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Summary. Importance sampling methods have been rather neglected by MCMC algorithms

since their infancy, even though they share many common features. This paper shows that

importance sampling can be iterated to produce more accurate approximations to iid sampling

from a target distribution, than sequential sampling from an MCMC algorithm. We first illustrate

the adaptability of the joint scheme on a toy mixture example. As a more realistic example,

we then reanalyse the ion channel model of Hodgson (1999), using an importance sampling

scheme based on a hidden Markov representation. The degeneracy phenomenon that usually

occurs in particle systems is studied on both examples.
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1. IntroductionWhen reviewing the literature on MCMC methodology, an obvious feature is that it haspredominantly foussed on produing single outputs from a given target distribution, �.This may sound a paradoxial statement when onsidering that one of the major appliationsof MCMC algorithms is the approximation of integralsI = Z h(x)�(x)dxwith empirial sums Î = 1T TXt=1 h(x(t)) ;where (x(t)) is a Markov hain with stationary distribution �. But the main issue is that � isonsidered as the limiting distribution of xt per se and that the Markov orrelation betweenyResearh partially supported by EU TMR network ERB{FMRX{CT96{0095 on "Computationaland Statistial Methods for the Analysis of Spatial Data" and CREST, Insee, Paris.zAddress for orrespondene: CEREMADE, Universit�e Paris Dauphine, 16 plae du Mar�ehalde Lattre de Tassigny, 75775 Paris edex 16
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2 Cappé et al.the xt's is evauated through the ergodi theorem (Meyn and Tweedie, 1993). There onlyexist a few referenes to the use of MCMC algorithms for the prodution of samples from�, inluding Warnes (2001) and Mengersen and Robert (2002), although the onept is notvery original ompared with the prodution of a single output from the target distribution.Another striking (and related) feature of the MCMC literature is the early attemptto dissoiate itself from [pre℄existing tehniques suh as importane sampling, although thelatter shared with MCMC algorithms the property of simulating from the wrong distributionto produe [approximate℄ results from the orret distribution (see Robert and Casella, 1999,Chap. 3). It is only lately that the realisation that both approahes ould be suessfullyoupled ame upon the MCMC ommunity, as shown for instane by MaEahern andPeruggia (2000), Liu (2001), or Liu et al. (2001).One lear example of this fruitful symbiosis is given by iterated partile systems (Douetet al., 2001). Originally, iterated partile systems were introdued to deal with dynamitarget distributions, as for instane in radar traking, where the imperatives of on-lineproessing of rapidly hanging target distributions prohibited to resort to repeated MCMCsampling. The basi idea onsisted in reyling previous weighted samples primarily througha modi�ation of the weights (Gordon et al., 1993), later supported with additional samplingsteps (Berzuini et al., 1997; Pitt and Shephard, 1999). As pointed out in Chopin (2002), apartile system simpli�es into a partiular type of importane sampling sheme in a stati|as opposed to dynami|setup.We therefore study in this paper a method, population Monte Carlo, that tries to linkthese di�erent \loose ends" into a superior simulation tehnology. It borrows from MCMCalgorithms for the onstrution of the proposal, from importane sampling for the onstru-tion of appropriate estimators, from SIR (Rubin, 1987) for sample equalisation, and fromiterated partile systems for sample improvement. The population Monte Carlo algorithmis thus an iterated sheme that produes, at eah iteration, a sample approximately simu-lated from a target distribution and (approximately) unbiased estimates of integrals underthat distribution. The sample is onstruted using MCMC proposal for generation andimportane sampling weights for pruning the proposed sample.We desribe in Setion 2 the population Monte Carlo tehnique, and apply these devel-opment, �rst to a simple mixture example in Setion 3, and seond to the more ambitiousion hannel model that we reassess in Setion 4. While reasonable in omplexity, the mix-ture example still o�ers an interesting media to assess the adaptativity of the populationMonte Carlo sampler and the resistane to degeneray. The ion hannel model is morehallenging in that there is no lose form representation of the observed likelihood, whilethe ompletion step is more deliate than in mixture settings. In partiular, Setion 4.6explains why a Metropolis{Hastings algorithm based on the same proposal as populationMonte Carlo does not work. Setion 5 ontains the overall onlusions of the paper.
2. The population Monte Carlo approachAs noted in Mengersen and Robert (2003), it is possible to onstrut an MCMC algorithmassoiated with the target distribution�Nn(x1; : : : ; xn) = nYi=1�(xi) ;



Population Monte Carlo 3on the spae Xn, rather than with the distribution �(x1), on the spae X . All standardresults and shemes for MCMC algorithms apply in this partiular ase, and irreduibleMarkov hains assoiated with suh MCMC algorithms onverge to the target �Nn in dis-tribution, that is, get approximately distributed as an iid sample from � after a \suÆient"number of iterations. Mengersen and Robert (2003) point out that additional sampling de-vies an be used to onstrut the proposal distributions, like Gibbs-type omponent-wiserepulsive proposals that exlude immediate neighbourhoods of the other points in the sam-ple. (Just as regular Metropolis{Hastings algorithms use the wrong distribution to onvergeto the orret distribution, their version an use dependent proposals to simulate from anindependent target.)In the urrent setting, we however restrit the hoie of proposals to omponent-wisemoves, that is, given x(t) = (x(t)1 ; : : : ; x(t)n ), the omponents x(t+1)i are generated from aproposal q(xjx(t)i ). (We insist upon the fat that q is a transition kernel, not the proposaldensity in the usual Metropolis{Hastings sense, sine, for reasons that should soon beomelearer, we do not implement the orresponding Metropolis{Hastings aeptane step.)Now, it is worth notiing that, rather than onsidering the diÆult problem of assessingthe onvergene of a Markov hain to its stationary distribution, espeially when the originaldimension is multiplied by n, we an orret at eah iteration for the use of the wrongdistribution by importane sampling. Indeed, we an diretly assoiate to eah point x(t)i inthe n-dimensional sample x(t) = (x(t)1 ; : : : ; x(t)n ) a weight%(t)i = �(x(t)i )qit(x(t)i ) ; i = 1; : : : ; n ;where qit is the proposal distribution for simulating x(t)i . This de�nition has the obviousonsequene that the estimators of the formIt = 1n nXi=1 %(t)i h(x(t)i )are unbiased for every integrable funtion h and every iteration t. Note the extension ofregular importane sampling results to the ase where the importane distribution for xidepends on both i and t. As already indiated in Robert and Casella (1999) in a morerestritive setting, importane sampling estimators have the interesting property that theterms %(t)i h(x(t)i ) are unorrelated, even when the proposal qit depends on the whole pastof the experiment: var (It) = 1n2 nXi=1 var�%(t)i h(x(t)i )� (1)due to the anelling e�et of the weights %(t)i .Obviously, in most settings, the distribution of interest � is unsaled and we have to useinstead %(t)i / �(x(t)i )qit(x(t)i ) ; i = 1; : : : ; n ;saled so that the weights %(t)i sum up to 1. In this ase, the above unbiasedness propertyand the variane deomposition are lost, although they approximately hold. In fat, the



4 Cappé et al.estimation of the normalising onstant of � improves with eah iteration t, sine the overallsum $t = 1tn tX�=1 nXi=1 �(x(�)i )qi� (x(�)i ) (2)is a onvergent estimator of the inverse of the normalising onstant. Therefore, as t inreases,$t is ontributing less and less to the variability of It and the above properties an beonsidered as holding for t large enough. Note in addition that, if the sum (2) is onlybased on the (t� 1) �rst iterations, the variane deomposition (1) still holds, via the sameonditioning argument.As pointed out in Rubin (1987), it is preferable, rather than updating the weights ateah iteration, to resample (with replaement) n values y(t)i from (x(t)1 ; : : : ; x(t)n ) using theweights %(t)i (and possibly a variane redution devie as in Carpenter et al., 1998). Thispartially avoids the degeneray phenomenon, that is, the preservation of negligible weightsand orresponding irrelevant points in the sample. The sample (y(t)1 ; : : : ; y(t)n ) resulting fromthis sampling importane resampling (SIR) step is thus akin to an iid sample extrated fromthe weighted empirial distribution assoiated with �Nn(x1; : : : ; xn).The novelty of the method proposed in this paper is that the iterated all to importanesampling based on the urrent SIR sample allows for a progressive seletion of the mostrelevant points of the sample, via a seletion proess akin to the one underlying Berzuiniet al.'s (1997) method. Indeed, without this importane resampling orretion, a regularMetropolis{Hastings aeptane step for eah point of the n-dimensional sample produesa parallel MCMC sampler whih onverges to the target �Nn in distribution. Similarly, aregular Metropolis{Hastings aeptane step for the whole vetor x(t) onverges to �Nn;the advantage in produing an iid sample at eah step is balaned by the drawbak thatthe aeptane probability dereases approximately as a power of n. If, instead, we pikat eah iteration the points in the sample aording to their importane weight %(t)i , weimprove the seletion mehanism by removing the points that are the most inompatiblewith the target distribution �. This devie also automatially orrets for poor hoies ofproposal distributions, to some extent. (However, if the proposal distribution is ompletelyinappropriate and none of the simulated values is aeptable for the target distribution,the Monte Carlo sheme will not manage to reover aeptable values and, besides, it willnot neessarily detet the poor �t.) In the example of the ion hannel in Setion 4.6,it atually ours that a Metropolis{Hastings sheme based on the same proposal doesnot work well, while population Monte Carlo produes orret answers. Given that theSIR sheme works towards the seletion of the points with the highest target density, thissuggests hoosing proposal distributions with heavy tails, in order to reah the tails of thetarget distribution with a reasonable probability at eah proposal. The mixture example ofSetion 3 illustrates the natural adaptability of the algorithm, whih allows us to implementsimultaneously several proposals and selet on-line the most performant of them.This new adaptive sheme produes in the end a sample in the parameter spae that islose to an iid sample from the true posterior distribution, although the degree of approx-imation involved there is yet unlear. At worst, it an serve as a starting distribution foran MCMC sampler based on the importane funtion as proposal distribution (see Setion4.6), although it is suÆient for integral approximations, just like any stati importanesampling estimator.Note that adaptive importane sampling strategies were already onsidered in the pre-



Population Monte Carlo 5MCMC area. See, e.g., Oh and Berger (1992,1993). In the MCMC setup, adaptive algo-rithms are less ommon beause the adaptativity, that is, the ability to use the past be-haviour to orret the proposal distribution, anels the Markovian nature of the sequeneand thus alls for more elaborate onvergene studies. See, e.g., Andrieu and Robert (2001)and Haario et al. (1999,2001) for reent developments in this area.
3. Mixture modelOur �rst example is a Bayesian modelling of a mixture model, whih is a problem simpleenough to introdue but omplex enough to lead to poor performanes for badly designedalgorithms (Robert and Casella, 1999, Chap. 9; Capp�e et al., 2002). The mixture problemwe onsider is based on an iid sample x = (x1; : : : ; xn) from the distributionpN (�1; �2) + (1� p)N (�2; �2);where p 6= 1=2 and � > 0 are known. The prior assoiated with this model, �, is anormal N (�; �2=�) prior on both �1 and �2. We thus aim at simulating from the posteriordistribution �(�1; �2jx) / f(xj�1; �2)�(�1; �2) :Although the \standard"MCMC resolution of the mixture problem is to use a Gibbs samplerbased on a data augmentation step via indiator variables, reent developments (Celeux etal., 2000; Chopin, 2002; Capp�e et al., 2002) have shown that the data augmentation stepis not neessary to run an MCMC sampler. We will now demonstrate that a populationMonte Carlo sampler an be eÆiently implemented without this augmentation step either.Our adaptative importane sampling sheme will be as follows: The initialization steponsists �rst in hoosing a set of initial values for �1 and �2 (e.g., a grid of points aroundthe empirial mean of the xi's). The importane funtions are then random walks, that is,random isotropi perturbations of the points of the urrent partile system. As noted above,a very appealling feature of the Population Monte Carlo method is that the importanefuntion may vary from one partile to another without jeopardizing the validity of themethod and, in partiular, its unbiasedness. At a �rst level, the importane funtions areall di�erent, sine they are normal distributions enterered in every partile. At a seondlevel, we an also hoose di�erent varianes for these normal distributions, for instane ina predetermined set of p sales vi (1 � i � p) ranging from 103 down to 10�3, and seletthese varianes at eah step of the Population Monte Carlo algorithm aording to theperformanes of the sales on the previous iterations. For instane, we deided to seleta sale proportionnaly to its non-degeneray on the previous iterations. (Note the formalsimilarity of this sheme with Stavropoulos and Titterington's (1999) smooth bootstrap, oradaptive importane sampling, when the kernel used in their mixture approximation of �is normal. The main di�erene is that we do not aim at a good approximation of � usingstandard kernel results like bandwith seletion, but rather keep the di�erent sales vi overthe iterations.) Our Population Monte Carlo algorithm thus looks as follows:



6 Cappé et al. Mixture PMC
Step 0 Initialization

(a) for j 2 f1; : : : ; pmg, choice of (�1)(0)j and (�2)(0)j
(b) for k 2 f0; : : : ; p� 1g and for j 2 fkm+ 1; : : : ; (k + 1)mg generate(�1)(1)j � N �(�1)(0)j ; vk+1� and (�2)(1)j � N �(�2)(0)j ; vk+1�
(c) for k 2 f0; : : : ; p� 1g and for j 2 fkm+ 1; : : : ; (k + 1)mg

compute the weights%j / f �x ���(�1)(1)j ; (�2)(1)j �� �(�1)(1)j ; (�2)(1)j �~f �(�1)(1)j ���(�1)(0)j ; vk+1 � ~f �(�2)(1)j ���(�2)(0)j ; vk+1 �
(d) resample the

�(�1)(1)j ; (�2)(1)j �j using the weights %j ,
(e) for k 2 f1; : : : ; pg, calculate (rk)(1), number of elements generated with variancevk which have been resampled.

(f) set (s1)(0) = 1, (sp)(1) = mp and, for k 2 f1; : : : ; p� 1g, compute(sk)(1) = kXw=1 (rw)(1)
Step i. (i = 1; : : :)
(a) for k 2 f0; : : : ; p� 1g and for j 2 f(sk)(i�1) ; : : : ; (sk+1)i�1g generate(�1)(i)j � N �(�1)(i�1)j ; vk+1� and (�2)(i)j � N �(�2)(i�1)j ; vk+1�
(b) compute the weights (k 2 f0; : : : ; p� 1g and j 2 f(sk)(i�1) ; : : : ; (sk+1)i�1g)%j / f �x ���(�1)(i)j ; (�2)(i)j �� �(�1)(i)j ; (�2)(i)j �~f �(�1)(i)j ���(�1)(i�1)j ; vk+1 � ~f �(�2)(i)j ���(�2)(i�1)j ; vk+1 �
(c) resample the

�(�1)(i)j ; (�2)(i)j �j using the weights %j ,
(d) for k 2 f1; : : : ; pg, calculate (rk)(i) the number of elements generated with vari-

ance vk which have been resampled.

(e) denote (s1)(i) = 1, (sp)(i) = mp and, for k 2 f1; : : : ; p� 1g, compute(sk)(i) = kXw=1 (rw)(i)



Population Monte Carlo 7As mentioned above, the weight assoiated with eah variane vk is thus proportionalto the regeneration (or survival) rate of the orresponding sample. If most �j 's assoiatedwith a given vk are not resampled, the next step will see less generations using this varianevk. However, to avoid the omplete removal of a given variane vk, we hose to maintain aminimum number of partiles simulated from eah variane level, namely 1% of the wholeimportane sample.The performanes of the above algorithm are illustrated on a simulated dataset of 1000observations from the distribution xi � 0:2N (0; 1) + 0:8N (2; 1). We also took � = 1:5 and� = 0:1 as hyperparameters of the priorIn the simulation experiment orresponding to this sample, we illustrate that the mixturePMC algorithm produe a non-degenerate partile system, that is, suh that their weightsare not all equal to either 0 or 1. We also show how the adaptive feature for hoosingamongst the vk's enable us to explore the state spae of the unknown means. In this ase,p = 5 and the �ve varianes are equal to 5; 2; :1; :05 and :01. Moreover, at eah step i of thePMC algorithm, we generated 1050 partiles.The two upper graphs of Figure 1 illustrate the degeneray phenomenon assoiated withthe population Monte Carlo algorithm. It represents the sizes of the samples issued fromthe di�erent proposals, that is the number of points resulting from the resampling step: theupper left graph exhibits a nearly yli behavior for the largest varianes vk, alternatingfrom no partile issued from these proposals to a large number of partiles. This behaviouragrees with intuition: proposals that have too large a variane mostly produe partilesthat are irrelevant for the distribution of interest, but one in a while they happen togenerate partiles that are lose to one of the modes of the distribution of interest. In thelater situation, the orresponding partiles are assoiated with large weights %j and arethus heavily resampled. The upper right graph shows that the other proposals are ratherevenly onsidered along iterations. This is not surprising for the smaller varianes, sinethey modify very little the urrent partile system, but the yli predominane of the threepossible varianes is quite reassuring about the mixing abilities of the algorithm and thusabout its exploration performanes.We an also study the inuene of the variation in the proposals on the estimation ofthe means �1 and �2, as illustrated by the middle and lower panels of Figure 1. First,when onsidering the umulative means of these estimations over iterations, the quantitiesquikly stabilise. The orresponding varianes are not so stable over iterations, but this isto be expeted, given the periodi reappearane of subsamples with large varianes.Figure 2 provides an additional insight into the performanes of the population MonteCarlo algorithm, by representing a weighted sample of means with dots proportional tothe weights. As should be obvious from this graph, there is no overwhelming partile thatonentrates most of the weight. On the opposite, the 1050 partiles are rather evenlyweighted, espeially for those lose to the posterior modes of the means.
4. Ion channels

4.1. The stylised modelAs a realisti example of implementation of the population Monte Carlo sheme, we onsiderhere a formalised version of the ion hannel model onsidered in Hodgson (1999). We referthe reader to this paper, as well as to Ball et al. (1999) and Carpenter et al. (1999), fora biologial motivation of this model, alternative formulations, and additional referenes.



8 Cappé et al.
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Fig. 1. Performances of the mixture population Monte Carlo algorithm: (upper left) Number of re-

sampled particles for the variances v1 = 5 and v2 = 2; (upper right) Number of resampled particles

for the other variances (middle left) Variance of the simulated �1 ’s along iterations; (middle right)

Complete average of the simulated �1’s over iterations; (lower left) Variance of the simulated �2 ’s

along iterations; (lower right) Complete average of the simulated �2 ’s over iterations.Let us insist at this point on the formalised aspet on our model, whih predominantlyserves as a realisti support for the omparison of a population Monte Carlo approah witha more standard MCMC approah in a semi-Markov setting. The �ner points of modelhoie and model omparison for the modelling of ion hannel kinetis, while of importaneas shown by Ball et al. (1999) and Hodgson and Green (1998), are not onsidered in thepresent paper. Note also that, while a Bayesian analysis of this model provides a ompleteinferential perspetive, the fous of attention is generally set on the restoration of the truehannel urrent, rather than on the estimation of the parameters of the model.Consider, thus, observables y = (yt)1�t�T direted by a hidden Gamma (indiator)proess x = (xt)1�t�T in the following way:ytjxt � N (�xt ; �2) ;while xt 2 f0; 1g, with durations dj � Ga(si; �i) (i = 0; 1). More exatly, the hidden proess(xt)t is a (ontinuous time) Gamma jump proess with jump times tj (j = 1; 2; : : :) suhthat dj+1 = tj+1 � tj � Ga(si; �i)
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Fig. 2. Representation of the log-posterior distribution via colour levels (red stands for lowest and

white for highest) and of a weighted sample of means. (The weights are proportional to the surface
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10 Cappé et al.if xt = i for tj � t < tj+1, that is, E [dj+1 ℄ = si=�i. Figure 3 provides a simulated sampleof size 4000 from this model.
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Fig. 3. Simulated sample of size 4000 from the ion channel modelA �rst modi�ation of the ion hannel model is introdued at this level: we assume thatthe durations dj , that is, the time intervals in whih the proess (xt)1�t�T remains in agiven state, are integer valued, rather than real valued, as in Hodgson (1999). The reasonsfor this hange are that(a) the true durations of the Gamma proess are not identi�able;(b) this model is a straightforward generalisation of the hidden Markov model where thejumps do our at integer times (see Ball et al., 1999, or Carpenter et al., 1999).A natural generalisation of the geometri duration of the hidden Markov model isa negative binomial distribution, N eg(s; !), whih is very lose to a Gamma den-sity Ga(s + 1;� log(1 � !)) (up to a onstant) for s small. Indeed, the former isapproximately dss! (1� !)d� !1� !�swhile the later is dss! (1� !)df� log(1� !)gs+1(The simulations detailed below were also implemented using a negative binomialmodelling, leading to very similar results in the restoration proess.)() inferene on the dj 's given (xt)1�t�T involves an extra level of simulations, evenif it an be easily implemented via a slie sampler, as long as we do not onsiderthe possibility of several jumps between two integer observational times. (This laterpossibility is atually negligible for the datasets we onsider.); and(d) the replaement of dj by its integral part does not strongly modify the likelihood.In a similar vein, we omit the trunation e�et of both the �rst and the last intervals, giventhat the inuene of this trunation on a long series is bound to be small.A seond modi�ation in our model, when ompared with Hodgson (1999), is that wehoose a uniform prior for the shape parameters s0 and s1 on the �nite set f1; : : : ; Sg, ratherthan an exponential Exp(�) prior on R+ . The reasons for this modi�ation is that(a) the hidden Markov proess has geometri swithing times, whih orrespond to expo-nential durations. A natural extension is to onsider that the durations of the stays



Population Monte Carlo 11within eah state (or r�egime) an be represented as the umulated duration of si ex-ponential stays, with si an unknown integer, whih exatly orresponds to gammadurations. This representation thus removes the need to all for a level of variabledimension modelling. Carpenter et al. (1999) and Hodgson and Green (1999) usea di�erent approah, based on the repliation of the \open" and "losed" sets intoseveral states, to approximate the semi-Markov model.(b) the following simulations show that the parameters s0 and s1 are strongly identi�edby the observables (yt)1�t�T ;() the prior information on the parameters s0 and s1 is most likely to be sparse and thusa uniform prior is less informative than a Gamma prior when S is large; and(d) the use of a �nite support prior allows for the omputation of the normalising onstantin the posterior onditional distribution of the parameters s0 and s1, a feature that isparamount for the implementation of population Monte Carlo.A third modi�ation, when ompared with both Hodgson (1999) and Carpenter et al.(1999), is that the observables are assumed to be independent, given the xt's, rather thandistributed from either an AR(15) (Hodgson, 1999) or an ARMA(1,1) (Carpenter et al.,1999) model. This modi�ation somehow weakens the identi�ability of both r�egimes as thedata beomes potentially more volatile.The other parameters of the model are distributed as in Hodgson (1999), using onjugatepriors, �0; �1 � N (�0; ��2)��2 � G(�; �)�0; �1 � G(�; �)Figure 4 illustrates the dependenes indued by this modelling on a DAG.
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Fig. 4. DAG representation of the probabilistic dependences in the Bayesian ion channel model.This formalised ion hannel model is thus a speial ase of disrete time hidden semi-Markov model for whih there exists no expliit polynomial time formula for the posteriordistribution of the hidden proess (xt)1�t�T , as opposed to the hidden Markov model withthe forward{bakward formula of Baum and Petrie (1966). From a omputational (MCMC)point of view, there is therefore no way of eliminating this hidden proess to simulate diretlythe parameters onditional on the observables (yt)1�t�T , as was done in the hidden Markovmodel by, e.g., Capp�e et al. (2001). Note also that, as opposed to Hodgson (1999), we usethe saturated missing data representation of the model via x to avoid the ompliation of



12 Cappé et al.using reversible jump tehniques for whih population Monte Carlo are more diÆult toimplement.
4.2. Population Monte Carlo for ion channel modelsOur hoie of proposal funtion is based on the availability of losed form formulae forthe hidden Markov model. We thus reate a pseudo hidden Markov model based on theurrent values of the parameters for the ion hannel model, simply by building the Markovtransition matrix from the average durations in eah state,P =  1� �0s0 �0s0�1s1 1� �1s1! ;sine, for a hidden Markov model, the average sojourn within one state is exatly the inverseof the transition probability to the other state. We denote by �H(xjy; !) the full onditionaldistribution of the hidden Markov hain x given the observables y and the parameters! = (�0; �1; �; �0; �1; s0; s1)onstruted via the forward{bakward formula: see, e.g., Capp�e et al. (2001) for details.The simulation of the parameters ! proeeds in a natural way by using the full onditionaldistribution �(!jy;x) sine it is available.Note that Carpenter et al. (1999) also onsider the ion hannel model in their par-tile �lter paper, with the di�erenes that they replae the semi-Markov struture withan approximative hidden Markov model with more than 2 states, and that they work ina dynami setting based on this approximation. The observables y are also di�erent inthat they ome from an ARMA(1,1) model with only the loation parameter depending onthe unknown state. Hodgson and Green (1998) similarly ompared several hidden Markovmodel with dupliated \open" and \losed" states. Ball et al. (1999) also rely on a hiddenMarkov modelling with missing observations.The subsequent use of importane sampling bypasses the exat simulation of the hiddenproess (xt)1�t�T and thus avoids the reourse to variable dimension models and to moresophistiated tools like reversible jump MCMC. This saturation of the parameter spae bythe addition of the whole indiator proess (xt)1�t�T is obviously more ostly in terms ofstorage, but it provides unrestrited moves between on�gurations of the proess (xt)1�t�T .Sine we do not need to de�ne the orresponding jump moves, we are thus less likely toenounter the slow onvergene problems of Hodgson (1999).We therefore run population Monte Carlo as follows:Population Monte Carlo AlgorithmStep 0. Generate (j = 1; : : : ; J)

(a) !(j) � �(!)
(b) x(j)� = (x(j)t )1�t�T � �H(xjy; !(j))

compute the weights (j = 1; : : : ; J)%j / �(!(j);x(j)� jy)�(!(j))�H(x(j)� jy; !(j))
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resample the (!(j);x(j)� )j using the weights %jStep i. (i = 1; : : :) Generate (j = 1; : : : ; J)

(a) !(j) � �(!jy;x(j)� )
(b) x(j)+ = (x(j)t )1�t�T � �H(xjy; !(j))

compute the weights (j = 1; : : : ; J)%j / �(!(j);x(j)+ jy)�(!(j)jy;x(j)� )�H (x(j)+ jy; !(j))
resample the (!(j);x(j)+ )j using the weights %j , and take x(j)� = x(j)+ (j = 1; : : : ; J).The justi�ation for the weights %j used in the above algorithm is that onditional onthe x(j)� 's, !(j) is simulated from �(!jy;x(j)� ) and, onditional on !(j), x(j)+ is simulatedfrom �H (xjy; !(j)). The normalising fator of the %j 's onverges to the orret onstant bythe law of large numbers.

4.3. Normalising constantsA major point in this development overs the normalising onstants in the various terms:�(!jy;x) is available in losed form (see below in Setion 4.4), inluding its normalisingonstant, due to the onjugay of the distributions on �0; �1; �; �0; �1 and the �nitenessof the support of s0; s1. The onditional distribution �H(xjy; !) is also available with itsnormalising onstant, by virtue of the forward{bakward formula. The only diÆulty inthe ratio �(!;xjy)�(!jy;x)�H (xjy; !)lies within the numerator �(!;xjy) whose normalised version is unknown. We therefore useinstead the proportional term�(!;xjy) / �(!) f(yjx; !) f(xj!) : (3)and normalise the %j 's by their sum. The foremost feature of this reweighting is that thenormalising onstant missing in (3) only depends on the observables y and is therefore trulya onstant, that is, does not depend on the previous value of the partile x(j)� . This shemeruially relies on (i) the partiles enompassing both the parameters ! and the latent datax, and (ii) the distribution �(!;xjy) being available in losed form.More generally, attention must be paid to the seletion of the proposal densities q(xjy)so that the normalising onstants in these densities that depend on y must be available inlosed form.



14 Cappé et al.

4.4. Simulation detailsFigure 5 illustrates the performanes of population Monte Carlo by representing the graphof the dataset against the �tted average JXj=1 %j�x(j)tfor eah observation yt. As obvious from the piture, the �t is quite good.
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Fig. 5. (top) Histograms of residuals after fit by averaged �xt ; (middle) Simulated sample of size4000 against fitted averaged �xt ; (bottom) Probability of allocation to first state for each observationThe unobserved Gamma proess is distributed asMYm=1 (tm+1 � tm)sm�1 �smm e��m(tm+1�tm)�(sm)= �n0s00 e��0 v0 �s0�10�(s0)n0 �n1s11 e��1 v1 �s1�11�(s1)n1 ;with obvious notations: M is the number of hanges, the tm's are the suessive times whenthe gamma proess hanges state, the sm's, �m's are the orresponding sequenes of s0; s1and �0; �1, ni is the number of visits to state i, �i is the produt of the sojourn durationsin state i [orresponding to the geometri mean℄, vi the total sojourn duration in state i[orresponding to the arithmeti mean℄. (This is based on the assumption of no ensoring,made in Setion 4, namely that t1 = 1 and tM+1 = T + 1.)The posterior distributions on the �i's and ��2 [onditional on the hidden proess℄ arethus the standard Normal-Gamma onjugate priors while�ijsi;x � Ga(�+ nisi; � + vi)sijx � �(sijx) / � �i(� + vi)ni �si �(nisi + �)�(si)ni If1;2;:::;Sg(si)Therefore, exept for the si's, the posterior distributions on the parameters of the modelare the same as in Hodgson (1999).



Population Monte Carlo 15The distribution on the si's is highly variable, in that the produt� �i(� + vi)ni �si �(nisi + �)�(si)ni (4)often leads to a highly asymmetri distribution, whih puts most of the weight on theminimum value of s. Indeed, when the geometri and arithmeti means, �1=ni and vi=n,are similar, a simple Stirling approximation to the Gamma funtion leads to (4) beingequivalent to pn=psn.Figure 6 gives the histograms of the posterior distributions of the various parameters of! without reweighting by the importane sampling weights %j . As seen from this graph,the histograms in �i and � are well onentrated, while the histogram in �1 exhibits twomodes whih orrespond to the two modes of the histogram of s1 and indiate that theparameter (�i; si) is not well identi�ed. This is to be expeted, given that we only observe afew realisations of the underlying gamma distribution, and this with added noise sine thedurations are not diretly observed. However, the histograms of the average durations si=�ido not exhibit suh multimodality and are well-onentrated around the values of interest.Note also that the onentration of the distributions of s0 and s1 around the smaller integersshould be onneted with Hodgson and Green's (1999) �ndings that, within their model,the number of dupliated opies of the \open" and \losed" states is preisely 2.
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Fig. 6. Histograms of the samples produced by population Monte Carlo, before resampling

4.5. DegeneracyAs noted above, population Monte Carlo is simply an importane sampling algorithm whenimplemented one, that is, for a single olletion of J partiles (!(j);x(j)). As suh, itprovides an approximation devie for the target distribution but it is also well-known thata poor hoie of the importane sampling distribution an jeopardise the interest of theapproximation, as for instane when the weights %j have in�nite variane.An inentive of using population Monte Carlo in a stati setting is thus to overome apoor hoie of the importane funtion by reyling the best partiles and disarding the



16 Cappé et al.worst ones. This point of view makes population Monte Carlo appear as a primitive kindof adaptive algorithm, in that the support of the importane funtion is adapted to theperformane of the previous importane sampler.The diÆulty with this approah is in determining the long-term behaviour of the al-gorithm and, orrelatively, the stopping rule that deides that nothing is gained in runningthe algorithm any longer. For instane, it often happens that only a few partiles are keptafter the resampling step of the algorithm, beause only a few weights %j are di�erent from0. Figure 7 gives for instane the sequene of the number of partiles that matter at eahiteration, out of 1000 original partiles: the perentage of relevant partiles is thus less than10% on average and in fat muh loser to 5%. In addition, there is no learut stabilisationin either the number of relevant partiles or the variane of the orresponding weights, thelater being far from exhibiting a stabilisation as the number of iterations inreases. Somemore rudimentary signals an be onsidered though, like the stabilisation of the �t in Figure8. While the averages for 1 and 2 iterations are quite unstable for most observations, thetwo states are muh more learly identi�ed for 5 and 10 iterations, and hardly hange oversubsequent iterations.
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Fig. 7. (left) Variance of the weights %j along 100 iterations, and (right) Number of particles with

descendants along 100 iterations, for a sample of 4000 observations and 1000 particles.A related phenomenon pertains to the degeneray of anestors observed in the iterationsof our algorithm: as the number of steps inreases, the number of partiles from the �rstgeneration used to generate partiles from the last generation diminishes and, after a fewdozen iterations, redues to a single anestor. This is for instane what ours in Figure 9where, after only two bakward iterations, there is a single anestor to the whole system ofpartiles. (Note also the iterations where all partiles originate from a single partile.) Thisphenomenon appears in every setting and, while it annot be avoided, sine some partilesare bound to vanish at eah iteration even using the systemati sampling of Carpenter etal. (1999) the surprising fator is the speed with whih the number of anestors dereases.
4.6. A comparison with Hastings–Metropolis algorithmsAs mentioned above, the proposal distribution assoiated with the pseudo hidden Markovmodel ould be as well used as a proposal distribution in a Metropolis{Hastings algorithmof the following form: MCMC Algorithm
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Fig. 8. Successive fits of population Monte Carlo iterated by the weight-resample algorithm for 2000
observations and 2000 particles, for (clockwise starting from top left) 1, 2, 5 and 10 iterations. (See

the caption of Fig. 5 for a description of the displayed quantities.)

Step i (i = 1; : : : ; J)

(a) Generate !(i) � �(!jy;x(i�1))
(b) Generate x? � �H(xjy; !(i)), u � U([0; 1℄)

and take x(i) = 8<:x? if u � �(x?j!(i)y)�H(x?jy;!(i))� �(x(i�1)j!(i)y)�H(x(i�1)jy;!(i)) ;x(i�1) otherwiseThe performanes of this alternative algorithm are, however, quite poor. Even witha well-separated dataset like the simulated dataset represented in Figure 3, the algorithmrequires a very areful preliminary tuning not to degenerate into a single state output.More preisely, the following ours: when started at random, the algorithm onverges veryquikly to a on�guration where both means �0 and �1 of the ion hannel model are verylose to one another (and to the overall mean of the sample), with, orrelatively, a largevariane �2 and very short durations within eah state. To overome this degenereseneof the sample, we had paradoxially to ressort to a sequential implementation as follows:notiing that the degeneresene was only ourring with large sample sizes, we start theMCMC algorithm on the �rst 100 observations y1:100 and, one a stable on�guration hasbeen ahieved, we gradually inrease the number of observations taken into aount [bya fator of min(s0=�0; s1=�1)℄ till the whole sample is inluded. The results provided inFigures 10{12 were obtained following this sheme.
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Fig. 9. Representation of the sequence of descendents (yellow) and ancestors (blue) along iterations

through bars linking a given ancestor and all its descendents (yellow) or a given particle and its

ancestor (blue). In the simulation corresponding to this graph, there were 4000 observations and1000 particles.For oniseness' sake, we did not reprodue the history of the alloations x over theiterations. The orresponding graph shows a very stable history with hardly any hange,exept on a few boundaries. Note the onneted strong stability in the number of swithesin Figure 11 (right). [The umulated means on the rhs of Figure 11 indiate that more iter-ations of the MCMC sampler were neessary but our purpose here was simply to illustratethe proper behaviour of this sampler, provided the initialisation was adequate.℄Attempts with very mixed datasets as the one used in Figure 8 were muh less su-essful sine, even with a areful tuning of the starting values (we even tried starting withthe known values of the parameters), we ould not avoid the degeneresene to a singlestate. The problem with the Metropolis{Hastings algorithm in this ase is learly a strongdependene on the starting value, i.e., a poor mixing ability. This is further demonstratedby the following experiment: when starting the above sampler from 1000 partiles obtainedby running population Monte Carlo 20 times, the sampler always produed a satisfatorysolution with two learut states and no degeneray. Figure 12 ompares the distributionsof the partile and the MCMC samples via a qq-plot and shows there is very little dif-ferene between both. The same behaviour is shown by a omparison of the alloations(not represented here). This indiates that the MCMC algorithm does not lead to a betterexploration of the parameter spae.For a fairly mixed dataset of 2000 observations orresponding to Figure 8, while theMCMC algorithm initialised at random ould not avoid degeneray, a preliminary run ofpopulation Monte Carlo produed stable alloations to two states, as shown in Figure 13 bythe �t for both population Monte Carlo and MCMC samples: they are indistinguishable,even though the qq-plots in Figure 14 indiate di�erent tail behaviours.This is not to say that an MCMC algorithm annot work in this setting, sine Hodgson(1999) demonstrated the ontrary, but this shows that global updating shemes, that is,proposals that update the whole missing data x at one, are diÆult to ome with, andthat one has to instead rely on more loal moves as those proposed by Hodgson (1999).A similar onlusion was drawn by Billio et al. (1999) in the setup of swithing ARMAmodels. (See also Kim, Shephard and Chib, 1998.)



Population Monte Carlo 19

0 1000 2000 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1000 2000 3000

−2
0

2
4

Fig. 10. Representation of a dataset of 3610 simulated values, along with the average fit (bottom),

and average probabilities of allocation to the upper state (top). This fit was obtained using a sequen-

tial tuning scheme and 5000 MCMC iterations in the final run.

5. ConclusionThe above developments have on�rmed Chopin's (2002) realisation that population MonteCarlo is also useful tools in stati|as opposed to sequential, rather than dynami|setups.Quite obviously, the spei� Monte Carlo sheme we built for the ion hannel model anbe used in a sequential setting in a very similar way. The omparison with the equiva-lent MCMC algorithm is also very instrutive in that it shows the superior robustness ofpopulation Monte Carlo to a possibly poor hoie of the proposal distribution.There still are issues to explore about population Monte Carlo sheme. In partiular,a more detailed assessment of the dynami feature is in order, to deide whether or not itis a real asset. It is possible that there is an equivalent to the \uto� phenomenon": aftera given t0, the distribution of x(t) may be the same for all t � t0. Further omparisonswith full Metropolis{Hastings moves based on similar proposals would also be of interest,to study whih sheme brings the most information about the distribution of interest.An extension not explored in this paper is that the partile system an be started witha few partiles that explore the parameter spae and, one the mixing is well-established,the partiles an be dupliated further to inrease the preision of the approximation to thedistribution of interest. This is a straightforward extension in terms of programming, butthe seletion of the dupliation rate and shedule is more deliate.
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Fig. 11. Details of the MCMC sample for the dataset of Figure 10: (left) histograms of the components
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