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Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast

phantoms based on dedicated breast computed tomography (bCT) data.

Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed

3D computational breast phantoms based on 230+ dedicated bCT datasets from normal human

subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation

algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT

data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose

nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D

bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose,

and several fractional glandular densities. Following segmentation, a skin mask was produced which

preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally,

surface modeling was used to produce digital phantoms with methods complementary to the XCAT

suite of digital human phantoms.

Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created

which emulate the complex breast parenchyma of actual human subjects. The volume breast density

(with skin) ranged from 5.5% to 66.3% with a mean value of 25.3%±13.2%. Breast volumes ranged

from 25.0 to 2099.6 ml with a mean value of 716.3±386.5 ml. Three breast phantoms were selected

for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the

results show promise in their potential to produce realistic simulated mammograms.

Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT

data for imaging research. Compared to previous studies based on only a few prototype cases,

this dataset provides a rich source of new cases spanning a wide range of breast types, volumes,

densities, and parenchymal patterns. C 2016 American Association of Physicists in Medicine.
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1. INTRODUCTION

More than 1 in 8 women who live for 80 years are

diagnosed with breast cancer in their lifetime making it

the second leading cause of cancer death for women in

the United States. Early detection of breast cancer has

been found to significantly improve survival rates. This

underscores the need for early detection to enable diagnosis

and effective treatment. Among other clinically available

techniques, screening x-ray mammography is presently the

most effective for early detection of breast cancer. Despite

the success of mammography, there is still substantial room

for improvement.1,2 A major limitation to mammography is

that volumetric information is inferred from 2D projection

images: the tissues are superimposed on one another making

the detection of breast cancer challenging.1 Overall, the

breast lesion detection sensitivity of screening mammography

falls between 63% and 88% and is dependent upon patient

age, family medical history,3 breast density,4 and technical

factors (e.g., image acquisition technique factors, dose, and

quality of the imaging system) among other factors. To

address some of the limitations of mammography, several

promising new breast imaging technologies have emerged:

digital breast tomosynthesis (DBT),5,6 contrast-enhanced

mammography,7,8 and dedicated breast computed tomography

(bCT).9,10 However, it can be challenging to fully evaluate

each technology, its merits, and its shortcomings, especially

in the preclinical phases. While clinical trials still serve as the

gold standard for making these evaluations, they are costly,

time consuming, and sometimes involve risk to the patient

(e.g., radiation dose). In response to these challenges, one

proposal is the use of virtual clinical trials involving the use

of computerized phantoms in realistic imaging scenarios.

Two main approaches have typically been utilized to create

computerized phantoms for breast imaging research: (a) rule-

based models where the anatomy is defined by mathematical

equations or relationships and (b) voxelized models based

upon human imaging data. Rule-based models11–16 utilize a

combination of voxel matrices and geometric primitives to

create a phantom that may include the breast surface, the duct

system, terminal ductal lobular units, Cooper’s ligaments, the

pectoral muscle, and breast abnormalities. Because of their

mathematical basis, phantoms such as the ones made by

Bakic et al. can produce a multitude of variable models for

an imaging study.17–19 In spite of their complexity, however,

they are limited in their level of realism when compared

to actual patient data. Alternatively, voxelized phantoms

have been investigated as a means to produce more realistic

models. These types of phantoms have been largely based

on dedicated bCT data from mastectomy specimens.20,21

However, these specimens do not adequately represent intact

breasts. Currently, only a small number of voxelized phantoms

using this method exist due to limited access to specimens.

We have taken a different approach to address the

limitations of mathematical and voxelized phantoms through

the segmentation of in vivo bCT data. Our current work

is based on the original work of Li et al.22 and several

key improvements to that work contributed by Segars

et al.23 Further modification, improvements, and more bCT

segmentations have been performed in order to create a larger

cohort of over 200 realistic and detailed 3D computational

breast phantoms based on in vivo human subject bCT data

with the goal of incorporating them into the 4D XCAT

suite of phantoms. The phantoms are hybrid models: they

are derived from imaging data like voxelized phantoms but

like mathematical phantoms, they use geometric surfaces

to define the anatomy.24 The anatomical basis provides a

foundation for building digital breast phantoms which emulate

actual breast anatomy, while the mathematical basis provides

flexibility to manipulate and deform the models—a benefit

which, for example, allows for realistic breast compression

and manipulation for multimodality imaging simulations.

Furthermore, previous work has shown that a nearly limitless

number of realistic phantoms can be derived by merging and

manipulating a small number of 3D computational breast

phantoms.25 These methods can be used in conjunction with

the larger cohort of phantoms presented in the current work to

produce an even larger and more diverse population of digital

breast models. Ultimately, the breast phantoms developed

in this work will be packaged into a user-friendly software

application to distribute for breast imaging research.

2. METHODS

2.A. bCT segmentation

The phantoms produced in this work are based on

231 dedicated bCT datasets obtained through a cooperative

agreement with John Boone at the University of California,

Davis (UC Davis).26–28 The majority of the women imaged

were at a high degree of suspicion for breast cancer (BIRADS

4 or 5), and many were diagnosed with malignant breast

cancers; however, all bCT data provided in this study were

derived from unaffected breasts. A more detailed description

of the bCT dataset demographics is provided by Huang et al.26

Seven of the original 231 datasets received were removed from

analysis due to image artifacts, and each of the remaining

datasets was segmented using a semiautomated method.

Several other authors have developed bCT segmentation

algorithms. Notable among them are Chen,29 Nelson et al.,30

and Yang et al.31 Chen used histogram partitioning into five

subintervals followed by interval thresholding to decompose

the breast into five segmentation classes based on voxel

intensity. The methods of Nelson et al. employed a two

compartment histogram model to classify adipose, glandular,

and skin tissues. This was done using a median filter (to reduce

noise) followed by region growing. The methods of Yang et al.

made several novel contributions to the (nontrivial) task of

bCT segmentation. They corrected adipose nonuniformities

with a bias field correction method, denoised the volume using
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T I. Overview of steps in the segmentation routine.

BCFCM3D masking of bCT volume

↓

Noise reduction of reconstructed bCT data

↓

Voxel intensity normalization

↓

3D nonuniformity (bias field) correction

↓

Conversion to cubic voxels

↓

BCFCM3D bCT segmentation

↓

Skin segmentation

↓

Surface model generation

a bilateral filter, and segmented the bCT volume into three

classes using a fuzzy C-means (FCM) classification approach.

The methods of Yang et al.31 inspired several improvements to

the original work of Li et al.22 which were necessary to develop

a sufficiently generalized approach capable of adequately

segmenting a larger and highly variable data set. Table I

provides an overview of the updated segmentation algorithm

which can be compared and contrasted with the segmentation

steps of Li et al.22 and Yang et al.31 Sections 2.B–2.H explain

in detail the major components of the new segmentation

routine.

2.B. Breast volume masking

Masking of the breast volume to separate it from the

background is the first step in the segmentation process.

The original volume segmentation method by Li et al.

implemented a thresholding scheme that required manual

tuning of the threshold value for each breast volume.22 This

process was automated through the use of a 3D bias-corrected

fuzzy C-means (BCFCM3D) algorithm.32 The standard FCM

algorithm objective function was modified to involve the

influence of immediate neighbors,33

Jm =

c

i=1

N

k=1

u
p

ik
∥yk− βk− vi∥

2

+
α

NR

c

i=1

N

k=1

u
p

ik

*.,


yr ∈Nk

∥yr− βr− vi∥
2+/-. (1)

Equation (1) is comprised of two parts—a voxel intensity

component and a spatial component. The first intensity-based

component involves yk which are the original image voxel

values corrected by bias field βk and compared to cluster

means vi. u
p

ik
is the probability of FCM class membership, and

p is a weighting component that determines the “fuzziness”

of the resultant classification. The second spatial component

of the algorithm serves as a regulizer which biases voxel

classification toward that of its neighborsNk, the set of voxels

neighboring yk. α is another weighting term controlling the

influence of neighbor classification, and NR is the cardinality

of Nk. Bias field estimation and iterative objective function

minimization schema are well-described by other authors.32,33

Three voxel intensity values were used to define three

cluster means: background, breast, and background/breast

average intensities. The third class was used to exclude breast

boundary blurring and artifacts due to the partial volume effect

and patient motion during bCT data acquisition as depicted

in Fig. 1. The breast volume mask was finalized through

morphological smoothing with a 3D spherical structuring

element with 1 mm radius to smooth the breast mask external

boundary.34

It should be noted that patient motion may affect both

the rendition of the breast boundary and structures internal

to the breast. While the methods described in this section

are designed to correct motion artifacts affecting the breast

external boundary, no attempt has been made to correct

artifacts associated with structures within the breast volume.

This topic is discussed at length in Sec. 4.

2.C. Denoising

Of the 224 bCT datasets, projection space denoising was

previously applied to 53 using partial diffusion equation-based

techniques as part of work by Xia et al.35 The remaining

171 datasets were reconstructed without projection space

F. 1. Breast volume masking. (a) Original bCT coronal slice showing severe motion artifact. (b) BCFCM3D segmentation of (a) depicting three segmentation

classes: background (black), breast, and background/breast average (gray). (c) Masked version of (a) with intermediary (blurred) boundary removed.
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denoising and contained considerable noise due to quantum

mottle. This required a postreconstruction denoising method

to improve segmentation quality. A 3D bilateral filter was

applied to the reconstructed bCT volumes to preferentially

smooth the noise while attempting to preserve the sharpness

of tissue boundaries and other anatomical structures,36

Ibilateral(x,y,z) =


(xi, y j,zk)∈Ω

I
�
xi,y j,zk

�

× e
−


(xi−x)

2+(y j−y)
2
+(zk−z)

2

/2σ2

D

× e−[I (x, y,z)−I(xi, y j,zk)]
2
/2σ2

R. (2)

The bilateral filter works by weighting the influence of both

Euclidian distance (governed by the σD term) and radiometric

differences (governed by the σR term) between a pixel and its

neighbors (within local neighborhood Ω). Doing so increases

the amount of denoising (smoothing) in regions with small

fluctuations in voxel intensity and decreases the amount

of denoising (smoothing) across large intensity gradients

(edges). In order to be properly implemented, bCT volume-

specific spatial and intensity filtering parameter values must

be determined. The intensity parameter is set to the full

width at half maximum (FWHM) of the adipose peak of

the breast volume histogram. The spatial parameter is set

to the average voxel dimension (measured in mm). These

parameter values can be multiplied by a scalar before they

are implemented to increase or decrease the overall effect of

the bilateral filter. Parameter values were manually optimized

by one observer on a case-by-case basis in order to maximize

noise reduction without compromising the visibility of finer

glandular structures.

2.D. Normalization and 3D nonuniformity correction

The cupping artifact in bCT data attributed to scattered

radiation is a well-known phenomenon commonly corrected

through the use of a second-order polynomial fit and

subtraction of the low-frequency artifact from the original

data.37 This correction method was used by Li et al. in

a slice-by-slice application.22 However, such a method is

not necessarily applicable to nonuniformities which are not

well-suited to second-order modeling. For example, breasts

with ovular or noncircular coronal cross section will not

have circularly symmetric cupping artifact due to scatter.

Furthermore, breasts with nonconvex surfaces (e.g., teardrop-

shaped breasts) can have even more complex nonuniformity

throughout the breast volume. Because of this, a simple

second-order polynomial fit is not suitable in general for

addressing retrospective (i.e., postreconstruction) adipose

inhomogeneity correction.

The current segmentation routine considers adipose

inhomogeneity as a 3D artifact with neither specific origin nor

form:38 Unlike other techniques, it does not explicitly depend

on breast symmetry to perform the correction.37 Adipose

nonuniformity was corrected in the new protocol using a

nonparametric method initially developed for application to

the slowly varying, positive, multiplicative bias field in MRI

data with additive noise38 and later applied by Yang et al.31 to

bCT data,

H (X) =

N1

i=1

N2

j=1

L
l=1

δ(Xl− i)δ(Ml− j)

N1
i=1

N2
j=2

L
l=1

δ(Xl− i)δ(Ml− j)

× log



L
l=1

δ(Xl− i)δ(Ml− j)

N1
i=1

N2
j=2

L
l=1

δ(Xl− i)δ(Ml− j)


. (3)

The above equation describes the Shannon entropy H (X) of

the normalized intensity gradient joint histogram associated

with image X containing L pixels and N1 grey levels.

Its gradient magnitude of X is defined by M with N1

distinct grey levels. δ is the delta function. The entropy

function is minimized by modeling multiplicative bias in X

using B-spline basis functions B(ω) of iteratively increasing

frequency until no noticeable differences were observed

between iterations,

E (ω)= arg min
ω

H {log[X/B(ω)]} . (4)

Because this method expands on the widely used Shannon

entropy homogeneity measurement, it was first necessary to

convert the intensity values of the bCT data onto a zero to

unity range. Flattening the adipose intensity profile using

this uniformity correction prepared the bCT volume for

fibroglandular segmentation.

2.E. Resampling and BCFCM3D segmentation

The original bCT data were collected and reconstructed

into image matrices with pixel size determined by the diameter

of the coronal breast cross section, and slice thickness

was determined by the length of the breast. Therefore,

prior to segmentation, the bCT volumes were resampled

with bicubic interpolation to produce isotropic voxels (with

minimum original voxel dimension) to ensure the integrity of

the segmentation. Once resampled, the BCFCM3D method

of Ahmed et al. was applied a second time to the bCT

volume to segment the breast tissue into background, adipose,

fibroglandular, and skin classes.32 A total of six tissue

segmentation classes were defined to account for the partial

volume effect of finite pixel resolution yielding multiple

classes with different fractional fibroglandular composition.

Six classes were chosen due to a trade-off between fine-

structure preservation and computation time. With more

classes, computation time and the number low-intensity

misclassifications increased; with too few classes, fine

glandular structures were improperly classified as fat voxels.

The adipose and glandular class means were chosen based

on histogram analysis of the breast volume data. The adipose

and glandular peaks were automatically detected, and five

linearly spaced class means between the peaks were chosen

as segmentation seeds corresponding to 0%, 25%, 50%, 75%,

and 100% glandular density. However, due to the fuzzy nature

Medical Physics, Vol. 43, No. 1, January 2016
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F. 2. Normalized voxel intensity distribution and class assignments from

sample bCT dataset. (a) Histogram of voxel intensities clearly shows adipose,

glandular, and skin peaks. (b) Box-whisker plot of BCFCM3D segmentation

of data into six classes ranging from adipose (0% glandular density—class

1) to glandular (100% glandular density—class 5). Note that skin (class 6)

tends to be more dense than glandular tissue making its equivalent glandular

density >100%.

of the segmentation routine, the actual resultant class means

were subject to change as shown in Fig. 2. The skin intensity

peak was used to determine the mean of the final (sixth)

tissue segmentation class (if and only if the skin peak was

determined to be significantly higher than the glandular peak).

2.F. Skin segmentation

The final step in the segmentation algorithm was to

accurately locate the internal skin boundary. To maintain

the realism of the breast models in this work, it was important

to correctly identify the depths at which the glandular and

adipose tissues interdigitated with the hypodermal, dermal,

and epidermal skin layers. To do this, the external breast

boundary was first identified from the perimeter of the breast

mask segmentation. Normal vectors were then determined

at 50 000–100 000 surface voxels. An iterative approach was

then used to make unit-voxel steps toward the breast interior

until an adipose voxel was found. A realistic minimum skin

thickness limit was set to 0.5 mm, while the maximum skin

thickness limit was set to 5 mm.39 Skin thickness estimates

were smoothed, and a mask or “skin shell” was formed which

contained the external skin surface and the internal breast-skin

transition region. The skin was then defined as all nonadipose

voxels within this skin shell which contained voxels belonging

to the skin class (class 6) in addition to a variety of fractional

glandular-equivalent densities (classes 2–5) present at the

skin-adipose interface. These glandular-equivalent voxels are

attributed primarily to the partial volume effect. The use of

a skin shell to define the skin preserved the rough interior

surface of the skin while still accurately differentiating the

skin from glandular structures and blood vessels internal to

the breast. Any voxels classified by the BCFCM3D algorithm

as skin-class voxels within the breast parenchyma (e.g., due

to microcalcifications or very dense glandular tissue) were

forced to assume the highest density glandular class.

2.G. Statistical analysis

The output breast segmentations (8-bit unsigned integer

type) along with statistics such as breast volume and volume

breast density (VBD) were saved to  data (*.mat)

files. Breast volume was computed as the total volume of

all nonbackground voxels in coronal slices between the end

of the pectoral muscle (if visualized) and the nipple. The

reported VBD was computed from these same slices using

methods similar to those of Yaffe et al.27

VBDNSk= 100%×
Vfg

Vfg+Vad+Vsk

, (5)

VBDSk= 100%×
Vfg+Vsk

Vfg+Vad+Vsk

, (6)

where Vfg is the volume of fibroglandular tissue, Vad is the

volume of adipose tissue, and Vsk is the volume of skin. VBD

without skin (VBDNSk) is computed as the percentage of total

breast volume (Vfg+Vad+Vsk) comprised of fibroglandular

tissue, whereas VBD with skin (VBDSk) is the percentage

of total breast volume comprised of fibroglandular tissue or

skin. In a departure from the methods of Yaffe et al. who

estimated Vfg, Vad, and Vsk from the total number of voxels

identified in fibroglandular, adipose, and skin segmentations,

respectively,27 the segmentations in this work contained

estimates of the fractional glandular composition of every

voxel. Therefore, Vfg, Vad, and Vsk required the following

formulae to estimate the respective volumes:

Vfg=Vvoxel



i

Ffg, iNi, (7)

Vad=Vvoxel



i

Fad, iNi, (8)

Vsk=VvoxelNsk (9)

where Vvoxel is the volume of a single voxel, Ffg, i is the

fractional glandular composition of segmentation class i, Fad, i

is the fractional adipose composition of segmentation class i,

Medical Physics, Vol. 43, No. 1, January 2016
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F. 3. Visual depicition of bCT segmentation processing. (a) Original coro-

nal slice from breast volume. (b) Breast volume mask. (c) Image (a) after

masking and denoising with bilateral filter. (d) Image (c) after uniformity

correction. (e) BCFCM3D segmentation of (d). (f) Skin mask.

Ni is the number of voxels belonging to segmentation class i,

and Nsk is the number of voxels.

2.H. XCAT phantom creation

Segmented volumes were used to create a mathematically

defined 3D breast phantom in a format congruent with the

4D XCAT suite of phantoms.40 Surface meshes were used

to represent the boundaries between fibroglandular classes.

Since the intensities of the segmentation correspond to the

glandular fraction, increasing from adipose (n1) to skin

(nskin), a mesh at the nk+0.5 isosurface creates a boundary

between classes nk and nk+1. The resulting meshes created

with the Marching Cubes algorithm41 had a nested structure,

such that the nk−1 mesh lies completely within mesh nk.

Prior to creating the meshes, the background was set to

an integer value of nskin+1. These meshes are capable of

representing complicated geometry of arbitrary topology,

which are capable of being deformed to model differing

patient positions, different states of mechanical compression,

and physics of the imaging process.42–45

These types of deformations can be solved for using

the finite element method, which discretizes a complex

domain into a system of smaller simpler elements. Use of

the finite element method to model breast deformations

and compression has been applied in several applications

including multimodality registration,46–48 image-guided sur-

gery,49 and breast augmentation.50,51 Our finite element model

uses approximately 60 000 hexahedral elements with six

materials of varying stiffness, which are assigned based

on the fibroglandular classes within each element. The

compression [performed using FEBio (http://mrl.sci.utah.edu/

software/febio)] was defined as a displacement constrained

problem with a nonlinear contact analysis between the skin

surface and the plates (friction neglected), and gravity applied

as a body force. The deformation from the finite element

model was then applied to the mesh representation of the

phantom. A ray-triangle intersection algorithm can be used in

conjunction with the resulting deformed meshes to determine

the thickness of each material that was intersected by each ray.

For the proof-of-concept mammographic images in Fig. 7, a

parallel beam projection was performed with the integer of

the fibroglandular classes used as a correlate for attenuation.

F. 4. (Top) Denoised and nonuniformity-corrected coronal bCT images. (Middle) Phantoms produced with the methods of Li et al. with five integer density

classes. (Bottom) Corresponding phantoms from the current work with six segmentation classes shown as integer grayscale levels.
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3. RESULTS

The segmentation algorithm required about 30 min of

runtime per case using a 3.4 GHz Intel i7 Processor with 16

GB of RAM running a Windows 7 (64-bit) operating system

and  R2014a. Refer to Fig. 3 for an illustration of

each step in the segmentation routine. Additionally, images

from five of the 224 segmented bCT volumes are shown in

Fig. 4 to demonstrate how closely our segmented volumes

resemble the actual patient data sets with a variety of breast

sizes, geometries, glandular distributions, and densities. Our

results are also shown alongside segmentations made using

the methods of Li et al.22 Based on subjective comparisons,

the methods proposed in this paper provide better retention of

fine fibroglandular detail and more reasonable skin boundary

segmentations.

Figure 5 shows the distributions of VBDNSk and VBDSk

measured using our methods. The VBDNSk estimates ranged

from 1.4% to 65.3% with a mean value of 18.0%±13.4%

while VBDSk ranged from 5.5% to 66.3% with a mean value

of 25.3%±13.2%. Segmented breast volumes ranged from

25.0 to 2099.6 ml with a mean value of 716.3±386.5 ml.

Figure 5 and the mean and range of breast densities can

be compared with the results of Yaffe et al. who found

distributions of VBDNSk to be 14.3%±10.3% and VBDSk

to be 25.6%±12.6%. Figure 6 demonstrates the distribution

of breast model densities versus breast model volume in the

newly available library of phantoms.

Figure 7 shows three examples of simulated mammograms

after a modeled compression and simple ray-tracing from

three different breast phantoms with VBDSk of 11.8%, 24.7%,

and 34.6%. The breasts were compressed to 45% of their

original diameter resulting in compressed breast thicknesses

of 5.5, 4.9, and 5.4 cm, respectively.

F. 5. Volume breast density distributions of the virtual breast phantom

library.

F. 6. VBDNSk versus breast volume for 224 bCT subjects.

4. DISCUSSION

This work has produced a large library of anatomically

diverse virtual breast phantoms which, because of their

anatomic origins, mirror the natural appearance of breast

anatomy and its natural variation in a patient population.

This contribution compliments other recent work in the

growing field of breast modeling and simulation research.

While modifications to prior bCT segmentation methods have

resulted in the satisfactory production of over 200 virtual

breast phantoms, this approach to breast modeling has several

benefits and challenges which merit discussion.

Segmentation of the breast external boundary involved

methods which accounted for blur and artifacts attributed

to the partial volume effect and patient motion during data

acquisition. In Sec. 2.B, it was noted that patient motion

may affect both the rendition of the external breast boundary

and structures internal to the breast, and that no correction

of motion artifacts associated with these internal structures

would be attempted. As a result, bCT segmentations derived

from cases containing substantial patient motion may be

subject to a number of issues depending on the nature of

the patient motion. For patients whose breast shifts position

during acquisition, a “doubling” of the internal structures

may occur due to improper alignment and registration of

the internal structures during reconstruction. This doubling

would affect the appearance of the glandular architecture and

the apparent breast density. In almost all cases involving

patient motion, some amount of blurring is involved. Blurring

of the fibroglandular structures in the bCT data can cause

degradation in the delineation between fibroglandular and

adipose tissue in addition to potentially altering assessment

of breast attributes such as VGF. Therefore, caution should

be exercised when dealing with data potentially contaminated

by patient motion, and those data subject to severe patient

motion should be screened prior to segmentation and model

generation.

The segmentation of 224 bCT volumes presented here

has expanded on the earlier work of Li et al.22 In the

previous work, the segmentation process was optimized and

demonstrated on a single, high-quality breast case. In this

work, we have made many modifications to the segmentation

algorithm allowing for more reliable and efficient application
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F. 7. Simulated projection images (with breast compression and ray-tracing). From left to right, VBDSk are 11.8%, 24.7%, and 34.6%, respectively.

to hundreds of datasets. One advance was the inclusion

of a 3D bilateral filter step to accommodate imaging data

that had not been denoised prior to reconstruction. The

3D bilateral filter was used to preferentially smooth the

noise while attempting to preserve the sharpness of tissue

boundaries and anatomical structures. Another major update

to the segmentation routine was the use of a 3D bias-

field correction to flatten gross adipose nonuniformities

within the breast. This is done to provide more consistent

tissue classification across the volume. Compared to the

second-order polynomial fit method of Altunbas et al.,37

the new method provided a more generalized approach

to nonuniformity correction by not relying on geometric

assumptions about the general shape of the nonuniformity.

Therefore, nonuniformities due to scatter, beam-hardening,

breast positioning, and any incomplete sampling in the bCT

data could all be corrected in a single step. A final update

to the segmentation routine was the complete revision of the

tissue classification algorithm. Previously, iterative histogram

classification was applied independently to each axial slice

of the bCT data.22 Although this method provided reasonable

results in the case of high-quality bCT volumes, it lacked

utilization of the 3D voxel neighbor classification information,

a characteristic which made the BCFCM3D algorithm

more robust, especially when segmenting higher-noise

volumes.

Comparing our work to that of Yaffe et al. yielded

interesting results. Although the two studies draw on bCT

datasets from similar populations, there are key differences

between VBD assessments. There are several possible

explanations as to why our VBD distributions differ. Yaffe

et al. used only the left breast of 191 individuals within their

cohort (to maintain independence of the results); our cohort

contained bilateral studies from twenty subjects (40 bCT

volumes) and 184 unilateral (left or right) breast data from 184

different subjects. Both left and right breast data were used in

our study to increase the total number of phantoms produced.

It is also possible that our definition of classes with fractional

glandularity has positively biased our assessments of VBD.

In comparison of our VBDNSk measurements to those of

Yaffe, use of classes with fractional granularity may partially

explain why our assessment of VBDNSk is 3.7% higher. On

the other hand, the average of our VBDSk estimates is only

0.3% lower. This suggests that our methods for segmenting

the skin result in lower overall skin density. Although we

allowed the skin to assume density which was greater than

that of 100% glandular tissue (as Yaffe’s methods also did),

our BCFCM3D segmentation algorithm routinely classified

voxels at the skin-adipose boundary as mixed glandular

+ adipose bringing down the overall skin density.

There are some notable limitations to our method of

creating phantoms from bCT data. The inherent resolution

of the current bCT data is not sufficient to resolve some

small anatomical structures (e.g., Cooper’s ligaments and

microcalcifications) that are often of interest to researchers

and clinicians. The lack of very fine detail structures in turn

can negatively impact the realism of the model. To restore

these missing data, the work of Lau et al.52 could be used

to add detail to our existing models at the high frequencies

absent in the bCT data. Their work was specifically developed

to enhance existing anthropomorphic breast models. Other

authors have taken different approaches to the challenge

of simulating realistic breast textures. Elangovan et al.53

have recently demonstrated how breast structure extracted

from reconstructed DBT planes can be combined to produce

realistic breast tissue background for observer studies in

mammography and DBT. Such an approach is attractive since

it takes advantage of the high resolution of a digital flat

panel detector combined with the quasi-3D resolution of

tomosynthesis. Both are interesting works that could be used

to improve the realism of the (high-frequency) detail in our

population of breast models.

In the same way that microcalcifications and other fine

details might be added to enhance the current bCT phantoms,

synthetic lesions may also be added to support the utility

of these phantoms in virtual clinical trials. This was one

motivation for using lesion-free data to produce the initial

population of bCT models. The inclusion of lesions in a

“healthy” breast model population could affect the outcomes

of future virtual clinical trials. Instead, since we elected to start

with lesion-free cases, synthetic lesions with controlled size,

contrast, shape, etc., can be inserted at will. There is already

considerable research on breast lesion modeling,13,54–57 and

the feasibility of lesion insertion in our breast model has
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already been demonstrated in other work suggesting the

feasibility of such an approach for virtual clinical trials.58

There is however a caveat to performing virtual clinical trials

with a limited (finite) number of available data sets. Previous

studies have shown that thousands of models may be required

for sufficient statistical power in virtual imaging studies.59,60

While mathematical phantoms have the freedom to create

an essentially limitless number of phantoms, our phantoms

(based on human subject data) are limited by the number of

available bCT datasets. While we recognize this as a potential

limitation, bCT data are becoming more readily available

to researchers and more common to the clinic. Not only has

clinical research involving bCT grown28,61 but the recent FDA

approval of the Koning Breast CT system may further increase

the availability of clinical cases.62 Additionally, our group has

demonstrated the ability to morph between models in order to

create a much larger number of phantoms with user-defined

anatomical characteristics.25

A second limitation of this segmentation routine is the

sensitivity of the algorithm to noise in the bCT data set. As

a consequence of using in vivo data, acquisitions are dose-

limited and thus limited by the resulting noise which increases

the risk of voxel misclassification during segmentation. Our

response to this limitation was 2-fold—through the use of

a 3D bilateral filter to reduce the noise and through the

incorporation of a BCFCM3D segmentation method. With

this combined approach to handling image noise, the new

segmentation paradigm was successfully applied to produce

over 200 digital breast models.

A final limitation and consequence of using the

reconstructed bCT images for segmentation is the innate

dependence on the reconstruction algorithm. Reconstruction

algorithm choice can influence CT image resolution, noise,

and artifacts; changes to any of these image quality

characteristics may affect the quality of the final segmentation.

However, it is important to note that the goal of this work

is not necessarily to recreate the exact anatomy of each

subject, but rather to generate breast phantoms that portray

each bCT dataset with a high degree of realism. Therefore,

modest deviations from truth may be tolerable without unduly

affecting the utility of the phantom.

5. CONCLUSION

This study provides a new population of 224 breast

phantoms for imaging research. As these models are based

upon actual human subject bCT imaging data, they offer a

degree of realism that may improve the clinical relevance of

virtual studies. Compared to previous studies based on only a

few prototype cases, this new dataset provides a rich source

of cases spanning a wide range of breast types, volumes,

densities, and parenchymal patterns. As these phantoms are

distributed to the research community, they may be used

for a variety of purposes, including virtual clinical trials.

Ongoing work seeks to improve the realism of these models

as the topics of breast imaging and simulation continue to be

subjects of major research and clinical interest.
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