deduce

∂k
(1)
t

∂t
(x) =

(
κLa + βLb

)
k
(1)
t (x) + (β − µ)k

(1)
t (x) + γ (32)

with the initial condition k
(1)
0 (x) ≡ λ.

Higher-order correlation functions are derived similarly. Write A
(n)
t,t+dt for the event

that simple occupancy of infinitesimal neighborhoods of the locations in the collection

xn := (x1, . . . , xn) does not change during the infinitesimal time interval [t, t+ dt). Then,
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at the first order,

P
(
A

(n)
t,t+dt

)
= 1− n(κ+ µ) dt . (33)

Denote by B
(n,i)
t,t+dt the event that an initially unoccupied infinitesimal neighborhood of the

location xi receives a single particle during the time interval [t, t+dt), while infinitesimal

neighborhoods of all other locations in xn,i := {xj}j 6=i,j=1,...,n remain simply occupied

during [t, t + dt). The new particle at xi arrives either as an offspring of a single parent

from xn,i or from a location not in xn,i (due to either migration or arrival of an offspring

of a particle there). The former event C
(n,i)
t,t+dt satisfies

P
(
C

(n,i)
t,t+dt

)
=

∑

j:j 6=i

βb(xi − xj) dt dxi , (34)

implying that

P
(
B

(n,i)
t,t+dt

)
=

(
γ + κ

∫

Rd

k
(n)
t (x1, . . . , xi−1, xi − z, xi+1 . . . , xn) a(z) dz

+ β

∫

Rd

k
(n)
t (x1, . . . , xi−1, xi − z, xi+1 . . . , xn) b(z) dz

)
dt dxi

+
∑

j:j 6=i

βb(xi − xj) dt dxi .

(35)

Up to higher-order terms, k
(n)
t+dt(xn) dx1 . . . dxn equals the probability

P
(
n(t+ dt, x1 + dx1) = 1, . . . , n(t+ dt, xn + dxn) = 1

)

= P
(
A

(n)
t,t+dt

)
k
(n)
t (xn)

n∏

j=1

dxj +
n∑

i=1

P
(
B

(n,i)
t,t+dt

)
k
(n−1)
t (xn,i)

∏

j:j 6=i

dxj .
(36)

The correlation function k
(n)
t (xn) solves the forward Kolmogorov equation

∂k
(n)
t

∂t
(xn) = n(β − µ) k

(n)
t (xn) +

n∑

i=1

(
κLi

a + βLi
b

)
k
(n)
t (xn)

+
n∑

i=1

(
β
∑

j:j 6=i

b(xi − xj) + γ
)
k
(n−1)
t (xn,i) ,

(37)
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where we use the restricted operators Li
a and Li

b:

Li
ak

(n)
t (x1, . . . , xn) =

∫

Rd

(
k
(n)
t (x1, . . ., xi−1, xi + z, xi+1 . . . , xn)

− k
(n)
t (x1, . . . , xn)

)
a(z) dz

(38)

and

Li
bk

(n)
t (x1, . . . , xn) =

∫

Rd

(
k
(n)
t (x1, . . ., xi−1, xi + z, xi+1 . . . , xn)

− k
(n)
t (x1, . . . , xn)

)
b(z) dz .

(39)

3 Proofs

We derive the a priori bounds for the correlation functions k
(n)
t (x1, . . . , xn) by analyzing

Eq. (32) and (37). We fix

ν := µ− β > 0 . (40)

The uniform bounds of Eq. (14) follow from Lemma 4:

Lemma 4. For an integer n ≥ 1, define
∥∥k(n)

∥∥ as in Eq. (14). Then

∥∥k(1)
∥∥ ≤ λ+

γ

ν
, (41)

and, for n > 1,
∥∥k(n)

∥∥ ≤ λn +
∥∥k(n−1)

∥∥
(γ
ν
+
βB

ν
(n− 1)

)
, (42)

where

B :=
1

(2π)d

∫

Rd

∣∣̂b(k)
∣∣ dk . (43)

Using the bounds in Eq. (41) and (42), we deduce that, for all n ≥ 1,

∥∥k(n)
∥∥ ≤ n!

(
λ+ (γ + βB)/ν

)n
, (44)

which is the bound in Eq. (14). It is thus sufficient to verify Lemma 4.
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3.1 First correlation function

We proceed by induction in n and start by considering the case n = 1. The first correlation

function k
(1)
t (x) satisfies Eq. (32),

∂k
(1)
t

∂t
(x) = L k

(1)
t (x)− ν k

(1)
t (x) + γ , k

(1)
0 (x) = λ , (45)

where

L := κLa + βLb (46)

and ν is as in Eq. (40). For ν 6= 0, the solution of Eq. (45) is

k
(1)
t (x) =

γ

ν
+
(
λ−

γ

ν

)
e−νt ≡

γ

µ− β
+
(
λ−

γ

µ− β

)
e−(µ−β)t , (47)

which, for ν = µ − β > 0, implies Eq. (41). By the maximum principle for parabolic

equations (Vasy, 2015), k
(1)
t (x) given by Eq. (47) is the only solution to Eq. (45). Due

to the spatial homogeneity of Eq. (45), this solution does not depend on the spatial

variable x.

The asymptotics of the solution k
(1)
t (x) of Eq. (45) is such that:

1) if β > µ, then k
(1)
t (x) → ∞ exponentially as t→ ∞;

2) if β = µ, then k
(1)
t (x) → ∞ linearly as t→ ∞;

3) if β < µ, then k
(1)
t (x) → γ/(µ− β) exponentially as t→ ∞.

The limit behavior of the solution does not depend on the initial condition k
(1)
0 (x). When

it is convenient, we assume that k
(1)
0 (x) vanishes identically. The assumption µ > β

characterizes the region of non-explosive behavior of the first correlation function k
(1)
t .

3.2 Induction step

For n > 1, denote the single coordinate analogues of the operator in Eq. (46) by

Li := κLi
a + βLi

b , i = 1, . . . , n , (48)
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where Li
a and Li

b are defined as in Eq. (38). Consider the particular case n = 2.

3.2.1 Second correlation function

The second correlation function k
(2)
t satisfies the case n = 2 of Eq. (37):

∂k
(2)
t

∂t
(x1, x2) = −2ν k

(2)
t (x1, x2) +

(
L1 + L2

)
k
(2)
t (x1, x2)

+ 2
(
β b(x1 − x2) + γ

)
k
(1)
t ,

(49)

where we used the fact that b( · ) is symmetric and that, by Eq. (47), k
(1)
t (x) ≡ k

(1)
t does

not depend on the spatial variable. As the last term in Eq. (49) depends only on x1−x2,

we deduce that

k
(2)
t (x1, x2) = ft(x1 − x2) ≡ ft(x2 − x1) , (50)

with a symmetric function ft( · ) solving the forward Kolmogorov equation

∂ft
∂t

(z) = −2ν ft(z) + 2L ft(z) + 2(βb(z) + γ) k
(1)
t , f0(z) = λ2 . (51)

By Duhamel’s principle (Vasy, 2015), the solution to Eq. (51) is

ft(z) = λ2e−2νt + 2

∫ t

0

e−2ν(t−s)e2(t−s)L(βb(z) + γ) k(1)s ds . (52)

Our analysis of ft(z) is based on Lemma 5. Recall the generator L from Eq. (46),

Lemma 5. The family
{
euL : u ≥ 0

}
constitutes a positive semigroup of bounded linear

operators. Moreover, if L̂ is the Fourier transform of L, then for each real u ≥ 0,

0 ≤ êuL = euL̂ ≤ 1 . (53)

Proof. With I denoting the identity operator, denote

(
L+ (κ+ β)I

)
ψ(x) :=

∫

Rd

ψ(x+ z)
(
κa(z) + βb(z)

)
dz . (54)
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The assumptions in Eq. (2) and (5) imply that the right-hand side of Eq. (54) is a bounded

positive operator. This property is inherited by the semigroup

euL = e−u(κ+β) eu(L+(κ+β)I) . (55)

Because the assumptions of Eq. (2) imply |â(k)| ≤ 1 for all k ∈ Rd, the Fourier

transform of the generator La in Eq. (3) satisfies L̂a = â − 1 ∈ [−2, 0]. Likewise, L̂b =

b̂ − 1 ∈ [−2, 0]. By symmetry of a( · ) and b( · ), the right-hand side of Eq. (54) is a

convolution. For each function ψ : Rd → R,

L̂ψ =
(
κL̂a + βL̂b

)
ψ̂ =

(
κ(â− 1) + β(̂b− 1)

)
ψ̂ ≡ L̂ψ̂ , (56)

where ψ̂ is the Fourier transform of ψ. By induction, L̂n = L̂n for every integer n ≥ 0,

and therefore, for every u ≥ 0,

êuLψ =
∑

n≥0

un

n!
L̂n ψ̂ = euL̂ ψ̂ = eu(κ(â−1)+β(̂b−1)) ψ̂ , (57)

from which we deduce Eq. (53).

By Eq. (5), the Fourier transform b̂(k) is integrable. Therefore, for every z ∈ Rd and

u ≥ 0,

euLb(z) =
1

(2π)d

∫

Rd

êuL b̂(k)e−i(k,z) dk (58)

is well defined. Eq. (58) and Eq. (53) imply the uniform bound

∣∣euLb(z)
∣∣ ≤ 1

(2π)d

∫

Rd

∣∣êuL b̂(k)
∣∣ dk ≤

1

(2π)d

∫

Rd

∣∣̂b(k)
∣∣ dk =: B . (59)

To study the large-time behavior of the function ft(z) in Eq. (52), we use the fact
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that, as t→ ∞,

∫ t

0

e−2ν(t−s) ds =

∫ t

0

e−2νu du =
1

2ν

(
1− e−2νt

)
→

1

2ν
,

∫ t

0

e−2ν(t−s) e−νs ds = e−νt

∫ t

0

e−ν(t−s) ds = O
(
e−νt

)
→ 0 .

(60)

Eq. (53) and (59) imply that the absolute value of the integral in Eq. (52) is bounded

by

∫ t

0

e−2ν(t−s)
(
β
∣∣e2(t−s)Lb(z)

∣∣+ γ
)
‖k(1)s ‖ ds ≤

(
βB + γ

)∥∥k(1)
∥∥
∫ t

0

e−2ν(t−s) ds . (61)

As the first term on the right-hand side of Eq. (52) decays exponentially, Eq. (60) and

(61) imply the case n = 2 of the induction estimate in Eq. (42).

To derive the limit of ft( · ) as t→ ∞, we use the fact that Eq. (60) implies

∣∣∣
∫ t

0

e−2ν(t−s)e2(t−s)L(βb(z) + γ) (k(1)s − γ/ν) ds
∣∣∣

≤ (βB + γ)
∣∣λ− γ/ν

∣∣
∫ t

0

e−2ν(t−s)e−νs ds = O
(
e−νt

)
→ 0 .

(62)

Therefore the large-time behavior of the integral in Eq. (52) comes from the constant

term γ/ν ≡ k
(1)
∞ in Eq. (47).

For a function ψ : Rd → R with integrable Fourier transform ψ̂, denote

(Eψ)(z) :=
1

(2π)d

∫

Rd

ψ̂(k) e−i(k,z)

ν − L̂(k)
dk , (63)

which is well defined as −L̂(k) ≥ 0 for all k ∈ Rd. Using the relation

∫ t

0

e−2ν(t−s)e2(t−s)Lb(z) ds =
1

(2π)d

∫

Rd

b̂(k) e−i(k,z)

∫ t

0

e−2(ν−L̂)u du dk (64)

and the inequality

∣∣∣
∫ t

0

e−2(ν−L̂)u du−
1

2(ν − L̂(k)

∣∣∣ ≤ 1

2ν
e−2νt , (65)
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following from the first property in Eq. (60), we obtain the bound

∣∣∣2
∫ t

0

e−2ν(t−s)e2(t−s)Lb(z) ds− (Eb)(z)
∣∣∣ ≤ B

ν
e−2νt (66)

and deduce that, as t→ ∞,

∣∣∣k(2)t (x1, x2)−
γ2

ν2
−
βγ

ν

(
Eb

)
(x1 − x2)

∣∣∣ = O
(
e−νt

)
, (67)

uniformly in z ∈ Rd. Theorem 1 with n = 2 follows.

3.2.2 Higher-order correlation functions

We solve the Kolmogorov Eq. (37) similarly. Denoting

Ln :=
n∑

i=1

Li ≡
n∑

i=1

(
κLi

a + βLi
b

)
(68)

and applying Duhamel’s principle (Vasy, 2015), we represent its solution as

k
(n)
t (xn) = λn e−nνt

+

∫ t

0

e−(nν−Ln)(t−s)

n∑

i=1

(
β
∑

j:j 6=i

b(xi − xj) + γ
)
k(n−1)
s (xn,i) ds .

(69)

As in the case n = 2, we upper bound the absolute value of the last integral by

∥∥k(n−1)
∥∥
∫ t

0

e−nν(t−s)
(
nγ + β

∑

i 6=j:i,j=1,...,n

∣∣e(t−s)Lnb(xi − xj)
∣∣) ds

≤
∥∥k(n−1)

∥∥(γ

ν
+ βB

ν
(n− 1)

)
,

(70)

where the estimate in Eq. (59) is used for each pair (i, j) with i 6= j, i, j = 1, . . . , n.

Together with the bound λn on the “initial condition” term in Duhamel’s representation

of Eq. (69), we deduce Eq. (42).
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3.3 Convergence of the correlation functions

We extend the argument of the previous section to estimate the speed of convergence of

the correlation functions. For every integer n ≥ 1 and the non-positive operator Ln from

Eq. (68), consider the resolvent

Rν
n ≡ Rn(ν) :=

(
nν − Ln

)−1
, (71)

where, as in Eq. (40), ν = µ− β > 0. We recursively define

k(1)∞ (x1) :=
γ

ν
, x1 ∈ Rd , (72)

and, using xn and xn,i defined in section 2,

k(n)∞ (xn) := Rν
n

( n∑

i=1

(
β
∑

j:j 6=i

b(xi − xj) + γ
)
k(n−1)
∞ (xn,i)

)
. (73)

In terms of differences

k̃(n)s (xn) := k(n)s (xn)− k(n)∞ (xn) , (74)

we have Proposition 6.

Proposition 6. There exists a positive sequence (Cn)n≥1 such that, for all t ≥ 0,

sup
xn∈(Rd)n

∣∣k̃(n)t (xn)
∣∣ ≤ Cn

∥∥k(n)
∥∥ e−νt . (75)

This implies that, as t→ ∞, the correlation functions k
(n)
t ( · ) converge exponentially

to their limits k
(n)
∞ ( · ) introduced in Eq. (73). In particular, the family

{
k
(n)
∞ ( · )

}
n≥1

satisfies the Carleman condition in Eq. (18) and thus corresponds to a unique steady

state for the model of section 1.1.

Proof. Using Duhamel’s formula in Eq. (69) and the decomposition of Eq. (74), we use

mathematical induction to prove inequality (75). The argument defines the sequence

(Cn)n≥1 recursively.
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For n = 1, the claim is true with C1 = 1. To verify the induction step, we consider

the contribution of immigration and birth in Eq. (69) separately.

Because each L̃i := Li + (κ + β)I is a non-negative integral operator (as is L̃n :=

Ln + n(κ+ β)I), the difference

∫ t

0

e−(nν−Ln)(t−s)

n∑

i=1

k(n−1)
∞ (xn,i) ds−Rν

n

( n∑

i=1

k(n−1)
∞ (xn,i)

)

=

∫ ∞

t

e−(nν−Ln)v

n∑

i=1

k(n−1)
∞ (xn,i) dv

(76)

is upper bounded in absolute value by

∫ ∞

t

e−n(ν+κ+β)v evL̃n

n∑

i=1

∣∣k(n−1)
∞ (xn,i)

∣∣ ≤ n

∫ ∞

t

e−n(ν+κ+β)v evL̃n

∥∥k(n−1)
∥∥ dv

= n

∫ ∞

t

e−nνv evLn

∥∥k(n−1)
∥∥ dv

= n
∥∥k(n−1)

∥∥
∫ ∞

t

e−nνv dv =
1

ν

∥∥k(n−1)
∥∥ e−nνt .

(77)

By the induction hypothesis,

∣∣∣
∫ t

0

e−(nν−Ln)(t−s)

n∑

i=1

k̃(n−1)
s (xn,i) ds

∣∣∣

≤ nCn−1

∫ t

0

e−n(ν+κ+β)(t−s) eL̃n(t−s)
∥∥k(n−1)

∥∥e−νs ds

≤ nCn−1

∥∥k(n−1)
∥∥
∫ t

0

e−nν(t−s)−νs ds

≤
nCn−1

(n− 1)ν

∥∥k(n−1)
∥∥e−νt ≤

2Cn−1

ν

∥∥k(n−1)
∥∥e−νt .

(78)

Together with the bound of Eq. (77), this yields

∣∣∣γ
∫ t

0

e−(nν−Ln)(t−s)

n∑

i=1

k(n−1)
s (xn,i) ds− γRν

n

[ n∑

i=1

k(n−1)
∞ (xn,i)

]∣∣∣

≤
γ

ν

∥∥k(n−1)
∥∥(2Cn−1 + e−(n−1)νt

)
e−νt ≤

γ

ν

(
2Cn−1 + 1

)∥∥k(n−1)
∥∥e−νt .

(79)

Likewise, with
∑

j→i :=
∑

i

∑
j:j 6=i denoting the sum over all configurations where the
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particle at xi is born by the particle at xj,

∣∣∣
∫ t

0

e−(nν−Ln)(t−s)
∑

j→i

b(xi − xj)k̃
(n−1)
s (xn,i) ds

∣∣∣

≤ n(n− 1)Cn−1‖b‖
∥∥k(n−1)

∥∥
∫ t

0

e−nν(t−s)−νs ds

≤
nCn−1

ν
‖b‖

∥∥k(n−1)
∥∥e−νt ,

(80)

where ‖b‖ := supx |b(x)| is a finite constant, and

∣∣∣
∫ t

0

e−(nν−Ln)(t−s)
∑

j→i

b(xi − xj)k
(n−1)
∞ (xn,i) ds

−Rν
n

(∑

j→i

b(xi − xj)k
(n−1)
∞ (xn,i)

)∣∣∣

≤
2(n− 1)

ν
‖b‖

∥∥k(n−1)
∥∥e−nνt ,

(81)

implying that

∣∣∣β
∫ t

0

e−(nν−Ln)(t−s)
∑

j→i

b(xi − xj)k
(n−1)
s (xn,i) ds

−βRν
n

(∑

j→i

b(xi − xj)k
(n−1)
∞ (xn,i)

)∣∣∣

≤
βn

ν
(Cn−1 + 2)‖b‖

∥∥k(n−1)
∥∥e−νt .

(82)

Finally, inequality (75) follows with Cn = 2(Cn−1+1)
ν

(
γ + β‖b‖n

)
.

The relation of Eq. (73) allows a description of the limiting correlation functions
{
k
(n)
∞ (x1, . . . , xn)

}
n≥1

in terms of the family of all directed graphs on the vertices x1,

. . . , xn, where the directed edges indicate parental relations. Such graphs are known in

combinatorics as directed forests.

4 Conclusion

The population dynamics introduced in section 1.1 is Lyapunov stable in that its qual-

itative behavior is unchanged under suitable perturbations of the main parameters of

20



the model. For each value of the immigration rate, the finite-time distribution of the

model converges exponentially to a unique steady state. The density of this steady state

increases with the immigration rate.
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