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Institute, McGill University, Montreal, QC, Canada; 3Mila - Quebec Arti�cial Intelligence Institute, Montreal,

QC, Canada; 4CEA, NeuroSpin, Psychiatry Team, UNIACT Lab, Université Paris Saclay, France; 5APHP, Mondor
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Abstract

Background: Biological aging is revealed by physical measures, e.g., DNA probes or brain scans. In contrast, individual

differences in mental function are explained by psychological constructs, e.g., intelligence or neuroticism. These constructs

are typically assessed by tailored neuropsychological tests that build on expert judgement and require careful

interpretation. Could machine learning on large samples from the general population be used to build proxy measures of

these constructs that do not require human intervention? Results: Here, we built proxy measures by applying machine

learning on multimodal MR images and rich sociodemographic information from the largest biomedical cohort to date: the

UK Biobank. Objective model comparisons revealed that all proxies captured the target constructs and were as useful, and

sometimes more useful, than the original measures for characterizing real-world health behavior (sleep, exercise, tobacco,

alcohol consumption). We observed this complementarity of proxy measures and original measures at capturing multiple

health-related constructs when modeling from, both, brain signals and sociodemographic data. Conclusion: Population

modeling with machine learning can derive measures of mental health from heterogeneous inputs including brain signals

and questionnaire data. This may complement or even substitute for psychometric assessments in clinical populations.
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Background

Quantitative measures of mental health remain challenging de-

spite substantial efforts [1]. The �eld has struggled with unsta-

ble diagnostic systems [2], small sample sizes [3], and reliance

on case-control studies [4]. Perhaps most importantly, mental

health cannot be measured the same way diabetes can be as-

sessed through plasma levels of insulin or glucose. Psychologi-

cal constructs, e.g., intelligence or anxiety, can only be probed

indirectly through lengthy expert-built questionnaires or struc-

tured examinations by a specialist. Although questionnaires of-

ten remain the best accessible option, their capacity to mea-

sure a construct is limited [5]. In practice, a full neuropsycho-

logical evaluation is not an automated process but relies on ex-

pert judgement to confrontmultiple answers and interpret them

in the context of the broader picture, such as the cultural back-
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2 Population modeling for measures of mental health

ground of the participant. While the �eld of psychometrics has

thoroughly studied the validity of psychological constructs and

their measurement [6–8], the advent of new biophysical mea-

surements of the brain brings new promises [9–11]. The growth

of biobanks and advances in machine learning open the door

to large-scale validation of psychological measures for mental

health research [12], and the hope to developmore generalizable

models [13]. Yet, to be reliable, machine learning needs large la-

beled datasets [14]. Its application to learning imaging biomark-

ers of mental disorders is limited by the availability of large co-

horts with high-quality neuropsychiatric diagnoses [15].

By comparison, it is easier to collect data on the general pop-

ulation without information on clinical conditions. For brain

health, such data have led to the development of proxy mea-

sures that quantify biological aging [11, 16–22]. One counterin-

tuitive aspect of the methodology is that measures of biologi-

cal aging can be obtained by focusing on the age of a person,

which is known in advance and is in itself not interesting. Yet, by

(imperfectly) predicting the age from brain data, machine learn-

ing can capture the relevant signal. On the basis of a population

of brain images, it extracts the best guess for the age of a per-

son, indirectly positioning that person within the population.

Individual-speci�c prediction errors therefore re�ect deviations

fromwhat is statistically expected [23]. The brain of a person can

look similar to the brains commonly seen in older (or younger)

people. The resulting brain-predicted age re�ects physical and

cognitive impairment in adults [16, 17, 24] and reveals neurode-

generative processes [22, 25]. Can this strategy of biomarker-like

proxy measures be extended to other targets beyond the con-

struct of aging? Extrapolating from these successes, we propose

to build upon large datasets to extend the collection of health-

related proxy measures that probe mental traits. For this end,

we focused on constructs fundamentally different in terms of

content and methodology.

One high-stake target is intelligence, which is measured

through socially administered tests and is one of the most ex-

tensively studied constructs in psychology. Fluid intelligence

refers to the putatively culture-free, heritable, and physiologi-

cal component of intelligence [26, 27] and is a latent construct

designed to capture individual differences in cognitive capacity.

It has been robustly associated with neuronal maturation and is

typically re�ected in cognitive-processing speed and working-

memory capacity [28]. Applied to psychiatric disorders, it may

help characterize psychosis, bipolar disorder, and substance

abuse [29, 30].

Neuroticism is a second promising target. As a key represen-

tative of the extensively studied Big Five personality inventory,

neuroticism has a long-standing tradition in the psychology of

individual differences [31, 32]. Neuroticism is measured using

self-assessment questionnaires and conceptualized as captur-

ing dispositional negative emotionality including anxiety and

depressiveness [33]. It has been interculturally validated [26, 34],

and population genetics studies have repeatedly linked neu-

roticism to shared genes [35–37]. Neuroticism has been shown

useful in psychometric screening and supports predicting real-

world behavior [38, 39].

Despite strong population-level heritability [40, 41], the link

between psychological constructs, brain function, and genet-

ics is still being actively researched [33, 42, 43]. Empowered by

emerging large-scale datasets, current attempts to predict �uid

intelligence or neuroticism from thousands of magnetic reso-

nance imaging (MRI) scans argue in favor of heterogeneity and

weakly generalizing effects [44, 45]. This stands in contrast to

the remarkable performance obtained when predicting psycho-

metric data from language-based inputs captured by Twitter and

Facebook user data [46, 47]. Because MRI acquisitions can be dif-

�cult to come by in certain populations, the promises of social

media data are appealing. However, such data may lead to mea-

surement and selection biases that are dif�cult to control. In-

stead, background sociodemographic data may provide an eas-

ily accessible alternative for contextualizing the heterogeneity

of psychological traits [48].

Another challenge is that psychological traits are often mea-

sured using arbitrary non-physical units, e.g., education degree

or monthly income. In fact, society treats individual differences

as categorical or continuous, depending on the practical context.

While personality has been proposed to span a continuum [49],

psychiatrists treat certain people as patients and not others [50].

Therefore, a measure that performs globally poorly at a contin-

uous scale can be suf�cient to distinguish subgroups because it

may be informative around the boundary region between certain

classes, e.g., pilots who should �y andwho should not. Choosing

the granularity with which to gauge psychological constructs is

dif�cult.

Confronting the promises of population phenotyping with

the challenges of measuring psychological traits raises the fol-

lowing questions: (i) Can the success of brain age at characteriz-

ing health be extended to other proxy measures directly target-

ing mental constructs? (ii) How well can various constructs re-

lated to mental health be approximated from general-purpose

inputs not designed to measure speci�c latent constructs? (iii)

What is the relative merit of brain imaging and sociodemo-

graphic characteristics? We tackled these questions by using

machine learning to craft proxy measures in order to approx-

imate well-characterized target measures from brain-imaging

and sociodemographic data. We studied age, �uid intelligence,

and neuroticism. These targets have been, traditionally, consid-

ered as proxies for mental health and are fundamentally differ-

ent in terms of scope and nature. Our results suggest that, the

sameway brain age can enrich age as a predictor of neurological

complications, the additional proxy measures proposed in this

work can bring value for the study of mental health by enriching

the mental asessments they were constructed from.

The article is organized as follows: We �rst present a sum-

mary of the methodology and the work�ow of building dis-

tinct proxy measures for age, �uid intelligence, and neuroti-

cism using machine learning (Fig. 1). We then benchmark the

proxy and the original target measures against real-world pat-

terns of health-relevant behavior. Subsequently, through sys-

tematic model comparisons, we assess the relative contribu-

tions of brain imaging and sociodemographic data for prediction

performance in the regression and classi�cation settings. The

complementarity between the proxy measures is, �nally, dis-

cussed in the light of statistical considerations, potential data-

generating mechanisms, and applications for public health and

clinical research.

Results: Validity of Proxy Measures

Complementing the original measures at

characterizing real-life health-related habits

To approximate age, �uid intelligence, and neuroticism, we ap-

plied random forest regression on sociodemographic data and

brain images. The data were split into validation data for model

construction (see section “Model development and generaliza-

tion testing”) and generalization data for statistical inference on

out-of-sample predictions with independent data (see section
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Figure 1: Methods work�ow: building and evaluating proxy measures. We combined multiple brain-imaging modalities (A) with sociodemographic data (B) to ap-

proximate health-related biomedical and psychological constructs (C), i.e., brain age (assessed through prediction of chronological age), cognitive capacity (assessed

through a �uid-intelligence test), and the tendency to report negative emotions (assessed through a neuroticism questionnaire). We included the imaging data from

the 10,000-subjects release of the UK Biobank. Among imaging data (A) we considered features related to cortical and subcortical volumes, functional connectivity

from rfMRI based on ICA networks, and white matter molecular tracts from diffusive directions (see Table 1 for an overview of the multiple brain-imaging modalities).

We then grouped the sociodemographic data (B) into 5 different blocks of variables related to self-reported mood and sentiment, primary demographic characteris-

tics, lifestyle, education, and early-life events (Table 2 lists the number of variables in each block). We systematically compared the approximations of all 3 targets

based on either brain images or sociodemographic characteristics in isolation or combined (C) to evaluate the relative contribution of these distinct inputs. Note that

proxy measures can only add to the target measures if they are not identical, i.e., if the approximation of the target from the given inputs is imperfect (guaranteed

in our context because the exact data-generating mechanism is unknown and causally important variables remain unobserved). Using the full model (brain imaging

+ sociodemographic characteristics), we benchmarked complementarity of the proxy measures and the target measures with regard to real-world patterns of health

behavior (D), i.e., the number of alcoholic beverages, exercise (metabolic equivalent task), sleep duration, and the number of cigarettes smoked. Potentially additive

effects between proxies and targets were gauged using multiple linear regression. Models were developed on 50% of the data (randomly drawn) based on random

forest regression guided by Monte Carlo cross-validation with 100 splits (see section “Model development and generalization testing”). We assessed generalization and

health implications using the other 50% of the data as fully independent out-of-sample evaluations (see section “Statistical analysis”). Learning curves suggested that

this split-half approach provided suf�cient data for model construction (Fig. 1 – Fig. supplement 1).

“Statistical analysis”). Our �ndings suggested that some infor-

mation on psychological constructs can be assembled from gen-

eral inputs not speci�cally tailored to measure these constructs,

such as brain images and sociodemographic variables. The re-

sulting proxy measures can be regarded as crude approxima-

tions of the psychological measures, but they can nonetheless

capture essential aspects of the target constructs. To probe the

external validity of the proxy measures, we used left-out data to

investigate their link with real-world behavior, e.g., sleep, phys-

ical exercise, and alcohol and tobacco consumption. To relate

such health behaviors to our proxymeasures, wemodeled them

separately asweighted sums of predicted brain age�, �uid intel-

ligence, and neuroticism using multiple linear regression (sec-

tion “Statistical analysis”). To avoid circularity, we used the out-

of-sample predictions for all proxymeasures (section “Model de-

velopment and generalization testing”).

The estimated regression coef�cients (partial correlations)

revealed complementary associations between the proxy mea-

sures and health-related behavior (Fig. 2). Similar patterns arise

when proxy measures are considered in isolation (Fig. 2 - Fig.

supplement 1). Compared with other proxy measures, elevated

brain age � was associated with increased alcohol consump-

tion (Fig. 2, �rst row). Levels of physical exercise were consis-

tently associated with all 3 predicted targets, suggesting addi-

tive effects (Fig. 2, second row). For �uid intelligence, this result,

counterintuitive from the health standpoint, could imply that

higher test scores reveal a more sedentary lifestyle. Increased

sleep duration consistently went along with elevated brain age

� but lower levels of predicted neuroticism (Fig. 2, third row).

This may seem counterintuitive but is conditional on neuroti-

cism showing a negative link with sleep duration. No consis-

tent effect emerged for �uid intelligence. Numbers of cigarettes

smoked was independently associated with all predicted tar-

gets (Fig. 2, last row): Intensi�ed smoking went along with el-

evated brain age � and neuroticism but lower �uid intelligence.

The 3 proxy measures are dif�cult to compare on an equal

footing because a � was considered for brain age only (the dif-

ference between predicted and actual age) and aging-speci�c de-

confounding was applied. The brain age � is indeed the stan-

dard practice, theoretically justi�ed because age is on a metric

scale [51] for which the difference between the predicted and

the measured value has a clear meaning. Such a difference is

less obvious for variables with ordinal scales as implied by psy-

chometric measures. Second, age has a pervasive in�uence on

virtually any biomedical entity, which motivates controlling for

its effect on proxy measures. To rule out the possibility that

differences in proxy measures’ associations with health-related

behavior are driven by this methodological asymmetry, we re-

peated the main analysis from Fig. 2, �rst, using the predicted

age without computing the � (Fig. 2 - Fig. supplement 2) and,

second, introducing additional deconfounders for �uid intelli-

gence and neuroticism (Fig. 2 - Fig. supplement 3). The resulting

patterns were virtually unchanged, con�rming that interpreta-

tions are robust.
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4 Population modeling for measures of mental health

Age Observed NeuroticismObserved Fluid Intelligence

Specific associations for proxy and target measures with health−related habits

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

# cigarettes smoked
(pack−years)

sleep duration (hours)

metabolic equivalent task
(minutes/week)

# alcoholic beverages

βproxy ± bootstrap−based uncertainty estimates

A proxy measure

B target measure

Brain Age Delta Predicted Fluid Intelligence Predicted Neuroticism

# cigarettes smoked
(pack−years)

sleep duration (hours)

metabolic equivalent task
(minutes/week)

# alcoholic beverages

Figure 2: Proxy measures show systematic and complementary out-of-sample associations with health-related habits. We probed the external validity of all 3 proxy

measures (brain age, �uid intelligence, neuroticism) based on a combination of brain images and all sociodemographic factors (see Fig. 1 for details). We investigated

their out-of-sample associations with ecological indicators of mental health (sleep duration, time spent with physical exercise, number of alcoholic beverages and

cigarettes consumed). To tease apart complementary and redundant effects, we constructedmultiple linear regressionmodels on out-of-sample predictions combining

all 3 proxy measures (A). For comparison, we repeated the analysis using the actual target measures (B) observed on the held-out data. Regression models are depicted

row-wise. Box plots summarize the uncertainty distribution of target-speci�c (color) regression coef�cients, with whiskers indicating 2-sided 95% uncertainty intervals

(parametric bootstrap). Dots illustrate a random subset of 200 out of 10,000 coef�cient draws. At least 2 distinct patterns emerged: either the health outcome was

speci�cally associated with 1 proxy measure (brain age � and number of alcoholic beverages) or multiple measures showed additive associations with the outcome

(e.g., number of pack years smoked). For targetmeasures (B), associations with health habits were often noisier or less pronounced compared to the targetmeasures (A)

and even a change in direction was observed for brain age and metabolic activity. Figure 2 - Fig. supplement 1 shows highly similar trends with marginal associations

between proxymeasures and health-related habits. Our results suggest that the proxymeasures capture health-related habits well, potentially better than the original

target measures, and in a complementary way across the 3 measures. The same patterns emerged as brain-predicted age rather than the brain age � is used as a

proxy measure (Fig. 2 - Fig. supplement 2). As proxy-speci�c deconfounding is applied, this pattern is preserved (Fig. 2 - Fig. supplement 3). Modeling of health-related

habits jointly from proxy and target measures simultaneously revealed speci�c complementarity between proxy and target measures across multiple domains, i.e.,

age, �uid intelligence, and neuroticism (Fig. 2 - Fig. supplement 4).

A question that remains is whether the proxy measures

bring additional value compared to the original target measures

from which they were derived. These original target measures

showed similar associations with health behavior, with the

same signs inmost cases (Fig. 2B). At the same time, the ensuing

patterns were noisier, suggesting that empirically derived proxy

measures yielded enhanced associations with health behavior.

This inference may be dif�cult to make because differences be-

tween targets and proxies were not always easy to pinpoint vi-

sually. To implement a more rigorous statistical approach, we

built comprehensive models of each respective health-related

habit in which we used all proxies (predicted age, predicted �uid

intelligence, predicted neuroticism) and all targets (age, �uid in-

telligence, neuroticism) simultaneously as predictors (Fig. 2 - Fig.

supplement 4). The results show systematic additive effects of

proxies and targets across the 3 target domains and the 4 health

habits. These trends are well captured by the hypothesis tests of

the respective linear models (Supplementary Table S3). Because

targets and proxies may be systematically intercorrelated, mul-

ticollinearity may corrupt these inferences. Inspection of vari-

ance in�ation factors (VIF)—a measure that reveals how well a

given predictor can be approximated by a linear combination of

the other predictors—argued in favor of low tomoderate levels of

multicollinearity (Supplementary Table S4). Indeed, all VIF val-

ues fell between 3 and 1, whereas, classically, values >5 or 10 are

considered as thresholds [52] for pathological collinearity. This

suggests that the model inferences are statistically sound.

The relative importance of brain and sociodemographic

data depends on the target

In a second step, we investigated the relative performance of

proxy measures built from brain signals and distinct sociode-

mographic factors for the 3 targets: age, �uid intelligence, and

neuroticism. Among the sociodemographic variables there was

1 block for each target explaining most of the prediction perfor-

mance (Fig. 3, dotted outlines). Combining all sociodemographic

variables did not lead to obvious enhancements (Fig. 3 - Fig.

supplement 2). For age prediction, variables related to current

lifestyle showed by far the highest performance. For �uid intel-

ligence, education performed by far best. For neuroticism, mood

and sentiment clearly showed the strongest performance.

Combining MRI and sociodemographic characteristics en-

hanced age prediction systematically across all 4 blocks of vari-

ables (Fig. 3 solid outlines and Supplementary Table S1). The

bene�t of brain-imaging features was less marked for predic-

tion of �uid intelligence or neuroticism. For �uid intelligence,

brain-imaging data led to statistically signi�cant improvements

of performance, however, with small effect sizes (Supplemen-

tary Table S1). For neuroticism, no systematic bene�t of includ-

ing brain images alongside sociodemographic characteristics

emerged (Supplementary Table S1, bottom row). Nevertheless,

brain data were suf�cient for statistically signi�cant approxi-

mation of the target measures in all 3 targets (Supplementary

Table S5).
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Figure 3: Approximation performance of proxy measures derived from sociodemographic data and MRI. We report the R2 metric to facilitate comparisons across

prediction targets. The cross-validation (CV) distribution (100 Monte Carlo splits) on the validation dataset is depicted by violins. Drawing style indicates whether brain

imaging (solid outlines of violins) was included or excluded (dotted outlines of violins). Dots depict the average performance on the validation data across CV-splits.

Triangles depict the performance of the average prediction (CV-bagging) on held-out generalization datasets. For convenience, themean performance on the validation

set is annotated for each plot. Vertical dotted lines indicate the average performance of the full MRI model. The validation and held-out datasets gave a similar picture

of approximation performance with no evidence for cross-validation bias [53]. For the averaged out-of-sample predictions, the probability of the observed performance

under the null distribution and the uncertainty of effect sizes was formally probed using permutation tests and bootstrap-based con�dence intervals (Supplementary

Table S1). Corresponding statistics for the baseline performance of models solely based on brain imaging (vertical dotted lines) are presented in Supplementary Table

S5. Figure 3 - Fig. supplement 1 shows approximation results based on MRI. Figure 3 - Fig. supplement 2 presents results based on all sociodemographic factors.

Psychological measures often come without physical scales

and units [51]. In practice, clinicians and educators use them

with speci�c thresholds for decision making. To investigate em-

pirically de�ned proxy measures beyond continuous regression,

we performed binary classi�cation of extreme groups obtained

fromdiscretizing the targets using the 33rd and 66th percentiles,

following the recommendations by Gelman and Hill [54] re-

garding discrete variable encoding strategies. Furthermore, we

measured accuracy with the area under the classi�cation ac-

curacy curve (AUC), which is only sensitive to ranking, ignor-

ing the scale of the error. Classi�cation performance visibly

exceeded the chance level (AUC >0.5) for all models (Fig. 4)

and approached or exceeded levels considered practically use-

ful (AUC >0.8) [50]. Across proxy measures, models including

sociodemographic characteristics performed best but the differ-

ence between purely sociodemographic and brain-based mod-

els was comparably weak, at the order of 0.01–0.02 AUC points

(Supplementary Table S2). Using brain-imaging data alone led

to degraded performance that was, nevertheless, better than

chance, as revealed by permutation testing (Supplementary

Table S6).

Discussion

Guided by machine learning, we empirically derived proxy

measures that combine multiple sources of information to

capture extensively validated target measures from psychology.

These proxy measures all showed complementary associa-

tions with real-world health indicators beyond the original

targets. The combination of brain imaging and target-speci�c

sociodemographic inputs often improved approximation

performance.

Empirically derived proxy measures: validity and

practical utility

In our study, construct validity [6, 7, 55] of the corresponding

proxy measures was supported by the gain in prediction per-

formance brought by speci�c sociodemographic factors (Fig. 3).

Association with health-relevant habits added external validity

to the proxy measures (Fig. 2). The complementary patterns re-

lated to traditional construct semantics: High consumption of

cigarettes is associated with neuroticism [56]; excessive drink-

ing may lead to brain atrophy and cognitive decline [57]—both

common correlates of increased brain age [22, 58].

Can our empirically derived proxy measures thus substitute

for speci�c psychometric instruments? A mental health profes-

sional may still prefer an established routine for clinical assess-

ment, relying on interviews and personality questionnaires with

implicit experience-based thresholds. Inclusion of brain imag-

ing may even seem to yield diminishing returns when approxi-

mating high-level psychological traits. Yet, it could simply be a

matter of time until more effective acquisition techniques will

be discovered alongside more powerful signal representations.

Including brain imaging rather seems a “safe bet” because ma-

chine learning is often capable of selecting relevant inputs [11,

59] and costs of MRI acquisition can be amortized by clinical us-

age. Empirically derived proxy measures may open new doors

where tailored assessment of latent constructs is not applicable

due to lack of specializedmental health workforce or sheer cost.
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6 Population modeling for measures of mental health
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0.78

Age
Fluid 

Intelligence
Neuroticism

0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

Brain Imaging

Brain Imaging &
Sociodemographics

Sociodemographics

ROC−score ± CV−based uncertainty estimation

generalization

validation

Extreme−group classification with proxy measures 
derived from sociodemographics and brain imaging

Figure 4: Classi�cation analysis from imaging, sociodemographic characteristics, and combination of both data types. For classi�cation of extreme groups instead

of continuous regression, we split the data into low vs high groups based on 33rd and 66th percentiles. Visual conventions follow Fig. 3. We report the accuracy in

AUC. Models including sociodemographic characteristics performed visibly better than models purely based on brain imaging. Differences between brain-imaging

and sociodemographic characteristics appeared less pronounced as compared to the fully �edged regression analysis. For the average out-of-sample predictions, the

probability of the observed performance under the null distribution and the uncertainty of effect sizes were formally probed using permutation tests and bootstrap-

based con�dence intervals (Supplementary Table S2). Corresponding statistics for the baseline performance of models solely based on brain imaging (vertical dotted

lines) are presented in Supplementary Table S6. Overall, whenmoving from themore dif�cult full-scale regression problem to the extreme-group classi�cation problem

with purely ranking-based scores, the relative differences between brain-based and sociodemographic characteristics-based prediction gradually faded away.

Constructs of mental health can be accessed from

general-purpose data

Brain age has served as landmark in this study. It has been ar-

guably the most discussed candidate for a surrogate biomarker

in the brain-imaging literature [16, 17, 24]. With mean absolute

errors ∼4 years, ≤67% variance explained, and AUC scores ≤0.93

in the classi�cation setting, our results compare favorably to the

recent brain age literature within the UK Biobank (UKBB) [19,

60] and in other datasets [11, 22], although we relied on off-

the-shelf methods and not custom deep learning methods [61].

Applying the same approach to psychological constructs (�uid

intelligence, neuroticism), we found that approximation from

brain-imaging data or sociodemographic descriptors was gen-

erally harder.

It is important to recapitulate that approximation quality on

these differently measured targets has a different meaning. Age

is measured with meaningful physical units (years) on a ratio

scale [51] (Selma is twice as old as Bob). Psychometric scores are

unit-free, which may provoke ambiguity regarding the level of

measurement [55]. Their implied scales may be considered as

interval (the difference between Bob’s and Selma’s intelligence

is −0.1 standard deviations) if not ordinal (Bob’s intelligence was

ranked below Selma’s) [51]. In day-to-day psychological prac-

tice, these scores are often used via practically de�ned thresh-

olds, e.g., school admission or pilot candidate selection [62, 63].

In the classi�cation setting, all proxy measures approached or

exceeded a performance of 0.80 deemed relevant in biomarker

development [50], although to be fair, they approximated estab-

lished psychometric targets (proxy measures themselves) and

not a medical condition. Different proxy measures should, thus,

be subjected to different standards, depending on the granular-

ity of the implied measurement scale.

A more complete view on how the proxy measures capture

mental health constructs emerges from their associations with

real-world behavior (Fig. 2). Indeed, the associations with proxy

measures (Fig. 2B)were less noisy andmore consistent thanwith

the target measures (Fig. 2A), regardless of their approximation

quality. This may seem surprising at �rst, but the target mea-

sures are themselves noisy and of imperfect validity. Thesemea-

sures correspond to traditional tests, which, in practice, must be

interpreted by an expert, actively confronting their output with

broader information on the individual. For instance, IQ scores

are typically normalized across age groups. However, extending

such a normalization approach tomany factors (socio-economic

status, culture, sex) poses fundamental high-dimensional statis-

tics challenges. Conversely, using machine learning to assem-

ble proxy measures by mapping the targets to rich sociodemo-

graphic and brain data implicitly contextualizes them. In this re-

spect, the resulting measures capture more general signal than

the original tests. Here, machine learning could be seen asmim-

icking the work of a mental health expert who carefully com-

pares psychometric results with other facts known about an in-

dividual and its reference population.

The bene�ts offered by brain data depend on the target

construct

All brain-derived approximations were statistically meaningful.

Yet, only for age prediction, imaging data by itself led to con-

vincing performance. For �uid intelligence and neuroticism, so-

ciodemographic factors were the most important determinants

of prediction success. The best-performing sociodemographic

models were based on inputs semantically close to these tar-

gets, i.e., education details or mood and sentiment. While those

results support construct validity, they may come with a cer-

tain risk of circularity. The causal role of those predictors is not

necessarily clear because better educational attainment is her-

itable itself [64] and may reinforce existing cognitive abilities.

Similarly, stressful life events may exacerbate existing disposi-

tions to experience negative emotions. Such dispositions can de-

velop into traits captured by neuroticism [65] and can, in turn,

lead to accumulating further stressful life events [38]. Never-

theless, for �uid intelligence but not neuroticism, brain imag-

ing added incremental value when combined with various so-

ciodemographic predictors. This may suggest that the cues for
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Dadi et al. 7

neuroticism conveyed by brain imaging were already present

in sociodemographic predictors, hinting at common causes. Of

note, in the speci�c context of aging, the empirical distinction

between brain age and cognitive age (age predicted from cog-

nitive and behavioral data) is re�ecting a similar intuition that

different inputs can yield complementary proxies of the same

target [66].

Limitations

Additional constructs and psychometric tools could have been

evaluated. The broader construct of intelligence is often esti-

mated using a general factor model with multiple correlated

tests. While this is obviously useful for normative assessments,

measures of �uid intelligence can also serve as a situational �t-

ness signal [30]. There is a wealth of questionnaires for measur-

ing negative emotionality and neuroticism, speci�cally. Yet, we

could only study the EPQ scale provided by the UKBB. A comple-

mentary approachwould be to estimate latent factors by pooling

all non-imaging data semantically related to neuroticism [67].

Here, we considered established target measures “as is,” instead

of derivatives.

It terms of mental health research, this study falls short of

directly testing the clinical relevance of estimated proxy mea-

sures. Even in a very large general-population cohort such as

the UKBB, there are only a few hundred diagnosed cases of men-

tal disorders (ICD-10 mental health diagnoses from the F chap-

ter) with brain-imaging data available. As a result, we could not

directly assess the performance of proxy measures in clinical

populations. The low number of diagnosed mental disorders in

theUKBB highlights the practical importance of studyingmental

health as a continuous variable, in addition to diagnosed con-

ditions. Indeed, a public health perspective calls for targeting

individual differences in health, not only pathology. Psycholog-

ical constructs such as IQ and neuroticism are important fac-

tors of the epidemiology of psychiatric disorders [29, 30, 38, 68],

and accelerated brain aging is associated with various neuro-

logical conditions [17, 18, 25]. Yet, few cohorts come with exten-

sive neuropsychological testing. Validated proxies of these con-

structs open the door to including them in epidemiological stud-

ies as secondary outcomes or additional explanatory variables.

Conclusion

In population studies of mental health, individual traits are cap-

tured via lengthy assessments, tailored to speci�c brain and

psychological constructs. We have shown that proxy measures

built empirically from general-purpose data can capture these

constructs and can improve upon traditional measures when

studying real-world health patterns. Proxy measures can make

psychological constructs available to broader, more ecological

studies building on large epidemiological cohorts or real-world

evidence. This can make the difference where psychological

constructs are central to developing treatment and prevention

strategies but direct measures have not been collected.

Methods

To facilitate reproduction, understanding, and reuse, we have

made all data analysis and visualization source code available

on GitHub [69].

Dataset

The UKBB database is to date the most extensive large-scale co-

hort aimed at studying the determinants of the health outcomes

in the general adult population. The UKBB is openly accessible

and has extensive data acquired on 500,000 individuals aged 40–

70 years covering rich phenotypes, health-related information,

brain-imaging, and genetic data [12]. Participants were invited

for repeated assessments, some of which included MRI. For in-

stance, cognitive tests that were administered during an initial

assessment were also assessed during the follow-up visits. This

has enabled �nding for many participants ≥1 visit containing all

heterogeneous input data needed to develop the proposed proxy

measures. The study was conducted using the UKBB Resource

Application 23827.

Participants

All participants gave informed consent. The UKBB study was

examined and approved by the North West Multi-centre Re-

search Ethics Committee. We considered participants who have

responded to cognitive tests and questionnaires and provide ac-

cess to their primary demographic characteristics and brain im-

ages [70]. Out of the total size of UKBB populations, we found

11,175 participants who had repeated assessments overlapping

with the �rst brain-imaging release [71]. Note that the features

(sociodemographic variables) that we included in the analysis

are measures that are self-reported during a follow-up imaging

visit. The demographic characteristics are 51.6% female (5,572)

and 48.3% male (5,403), and an age range of 40–70 years (mean

[SD], 55 [7.5] years). The data for model training were selected

using a randomized split-half procedure yielding 5,587 individ-

uals. The remaining participants were set aside as a held-out

set for generalization testing (see section “Model development

and generalization testing”). Wemade sure that the participants

used for model training and generalization testing were strictly

non-overlapping.

Learning curves documented that the training split was suf-

�ciently large for constructing stable prediction models (Fig. 1 -

Fig. supplement 1) with pro�les of performance similar to the

latest benchmarks on model complexity in the UKBB [72]. More-

over, simulations and empirical �ndings suggest that larger test-

ing sets are more effective at mitigating optimistic performance

estimates [53, 73]. Together, this provided a pragmatic solution

to the inference-prediction dilemma [59, 74] given the 2 objec-

tives of the present investigation to obtain reasonably good pre-

dictivemodels while at the same time performing parameter in-

ference of statistical models developed on the left-out data.

To establish speci�c comparisons between models based on

sociodemographic characteristics, brain data, or their combina-

tions, we exclusively considered the cases for which MRI scans

were available. The �nal sample sizes used for model construc-

tion and generalization testing then depended on the availabil-

ity of MRI: For age and �uid intelligence, our randomized split-

half procedure (see section “Model development and generaliza-

tion testing”) yielded 4,203 cases for model building and 4,157

for generalization. For cases with valid neuroticism assessment,

fewer brain images were available, which yielded 3,550 cases for

model building and 3,509 for generalization.

Data acquisition

Sociodemographic data (non-imaging) were collected with self-

report measures administered through touchscreen question-
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8 Population modeling for measures of mental health

naires, complemented by verbal interviews, physical measures,

biological sampling, and imaging data. MRI data were acquired

with the Siemens Skyra 3T using a standard Siemens 32-channel

RF receiver head coil [75]. We considered 3 MRI modalities be-

cause each of them potentially captures unique neurobiologi-

cal details: structuralMRI (sMRI/T1), resting-state functionalMRI

(rs-fMRI), and diffusion MRI (dMRI). For technical details about

the MR acquisition parameters see [71]. We used image-derived

phenotypes of those distinct brain-imaging modalities because

they provide actionable summaries of the brain measurements

and encourage comparability across studies.

Target measures

As our target measures for brain age modeling, we use an in-

dividual’s age at baseline recruitment (UKBB code “21022-0.0”).

Fluid intelligence was assessed using a cognitive battery de-

signed to measure an individual’s capacity to solve novel prob-

lems that require logic and abstract reasoning. In the UKBB, the

�uid intelligence test (UKBB code “20016-2.0”) comprises 13 logic

and reasoning questions that were administered via the touch-

screen to record a response within 2 minutes for each ques-

tion. Therefore, each correct answer is scored as 1 point, with 13

points in total (see the user manual [76] for an overview of the

13 items). Neuroticism (UKBB code “20127-0.0”) was measured

using a shorter version of the revised Eysenck Personality Ques-

tionnaire (EPQ-N) comprising 12 items [32]. Neuroticism was as-

sessed during the UKBB baseline visit. A score in the range of

0–12 summarizes dispositional tendency to experience negative

emotions (a complete list of neuroticism questionnaires is pro-

vided by the dedicated �eld descriptions and derivation for vari-

ables related to bipolar disorder, major depression status, and

neuroticism score [77]).

In the course of this work, a question that emerged con-

cerned the size of the gap between age at baseline recruitment

and MRI scan time and its potential effect on the analysis. Sup-

plementary checks indicated that the age gap was ≥5 years for

most participants. Yet, from a statistical perspective, the 2 age

measures turned out to be interchangeable (Supplementary Fig.

S2) and global conclusions remained unchanged (Supplemen-

tary Fig. S3).

Sociodemographic data

In this work, we refer to non-imaging variables broadly as so-

ciodemographic characteristics excluding the candidate targets

�uid intelligence and neuroticism. To approximate latent con-

structs from sociodemographic characteristics, we included 86

non-imaging inputs (Supplementary Table S7), which are the

collection of variables re�ecting each participant’s demographic

and social factors i.e., sex, age, date and month of birth, body

mass index, ethnicity, exposures at early life (e.g., breast feed-

ing, maternal smoking around birth, adopted as a child), educa-

tion, lifestyle-related variables (e.g., occupation, household fam-

ily income, number of people in household, smoking habits), and

mental health variables. All these data were self-reported. We

then assigned these 86 variables to 5 groups based on their rela-

tionships. On the basis of our conceptual understanding of the

variables, we assigned them to 1 of 5 groups: (1) mood and sen-

timent, (2) primary demographic characteristics such as age and

sex, (3) lifestyle, (4) education, and (5) early life. We then inves-

tigated the intercorrelation between all 86 variables to ensure

that the proposed grouping is compatible with their empirical

correlation structure (Supplementary Fig. S1).

The sociodemographic groups had varying amounts of miss-

ing data, with a portion of themissingness related to the partici-

pants’ lifestyle habits such as smoking andmental health issues

[78]. To deal with this missingness in the data using imputation

[79], we used column-wise replacement of missing information

with the median value calculated from the known part of the

variable. We subsequently included an indicator for the pres-

ence of imputed values for downstream analysis. Such impu-

tation is well suited to predictive models [80].

Image processing to derive phenotypes for machine

learning

MRI data preprocessing was carried out by the UKBB imaging

team. The full technical details are described elsewhere [71, 75].

Below, we describe brie�y the custom processing steps that we

used on top of the already preprocessed inputs.

Structural MRI

This type of data analysis on T1-weighted brain images is con-

cerned with morphometry of the gray matter areas, i.e., the

quanti�cation of size, volume of brain structures and tissue

types, and their variations under brain disease conditions or be-

havior [81]. For example, volume changes in gray matter areas

over lifetime are associated with brain aging [82], general intel-

ligence [83], and brain disease [84]. Such volumes are calculated

within pre-de�ned regions of interest composed of cortical and

sub-cortical structures [85] and cerebellar regions [86]. We in-

cluded 157 sMRI features consisting of volume of total brain and

gray matter along with brain subcortical structures [87, 88]. All

these features are pre-extracted by theUKBB brain imaging team

[71] and are part of the data download. We concatenated all in-

puts alongside custom-built fMRI features for predictive analysis

(feature union).

Diffusion-weighted MRI

dMRI enables the identi�cation of white matter tracts along the

principal diffusive direction of water molecules, as well as the

connections between different gray matter areas [89, 90]. The

study of these local anatomical connections through white mat-

ter is relevant to the understanding of brain diseases and func-

tional organization [91]. We included 432 dMRI skeleton features

of FA (fractional anisotropy), MO (tensor mode), MD (mean dif-

fusivity), ICVF (intra-cellular volume fraction), ISOVF (isotropic

volume fraction), and OD (orientation dispersion index) mod-

eled onmany brain white matter structures extracted from neu-

roanatomy (dMRI skeleton measurements [92]; for technical de-

tails see [93]). The skeleton features we included were from Cat-

egory 134 shipped by theUKBB brain-imaging team, andwe used

them without modi�cation.

Functional MRI

Resting-state functional MRI captures low-frequency �uctua-

tions in blood oxygenation that can reveal ongoing neuronal in-

teractions in time forming distinct brain networks [94]. Func-

tional connectivity within these brain networks can be linked to

clinical status [95], to behavior [71], or to psychological traits [45].

We also included resting-state connectivity features based on

the time series extracted from independent component analysis

(ICA), with 55 components representing various brain networks

extracted on UKBB rfMRI data [71]. These included the default

mode network, extended default mode network, and cingulo-

opercular network, executive control and attention network, vi-

sual network, and sensorimotor network. We measured func-
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Dadi et al. 9

tional connectivity in terms of the between-network covariance.

We estimated the covariancematrices using Ledoit-Wolf shrink-

age [96]. To account for the fact that covariance matrices live

on a particular manifold, i.e., a curved non-Euclidean space, we

used tangent-space embedding to transform the matrices into a

Euclidean space [97, 98] following recent recommendations [99,

100]. For predictive modeling, we then vectorized the covariance

matrices to 1, 485 features by taking the lower triangular part.

These steps were performed with NiLearn [101].

Comparing predictive models to approximate target

measures

Imaging-based models

First, we focused on purely imaging-based models based on ex-

haustive combinations of the 3 types of MRI modalities (see Ta-

ble 1 for an overview). This allowed us to study potential over-

lap and complementarity between the MRI modalities. Prelimi-

nary analyses revealed that combining all MRI data gave reason-

able results with no evident disadvantage for particular combi-

nations of MRI modalities (Fig. 3 - Fig. supplement 1); hence, for

simplicity, we only focused on the full MRI model in subsequent

analyses.

Sociodemographic models

We composed predictive models based on non-exhaustive com-

binations of different types of sociodemographic variables. To

investigate the relative importance of each class of sociodemo-

graphic inputs, we performed systematic model comparisons.

We were particularly interested in studying the relative contri-

butions of early-life factors as compared to factors related to

more recent life events such as education as well as factors re-

lated to current circumstances such asmood and sentiment and

lifestyle. The resulting models based on distinct groups of pre-

dictors are listed in Table 2 (for additional details see Supple-

mentary Table S7 and Supplementary Fig. S1).

Combined imaging and sociodemographic models

In the next step, we were interested in how brain-related infor-

mation would interact within each of these sociodemographic

models. For example, information such as the age of an indi-

vidual or the level of education may add important contextual

information to brain images. We therefore considered an alter-

native variant for each of the models in Table 2 that included

all MRI-related features (2,074 additional features) as described

in section “Image processing to derive phenotypes for machine

learning.”

Predictive model

Linear models are recommended as the default choice in neu-

roimaging research [99, 102] especially when datasets include

<1,000 data points. This study approximated targets generated

by distinct underlying mechanisms based onmultiple classes of

heterogenous input data with several thousands of data points.

We hence chose the non-parametric random forest algorithm,

which can be readily applied on data of different units for non-

linear regression and classi�cation [103] with mean squared

error as impurity criterion. To improve computation time we

�xed tree depth to 250 trees, a hyperparameter that is not usu-

ally tuned but set to a generous number because performance

plateaus beyond a certain number of trees ([104], ch. 15). Prelimi-

nary analyses suggested that additional treeswould not have led

to substantial improvements in performance. We used nested

cross-validation (5-fold grid search) to tune the depth of the

trees as well as the number of variables considered for splitting

(see Table 3 for a full list of hyperparameters considered).

Classi�cation analysis We also performed classi�cation analysis

on the continuous targets. Adapting recommendations from

Gelman and Hill [54], we performed discrete variable encoding

of the targets leading to extreme groups based on the 33rd and

66th percentiles (see Table 4 for the number of classi�cation

samples per group). This choice avoids including samples near

the average outcome, for which the input data may be indis-

tinct. We were particularly interested in understanding whether

model performance would increase whenmoving toward classi-

fying extreme groups. For this analysis, we considered all 3 types

of models (full MRI 2,074 features from imaging-based models;

all sociodemographic characteristics variables, total 86 variables

see section, combination of full MRI and all sociodemographic

characteristics, a total of 2,160 variables; see section “Compar-

ing predictive models to approximate target measures”). When

predicting age, we excluded the age and sex sociodemographic

block from all sociodemographic variables, which then yielded

a total of 81 variables. To assess the performance for classi�ca-

tion analysis, we used the area under the curve (AUC) of the re-

ceiver operating characteristic (ROC) curve as an evaluationmet-

ric [102].

Model development and generalization testing

Before any empirical work, we generated 2 random partitions

of the data, 1 validation dataset for model construction and 1

held-out generalization dataset for studying out-of-sample as-

sociations using classical statistical analyses.

For cross-validation, we then subdivided the validation set

into 100 training and testing splits following the Monte Carlo re-

sampling scheme (also referred to as shuf�e-split) with 10% of

the data used for testing. To compare model performance based

on paired tests, we used the same splits across all models. Split-

wise testing performance was summarized for informal infer-

ence using violin plots (Figs 3 and 4). For generalization testing,

predictions on the held-out data were generated from all 100

models from each cross-validation split.

On the held-out set, unique subject-wise predictions were

obtained by averaging across folds and occasional duplicate pre-

dictions due toMonte Carlo sampling,which could producemul-

tiple predictions per participant (we ensured prior to computa-

tion that with 100 CV-splits, predictions were available for all

participants). Such a strategy is known as CV-bagging [105, 106]

and can improve both performance and stability of results (the

use of CV-bagging can explain why in Figs 3 and 4 and Fig. 3 -

Figure supplement 1 the performance was sometimes slightly

better on the held-out set compared to the cross-validation on

the validation test). The resulting average predictions yielded

the �nal proxy measures for the analysis of health-related be-

haviors in Fig. 2 and were reported in Fig. 3 and Fig. 4.

Statistical analysis

Resampling statistics for model comparisons on the held-out data

To assess the statistical signi�cance of the observed model per-

formance and the differences in performance between themod-

els, we computed resampling statistics of the performance met-

rics on the held-out generalization data not used for model con-

struction [107]. Once unique subject-wise predictions were ob-

tained on the held-out generalization data by averaging the pre-

dictions emanating from each fold of the validation set (CV-
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10 Population modeling for measures of mental health

Table 1. Imaging-based models

Index Name No. variables No. groups

1 Brain volumes (sMRI) 157 1

2 White matter (dMRI) 432 1

3 Functional connectivity

(fMRI)

1,485 1

4 sMRI, dMRI 589 2

5 sMRI, fMRI 1,642 2

6 dMRI, fMRI 1,917 2

7 sMRI, dMRI, fMRI (full MRI) 2,074 3

Table 2. Non-imaging baseline models or sociodemographic models
based on a single group

Index Name No. variables

1 Mood and Sentiment (MS) 25

2 Age, Sex (AS) 5

3 Lifestyle (LS) 45

4 Education (EDU) 2

5 Early Life (EL) 9

Variables in each group are described in section “Sociodemographic data.”

Table 3. Random forest hyperparameters and tuningwith grid search
(5-fold cross-validation)

Hyperparameter Values

Impurity criterion Mean squared error

Maximum tree depth 5, 10, 20, 40, full depth

Fraction of features for split 1, 5, “log2,” “sqrt,” “complete”

No. of trees 250

Table 4. Number of samples for classi�cation analysis (N)

No. groups Age Fluid intelligence Neuroticism

1 1,335 1,108 1,054

2 1,200 898 1,020

bagging), we computed null and bootstrap distributions of the

observed test statistic on the held-out data, i.e., R2 score for re-

gression and AUC score for classi�cation.

Baseline comparisons To obtain a P-value for baseline compar-

isons (“could the prediction performance of a givenmodel be ex-

plained by chance?”) on the held-out data, we permuted targets

10,000 times and then recomputed the test statistic in each iter-

ation. P-values were then de�ned as the probability of the test

statistic under null distribution being larger than the observed

test statistic. To compute uncertainty intervals, we used the

non-parametric bootstrap method, recomputing the test statis-

tic after resampling 10,000 times with replacement and report-

ing the 2.5 and 97.5 percentiles of the resulting distribution. Note

that this procedure is unrelated to the parametric bootstrap used

for the analyses presented in Fig. 2 and supplements (see section

“Health-related habits regression”).

Pairwise comparisons between models For model comparisons, we

considered the out-of-sample difference in R2 or AUC between

any 2models. To obtain a P-value formodel comparisons (“could

the difference in prediction performance between 2 given mod-

els be explained chance?”) on the held-out data, for every

testing-data point, we randomly swapped the predictions from

Model A and Model B 10,000 times and then recomputed the

test statistic in each iteration. We omitted all cases for which

only predictions from 1 of the models under comparison was

present. P-values were then de�ned as the probability of the ab-

solute value of the test statistic under null distribution being

larger than the absolute value of the observed test statistic. The

absolute value was considered to account for differences in both

directions. Uncertainty intervals were obtained from comput-

ing the 2.5 and 97.5 percentiles of the non-parametric bootstrap

distribution based on 10,000 iterations. Here, predictions from

Model A and Model B were resampled using identical resam-

pling indices to ensure a meaningful paired difference. Again,

note that this procedure is unrelated to the parametric bootstrap

used for the analyses presented in Fig. 2 and supplements (see

section “Health-related habits regression”).

Out-of-sample association between proxy measures and health-

related habits

Computation of brain age � and de-confounding For association

with health-contributing habits (Table 5), we computed the brain

age � as the difference between predicted age and actual age:

Brain Age � = Agepredicted − Age. (1)

Because age prediction is rarely perfect, the residuals will still

contain age-related variance, which commonly leads to brain

age bias when relating the brain age to an outcome of interest,

e.g., sleep duration [108]. To mitigate leakage of age-related in-

formation into the statistical models, we used a de-confounding

procedure in line with [109] and [eqs. 6–8] consisting in residu-

alizing a measure of interest (e.g., sleep duration) with regard to

age through multiple regression with quadratic terms for age.

To minimize computation on the held-out data we �rst trained

a model relating the score of interest to age on the validation

set to then derive a dedconfounding predictor for the held-out

generalization data. The resulting de-confounding procedure for

variables in the held-out data amounts to computing an age-

residualized predictor measureresid from themeasure of interest

(e.g., sleep duration) by applying the following quadratic �t on

the validation data:

measurevalidation = agevalidation × βval1+

age2validation × βval2 + ǫ.

(2)

The deconfounding predictor was then obtained by evaluating

the weights βval1 and βval2 obtained from Equation 2 on the gen-
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Table 5. Extra health variables used for correlation analysis with participant-speci�c predicted scores

Family EID Variable

Alcohol∗ 1568-0.0 Average weekly red wine intake

1578-0.0 Average weekly champagne plus white wine intake

1588-0.0 Average weekly beer plus cider intake

1598-0.0 Average weekly spirits intake

1608-0.0 Average weekly forti�ed wine intake

5364-0.0 Average weekly intake of other alcoholic drinks

Physical activity 22040-0.0 Summed MET minutes per week for all activity

Smoking 20161-0.0 Pack-years of smoking

Sleep 1160-0.0 Sleep duration

∗We computed a compound drinking score by summing up all variables from the alcohol family. MET: metabolic equivalent task.

eralization data:

deconfounder = agegeneralization × βval1

+age2generalization × βval2.

(3)

We performed this procedure for all target measures to study

associations not driven by the effect of age. For supplementary

analyses presented in Fig. 2 - Figure supplement 3, the same pro-

cedure was applied, substituting age for �uid intelligence and

neuroticism, respectively.

Health-related habits regression We then investigated the joint

association between proxy measures of interest and health-

related habits (Table 5) usingmultiple linear regression. For sim-

plicity, we combined all brain imaging and all sociodemographic

variables (Fig. 3, Figure 3 - Figure supplement 1, Figure supple-

ment 2, Figure 3). The ensuing model can be denoted as

measure = deconfounder × β1 + Brain Age � × β2

+PredFluidInt × β3 + PredNeurot × β4 + ǫ, (4)

where “deconfounder” is given by Equation 2. Prior to model �t-

ting, rows with missing inputs were omitted. For comparability,

we then applied standard scaling on all outcomes and all pre-

dictors.

The parametric bootstrap was a natural choice for uncer-

tainty estimation because we used standard multiple linear re-

gression, which provides a well-de�ned procedure for mathe-

matically quantifying its implied probabilistic model. Compu-

tation was carried out using the “sim” function from the arm

package as described in [11, 54] (Ch. 7, pp.142–3). This procedure

can be intuitively regarded as yielding draws from the posterior

distribution of the multiple linear regression model under the

assumption of a uniform prior. For consistency with previous

analyses, we computed 10,000 draws.

For supplementary analysis in Fig. 2 - Figure supplement 2,

the brain-predicted age instead of the � was used:

measure = deconfounder × β1 + Brain Age × β2 +

PredFluidInt × β3 + PredNeurot × β4 + ǫ, (5)

For supplementary analysis in Fig. 2 - Figure supplement 3,

additional deconfounders were introduced.

measure = deconfounderage × β1 (6)

+Brain Age × β2 + deconfounderFI

×β3 + PredFluidInt × β4 + deconfounderN

+β5 + PredNeurot × β6 + ǫ, (6)

where deconfounderFI is the deconfounder for �uid intelligence

and deconfounderN the deconfounder for neuroticism following

the procedure described in Equations 2 and 3.

For supplementary analysis in Fig. 2 - Figure supplement 4,

proxies and targets were analyzed simultaneously.

measure = Age × β1 + Brain Age × β2 + Fluid Intelligence × β3 +

PredFluidInt × β4 +

Neuroticism + β5 + PredNeurot × β6 + ǫ. (7)

Software

Preprocessing andmodel buildingwere carried out using Python

3.7. TheNiLearn librarywas used for processingMRI inputs [101].

We used the scikit-learn library for machine learning [110].

For statistical modeling and visualization we used the R lan-

guage [111] (version 3.5.3) and its ecosystem: data.table for high-

performance manipulation of tabular data, ggplot [112, 113] for

visualization, and the arm package for parametric bootstrap-

ping [114]. All data analysis code is shared on GitHub [69].

Availability of Source Code and Requirements
� Project name: empirical proxy measures
� Project home page: https://github.com/KamalakerDadi/emp

irical proxy measures
� Operating system(s): Platform independent
� Programming language: Python and R
� Other requirements: Python 3.6.8 or higher, R 3.4.3 or higher
� License: BSD-3

Data Availability

Aggregated data supporting the results and �gures of this ar-

ticle are available through the GigaScience Database [115] and

the “empirical proxy measures” code repository [69]. In the fu-
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12 Population modeling for measures of mental health

ture, the individual-level proxymeasures obtained from the pre-

diction models in this work will be shared in agreement with

the UK Biobank regulations; see [69] for details. The input data

are available for other researchers via UKBB’s controlled access

scheme [116]. The procedure to apply for access [117] requires

registering with the UK Biobank and compiling an application

form detailing:

� A summary of the planned research
� The UK Biobank data �elds required for the project
� A description of derivatives (data, variables) generated by the

project

Additional Files

Figure 1 – Figure supplement 1: Learning curves on the random

split-half validation used for model building. To facilitate com-

parisons, we evaluated predictions of age, �uid intelligence and

neuroticism from a complete set of socio-demographic variables

without brain imaging using the coef�cient of determination R2

metric (y-axis) to compare results obtained from 100 to 3000

training samples (x-axis). The cross-validation (CV) distribution

was obtained from 100 Monte Carlo splits. Across targets, per-

formance started to plateau after around 1000 training samples

with scores virtually identical to the �nal model used in sub-

sequent analyses. These benchmarks suggest that inclusion of

additional training samples would not have led to substantial

improvements in performance.

Figure 2 – Figure supplement 1: Marginal associations be-

tween proxy measures and health-related habits. Marginal (in-

stead of conditional) estimates using univariate regression.

Same visual conventions as in Fig. 2.

Figure 2 – Figure supplement 2: Conditional associations

between proxy measures and health-related habits without ex-

plicit brain age delta. Conditional estimates using multivariate

regression. Instead of the brain age delta, the brain-predicted

age is included alongside an age-deconfounder as used in the

main analysis. Same visual conventions as in Fig. 2.

Figure 2 – Figure supplement 3: Conditional associations

between proxy measures and health-related habits with-proxy-

speci�c deconfounding. Conditional estimates using multivari-

ate regression. Instead of the brain age delta, the brain-predicted

age is included alongside an age-deconfounder as used in the

main analysis. Moreover, predicted �uid intelligence and neu-

roticism are deconfounded for the target values at training time,

analogous to the brain age predictions. Same visual conventions

as in Fig. 2.

Figure 2 – Figure supplement 4: Joint modeling of health-

related habits from proxy and target measures. Conditional esti-

mates using multivariate regression. Every health-related habit

(double rows) is modeled simultaneously from multiple proxies

and targets. Same visual conventions as in Fig. 2. Across health-

habits, additive effects emerged not only for proxies and targets

within the samemeasure (e.g. age) but also acrossmeasures (e.g.

age and �uid intelligence). For illustration, we shall consider two

examples. Regarding alcohol consumption, age was the most

important measure and opposite conditional effects were ob-

served for the proxy and the target: Across the age range, people

with higher brain age tended to drinkmore and across the brain-

age range, older people tended to drink less. For smoking, the

proxy measures were the most important variables with clear

non-zero coef�cients, pointing in different directions across tar-

get domains. Holding �uid intelligence and neuroticism con-

stant (targets and proxies), people with higher brain age tended

to have been smoking for a longer time. At the same time, those

who scored lower on predicted �uid intelligence across the en-

tire range of age, predicted age, measured �uid intelligence, pre-

dicted neuroticism and neuroticism, have been smoking for a

longer time. Finally, those who scored higher on predicted neu-

roticism tended to smoke more across the ranges of all other

measures.

Figure 3 – Figure supplement 1: Prediction of individual dif-

ferences in proxy measures from MRI. Approximation perfor-

mance using multiple MR modalities on the validation dataset:

sMRI, dMRI, rfMRI and their combinations (see Table 1). Visual

conventions as in Fig. 3. One can see that prediction of age was

markedly stronger than prediction of �uid intelligence or predic-

tion of neuroticism. As a general trend, models based on multi-

ple MRImodalities tended to yield better prediction. For simplic-

ity, we based subsequent analyses on the full model based on all

MRI data.

Figure 3 – Figure supplement 2: Approximation perfor-

mance using all sociodemographic data. Approximation perfor-

mance using all sociodemographic variables with or without

brain imaging included on the validation dataset. Visual con-

ventions as in Fig. 3. The performance was highly related to the

best performingmodels within each target Figure 3, i.e., life style

for age, education for �uid intelligence and mood & sentiment

for neuroticism. This suggests that for each target those spe-

ci�c blocks of predictors were suf�ciently explaining the perfor-

mance. For simplicity, we based subsequent analyses on all so-

ciodemographic variables in Fig. 2, Fig. 3 and Fig. 4.

Supplementary Figure S1: Intercorrelations between so-

ciodemographic inputs. To check the plausibility of the proposed

grouping of variables into blocks, we investigated the inter-

correlations among the sociodemographic inputs (Supplemen-

tary Table S7). We �rst applied Yeo-Johnson power transform

to the variables, yielding approximately symmetrical distribu-

tions. Then we computed Pearson correlations. One can see that

most variables show low if any intercorrelations. Strongly in-

tercorrelated blocks emerged, in particular for Mood and Senti-

ment and Lifestyle. Note that within the Lifestyle categorymany

smaller blocks with strong intercorrelation occurred, some of

which were obviously related to the circumstances of living,

such as household or employment status.

Supplementary Figure S2: Investigating the age gap between

the �rst visit and the MRI visit time point. (A) Individual gap

between age at �rst visit and MRI scan time. MRI scans never

happened at the �rst visit, leading to a strictly positive gap of

>5 years for most participants. Pearson correlation coef�cient

indicates high rank stability, suggesting that, from a statisti-

cal perspective, age at �rst visit and age at scan time are, es-

sentially, interchangeable. (B) Direct comparison of individual-

speci�c age predictions from brain images and sociodemo-

graphic data. Same model as in the main analysis (Fig. 2).

The emerging pattern of association summarized by Pearson

correlation coef�cient suggests that predictions from models

trained on age either at the �rst visit or at MRI-scan time are

equivalent.

Supplementary Figure S3: Proxy measures show systematic

and complementary out-of-sample associations with health-

related habits using age at MRI scan time. The patterns observed

in Fig. 2 and global conclusions remain unchanged.

Supplementary Table S1: Paired difference between purely

sociodemographic andmodels including brain imaging on held-

out data.
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Supplementary Table S2: Difference statistics for classi�ca-

tion on the held-out set for sociodemographic vs combined ap-

proximation.

Supplementary Table S3: Inferential statistics for joint

proxy-target models of health-related habits.

Supplementary Table S4: Variance in�ation factors (VIF) for

joint proxy-target models of health-related habits.

Supplementary Table S5: Regression statistics on the held-out

set for purely MRI-based approximation.

Supplementary Table S6: Classi�cation difference statistics

on the held-out set for MRI-based approximation.

Supplementary Table S7: List of variables contained in each

block of sociodemographic models: Mood and Sentiment (MS),

Age, Sex (AS), Education (EDU), Early Life (EL).

Abbreviations
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variance in�ation factors.
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