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We analyze the temporal evolution of emerging fields within several scientific disciplines in 
terms of numbers of authors and publications. From bibliographic searches we construct databases 
of authors, papers, and their dates of publication. We show that the temporal development of each 
field, while different in detail, is well described by population contagion models, suitably adapted 
from epidemiology to reflect the dynamics of scientific interaction. Dynamical parameters are 
estimated and discussed to reflect fundamental characteristics of the field, such as time of 
apprenticeship and recruitment rate. We also show that fields are characterized by simple scaling 
laws relating numbers of new publications to new authors, with exponents that reflect increasing or 
decreasing returns in scientific productivity. 

Introduction 

Generations of scholars and science policymakers have chased an elusive goal: 
developing a science of science, some quantitative means of describing – and perhaps 
predicting – the growth and development of scientific research. For decades, scientists, 
historians, sociologists, bibliographers, and other researchers have sought some means 
of bringing order to the highly complex research enterprise. What factors might explain 
the changes over time of numbers of publications on a given topic, or numbers of 
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authors working in a given field? What interactions between researchers might account 
for a scientific community’s growth and change? From the welter of potential 
influences on the scientific process, might some simplified, efficient model capture the 
bulk dynamics of how scientific fields emerge and develop?  

Crucial steps were taken in the 1960s. Some pointed out the pervasiveness of 
logistic (or “S-shaped”) curves [1]: whether measuring numbers of authors or numbers 
of publications, many fields began with a burst of exponential growth followed by 
saturation and an eventual steady-state. (The same pattern held for many other features 
of science, ranging from the number of known chemical elements over time to the 
energies achieved by particle accelerators.) The ubiquity of such logistic curves, and 
their repeated appearance from the age of Galileo and Newton to the present day, 
seemed to point to some basic underlying structures of science (see also [2]).  

Around the same time, other scholars began importing tools from epidemiology to 
study the spread of scientific ideas [3, 4]. (For a review, see [5].) Much as a virus 
spreads via contact from person-to-person, throughout a susceptible population, so too 
do novel ideas “infect” researchers. The simplest formulation, involving three classes of 
people (susceptibles, infectives, and those who have recovered), moreover, could 
reproduce logistic curves for such time series as numbers of publications or authors  
[3, 6]. More recently, others have focused on the structure and evolution of networks of 
co-authorship and citation (see, e.g., [7–11]). Together these types of studies provide 
much-needed statistical structural analyses of how scientific fields emerge and change 
over time.  

Since these pioneering studies were published, new tools and resources have 
become available. Digital libraries and archives, in tandem with efficient search engines 
and the computational power to retrieve and parse massive amounts of information, 
make it practicable to expand the repertoire of models, and to test them against 
empirical datasets far larger than those considered in the original studies.  

Building on many of these insights, we have developed a coarse-grained approach to 
modeling the time-evolution of scientific fields mathematically. Like earlier efforts, our 
model is inspired by epidemic contact processes suitably adapted to take into account 
the nature of social interactions and dynamical processes by which scientific ideas 
spread – social interactions gleaned from close empirical study of historical cases [12]. 
Variations in the small number of parameters can increase or hamper the speed at which 
a field develops. Moreover, we have tested our simple model against data from six 
separate emergent scientific fields, covering a broad range of disciplines, from physical 
sciences to medical research to cutting-edge technology. Some fields are essentially 
theoretical in nature, others more exclusively experimental. Many show signs of the 
tell-tale logistic curve, while others do not. Yet in each case, our parsimonious model 
produces extremely good fits to the data.  
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We have also pursued a simple measure of a field’s productivity. Strict scaling laws 
appear to hold for each of the six scientific fields studied here, relating the number of 
new publications on a given topic over some time period (say a year) to the 
corresponding number of new authors entering the field during that time. Substituting 
number of new authors for the ordinary time variable thus reveals a universal 
underlying similarity in structure across these disparate fields, even though they betray 
different behavior when plotting either authors or publications versus time. Even those 
fields that depart from the familiar logistic curve (when plotted with respect to ordinary 
time) nonetheless obey the same kind of simple scaling law as those for which the 
logistic curve does hold. These scaling relationships, which are analogous to measures 
of productivity in economics, might therefore be a useful measure of a field’s scientific 
health, measured by how publication rates vary with the addition of new authors.  

The remainder of this paper is organized as follows. The methods section introduces 
and discusses our methods, which comprise of mathematical models to describe the 
population dynamics (numbers of authors) behind the establishment of scientific fields. 
The approach is based on a succinct (coarse) description of contact processes between 
scientists. We selected this model – a simplified version of a general class of models we 
have developed [12] – based primarily on its ability to treat a wide range of data 
patterns efficiently, across several different scientific fields. We also describe our 
methods for estimating parameter values, our optimization techniques used to match the 
model to data, and our method of generating error estimates. Finally we describe in 
detail the parameterization of scaling laws relating change in numbers of new papers to 
number of authors entering the field, and place these measures in the context of 
analogous measures of productivity used in economics. The results section presents our 
results and includes brief accounts of six case studies of scientific evolution, measured 
by the growth in number of active authors over time, together with the results of fitting 
our model to these data, including extrapolations to the near future. We also discuss the 
productivity structure of each of these fields. The discussion and conclusions section 
discusses these results and provides some perspectives on the values and limitations of 
the model. We also discuss topics for further research.  

Methods 

Data searches and time series construction 

Time series data for six fields detailed below were assembled from keyword and 
citation searches using SearchPlus, which was developed by the Los Alamos National 
Laboratory’s Research Library and Library Without Walls [13]. It searches an 
integrated set of the large scientific publishing databases, including BIOSIS®, 
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Engineering Index, Inspec, and ISI databases (Thomson Scientific), such as ISI 
Proceedings, ISI SciSearch, ISI Social SciSearch, ISI Arts & Humanities. 

Results for each field, specified by publication title, author names, and publication 
reference (including publication year), were stored in relational databases after parsing 
to eliminate repeats and perform author-name matching. Cumulative and yearly 
differential numbers of unique authors and publications were then extracted and 
organized as time series for modeling and statistical analysis. Detailed keyword and 
citation searches for each field are given in Appendix A.  

Population models of scientific dynamics 

Our starting point is a generalized SEIR epidemic model [14]. In addition to the 
familiar susceptible (S), infected (I), and recovered (R) classes, we incorporate an 
“exposed” class (E): people who have been exposed to the new idea, but who do not yet 
manifest it in their published research. We added this new feature in the course of our 
previous study of the dynamics of how Feynman diagrams spread among communities 
of theoretical physicists [12]. In effect, it takes into account the crucial stage of training 
and apprenticeship: no scientist makes the leap from student to practitioner 
instantaneously, nor do professional scientists leap effortlessly from one specialty to 
another. The model also includes (exponential) population growth (recruitment) and 
multiple contacts between members of the exposed and infected classes, terms 
reflecting the social dynamics of scientific activity that likewise proved important in our 
previous study [12]. The model is written explicitly as  

 
dS I dE I IN S S E E
dt N dt N N
dI I dRE E I I
dt N dt

β β κ ρ

κ ρ γ γ

= Λ − , = − − ,

= + − , = ,

 (1) 

where S(t) is the size of the susceptible population at time t, E(t) is the size of the 
exposed class, I(t) is the size of the infected class (that is, those who have adopted the 
new scientific idea, as manifested in their publications), and R(t) is the size of the 
population who have recovered (no longer publishing on the topic). We shall refer to 
the size of the entire population, the sum over these classes, as N: N = S+E+I+R. Note 
that we did not include an exit (or death) term, as this tends to be very small, and is 
‘subsumed’ by the recovered class. In this model, the population, N, grows 
exponentially with rate Λ. In some instances, indicated explicitly below, the growth 
term will be written as Λ, instead of Λ N, and may not apply to the entire duration of the 
dynamics.  

The remaining parameters account for the probability and effectiveness of a contact 
with an adopter, β; the standard latency time, 1/κ (which, in this case, gives the average 
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duration of apprenticeship, after one has been exposed but before one manifests the new 
idea in publication); the duration of the infectious period, 1/γ (how long one publishes 
on the topic and can teach others); and the probability that an exposed person has 
multiple effective contacts with other adopters, ρ. The model may be visualized as in 
Figure 1. The reproductive number for the model – that is, the average number of new 
people infected by a given infected individual – is R0 = β/γ. This is a simplified version 
of a more general family of models developed in the course of this work, which feature 
multiple latency classes [14]. 

 

 

Figure 1. Flow diagram for the SEIR model 

 
As illustrated below, this simple model can incorporate a wide range of behaviors. 

For many values of the parameters (Λ, β, κ, γ and ρ), the infected class will grow 
essentially as a logistic curve. Increase the contact rate (β) or boost recruitment (Λ), 
however, and I(t) will grow more nearly linearly, as indeed has been found empirically 
for some fields.1 

Parameter estimation 

Parameter estimation for our model is performed via a stochastic ensemble 
algorithm as described in [12]. The parameters describing the initial conditions [S(t0), 
E(t0), I(t0), R(t0)] and the dynamical parameters (Λ, β, κ, γ and ρ) are organized as a 
vector of real-valued numbers. An ensemble of such vectors, or strings, is generated via 
the perturbation of a “progenitor” string. The fitness of the resulting strings – referred to 
collectively as a “generation,” given the similarity to genetic algorithms – is evaluated 
by comparison with the data. A set of ‘best’ strings, in terms of fitting the data, is then 
                                                           
1 Other epidemiological models, such as those developed to model the spread of sexually-transmitted diseases 
[15], also predict linear rather than exponential growth of the infected population when the diseases have long 
incubation times and people have multiple partners and long-term associations – not unlike the situation in the 
spread of scientific ideas. 
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chosen to spawn the subsequent generation, and so on, until the procedure converges, 
that is, the fitness ceases to improve. Several checks are performed to guarantee that the 
absolute (global) best fit was reached. The procedure generates not only a best fit 
solution, showing the smallest deviation to the data, but also an ensemble of good 
strings, which fit the data up to some user specified tolerance (here 10% variation per 
point in numbers of authors), from which uncertainty in the solution is quantified.  

Below we apply this stochastic ensemble optimization procedure to data on the 
number of authors participating in the advent and subsequent growth of several fields, 
in the aftermath of a discovery, breakthrough, or surge of interest.  

Scaling laws for scientific productivity 

Population models focus usually on the number of people manifesting a certain 
feature in a given population. But scientific fields can also be categorized usefully based 
on their research output – that is, the number of publications on a given topic, rather 
than the number of dedicated researchers. Thus we have also examined the relationship 
between number of publications and number of authors as a given field evolves. We 
observed that all six cases obey a remarkable scaling law: yearly numbers of new 
publications scale as a simple power law with the corresponding number of new 
authors, which we write as:  

 .Authors)(nsPublicatio α∆=∆ C  (2) 

Here ∆ denotes new publications or authors over some time period (that we will adopt 
as one year), C is a normalization constant, and α is the scaling exponent.  

As we demonstrate below, Eq. (2) provides an excellent fit to data for all six fields, 
but with different values of the scaling exponent α. Note that for α > 1 a field would 
grow by manifesting increasing returns to scale; specifically by showing an increase in 
the number of publications per capita. Thus α > 1 characterizes a field with increasing 
individual productivity as a field attracts new scientists, which is a sign of opening new 
opportunities and vitality. Conversely a field characterized by α < 1 shows per capita 
decrease in productivity as it develops and typically signals closing opportunity and a 
dying subject matter, where new papers require ever greater effort in terms of numbers 
of workers in the field. We show below that both cases characterize specific new fields 
of research and that there can be transitions between different productivity regimes, 
signaling such events as major shifts in funding or the occurrence of scientific 
breakthroughs.  
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Results 

Case studies and population modeling results 

In this section we present several studies of the emergence of scientific fields and 
results of modeling the evolution in numbers of authors using the model introduced in 
the Methods section. Parameter estimates are given at the end of the section for all 
cases. 

Cosmological inflation 

Cosmological inflation, proposed by Alan Guth in 1981 and quickly elaborated upon 
by others [16], describes the exponential expansion of the volume of spacetime during 
the early universe. Remarkably, it provides solutions to most open issues that arise 
when combining big bang cosmology with astrophysical observations. Originally it was 
conceived to solve the problem of overproduction of cosmological defects (mostly 
monopoles, see cosmic strings below), but perhaps its strongest feature is to provide a 
prediction for the initial energy density perturbations necessary to seed the large-scale 
structure of the universe [17]. 

The data shown here result from literature searches based on citations to an early set 
of publications in the field as well as to later review articles (see Appendix A). The time 
evolution of the field, measured in terms of numbers of authors, is peculiar when 
compared to other case studies discussed below: it is approximately linear, appearing 
least like a classic logistic S-curve. Nevertheless, our SEIR model with population 
growth and large contact rate describes the data very well (see Figure 2a).  

Cosmic strings 

Cosmic strings and other topological defects are non-perturbative solutions of 
unified theories of elementary particle interactions that may have been formed in phase 
transitions in the early universe. In 1976 T. W. B. Kibble [18] suggested that the 
internal symmetry groups of modern theories of particle physics – taken together with 
the Higgs mechanism, necessary to render elementary particles massive – lead 
inexorably to phase transitions in the early universe, similar to, but generally more 
complex than those in superconductors and certain superfluids. It follows that, in the 
early universe, as in these materials, topological defects could form that would be stable 
and able to concentrate vast amounts of energy in their profiles, be they monopoles, 
cosmic strings, or domain walls. These defects could seed the large-scale structure of 
the universe by providing energy (and momentum) inhomogeneities upon which 
baryonic matter could fall [19]. 

For some time, until the late 1990s, Cosmic Strings and Cosmological Inflation were 
rival theories contending to explain the features of the observed universe. 
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a)     

b)     

Figure 2. The temporal evolution of the cumulative number of authors (dots) publishing in 
a) Cosmological Inflation and b) Cosmic Strings, the fit from the model (solid line),  

and 95% confidence interval (dashed lines) 

Both fields are similar sociologically, involving mostly theoretical work with high 
energy physics models, and the two author communities often mixed: approximately 
15% of all the authors who published on either Inflation or Cosmic Strings also 
published on the other field, as revealed by the author pools in each dataset. For these 
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reasons it is very interesting to compare the temporal development of the two fields. 
Each field is equally well fit by the model of Eq. 1, although with rather different values 
for the parameters (see Figure 2 and Table 1). In particular, whereas Inflation deviates 
sharply from the familiar logistic curve, Cosmic Strings follows this trajectory closely. 
Although both fields grew rapidly during the 1980s and 1990s, recent precise 
measurements of the cosmic microwave background and type Ia supernovae seem to 
weigh more strongly in favor of Inflation, making the case for cosmological defects 
increasingly constrained [17]. This most likely accounts for the up-turn in numbers of 
authors publishing on Inflation and the declining rate of new authors pursuing Cosmic 
Strings. In spite of these trends, however, the field remains fast expanding with 
hundreds of publications and new authors every year. 

Prions 

In addition to the theoretical research of the previous two examples, we also sought 
to characterize two examples of research in biology and medicine, namely Prions and 
Scrapie and the more recent explosion of interest in avian influenza or “bird flu,” more 
technically known as H5N1 influenza.  

Prions (proteinaceous infectious particle) are abnormally configured proteins, which 
were shown in 1982, by S. B. Prusiner and colleagues [20], to cause scrapie, a 
transmissible spongiform encephalopathy in sheep. It was later recognized that other 
related diseases, such as Kuru (Creuzfeld-Jacob disease in humans) and BSE (“mad 
cow disease”), are also caused by prions, and not by a virus or any other conventional 
infectious agent. The discovery was followed, a decade later, by great public health 
scares (and interest), principally associated with BSE in the UK, which contributed to 
raise the profile of the field. By the late 1990s research in prions had become 
underfunded, and the field started to show signs of slow down [21]. For the discovery of 
prions and their connection to spongiform encephalopathies, Stanley B. Prusiner won 
the Nobel prize in Medicine in 1997 [22]. 

The data used here were obtained from a keyword search for “prion” among 
scientific publications (having eliminated a genus of like-named birds), and also 
includes research in scrapie (see Appendix A). The growth curve of numbers of authors 
in Prions and Scapie – similar in shape to that for Cosmic Strings but larger by about 
one order of magnitude – closely resembles the familiar S-shape (see Figure 3a). The 
field potentially shows signs of saturation, as discussed below (see Table 1).  

H5N1 influenza 

Unlike prions, research in H5N1 influenza is a very young field, driven by the health 
emergency of a possible new devastating influenza pandemic. H5N1 influenza is a 
subtype of the influenza A virus that causes “bird flu.” It is presently a disease of birds, 
but, as of July 2007, there have been over 280 confirmed cases of human infection, 
mostly in Southeast Asia, with an observed case mortality rate of about 57% [23]. 
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a)     

b)     

Figure 3. The temporal evolution of the cumulative number of authors publishing in a) Prions and Scrapie and 
b) H5N1 influenza (dots), the fit from the model (solid line), and 95% confidence interval (dashed lines) 

 
Research in H5N1 and other types of influenza has gained extraordinary impetus 

over the last few years. Research on the H5N1 subtype started in earnest after 1997, 
when the first human cases of the disease were identified in Hong Kong. New, larger 
outbreaks in the last 2-3 years have lead to great scientific and public interest in the 
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field and its relation to other influenza types. Its literature spans themes in health policy, 
epidemiology, and molecular biology (see Appendix A).  

The evolution of the number of authors, while still small compared to our other 
examples, is fast increasing and shows no signs of saturation, as reflected in our model 
fit (see Figure 3b and Table 1). 

Carbon nanotubes 

We also sought to include case studies in fields with a strong technological 
component, which nevertheless also contain important theoretical contributions. Carbon 
nanotubes is one of the more tangible subfields of nantechnology and combines strong 
elements of new technologies and materials science theory. Quantum computer and 
computation (see below) similarly spans recent discoveries in computer science, 
quantum engineering, and nanoscale devices.  

Carbon nanotubes are a recently discovered allotrope of carbon, which promises to 
generate a whole family of new materials and potentially revolutionize nano-
engineering. Research in this area started in 1991, when Sumio Iijima of NEC in Japan 
discovered a new method (arc discharge) to produce them, although nanotubes had been 
described before in the literature [24]. It is hoped that these materials may usher in 
many promising engineering solutions at the nanoscale due to their enormous strength, 
lightness, and conductive properties of heat and electrical currents. Hence the scientific 
literature in this and closely related areas has grown rapidly during the past two 
decades. [6, 25, 26] 

We built a database of scientific publications in the field via keyword searches (see 
Appendix A). Although the field is still young it has the greatest number of authors 
among our examples. It shows robust and fast growth, consistent with earlier findings 
[25] that showed nanotubes to be the fastest-growing field within nanoscience and 
technology. The growth of research on carbon nanotubes is well fit by our model. Time 
will tell whether or not research in this area will begin to saturate over the next decade 
or so, as predicted by our model; other areas within nanotechnology, such as fullerenes, 
have indeed already shown signs of such saturation [6] (see Figure 4a and Table 1). 

Quantum computing and computation 

Quantum computing is an emerging field of research dedicated to the discovery of 
new devices and theoretical implementations of states that are genuinely quantum-
mechanical and can be manipulated for computation. A quantum computer would be 
able to perform certain operations (such as factorization) much faster and solve physical 
quantum models more naturally and efficiently than any classical computer. The field is 
naturally multidisciplinary, involving research in quantum theory, computer science, 
materials science, and engineering.  
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a)     

b)     

Figure 4. The temporal evolution of the cumulative number of authors (dots) publishing in a) Carbon 
Nanotubes and b) Quantum Computing and Computation, the fit from the model (solid line), and 95% 

confidence interval (dashed lines) 

 
The first references to quantum computation date back to the late 1960s and 1970s, 

but the subject only gained momentum with several theoretical breakthroughs in the 
1980s and 1990s. In 1982 Richard Feynman [27] showed how quantum systems could 
be used to do computation. In 1985 David Deutch [28] proved that any physical process 
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can, in principle, be modeled perfectly in a quantum computer. In the mid 1990s 
algorithms by Shor and by Grover [29] and NMR experiments [30] demonstrated 
explicitly the advantage of quantum algorithms in certain computational tasks and the 
first implementations of the technology. These discoveries opened up the field to wide 
expertise and changed its recruiting dynamics, as we discuss below in more detail.  

Figure 4b shows the temporal evolution in numbers of authors in Quantum 
Computers and Computation. After a long simmering period of general interest the field 
took off in earnest in the mid-1990s and has shown fast growth since. These trends are 
very well fit by our model, which also predicts the onset of some saturation in the time 
frame of 5-10 years. 

Parameter estimates 

Table 1 shows the summary of parameter estimates for all six emergent scientific 
fields. Our optimization method allows us to estimate both initial populations of 
susceptibles, exposed, adopters (infectious), and recovered as well as the dynamical 
model parameters. In all cases, the recovered population at the initial time, R(t0), was 
negligible. The number of initial exposed, E(t0), is also small in most cases, with the 
exception of Carbon Nanotubes, where many scientists in the field were working with 
other similar allotropes of carbon (such as other fullerenes) and were essentially ready 
to contribute to the field. The initial population of susceptibles, S(t0), in many cases 
reflects the field’s size, as does its recruitment rate, Λ. Some fields, such as Cosmic 
Strings, Prions, and H5N1 influenza are better fit by a constant recruitment rate, 
independent of the scientific community size, of the order of a few hundred researchers 
a year. Other fields, such as Cosmological Inflation, Carbon Nanotubes, and Quantum 
Computing are better characterized by early recruitment rates that are proportional to 
population, varying between less than 10% for inflation to 40–50% in the two 
technological fields, indicating a much larger rate of infusion of new researchers. We 
consistently found that contacts between exposed and infectious populations (denoted 
by ρ) are not necessary to provide a good description of the dynamics. The duration of 
the typical incubation time, 1/κ, before an exposed individual becomes infectious was 
roughly consistent across fields and varied between 1.4–5 years, which is a reasonably 
average apprenticeship time for new researchers (e.g. graduate students or postdoctoral 
fellows). The duration of the time over which an individual can transmit the idea, 1/γ, 
varied more widely, between about 6 months (Cosmic Strings) to 10 years (Carbon 
Nanotubes), suggesting a much larger turnover time for researchers in some fields than 
in others. Finally the reproductive number for each field, R0, which measures the 
average number of susceptibles that an idea adopter infects, is always large compared 
to similar ratios for infectious diseases and varied between about 2–65. 
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These large numbers are typically not the result of large contact rates β (with the 
possible exception of Cosmological Inflation) but rather of long infectious periods that 
allow an idea to be slowly developed over the period of several years and transmitted 
many times.  

 
Table 1. Parameter estimates for the model of Methods section, and data sets described in Results section 

 Cosmological Cosmic Prions H5N1 Carbon Quantum 
 Parameter inflation strings & scrapie influenza nanotubes computing 
S(t0) * 930±1 14±9 14262±1368 9057±200 30464±5976 11627±91 
 E(t0)  6 5 1 1 501±24 0 
 I(t0)  37±1 0 8±1 0 1 0 
 R(t0)  2 0 7±2 0 1 0 
 β  13.41±0.28 4.45±0.42 0.69±0.05 1.47±0.02 0.99±0.05 3.78±0.09 
 Λ  0.07 159.1±2.7* 469±25* 138±10* 0.04±0.01 1.03±0.02** 
 κ  0.20 0.25±0.02 0.22±0.01 0.71±0.01 0.50±0.03 0.41±0.02 
 ρ  0 0 18.4±1.24 0 0.03±0.06 0.77±0.03 
 γ 0.21 1.73±0.19 0.37±0.03 0.6±0.01 0.10±0.05 1.18±0.02 
 R0  64. ±1.5 2.58±0.11 1.87±0.03 2.44±0.03 9.72±1.71 3.20±0.11 
 α 1.28 1.13 0.78 0.87 1.32 1.37*** 

* Indicates a linear growth term Λ, rather than ΛN in the equations for S. 
** Indicates that the susceptible population growth starts in 1990. 
*** This value for α applies only once the number of new authors reaches ca. 1000 in a given year; for 
smaller new-author pools, the best fit productivity curve yields α = 1.00. 

Scaling and scientific productivity 

Having modeled the evolution of numbers of authors we may now ask how these 
dynamics relate to the overall productivity of the field, at least as measured by the 
number of publications. Note that we present results for numbers of new publications 
and authors over some time period, but have not made any attempt to distinguish 
between impact factors characterizing different researchers or publications.  

We found extraordinary consistency when analyzing how growth in numbers of 
publications relates to numbers of new authors. For all six cases, the scaling law of 
Eq. (2) fits the data very well, regardless of the details of the dynamics described above 
(see Figures 5–7). Exponents α, which characterize each field’s productivity, did vary, 
however, showing increasing returns to scale (α > 1) for the theoretical and 
technological fields (with the latter showing largest α), and decreasing returns (α = 0.8) 
for the biological and medical fields. Moreover the field of Quantum Computation 
shows a clear transition, around 1994–1995, between a period in which motivation 
existed for research in the area but no tangible technical breakthroughs had been made 
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(α = 1), to a period of large increasing returns to scale, after new experimental and 
algorithmic paths had been identified. This sharp shift in α is consistent with our 
population modeling, which produced the best fit when the field’s recruitment, Λ, was 
“switched on” in 1990.  

 

a)     

b)     

Figure 5. Productivity curve for research on a) Cosmological Inflation and b) Cosmic Strings 
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a)     

b)     

Figure 6. Productivity curve for research on a) Prions and Scrapie and b) H5N1 Influenza 
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a)     

b)     

Figure 7. Productivity curve for research on a) Carbon Nanotubes and 
b) Quantum Computing and Computation 

Discussion and conclusions 

The six case studies analyzed here show that population models analogous to those 
of epidemiology, suitably adapted, provide excellent bases with which to describe 
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quantitatively the emergence and development of scientific fields across the natural 
sciences. Remarkably, our simple model describes equally well theoretical fields (such 
as Cosmological Inflation and Cosmic Strings) as experimental ones (such as Prions 
and Carbon Nanotubes), or those that include both kinds of activity (such as Quantum 
Computing and H5N1 influenza). This constitutes an important demonstration that the 
type of model we devised to treat one particular case in great detail (the spread of 
Feynman diagrams among theoretical physicists, [12]) may be applied much more 
broadly, with equally impressive fits to empirical data.  

Moreover, the parameter estimates for these many cases reveal several features that 
make intuitive sense. For example, the two cases that draw authors from only one 
narrowly defined specialty – Cosmological Inflation and Cosmic Strings – show the 
smallest initial populations of susceptibles, S(t0), whereas those fields that cross 
disciplinary boundaries, potentially attracting researchers from many different scientific 
areas, reveal correspondingly larger initial populations of susceptibles. Likewise, the 
two purely theoretical fields (again, Cosmological Inflation and Cosmic Strings) show 
the greatest effectiveness of contact, β ; those fields which most thoroughly mix 
theoretical and experimental components (Quantum Computing and H5N1 influenza) 
have intermediate values for β ; while the more purely experimental fields (Prions and 
Carbon Nanotubes) have the smallest values for β . As one might expect, it is one thing 
to practice and master a pencil-and-paper technique; quite another to build and oversee 
an entire working lab group.  

We must note however that although the fundamental dynamics of contact and 
spread may be analogous between the spread of ideas and disease, many characteristics 
of the two dynamics are fundamentally different. First, the nature of the contacts is 
clearly distinct. Many scientific contacts are prolonged and based on 
mentor/apprenticeship relationships such as those between advisors and students or 
postdocs. This fact also highlights that recruitment plays an important role, alongside 
conversion of susceptibles in the growth of a field. Parameter estimation supports these 
expectations, showing large numbers of initial susceptibles and/or population growth 
typically of a few percent a year.  

Compared to most diseases, scientific ideas spread slowly, taking years to become 
adopted by a significant number of practitioners. They also show substantial contact 
rates over these time scales, perhaps the result of the many intentional social structures 
– PhD programs, postdocs, meetings, workshops, etc. – designed to foster sustained 
interactions. The result is that although incubation times range between 1.4–5 years and 
infectious periods between 6 months and 10 years, all cases show large basic 
reproductive numbers R0 between 1.8 and 64. This point seems to be very general and a 
manifestly different feature between ideas and infectious diseases: useful ideas may 
never be forgotten, leading to very long infectious periods and therefore large R0.  
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It is also typical of the spread of ideas that long and repeated contacts between 
adopters and susceptible individuals take place in order for the concept or technique to 
be transmitted. Here we modeled these processes via a contact term between exposed 
and infected, proportional to the contact rate ρ. In most of our case studies, however, 
with the exception of Prions & Scrapie, estimation of this term shows very small values 
for ρ, indicating that perhaps persistent contacts were not essential, or that a different 
modeling strategy might be necessary to capture such effects.  

While most case studies showed growth dynamics that are familiar from other 
invasion processes, two of our examples were peculiarly different. First, Cosmological 
Inflation shows growth in numbers of authors that has been remarkably linear over 
more than 20 years, without displaying the more typical phase of exponential growth. 
Nevertheless, our model provides an excellent fit to the data, even though parameter 
estimates force the numbers of exposed and infected to their fixed points, as functions 
of a growing population N, at a relative growth rate of 7% a year. As a result the model 
solution that best fits the data for Inflation is particularly sensitive to the growth 
dynamics of the population of susceptibles, and less so to the magnitude of the contact 
rate, as this factors out in the fixed point solution for I(t). It would be interesting to 
validate these inferences, or seek good fit solutions in different regimes.  

Quantum Computing and Computation shows a particularly long incipient period, 
with very slow growth over more than twenty years, and a quick (approximately 
exponential) rise starting in the late 1980s. We modeled these dynamics by allowing for 
susceptible population growth starting only in 1990, which gives an excellent fit to the 
data. We note, however, that models with several exposed classes and therefore 
potentially longer successive incubation times, or with time-varying contact rates, may 
also provide viable alternatives. As for the case of Inflation, it would be interesting to 
obtain more detailed historical data that could guide such detailed modeling choices.  

The type of modeling described here can be enlarged in several interesting 
directions. One direction involves improvements to the model itself. The distribution of 
the length of the infectious period, recruitment rates, and perhaps even incubation times 
may be inferred directly from publication data, PhD theses records, and so on. 
Knowledge of their distributions would help greatly to constrain and improve models, 
as well as distinguish whether the growth of a field is primarily the result of the 
recruitment of new susceptibles, or instead the consequence of the conversion of an 
already large susceptible population via a larger contact rate. Additional features of the 
basic SEIR model may also be added, such as a model in which the size of the infected 
class facilitates further recruitment (directly linking I with Λ). Similarly, an explicit 
class of converts to competing ideas, Z (“skeptics” or “stiflers”), may be added, as in 
[12]. This feature could prove especially useful for the combined modeling of 
Cosmological Inflation and Cosmic Strings, which were competing fields where 
nevertheless many authors published on both topics over time.  
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Finally we observe that while the dynamics in terms of numbers of authors differs 
from field to field, the relation between numbers of new publications to that of new 
authors appears remarkably simple, following in each case the simple scaling law of 
Eq. (2). This suggests a self-similarity of dynamics that is characteristic of each field, 
suggesting that recruitment (of susceptibles via author pool growth) is the fundamental 
driver of scientific development, with productivity per author of specific fields being 
stable even as the field grows in size by many orders of magnitude. The exponents α 
denote this measure of productivity, showing in our analyses increasing returns to scale, 
α > 1 (i.e. increasing number of papers per capita) as a field grows in most studied 
cases, and decreasing returns, α < 1, in others. This type of measure of productivity is 
ubiquitous in other socio-economic systems, where its dynamics may itself drive 
growth. In that case it has been shown [31] that dynamics under decreasing returns 
always asymptotes to a finite size population of authors and publications, while those 
under increasing returns may lead to indefinite growth, and show clear growth cycles. 
The existence of these dynamics in scientific literatures is an interesting question for 
further research. 

Specifically, in terms of productivity, the six cases fall out into fairly neat clusters: 
nanotechnology fields (Carbon Nanotubes and Quantum Computing) show the greatest 
increase of publications versus authors, followed by theoretical physics topics 
(Cosmological Inflation and Cosmic Strings), followed by more applied biomedical 
research (Prions, H5N1 influenza). One might have naively expected the order to be 
slightly different – with the theoretical physics fields showing greatest exponents, 
followed by nanotech – on the idea that it costs very little to set up a new research group 
and get them up to speed on theoretical topics, for which no equipment and little 
infrastructure is needed. Especially given the recent change in slope for Quantum 
Computing (from α = 1 to α = 1.37), these large values of α in the nanotechnology 
fields might well reflect the intense funding and media attention granted to such areas in 
recent years [32]. It would be very interesting to expand this analysis to many other 
fields and extract the factors that determine their increasing or decreasing self-similar 
growth dynamics. 
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Appendix A 
Bibliographical searches 

Keyword and citation searches were performed using Search Plus, developed by the 
Los Alamos National Laboratory Reseach Library [13]. We found this to be superior in 
coverage, relevance, and accuracy than, e.g., Google Scholar, PubMed (for Prions and 
H5N1 Influenza), or SLAC-SPIRES (for physics).  

In most cases, we constructed our databases from detailed keyword searches. 
However, for the subject of Cosmological Inflation, we relied upon citation searches 
rather than keyword searches in order to avoid overlap with the large volume of 
publications on economic inflation. The database for Cosmological Inflation was thus 
constructed from all publications that cited one or more of the following articles, which 
include landmark research articles and later review articles on the field: 

• A. H. Guth, “Inflationary universe: A possible solution to the horizon and 
flatness problems,” Physical Review D , 347–356 (1981)  

• D. Linde, “A new inflationary universe scenario: A possible solution of the 
horizon, flatness, homogeneity, isotropy, and primordial monopole problems,” 
Physics Letters B , 389–393 (1982)  

• Albrecht and P. J. Steinhardt, “Cosmology for Grand Unified Theories with 
radiatively induced symmetry breaking,” Physical Review Letters , 1220–1223 
(1982) 

• A. H. Guth and S.-Y. Pi, “Fluctuations in the New Inflationary Universe,” 
Physical Review Letters , 1110–1113 (1982)  

• J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, “Spontaneous creation of 
almost scale-free density perturbations in an inflationary universe,” Physical 
Review D , 679–693 (1983)  

• D. Linde, “The inflationary universe,” Reports on Progress in Physics ,  
925–986 (1984)  

• D. La and P. J. Steinhardt, “Extended inflationary cosmology,” Physical 
Review Letters , 376–378 (1989)  

• K. A. Olive, “Inflation,” Physics Reports , 307–403 (1990)  
• V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, “Theory of 

cosmological perturbations,” Physics Reports , 203–333 (1992)  
• D. Linde, “Hybrid inflation,” Physical Review D , 748–754 (1994)  
• L. Kofman, A. D. Linde, and A. A. Starobinsky, “Reheating after inflation,” 

Physical Review Letters , 3195–3198 (1994)  
• D. H. Lyth and A. Riotto, “Particle physics models of inflation and the 

cosmological density perturbation,” Physics Reports , 1–146 (1999)  
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Resulting publications (both journal publications and conference proceedings) were 
stored in relational databases and checked for duplicates on entry.  

For Cosmic Strings we used a query for search defined as (topolog* <in> 
Title/Subject/Abstract) <and> (Cosm* <in> Title/Subject/Abstract) <and> (string <or> 
defect <or> domain <or> texture <in> Title/Subject/Abstract). The results obtained 
were visually inspected for accuracy and several tests were performed for completeness 
by two of the authors who are domain experts in Cosmic Strings and Cosmological 
Inflation (LMAB, DIK). In particular, results from this search matched well with those 
of an earlier citation search, constructed akin to the one for Cosmological Inflation, 
based on early landmark papers and review articles on Cosmic Strings.  

In publications for Prions and Scrapie we found, upon inspection, unanticipated 
records referring to birds of the genus Pachyptila, commonly also known as a “prion 
fairy.” To remove this noise we formed the query string (prion <in> 
Title/Subject/Abstract) <and> (protein <or> amino <or> scrapie <in> Title/ 
Subject/Abstract) in relation to proteins or “amino,” thereby eliminating the records 
which contains the information for birds. Records on scrapie were retrieved via the 
query string (<not> prion <in> Title/Subject/Abstract) <and> (scrapie <in> 
Title/Subject/Abstract) and merged the results of the above search, eliminating 
duplicates.  

We used the query string (influenza <in> Title/Subject/Abstract) <and> (H5N1 <in> 
Title/Subject/Abstract) for H5N1 influenza.  

In the case of Carbon Nanotubes, records were identified via the query string (<not> 
nanotubule <in> Title/Subject/Abstract) <and> (carbon <in> Title/ Subject/Abstract) 
<and> (nanotub* <in> Title/Subject/Abstract). This eliminated common references to 
unrelated cellular nanotubules.  

Records for Quantum Computing and Computation were retrieved via the keyword 
search (Quantum Comput* <in> Title/Subject/Abstract).  

Retrieved publications were parsed for author identification (including 
disambiguation), journal name, publication title, and year, and stored in relational 
databases. 

 


