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Summary. Importance sampling methods have been rather neglected by MCMC algorithms

since their infancy, even though they share many common features. This paper shows that

importance sampling can be iterated to produce more accurate approximations to iid sampling

from a target distribution, than sequential sampling from an MCMC algorithm. We first illustrate

the adaptability of the joint scheme on a toy mixture example. As a more realistic example,

we then reanalyse the ion channel model of Hodgson (1999), using an importance sampling

scheme based on a hidden Markov representation. The degeneracy phenomenon that usually

occurs in particle systems is studied on both examples.
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1. IntroductionWhen reviewing the literature on MCMC methodology, an obvious feature is that it haspredominantly fo
ussed on produ
ing single outputs from a given target distribution, �.This may sound a paradoxi
al statement when 
onsidering that one of the major appli
ationsof MCMC algorithms is the approximation of integralsI = Z h(x)�(x)dxwith empiri
al sums Î = 1T TXt=1 h(x(t)) ;where (x(t)) is a Markov 
hain with stationary distribution �. But the main issue is that � is
onsidered as the limiting distribution of xt per se and that the Markov 
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2 Cappé et al.the xt's is eva
uated through the ergodi
 theorem (Meyn and Tweedie, 1993). There onlyexist a few referen
es to the use of MCMC algorithms for the produ
tion of samples from�, in
luding Warnes (2001) and Mengersen and Robert (2002), although the 
on
ept is notvery original 
ompared with the produ
tion of a single output from the target distribution.Another striking (and related) feature of the MCMC literature is the early attemptto disso
iate itself from [pre℄existing te
hniques su
h as importan
e sampling, although thelatter shared with MCMC algorithms the property of simulating from the wrong distributionto produ
e [approximate℄ results from the 
orre
t distribution (see Robert and Casella, 1999,Chap. 3). It is only lately that the realisation that both approa
hes 
ould be su

essfully
oupled 
ame upon the MCMC 
ommunity, as shown for instan
e by Ma
Ea
hern andPeruggia (2000), Liu (2001), or Liu et al. (2001).One 
lear example of this fruitful symbiosis is given by iterated parti
le systems (Dou
etet al., 2001). Originally, iterated parti
le systems were introdu
ed to deal with dynami
target distributions, as for instan
e in radar tra
king, where the imperatives of on-linepro
essing of rapidly 
hanging target distributions prohibited to resort to repeated MCMCsampling. The basi
 idea 
onsisted in re
y
ling previous weighted samples primarily througha modi�
ation of the weights (Gordon et al., 1993), later supported with additional samplingsteps (Berzuini et al., 1997; Pitt and Shephard, 1999). As pointed out in Chopin (2002), aparti
le system simpli�es into a parti
ular type of importan
e sampling s
heme in a stati
|as opposed to dynami
|setup.We therefore study in this paper a method, population Monte Carlo, that tries to linkthese di�erent \loose ends" into a superior simulation te
hnology. It borrows from MCMCalgorithms for the 
onstru
tion of the proposal, from importan
e sampling for the 
onstru
-tion of appropriate estimators, from SIR (Rubin, 1987) for sample equalisation, and fromiterated parti
le systems for sample improvement. The population Monte Carlo algorithmis thus an iterated s
heme that produ
es, at ea
h iteration, a sample approximately simu-lated from a target distribution and (approximately) unbiased estimates of integrals underthat distribution. The sample is 
onstru
ted using MCMC proposal for generation andimportan
e sampling weights for pruning the proposed sample.We des
ribe in Se
tion 2 the population Monte Carlo te
hnique, and apply these devel-opment, �rst to a simple mixture example in Se
tion 3, and se
ond to the more ambitiousion 
hannel model that we reassess in Se
tion 4. While reasonable in 
omplexity, the mix-ture example still o�ers an interesting media to assess the adaptativity of the populationMonte Carlo sampler and the resistan
e to degenera
y. The ion 
hannel model is more
hallenging in that there is no 
lose form representation of the observed likelihood, whilethe 
ompletion step is more deli
ate than in mixture settings. In parti
ular, Se
tion 4.6explains why a Metropolis{Hastings algorithm based on the same proposal as populationMonte Carlo does not work. Se
tion 5 
ontains the overall 
on
lusions of the paper.
2. The population Monte Carlo approachAs noted in Mengersen and Robert (2003), it is possible to 
onstru
t an MCMC algorithmasso
iated with the target distribution�Nn(x1; : : : ; xn) = nYi=1�(xi) ;



Population Monte Carlo 3on the spa
e Xn, rather than with the distribution �(x1), on the spa
e X . All standardresults and s
hemes for MCMC algorithms apply in this parti
ular 
ase, and irredu
ibleMarkov 
hains asso
iated with su
h MCMC algorithms 
onverge to the target �Nn in dis-tribution, that is, get approximately distributed as an iid sample from � after a \suÆ
ient"number of iterations. Mengersen and Robert (2003) point out that additional sampling de-vi
es 
an be used to 
onstru
t the proposal distributions, like Gibbs-type 
omponent-wiserepulsive proposals that ex
lude immediate neighbourhoods of the other points in the sam-ple. (Just as regular Metropolis{Hastings algorithms use the wrong distribution to 
onvergeto the 
orre
t distribution, their version 
an use dependent proposals to simulate from anindependent target.)In the 
urrent setting, we however restri
t the 
hoi
e of proposals to 
omponent-wisemoves, that is, given x(t) = (x(t)1 ; : : : ; x(t)n ), the 
omponents x(t+1)i are generated from aproposal q(xjx(t)i ). (We insist upon the fa
t that q is a transition kernel, not the proposaldensity in the usual Metropolis{Hastings sense, sin
e, for reasons that should soon be
ome
learer, we do not implement the 
orresponding Metropolis{Hastings a

eptan
e step.)Now, it is worth noti
ing that, rather than 
onsidering the diÆ
ult problem of assessingthe 
onvergen
e of a Markov 
hain to its stationary distribution, espe
ially when the originaldimension is multiplied by n, we 
an 
orre
t at ea
h iteration for the use of the wrongdistribution by importan
e sampling. Indeed, we 
an dire
tly asso
iate to ea
h point x(t)i inthe n-dimensional sample x(t) = (x(t)1 ; : : : ; x(t)n ) a weight%(t)i = �(x(t)i )qit(x(t)i ) ; i = 1; : : : ; n ;where qit is the proposal distribution for simulating x(t)i . This de�nition has the obvious
onsequen
e that the estimators of the formIt = 1n nXi=1 %(t)i h(x(t)i )are unbiased for every integrable fun
tion h and every iteration t. Note the extension ofregular importan
e sampling results to the 
ase where the importan
e distribution for xidepends on both i and t. As already indi
ated in Robert and Casella (1999) in a morerestri
tive setting, importan
e sampling estimators have the interesting property that theterms %(t)i h(x(t)i ) are un
orrelated, even when the proposal qit depends on the whole pastof the experiment: var (It) = 1n2 nXi=1 var�%(t)i h(x(t)i )� (1)due to the 
an
elling e�e
t of the weights %(t)i .Obviously, in most settings, the distribution of interest � is uns
aled and we have to useinstead %(t)i / �(x(t)i )qit(x(t)i ) ; i = 1; : : : ; n ;s
aled so that the weights %(t)i sum up to 1. In this 
ase, the above unbiasedness propertyand the varian
e de
omposition are lost, although they approximately hold. In fa
t, the



4 Cappé et al.estimation of the normalising 
onstant of � improves with ea
h iteration t, sin
e the overallsum $t = 1tn tX�=1 nXi=1 �(x(�)i )qi� (x(�)i ) (2)is a 
onvergent estimator of the inverse of the normalising 
onstant. Therefore, as t in
reases,$t is 
ontributing less and less to the variability of It and the above properties 
an be
onsidered as holding for t large enough. Note in addition that, if the sum (2) is onlybased on the (t� 1) �rst iterations, the varian
e de
omposition (1) still holds, via the same
onditioning argument.As pointed out in Rubin (1987), it is preferable, rather than updating the weights atea
h iteration, to resample (with repla
ement) n values y(t)i from (x(t)1 ; : : : ; x(t)n ) using theweights %(t)i (and possibly a varian
e redu
tion devi
e as in Carpenter et al., 1998). Thispartially avoids the degenera
y phenomenon, that is, the preservation of negligible weightsand 
orresponding irrelevant points in the sample. The sample (y(t)1 ; : : : ; y(t)n ) resulting fromthis sampling importan
e resampling (SIR) step is thus akin to an iid sample extra
ted fromthe weighted empiri
al distribution asso
iated with �Nn(x1; : : : ; xn).The novelty of the method proposed in this paper is that the iterated 
all to importan
esampling based on the 
urrent SIR sample allows for a progressive sele
tion of the mostrelevant points of the sample, via a sele
tion pro
ess akin to the one underlying Berzuiniet al.'s (1997) method. Indeed, without this importan
e resampling 
orre
tion, a regularMetropolis{Hastings a

eptan
e step for ea
h point of the n-dimensional sample produ
esa parallel MCMC sampler whi
h 
onverges to the target �Nn in distribution. Similarly, aregular Metropolis{Hastings a

eptan
e step for the whole ve
tor x(t) 
onverges to �Nn;the advantage in produ
ing an iid sample at ea
h step is balan
ed by the drawba
k thatthe a

eptan
e probability de
reases approximately as a power of n. If, instead, we pi
kat ea
h iteration the points in the sample a

ording to their importan
e weight %(t)i , weimprove the sele
tion me
hanism by removing the points that are the most in
ompatiblewith the target distribution �. This devi
e also automati
ally 
orre
ts for poor 
hoi
es ofproposal distributions, to some extent. (However, if the proposal distribution is 
ompletelyinappropriate and none of the simulated values is a

eptable for the target distribution,the Monte Carlo s
heme will not manage to re
over a

eptable values and, besides, it willnot ne
essarily dete
t the poor �t.) In the example of the ion 
hannel in Se
tion 4.6,it a
tually o

urs that a Metropolis{Hastings s
heme based on the same proposal doesnot work well, while population Monte Carlo produ
es 
orre
t answers. Given that theSIR s
heme works towards the sele
tion of the points with the highest target density, thissuggests 
hoosing proposal distributions with heavy tails, in order to rea
h the tails of thetarget distribution with a reasonable probability at ea
h proposal. The mixture example ofSe
tion 3 illustrates the natural adaptability of the algorithm, whi
h allows us to implementsimultaneously several proposals and sele
t on-line the most performant of them.This new adaptive s
heme produ
es in the end a sample in the parameter spa
e that is
lose to an iid sample from the true posterior distribution, although the degree of approx-imation involved there is yet un
lear. At worst, it 
an serve as a starting distribution foran MCMC sampler based on the importan
e fun
tion as proposal distribution (see Se
tion4.6), although it is suÆ
ient for integral approximations, just like any stati
 importan
esampling estimator.Note that adaptive importan
e sampling strategies were already 
onsidered in the pre-



Population Monte Carlo 5MCMC area. See, e.g., Oh and Berger (1992,1993). In the MCMC setup, adaptive algo-rithms are less 
ommon be
ause the adaptativity, that is, the ability to use the past be-haviour to 
orre
t the proposal distribution, 
an
els the Markovian nature of the sequen
eand thus 
alls for more elaborate 
onvergen
e studies. See, e.g., Andrieu and Robert (2001)and Haario et al. (1999,2001) for re
ent developments in this area.
3. Mixture modelOur �rst example is a Bayesian modelling of a mixture model, whi
h is a problem simpleenough to introdu
e but 
omplex enough to lead to poor performan
es for badly designedalgorithms (Robert and Casella, 1999, Chap. 9; Capp�e et al., 2002). The mixture problemwe 
onsider is based on an iid sample x = (x1; : : : ; xn) from the distributionpN (�1; �2) + (1� p)N (�2; �2);where p 6= 1=2 and � > 0 are known. The prior asso
iated with this model, �, is anormal N (�; �2=�) prior on both �1 and �2. We thus aim at simulating from the posteriordistribution �(�1; �2jx) / f(xj�1; �2)�(�1; �2) :Although the \standard"MCMC resolution of the mixture problem is to use a Gibbs samplerbased on a data augmentation step via indi
ator variables, re
ent developments (Celeux etal., 2000; Chopin, 2002; Capp�e et al., 2002) have shown that the data augmentation stepis not ne
essary to run an MCMC sampler. We will now demonstrate that a populationMonte Carlo sampler 
an be eÆ
iently implemented without this augmentation step either.Our adaptative importan
e sampling s
heme will be as follows: The initialization step
onsists �rst in 
hoosing a set of initial values for �1 and �2 (e.g., a grid of points aroundthe empiri
al mean of the xi's). The importan
e fun
tions are then random walks, that is,random isotropi
 perturbations of the points of the 
urrent parti
le system. As noted above,a very appealling feature of the Population Monte Carlo method is that the importan
efun
tion may vary from one parti
le to another without jeopardizing the validity of themethod and, in parti
ular, its unbiasedness. At a �rst level, the importan
e fun
tions areall di�erent, sin
e they are normal distributions 
enterered in every parti
le. At a se
ondlevel, we 
an also 
hoose di�erent varian
es for these normal distributions, for instan
e ina predetermined set of p s
ales vi (1 � i � p) ranging from 103 down to 10�3, and sele
tthese varian
es at ea
h step of the Population Monte Carlo algorithm a

ording to theperforman
es of the s
ales on the previous iterations. For instan
e, we de
ided to sele
ta s
ale proportionnaly to its non-degenera
y on the previous iterations. (Note the formalsimilarity of this s
heme with Stavropoulos and Titterington's (1999) smooth bootstrap, oradaptive importan
e sampling, when the kernel used in their mixture approximation of �is normal. The main di�eren
e is that we do not aim at a good approximation of � usingstandard kernel results like bandwith sele
tion, but rather keep the di�erent s
ales vi overthe iterations.) Our Population Monte Carlo algorithm thus looks as follows:
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Step 0 Initialization

(a) for j 2 f1; : : : ; pmg, choice of (�1)(0)j and (�2)(0)j
(b) for k 2 f0; : : : ; p� 1g and for j 2 fkm+ 1; : : : ; (k + 1)mg generate(�1)(1)j � N �(�1)(0)j ; vk+1� and (�2)(1)j � N �(�2)(0)j ; vk+1�
(c) for k 2 f0; : : : ; p� 1g and for j 2 fkm+ 1; : : : ; (k + 1)mg

compute the weights%j / f �x ���(�1)(1)j ; (�2)(1)j �� �(�1)(1)j ; (�2)(1)j �~f �(�1)(1)j ���(�1)(0)j ; vk+1 � ~f �(�2)(1)j ���(�2)(0)j ; vk+1 �
(d) resample the

�(�1)(1)j ; (�2)(1)j �j using the weights %j ,
(e) for k 2 f1; : : : ; pg, calculate (rk)(1), number of elements generated with variancevk which have been resampled.

(f) set (s1)(0) = 1, (sp)(1) = mp and, for k 2 f1; : : : ; p� 1g, compute(sk)(1) = kXw=1 (rw)(1)
Step i. (i = 1; : : :)
(a) for k 2 f0; : : : ; p� 1g and for j 2 f(sk)(i�1) ; : : : ; (sk+1)i�1g generate(�1)(i)j � N �(�1)(i�1)j ; vk+1� and (�2)(i)j � N �(�2)(i�1)j ; vk+1�
(b) compute the weights (k 2 f0; : : : ; p� 1g and j 2 f(sk)(i�1) ; : : : ; (sk+1)i�1g)%j / f �x ���(�1)(i)j ; (�2)(i)j �� �(�1)(i)j ; (�2)(i)j �~f �(�1)(i)j ���(�1)(i�1)j ; vk+1 � ~f �(�2)(i)j ���(�2)(i�1)j ; vk+1 �
(c) resample the

�(�1)(i)j ; (�2)(i)j �j using the weights %j ,
(d) for k 2 f1; : : : ; pg, calculate (rk)(i) the number of elements generated with vari-

ance vk which have been resampled.

(e) denote (s1)(i) = 1, (sp)(i) = mp and, for k 2 f1; : : : ; p� 1g, compute(sk)(i) = kXw=1 (rw)(i)



Population Monte Carlo 7As mentioned above, the weight asso
iated with ea
h varian
e vk is thus proportionalto the regeneration (or survival) rate of the 
orresponding sample. If most �j 's asso
iatedwith a given vk are not resampled, the next step will see less generations using this varian
evk. However, to avoid the 
omplete removal of a given varian
e vk, we 
hose to maintain aminimum number of parti
les simulated from ea
h varian
e level, namely 1% of the wholeimportan
e sample.The performan
es of the above algorithm are illustrated on a simulated dataset of 1000observations from the distribution xi � 0:2N (0; 1) + 0:8N (2; 1). We also took � = 1:5 and� = 0:1 as hyperparameters of the priorIn the simulation experiment 
orresponding to this sample, we illustrate that the mixturePMC algorithm produ
e a non-degenerate parti
le system, that is, su
h that their weightsare not all equal to either 0 or 1. We also show how the adaptive feature for 
hoosingamongst the vk's enable us to explore the state spa
e of the unknown means. In this 
ase,p = 5 and the �ve varian
es are equal to 5; 2; :1; :05 and :01. Moreover, at ea
h step i of thePMC algorithm, we generated 1050 parti
les.The two upper graphs of Figure 1 illustrate the degenera
y phenomenon asso
iated withthe population Monte Carlo algorithm. It represents the sizes of the samples issued fromthe di�erent proposals, that is the number of points resulting from the resampling step: theupper left graph exhibits a nearly 
y
li
 behavior for the largest varian
es vk, alternatingfrom no parti
le issued from these proposals to a large number of parti
les. This behaviouragrees with intuition: proposals that have too large a varian
e mostly produ
e parti
lesthat are irrelevant for the distribution of interest, but on
e in a while they happen togenerate parti
les that are 
lose to one of the modes of the distribution of interest. In thelater situation, the 
orresponding parti
les are asso
iated with large weights %j and arethus heavily resampled. The upper right graph shows that the other proposals are ratherevenly 
onsidered along iterations. This is not surprising for the smaller varian
es, sin
ethey modify very little the 
urrent parti
le system, but the 
y
li
 predominan
e of the threepossible varian
es is quite reassuring about the mixing abilities of the algorithm and thusabout its exploration performan
es.We 
an also study the in
uen
e of the variation in the proposals on the estimation ofthe means �1 and �2, as illustrated by the middle and lower panels of Figure 1. First,when 
onsidering the 
umulative means of these estimations over iterations, the quantitiesqui
kly stabilise. The 
orresponding varian
es are not so stable over iterations, but this isto be expe
ted, given the periodi
 reappearan
e of subsamples with large varian
es.Figure 2 provides an additional insight into the performan
es of the population MonteCarlo algorithm, by representing a weighted sample of means with dots proportional tothe weights. As should be obvious from this graph, there is no overwhelming parti
le that
on
entrates most of the weight. On the opposite, the 1050 parti
les are rather evenlyweighted, espe
ially for those 
lose to the posterior modes of the means.
4. Ion channels

4.1. The stylised modelAs a realisti
 example of implementation of the population Monte Carlo s
heme, we 
onsiderhere a formalised version of the ion 
hannel model 
onsidered in Hodgson (1999). We referthe reader to this paper, as well as to Ball et al. (1999) and Carpenter et al. (1999), fora biologi
al motivation of this model, alternative formulations, and additional referen
es.



8 Cappé et al.
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Fig. 1. Performances of the mixture population Monte Carlo algorithm: (upper left) Number of re-

sampled particles for the variances v1 = 5 and v2 = 2; (upper right) Number of resampled particles

for the other variances (middle left) Variance of the simulated �1 ’s along iterations; (middle right)

Complete average of the simulated �1’s over iterations; (lower left) Variance of the simulated �2 ’s

along iterations; (lower right) Complete average of the simulated �2 ’s over iterations.Let us insist at this point on the formalised aspe
t on our model, whi
h predominantlyserves as a realisti
 support for the 
omparison of a population Monte Carlo approa
h witha more standard MCMC approa
h in a semi-Markov setting. The �ner points of model
hoi
e and model 
omparison for the modelling of ion 
hannel kineti
s, while of importan
eas shown by Ball et al. (1999) and Hodgson and Green (1998), are not 
onsidered in thepresent paper. Note also that, while a Bayesian analysis of this model provides a 
ompleteinferential perspe
tive, the fo
us of attention is generally set on the restoration of the true
hannel 
urrent, rather than on the estimation of the parameters of the model.Consider, thus, observables y = (yt)1�t�T dire
ted by a hidden Gamma (indi
ator)pro
ess x = (xt)1�t�T in the following way:ytjxt � N (�xt ; �2) ;while xt 2 f0; 1g, with durations dj � Ga(si; �i) (i = 0; 1). More exa
tly, the hidden pro
ess(xt)t is a (
ontinuous time) Gamma jump pro
ess with jump times tj (j = 1; 2; : : :) su
hthat dj+1 = tj+1 � tj � Ga(si; �i)
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Fig. 2. Representation of the log-posterior distribution via colour levels (red stands for lowest and

white for highest) and of a weighted sample of means. (The weights are proportional to the surface

of the disc.)



10 Cappé et al.if xt = i for tj � t < tj+1, that is, E [dj+1 ℄ = si=�i. Figure 3 provides a simulated sampleof size 4000 from this model.
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Fig. 3. Simulated sample of size 4000 from the ion channel modelA �rst modi�
ation of the ion 
hannel model is introdu
ed at this level: we assume thatthe durations dj , that is, the time intervals in whi
h the pro
ess (xt)1�t�T remains in agiven state, are integer valued, rather than real valued, as in Hodgson (1999). The reasonsfor this 
hange are that(a) the true durations of the Gamma pro
ess are not identi�able;(b) this model is a straightforward generalisation of the hidden Markov model where thejumps do o

ur at integer times (see Ball et al., 1999, or Carpenter et al., 1999).A natural generalisation of the geometri
 duration of the hidden Markov model isa negative binomial distribution, N eg(s; !), whi
h is very 
lose to a Gamma den-sity Ga(s + 1;� log(1 � !)) (up to a 
onstant) for s small. Indeed, the former isapproximately dss! (1� !)d� !1� !�swhile the later is dss! (1� !)df� log(1� !)gs+1(The simulations detailed below were also implemented using a negative binomialmodelling, leading to very similar results in the restoration pro
ess.)(
) inferen
e on the dj 's given (xt)1�t�T involves an extra level of simulations, evenif it 
an be easily implemented via a sli
e sampler, as long as we do not 
onsiderthe possibility of several jumps between two integer observational times. (This laterpossibility is a
tually negligible for the datasets we 
onsider.); and(d) the repla
ement of dj by its integral part does not strongly modify the likelihood.In a similar vein, we omit the trun
ation e�e
t of both the �rst and the last intervals, giventhat the in
uen
e of this trun
ation on a long series is bound to be small.A se
ond modi�
ation in our model, when 
ompared with Hodgson (1999), is that we
hoose a uniform prior for the shape parameters s0 and s1 on the �nite set f1; : : : ; Sg, ratherthan an exponential Exp(�) prior on R+ . The reasons for this modi�
ation is that(a) the hidden Markov pro
ess has geometri
 swit
hing times, whi
h 
orrespond to expo-nential durations. A natural extension is to 
onsider that the durations of the stays
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h state (or r�egime) 
an be represented as the 
umulated duration of si ex-ponential stays, with si an unknown integer, whi
h exa
tly 
orresponds to gammadurations. This representation thus removes the need to 
all for a level of variabledimension modelling. Carpenter et al. (1999) and Hodgson and Green (1999) usea di�erent approa
h, based on the repli
ation of the \open" and "
losed" sets intoseveral states, to approximate the semi-Markov model.(b) the following simulations show that the parameters s0 and s1 are strongly identi�edby the observables (yt)1�t�T ;(
) the prior information on the parameters s0 and s1 is most likely to be sparse and thusa uniform prior is less informative than a Gamma prior when S is large; and(d) the use of a �nite support prior allows for the 
omputation of the normalising 
onstantin the posterior 
onditional distribution of the parameters s0 and s1, a feature that isparamount for the implementation of population Monte Carlo.A third modi�
ation, when 
ompared with both Hodgson (1999) and Carpenter et al.(1999), is that the observables are assumed to be independent, given the xt's, rather thandistributed from either an AR(15) (Hodgson, 1999) or an ARMA(1,1) (Carpenter et al.,1999) model. This modi�
ation somehow weakens the identi�ability of both r�egimes as thedata be
omes potentially more volatile.The other parameters of the model are distributed as in Hodgson (1999), using 
onjugatepriors, �0; �1 � N (�0; ��2)��2 � G(�; �)�0; �1 � G(�; �)Figure 4 illustrates the dependen
es indu
ed by this modelling on a DAG.
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Fig. 4. DAG representation of the probabilistic dependences in the Bayesian ion channel model.This formalised ion 
hannel model is thus a spe
ial 
ase of dis
rete time hidden semi-Markov model for whi
h there exists no expli
it polynomial time formula for the posteriordistribution of the hidden pro
ess (xt)1�t�T , as opposed to the hidden Markov model withthe forward{ba
kward formula of Baum and Petrie (1966). From a 
omputational (MCMC)point of view, there is therefore no way of eliminating this hidden pro
ess to simulate dire
tlythe parameters 
onditional on the observables (yt)1�t�T , as was done in the hidden Markovmodel by, e.g., Capp�e et al. (2001). Note also that, as opposed to Hodgson (1999), we usethe saturated missing data representation of the model via x to avoid the 
ompli
ation of



12 Cappé et al.using reversible jump te
hniques for whi
h population Monte Carlo are more diÆ
ult toimplement.
4.2. Population Monte Carlo for ion channel modelsOur 
hoi
e of proposal fun
tion is based on the availability of 
losed form formulae forthe hidden Markov model. We thus 
reate a pseudo hidden Markov model based on the
urrent values of the parameters for the ion 
hannel model, simply by building the Markovtransition matrix from the average durations in ea
h state,P =  1� �0s0 �0s0�1s1 1� �1s1! ;sin
e, for a hidden Markov model, the average sojourn within one state is exa
tly the inverseof the transition probability to the other state. We denote by �H(xjy; !) the full 
onditionaldistribution of the hidden Markov 
hain x given the observables y and the parameters! = (�0; �1; �; �0; �1; s0; s1)
onstru
ted via the forward{ba
kward formula: see, e.g., Capp�e et al. (2001) for details.The simulation of the parameters ! pro
eeds in a natural way by using the full 
onditionaldistribution �(!jy;x) sin
e it is available.Note that Carpenter et al. (1999) also 
onsider the ion 
hannel model in their par-ti
le �lter paper, with the di�eren
es that they repla
e the semi-Markov stru
ture withan approximative hidden Markov model with more than 2 states, and that they work ina dynami
 setting based on this approximation. The observables y are also di�erent inthat they 
ome from an ARMA(1,1) model with only the lo
ation parameter depending onthe unknown state. Hodgson and Green (1998) similarly 
ompared several hidden Markovmodel with dupli
ated \open" and \
losed" states. Ball et al. (1999) also rely on a hiddenMarkov modelling with missing observations.The subsequent use of importan
e sampling bypasses the exa
t simulation of the hiddenpro
ess (xt)1�t�T and thus avoids the re
ourse to variable dimension models and to moresophisti
ated tools like reversible jump MCMC. This saturation of the parameter spa
e bythe addition of the whole indi
ator pro
ess (xt)1�t�T is obviously more 
ostly in terms ofstorage, but it provides unrestri
ted moves between 
on�gurations of the pro
ess (xt)1�t�T .Sin
e we do not need to de�ne the 
orresponding jump moves, we are thus less likely toen
ounter the slow 
onvergen
e problems of Hodgson (1999).We therefore run population Monte Carlo as follows:Population Monte Carlo AlgorithmStep 0. Generate (j = 1; : : : ; J)

(a) !(j) � �(!)
(b) x(j)� = (x(j)t )1�t�T � �H(xjy; !(j))

compute the weights (j = 1; : : : ; J)%j / �(!(j);x(j)� jy)�(!(j))�H(x(j)� jy; !(j))
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resample the (!(j);x(j)� )j using the weights %jStep i. (i = 1; : : :) Generate (j = 1; : : : ; J)

(a) !(j) � �(!jy;x(j)� )
(b) x(j)+ = (x(j)t )1�t�T � �H(xjy; !(j))

compute the weights (j = 1; : : : ; J)%j / �(!(j);x(j)+ jy)�(!(j)jy;x(j)� )�H (x(j)+ jy; !(j))
resample the (!(j);x(j)+ )j using the weights %j , and take x(j)� = x(j)+ (j = 1; : : : ; J).The justi�
ation for the weights %j used in the above algorithm is that 
onditional onthe x(j)� 's, !(j) is simulated from �(!jy;x(j)� ) and, 
onditional on !(j), x(j)+ is simulatedfrom �H (xjy; !(j)). The normalising fa
tor of the %j 's 
onverges to the 
orre
t 
onstant bythe law of large numbers.

4.3. Normalising constantsA major point in this development 
overs the normalising 
onstants in the various terms:�(!jy;x) is available in 
losed form (see below in Se
tion 4.4), in
luding its normalising
onstant, due to the 
onjuga
y of the distributions on �0; �1; �; �0; �1 and the �nitenessof the support of s0; s1. The 
onditional distribution �H(xjy; !) is also available with itsnormalising 
onstant, by virtue of the forward{ba
kward formula. The only diÆ
ulty inthe ratio �(!;xjy)�(!jy;x)�H (xjy; !)lies within the numerator �(!;xjy) whose normalised version is unknown. We therefore useinstead the proportional term�(!;xjy) / �(!) f(yjx; !) f(xj!) : (3)and normalise the %j 's by their sum. The foremost feature of this reweighting is that thenormalising 
onstant missing in (3) only depends on the observables y and is therefore trulya 
onstant, that is, does not depend on the previous value of the parti
le x(j)� . This s
heme
ru
ially relies on (i) the parti
les en
ompassing both the parameters ! and the latent datax, and (ii) the distribution �(!;xjy) being available in 
losed form.More generally, attention must be paid to the sele
tion of the proposal densities q(xjy)so that the normalising 
onstants in these densities that depend on y must be available in
losed form.
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4.4. Simulation detailsFigure 5 illustrates the performan
es of population Monte Carlo by representing the graphof the dataset against the �tted average JXj=1 %j�x(j)tfor ea
h observation yt. As obvious from the pi
ture, the �t is quite good.
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Fig. 5. (top) Histograms of residuals after fit by averaged �xt ; (middle) Simulated sample of size4000 against fitted averaged �xt ; (bottom) Probability of allocation to first state for each observationThe unobserved Gamma pro
ess is distributed asMYm=1 (tm+1 � tm)sm�1 �smm e��m(tm+1�tm)�(sm)= �n0s00 e��0 v0 �s0�10�(s0)n0 �n1s11 e��1 v1 �s1�11�(s1)n1 ;with obvious notations: M is the number of 
hanges, the tm's are the su

essive times whenthe gamma pro
ess 
hanges state, the sm's, �m's are the 
orresponding sequen
es of s0; s1and �0; �1, ni is the number of visits to state i, �i is the produ
t of the sojourn durationsin state i [
orresponding to the geometri
 mean℄, vi the total sojourn duration in state i[
orresponding to the arithmeti
 mean℄. (This is based on the assumption of no 
ensoring,made in Se
tion 4, namely that t1 = 1 and tM+1 = T + 1.)The posterior distributions on the �i's and ��2 [
onditional on the hidden pro
ess℄ arethus the standard Normal-Gamma 
onjugate priors while�ijsi;x � Ga(�+ nisi; � + vi)sijx � �(sijx) / � �i(� + vi)ni �si �(nisi + �)�(si)ni If1;2;:::;Sg(si)Therefore, ex
ept for the si's, the posterior distributions on the parameters of the modelare the same as in Hodgson (1999).



Population Monte Carlo 15The distribution on the si's is highly variable, in that the produ
t� �i(� + vi)ni �si �(nisi + �)�(si)ni (4)often leads to a highly asymmetri
 distribution, whi
h puts most of the weight on theminimum value of s. Indeed, when the geometri
 and arithmeti
 means, �1=ni and vi=n,are similar, a simple Stirling approximation to the Gamma fun
tion leads to (4) beingequivalent to pn=psn.Figure 6 gives the histograms of the posterior distributions of the various parameters of! without reweighting by the importan
e sampling weights %j . As seen from this graph,the histograms in �i and � are well 
on
entrated, while the histogram in �1 exhibits twomodes whi
h 
orrespond to the two modes of the histogram of s1 and indi
ate that theparameter (�i; si) is not well identi�ed. This is to be expe
ted, given that we only observe afew realisations of the underlying gamma distribution, and this with added noise sin
e thedurations are not dire
tly observed. However, the histograms of the average durations si=�ido not exhibit su
h multimodality and are well-
on
entrated around the values of interest.Note also that the 
on
entration of the distributions of s0 and s1 around the smaller integersshould be 
onne
ted with Hodgson and Green's (1999) �ndings that, within their model,the number of dupli
ated 
opies of the \open" and \
losed" states is pre
isely 2.
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Fig. 6. Histograms of the samples produced by population Monte Carlo, before resampling

4.5. DegeneracyAs noted above, population Monte Carlo is simply an importan
e sampling algorithm whenimplemented on
e, that is, for a single 
olle
tion of J parti
les (!(j);x(j)). As su
h, itprovides an approximation devi
e for the target distribution but it is also well-known thata poor 
hoi
e of the importan
e sampling distribution 
an jeopardise the interest of theapproximation, as for instan
e when the weights %j have in�nite varian
e.An in
entive of using population Monte Carlo in a stati
 setting is thus to over
ome apoor 
hoi
e of the importan
e fun
tion by re
y
ling the best parti
les and dis
arding the



16 Cappé et al.worst ones. This point of view makes population Monte Carlo appear as a primitive kindof adaptive algorithm, in that the support of the importan
e fun
tion is adapted to theperforman
e of the previous importan
e sampler.The diÆ
ulty with this approa
h is in determining the long-term behaviour of the al-gorithm and, 
orrelatively, the stopping rule that de
ides that nothing is gained in runningthe algorithm any longer. For instan
e, it often happens that only a few parti
les are keptafter the resampling step of the algorithm, be
ause only a few weights %j are di�erent from0. Figure 7 gives for instan
e the sequen
e of the number of parti
les that matter at ea
hiteration, out of 1000 original parti
les: the per
entage of relevant parti
les is thus less than10% on average and in fa
t mu
h 
loser to 5%. In addition, there is no 
lear
ut stabilisationin either the number of relevant parti
les or the varian
e of the 
orresponding weights, thelater being far from exhibiting a stabilisation as the number of iterations in
reases. Somemore rudimentary signals 
an be 
onsidered though, like the stabilisation of the �t in Figure8. While the averages for 1 and 2 iterations are quite unstable for most observations, thetwo states are mu
h more 
learly identi�ed for 5 and 10 iterations, and hardly 
hange oversubsequent iterations.
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Fig. 7. (left) Variance of the weights %j along 100 iterations, and (right) Number of particles with

descendants along 100 iterations, for a sample of 4000 observations and 1000 particles.A related phenomenon pertains to the degenera
y of an
estors observed in the iterationsof our algorithm: as the number of steps in
reases, the number of parti
les from the �rstgeneration used to generate parti
les from the last generation diminishes and, after a fewdozen iterations, redu
es to a single an
estor. This is for instan
e what o

urs in Figure 9where, after only two ba
kward iterations, there is a single an
estor to the whole system ofparti
les. (Note also the iterations where all parti
les originate from a single parti
le.) Thisphenomenon appears in every setting and, while it 
annot be avoided, sin
e some parti
lesare bound to vanish at ea
h iteration even using the systemati
 sampling of Carpenter etal. (1999) the surprising fa
tor is the speed with whi
h the number of an
estors de
reases.
4.6. A comparison with Hastings–Metropolis algorithmsAs mentioned above, the proposal distribution asso
iated with the pseudo hidden Markovmodel 
ould be as well used as a proposal distribution in a Metropolis{Hastings algorithmof the following form: MCMC Algorithm
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Fig. 8. Successive fits of population Monte Carlo iterated by the weight-resample algorithm for 2000
observations and 2000 particles, for (clockwise starting from top left) 1, 2, 5 and 10 iterations. (See

the caption of Fig. 5 for a description of the displayed quantities.)

Step i (i = 1; : : : ; J)

(a) Generate !(i) � �(!jy;x(i�1))
(b) Generate x? � �H(xjy; !(i)), u � U([0; 1℄)

and take x(i) = 8<:x? if u � �(x?j!(i)y)�H(x?jy;!(i))� �(x(i�1)j!(i)y)�H(x(i�1)jy;!(i)) ;x(i�1) otherwiseThe performan
es of this alternative algorithm are, however, quite poor. Even witha well-separated dataset like the simulated dataset represented in Figure 3, the algorithmrequires a very 
areful preliminary tuning not to degenerate into a single state output.More pre
isely, the following o

urs: when started at random, the algorithm 
onverges veryqui
kly to a 
on�guration where both means �0 and �1 of the ion 
hannel model are very
lose to one another (and to the overall mean of the sample), with, 
orrelatively, a largevarian
e �2 and very short durations within ea
h state. To over
ome this degeneres
en
eof the sample, we had paradoxi
ally to ressort to a sequential implementation as follows:noti
ing that the degeneres
en
e was only o

urring with large sample sizes, we start theMCMC algorithm on the �rst 100 observations y1:100 and, on
e a stable 
on�guration hasbeen a
hieved, we gradually in
rease the number of observations taken into a

ount [bya fa
tor of min(s0=�0; s1=�1)℄ till the whole sample is in
luded. The results provided inFigures 10{12 were obtained following this s
heme.
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Fig. 9. Representation of the sequence of descendents (yellow) and ancestors (blue) along iterations

through bars linking a given ancestor and all its descendents (yellow) or a given particle and its

ancestor (blue). In the simulation corresponding to this graph, there were 4000 observations and1000 particles.For 
on
iseness' sake, we did not reprodu
e the history of the allo
ations x over theiterations. The 
orresponding graph shows a very stable history with hardly any 
hange,ex
ept on a few boundaries. Note the 
onne
ted strong stability in the number of swit
hesin Figure 11 (right). [The 
umulated means on the rhs of Figure 11 indi
ate that more iter-ations of the MCMC sampler were ne
essary but our purpose here was simply to illustratethe proper behaviour of this sampler, provided the initialisation was adequate.℄Attempts with very mixed datasets as the one used in Figure 8 were mu
h less su
-
essful sin
e, even with a 
areful tuning of the starting values (we even tried starting withthe known values of the parameters), we 
ould not avoid the degeneres
en
e to a singlestate. The problem with the Metropolis{Hastings algorithm in this 
ase is 
learly a strongdependen
e on the starting value, i.e., a poor mixing ability. This is further demonstratedby the following experiment: when starting the above sampler from 1000 parti
les obtainedby running population Monte Carlo 20 times, the sampler always produ
ed a satisfa
torysolution with two 
lear
ut states and no degenera
y. Figure 12 
ompares the distributionsof the parti
le and the MCMC samples via a qq-plot and shows there is very little dif-feren
e between both. The same behaviour is shown by a 
omparison of the allo
ations(not represented here). This indi
ates that the MCMC algorithm does not lead to a betterexploration of the parameter spa
e.For a fairly mixed dataset of 2000 observations 
orresponding to Figure 8, while theMCMC algorithm initialised at random 
ould not avoid degenera
y, a preliminary run ofpopulation Monte Carlo produ
ed stable allo
ations to two states, as shown in Figure 13 bythe �t for both population Monte Carlo and MCMC samples: they are indistinguishable,even though the qq-plots in Figure 14 indi
ate di�erent tail behaviours.This is not to say that an MCMC algorithm 
annot work in this setting, sin
e Hodgson(1999) demonstrated the 
ontrary, but this shows that global updating s
hemes, that is,proposals that update the whole missing data x at on
e, are diÆ
ult to 
ome with, andthat one has to instead rely on more lo
al moves as those proposed by Hodgson (1999).A similar 
on
lusion was drawn by Billio et al. (1999) in the setup of swit
hing ARMAmodels. (See also Kim, Shephard and Chib, 1998.)
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Fig. 10. Representation of a dataset of 3610 simulated values, along with the average fit (bottom),

and average probabilities of allocation to the upper state (top). This fit was obtained using a sequen-

tial tuning scheme and 5000 MCMC iterations in the final run.

5. ConclusionThe above developments have 
on�rmed Chopin's (2002) realisation that population MonteCarlo is also useful tools in stati
|as opposed to sequential, rather than dynami
|setups.Quite obviously, the spe
i�
 Monte Carlo s
heme we built for the ion 
hannel model 
anbe used in a sequential setting in a very similar way. The 
omparison with the equiva-lent MCMC algorithm is also very instru
tive in that it shows the superior robustness ofpopulation Monte Carlo to a possibly poor 
hoi
e of the proposal distribution.There still are issues to explore about population Monte Carlo s
heme. In parti
ular,a more detailed assessment of the dynami
 feature is in order, to de
ide whether or not itis a real asset. It is possible that there is an equivalent to the \
uto� phenomenon": aftera given t0, the distribution of x(t) may be the same for all t � t0. Further 
omparisonswith full Metropolis{Hastings moves based on similar proposals would also be of interest,to study whi
h s
heme brings the most information about the distribution of interest.An extension not explored in this paper is that the parti
le system 
an be started witha few parti
les that explore the parameter spa
e and, on
e the mixing is well-established,the parti
les 
an be dupli
ated further to in
rease the pre
ision of the approximation to thedistribution of interest. This is a straightforward extension in terms of programming, butthe sele
tion of the dupli
ation rate and s
hedule is more deli
ate.
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Fig. 12. QQ-plot comparing the distribution of the particle system with the distribution of the MCMC
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