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Abstract 

Background: Artemisinins are the most effective anti-malarial drugs for uncomplicated and severe Plasmodium 

falciparum malaria. However, widespread artemisinin resistance in the Greater Mekong Region of Southeast Asia is 

threatening the possibility to control and eliminate malaria. This work aimed to evaluate the pharmacokinetic and 

pharmacodynamic properties of artesunate and its active metabolite, dihydroartemisinin, in patients with sensitive 

and resistant falciparum infections in Southern Myanmar. In addition, a simple nomogram previously developed to 

identify artemisinin resistant malaria infections was evaluated.

Methods: Fifty-three (n = 53) patients were recruited and received daily oral artesunate monotherapy (4 mg/kg) for 

7 days. Frequent artesunate and dihydroartemisinin plasma concentration measurements and parasite microscopy 

counts were obtained and evaluated using nonlinear mixed-effects modelling.

Results: The absorption of artesunate was best characterized by a transit-compartment (n = 3) model, followed by 

one-compartment disposition models for artesunate and dihydroartemisinin. The drug-dependent parasite killing 

effect of dihydroartemisinin was described using an Emax function, with a mixture model discriminating between 

artemisinin sensitive and resistant parasites. Overall, 56% of the studied population was predicted to have resistant 

malaria infections. Application of the proposed nomogram to identify artemisinin-resistant malaria infections demon-

strated an overall sensitivity of 90% compared to 55% with the traditional day-3 positivity test.

Conclusion: The pharmacokinetic-pharmacodynamic properties of artesunate and dihydroartemisinin were well-

characterized with a mixture model to differentiate between drug sensitive and resistant infections in these patients. 

More than half of all patients recruited in this study had artemisinin-resistant infections. The relatively high sensitivity 

of the proposed nomogram highlights its potential clinical usefulness.
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Background
Artemisinin-based combination therapy (ACT) is the 

recommended first-line therapy against uncomplicated 

Plasmodium falciparum malaria worldwide [1]. ACT 

is the most effective anti-malarial treatment today and 

consist of an artemisinin derivative and a partner drug 

[2]. �e short-acting but potent artemisinin component 

eliminates the majority of parasites during the first 3 days 

of treatment and the slow acting and less potent partner 

drug removes residual parasites to prevent recrudescent 

infections. �e introduction of ACT has contributed sub-

stantially to the reduction in malaria-related mortality 

and morbidity during the last decade [3].

However, the effectiveness of artemisinins is threatened 

in Southeast Asia due to widespread artemisinin resist-

ance in the region [4]. Artemisinin resistant P. falciparum 

is defined clinically as delayed parasite clearance [5]. �e 

clearance of microscopy detectable parasites by 24–48  h 

after the first dose of ACT is a typical indication of P. fal-

ciparum being fully susceptible to artemisinins [6], and 

parasite detection at 72 h after treatment initiation is inter-

preted as possible resistance [7]. Delayed parasite clear-

ance results in higher parasite densities to be eliminated by 

the partner drug, causing an increased selection pressure 

for partner drug resistance [8]. High-grade resistance to 

both dihydroartemisinin and its partner drug, piperaquine, 

is now seen in Cambodia, �ailand, Laos and Vietnam 

resulting in unacceptably high clinical failure rates [9–11].

In early 2009, delayed parasite clearance was observed 

also in Myanmar [5, 12]. �is was recently confirmed 

by the presence of slow parasite clearance as well as the 

in  vivo molecular marker for artemisinin resistance (i.e. 

kelch 13 mutations) [13, 14]. �e fear is that this resist-

ance genotype will spread through Bangladesh, India and 

find its way to the African continent similar to what was 

seen for chloroquine and sulfadoxine–pyrimethamine 

resistance [15].

Even though the discovery of kelch 13 marker for arte-

misinin resistance has changed the resistance monitor-

ing paradigm, the day-3 positivity tests is still being used 

clinically to detect resistant malaria infections due to 

advantageous of cost, easy accessibility, and field appli-

cability. However, the performance of this test is deemed 

rather ineffective as the absolute parasite clearance time, 

and therefore also day-3 positivity, is very much depend-

ent on the baseline parasite density [7]. �e day-3 posi-

tivity test is particularly disadvantaged in high-endemic 

settings since acquired immunity often results in lower 

baseline parasitaemia and a faster parasite clearance rate. 

�us, a new simple algorithm (baseline-adapted nomo-

gram) which also takes into account the baseline density 

was proposed recently based on an analysis of data from 

a study in �ailand and Cambodia [4].

�e primary aim of this study was to describe and 

evaluate the population pharmacokinetic and pharma-

codynamic properties of artesunate (ARS) and its active 

metabolite, dihydroartemisinin (DHA), in the treatment 

of sensitive and resistant P. falciparum infections in Myan-

mar. A secondary aim was to perform an external valida-

tion of the recently proposed baseline-adapted nomogram 

to identify artemisinin resistant malaria infections.

Methods
Study design

�is was a non-randomized, single arm, open-labelled 

clinical trial conducted in Palm Tree plantation site Hos-

pital in Kawthaung in southern Myanmar. �e trial was 

conducted to assess parasite clearance times in patients 

with uncomplicated P. falciparum malaria after ARS 

monotherapy. Clinical outcome and non-compartmen-

tal pharmacokinetic results have been published in full 

elsewhere (5). Ethical approval was obtained from the 

ethical review committees of the Department of Medi-

cal Research (Lower Myanmar), the Myanmar Ministry 

of Health, and the World Health Organization (WHO); 

Trial registration: Australian New Zealand Clinical Trials 

Registry ACTRN12610000896077.

Fifty-three (n = 53) patients who met all of the inclu-

sion criteria and none of the exclusion criteria were 

recruited. Inclusion criteria; 18–55  years old, mono-

infection with P. falciparum, asexual parasite density 

of 10,000–100,000/µl, fever in last 24  h, ability to toler-

ate oral intake of ARS, agreement to comply with the 

study protocol, and provision of written informed con-

sent. Exclusion criteria; severe malaria, severe malnu-

trition, pregnancy, lactation, mixed malaria infection, 

clinical evidence of infection other than malaria, history 

of chronic medical illness, splenectomy, hypersensitivity 

to ARS or related compounds, or reported use of drugs 

with anti-malarial activity within 48 h before enrollment.

Study drug was procured from Guilin Pharmaceuti-

cal Co. Ltd. (Shanghai, China); lot Number AS091001. 

All patients received directly observed oral ARS mono-

therapy (4 mg/kg/day) once daily for 7 days, administered 

with 8 oz. of milk.

Venous blood samples were taken immediately before 

and at 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 3, 4, 6 and 8 h after the 

first dose. Within 15  min of collection, blood was centri-

fuged at 4 °C at 2000×g for 7 min and plasma was stored 

in liquid nitrogen until analysis. All samples were freighted 

on dry ice to the Department of Clinical Pharmacology at 

Mahidol-Oxford Tropical Medicine Research Unit (Bang-

kok, �ailand) where the plasma samples were analysed. 

�e laboratory is a participant in the QA/QC proficiency 

testing programme supported by the Worldwide Anti-

malarial Resistance Network (WWARN) [16]. Plasma 
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concentrations of ARS and DHA were measured by liquid 

chromatography-tandem mass spectroscopy using a pub-

lished and validated method [17]. �e observed total assay 

coefficients of variation was below < 8% in all quality con-

trol samples which were in concordance with FDA require-

ments, i.e. variations less than 15% at each low, medium 

and high concentration [18]. �e lower limits of quantifi-

cation (LLOQ) were 1.2 and 2.0 ng/ml for ARS and DHA, 

respectively. Microscopy parasite counts was performed 

every 12  h until two consecutive negative smears using 

Giemsa-stained thick and thin blood smears. Parasites were 

counted against 200 or 500 white blood cells and multiplied 

by an assumed white blood cell count of 6000/μl.

Population pharmacokinetic‑pharmacodynamic modelling

Data analysis was performed using nonlinear mixed-

effects modelling implemented in the NONMEM soft-

ware, v.7.3 (ICON Development Solutions, Ellicott City, 

MD) [19]. Xpose v.4.5.3 was used for graphical analy-

sis and visual diagnostics of the model [20, 21]. Pearl-

Speaks-NONMEM (PsN), v. 4.5.5 [22], Xpose, Pirana, v. 

2.9.2 (21), and R, v. 3.2.4 (�e R Foundation for Statistical 

Computing) [23, 24] were used for other post-processing, 

model diagnostics, graphical analysis and automation.

Model selection was guided by plausible parameter esti-

mates, precision of parameters, visual diagnostics and 

minimum objective function value (OFV) computed by 

NONMEM as proportional to minus twice the log like-

lihood of the data. A drop in OFV of 3.84 or more was 

considered a significant improvement (p < 0.05) between 

two hierarchical models after inclusion of one additional 

parameter (one degree of freedom difference). Visual pre-

dictive checks (VPCs) were performed (2000 simulations) 

to evaluate the predictive performance of the pharmacoki-

netic and pharmacodynamic models. �e reliability of indi-

vidual parameter estimates and goodness-of-fit plots were 

assessed by evaluating eta and epsilon shrinkages. �e 95% 

confidence intervals (CIs) of the estimated parameters and 

parameter uncertainties were calculated using the Sam-

pling Importance Resampling (SIR) method [25, 26].

Population pharmacokinetics

Observed concentrations of ARS and DHA (molar units) 

were transformed into their natural logarithms and 

modelled simultaneously. Complete metabolic in  vivo 

conversion of ARS into DHA was assumed throughout 

modelling [27]. Observations falling below the LLOQ 

was included and analysed using the Laplacian esti-

mation method (i.e. previously established likelihood 

based M3-method) [29–30]. Models with one, two and 

three disposition compartments were explored and the 

best performing disposition model was carried for-

ward to evaluate different absorption models, i.e. first-

order absorption with and without lag-time, zero-order 

absorption, sequential zero- and first-order absorption 

and transit-compartment absorption. �e number of 

transit compartments was determined by stepwise addi-

tion of one to ten transit compartments to minimize the 

OFV. �e drug transfer rate between transit compart-

ments  (KTR) was described by the equation below:

where MTT is the mean transit time and n is the number 

of transit compartment.

Between subject variability (BSV) was modelled expo-

nentially as described below:

where θ i is the estimated individual parameter, θTV  is the 

estimated population parameter value, and eηi represents 

the BSV, assumed to be independent and normally dis-

tributed around zero with a variance ω2. �e unexplained 

residual variability (RUV) was estimated by separate 

additive error models for log-transformed ARS and DHA 

concentrations (i.e. equal to exponential error models on 

an arithmetic scale).

Clearance and volume of distribution of both parent and 

metabolite were scaled allometrically using body weight. 

Scaled body weight was raised to the power of 0.75 and 

1 for clearance and volume parameters, respectively, and 

centered on the median weight of the population.

Due to lack of subsequent concentration measure-

ments after first dose, malaria disease effect as a covariate 

on the absorption rate (MTT) and relative bioavailabil-

ity (F) was implemented a priori based on a previous 

analysis in a neighbouring region (�ailand–Cambodia) 

according to the equations below (i.e. Eq. 3 for MTT and 

Eq. 4 for F).

(1)KTR =
(n + 1)

MTT

(2)θ i = θTV × e
ηi

(3)θ i = θTV ×
(

1 + PARAMTT ×
(

Log(PARAi) − Log(PARAmin))
)

(4)θ i = θTV×

(

1 +

[

(

Log(PARAi) − Log(PARAmin)) × PARAmaxF
(

Log(PARAi) − Log(PARAmin)
)

+
(

PARA50F − Log(PARAmin)
)

])
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where PARA MTT is the estimated linear effect of para-

site density on MTT,  PARAmaxF is the maximum effect 

of parasite density on F,  PARA50F is the parasite den-

sity which produces 50% of the maximum covariate 

response, and PARA i is the individual parasite density. 

All other potentially influential covariates (i.e. age, sex, 

baseline hemoglobin, and temperature) were evaluated 

on all parameters using a stepwise forward inclusion 

(p < 0.05) and backward deletion (p < 0.01) covariate mod-

elling approach. Individual pharmacokinetic parameter 

estimates from the final pharmacokinetic model were 

imputed as posterior Bayes estimates into the pharma-

cokinetic-pharmacodynamic model.

Population pharmacodynamics

Total circulating parasite biomass was calculated by mul-

tiplying parasite counts by the individual patient’s esti-

mated blood volume, computed using Nadler’s formula 

which takes into account gender, body weight and height 

[31]. Total parasite densities were transformed into their 

natural logarithms and modelled initially using a simpli-

fied one-compartment parasite model [32]. Data below 

the LLOQ (less than 12 parasites per µl) were modelled 

with the M3-method [28, 30]. Parasites were assumed 

to have a tenfold multiplication per asexual cycle of 48 h 

[33]. Drug effects were evaluated using a direct response 

model (i.e. basic Emax model and sigmoidal Emax model) 

and an indirect response model (i.e. delayed effect model/

hysteresis). Individually predicted plasma concentrations 

of DHA were used to evaluate the drug-dependent killing 

of parasites (KILL), leading to an approximate log-linear 

reduction in parasite numbers with time (Eq. 5).

where Emax is the maximum parasite killing effect, Ce 

is the DHA drug concentration in the effect compart-

ment and  EC50 is the concentration which produces 50% 

of maximum killing effect. A mixture model to identify 

artemisinin resistant and artemisinin sensitive parasite 

infections was implemented on Emax, and the probabil-

ity of having an artemisinin resistant infection (MIXi = 2) 

was estimated on a logit-transformed domain (Eq. 6).

(5)KILL =
Emax × Ce

EC50 + Ce

(6)log it[P(MIXi = 2)] = ln

(

θPMIX2resistant

1 − θPMIX2resistant

)

where θPMIX2resistant
 is the population probability of 

belonging to mixture 2 (artemisinin resistant infection). 

Individual Emax-values associated with an artemisinin 

sensitive infection (higher parasite killing effect) and 

artemisinin resistant infection were parameterized as 

below to improve stability, and to constrain all individual 

 EmaxSi values to be greater than the typical population 

Emax value associated with a resistant infection [34].

where θTVR, and θTVS are the estimated typical param-

eter values for resistant infections and sensitive infec-

tions, respectively, with their variance (η). A frequentist 

prior functionality [35] was implemented a priori to sup-

port the estimation of  EC50 and Emax in patients with 

artemisinin sensitive infections. �e  EC50 and Emax 

estimates from the artemisinin sensitive subgroup in a 

previous analysis of patients from �ailand and Cam-

bodia  (EC50: 34.9 nM [31.7% RSE] and Emax: 0.273 h−1 

[6.25% RSE]) were used for this purpose. �is was based 

on the assumption that the drug sensitivity in the non-

resistant population is likely to be similar in the greater 

Mekong sub region.

Evaluation of the resistance nomogram

A simple diagnostic method to detect resistant malaria 

infections was recently developed, based on data from 

�ailand and Cambodia [36]. �is new diagnostic 

method demonstrated to be a promising alternative to 

the current practice of day-3 positivity test as a proxy of 

having a drug resistant malaria infection [36]. �e devel-

oped nomogram used baseline parasite counts to select 

the time point post-treatment to assess the parasite 

count. �ese post-treatment parasite counts in relation 

to baseline parasite density were used to identify patients 

with resistant infections.

�e nomogram was applied in this current dataset to 

act as external validation of the proposed method. �e 

individual parasite ratio (Ratioi) of baseline parasite 

count and that at the chosen assessment time point j (i.e. 

24, 48 or 72  h post-treatment) was calculated as below 

(Eq. 9)

(7)EmaxSi = θTVR + (θTVS − θTVR) × e
ηS

(8)EmaxRi = θTVR × e
ηR

(9)

Ratioi,j(24,48,72) = Log(PARA)i,0 − Log(PARA)i,j(24,48,72)
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�e nomogram-suggested “cut-off” value for chosen 

time points (i.e. 1.46 for day 1 [baseline parasite den-

sity  109–1010.5], 2.93 for day 2 [baseline parasite density 

 1010.5–1012] and 4.34 for day-3 assessment [> 1012]) was 

applied on the Ratioi. If the Ratioi value was below the 

“cut-off” value, the patient was classified to have an arte-

misinin resistant infection as below.

Whenever the parasite density value at the proposed 

assessment day was below LLOQ, the patient was directly 

classified as having an artemisinin sensitive infection and 

the ratio calculation was not performed. �is classifica-

tion was compared to patient’s mixture assignment from 

the model probability estimates, which was regarded as 

the “truth”. A sensitivity analysis was performed on this 

comparison and the performance of the nomogram was 

evaluated.

(10)

Classification =

{

Resistant,
(

if Ratioi < “cut-off ”
)

Sensitive,
(

if Ratioi > “cut-off ”
)

Results
A total of 53 patients were recruited to the study and 1 

patient was excluded from the study for not meeting the 

inclusion/exclusion criteria. Two patients were excluded 

from the pharmacokinetic analysis since they were miss-

ing important covariates as well as pharmacokinetic and 

pharmacodynamic data. Baseline characteristics for the 

studied population are presented in the Table 1.

Population pharmacokinetics

�e population pharmacokinetic properties of ARS and 

DHA were best described using a single disposition com-

partment model for each of the drug molecules (Fig. 1). 

�e absorption was described by a transit compartment 

(n = 3) model, which was superior to other absorption 

models. Allometric scaling of all disposition param-

eters, centered by the median weight of 50 kg improved 

the model fit. Malaria disease was implemented a priori 

as a time-varying covariate on MTT and F, generating a 

decreased MTT and increased F with increasing parasite 

counts. No other covariates had a significant impact on 

the pharmacokinetic parameters in the final model. BSV 

was maintained in all parameters and the eta shrink-

ages computed in the final pharmacokinetic model 

were moderate to low  (CLARS = 36.6%,  VARS = 14.8%, 

 CLDHA = 38.6%,  VDHA = 32.4%, MTT = 7.01% and 

F = 20.2%) while epsilon shrinkages were low (14.1% for 

ARS and 10.0% for DHA). Simulation-based diagnostics 

(i.e. VPC) showed satisfactory predictive performance 

of the final pharmacokinetic model describing ARS 

and DHA (Fig.  2). Final population pharmacokinetic 

Table 1 Baseline study demographics

Characteristics Median (interquartile range)

Weight (kg) 50.0 (46.0–53.5)

Age (years) 25.5 (21.5–39.5)

Oral temperature at enrollment (°C) 38.4 (37.6–39.1)

Haemoglobin (g/dl) 12.4 (10.6–13.7)

Baseline parasite density (parasite/μl) 29,900 (15,200–129,000)

Fever clearance time (day) 3 (2–4)

Fig. 1 Schematic representation of the final population pharmacokinetic-pharmacodynamic model for parent compound (artesunate; ARS) and 

its active metabolite (dihydroartemisinin; DHA) in patients with uncomplicated P. falciparum malaria. Ce, predicted DHA concentration in the effect 

compartment; CL, elimination clearance;  EC50, the DHA concentration which produces 50% of maximum parasite killing effect; Emax, maximum 

parasite killing effect;  ke0, effect compartment rate constant governing the delayed drug effect;  KGROWTH, parasite multiplication rate, fixed to tenfold 

multiplication per 48-h cycle;  KTR, first order transit absorption rate constant; V, apparent volume of distribution
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parameter estimates for ARS and DHA are presented in 

Table 2.

Population pharmacodynamics

�e final pharmacokinetic-pharmacodynamic model 

is illustrated in Fig. 1. A delayed effect model showed a 

significantly better model fit compared to a direct effect 

model, and resulted in a half-life of the effect delay of 

5.64  h. A mixture model implementation on Emax (to 

distinguish the parasite clearance between resistant and 

sensitive parasites), resulted in a better model fit com-

pared to when implementing the mixture on  EC50, with 

no additional benefit on having a mixture on both param-

eters. Sensitive infections were characterized by an Emax 

(See figure on previous page.)

Fig. 2 Visual predictive check of final population pharmacokinetic model of artesunate (a) and dihydroartemisinin (b), and population 

pharmacodynamic model (c) in patients with uncomplicated P. falciparum malaria. The open circles are observed data points, the solid red line 

represents the 50th percentile of observed data; dashed red lines represent the 5th and 95th percentiles (pharmacokinetic model) and the 10th 

and 90th percentiles (pharmacodynamic model) of observed data; shaded areas are the model predicted 95% confidence intervals of the simulated 

percentiles; vertical grey lines represent the lower limit of quantification (LLOQ) for artesunate (3.12 nM), dihydroartemisinin (7.02 nM) and parasite 

density  (107.73). The lower panels show the fraction of observed data below the LLOQ (open circles) overlaid with the 95% prediction interval of the 

fraction of simulated data below the LLOQ (shaded area)

Table 2 Parameter estimates of the �nal pharmacokinetic-pharmacodynamic model

Coe�cient of variation (%CV) of between subject variability (BSV) was calculated as 100 × (variance-1)1/2. Relative standard errors (% RSE) were calculated as 

100 × (standard deviation/mean). The 95% con�dence intervals (95% CI) of parameter estimates were obtained with the Sampling Importance Resampling (SIR) 

approach

ARS artesunate, BASEPARA  baseline parasitaemia, CL clearance, DHA dihydroartemisinin, F bioavailability, KGROWTH parasite multiplication per 48 h parasite cycle, MTT 

mean transit time, PARA MTT estimated linear e�ect of parasite density on MTT, PARAmaxF maximum e�ect of parasite density on F, PARA50F parasite density which 

produces 50% of the maximum covariate response, PMIX, resistant probability of having an artemisinin-resistant infection, V volume of distribution, EC50 the DHA 

concentration which produces 50% of maximum parasite killing e�ect, EmaxR maximum parasite killing e�ect of a resistant parasite population, EmaxS maximum 

parasite killing e�ect of a sensitive parasite population, ke0 e�ect compartment rate constant governing the delayed drug e�ect, RUV unexplained residual variability

a Estimation of these parameters were obtained by applying a frequentist prior approach using a previously published PK/PD model developed on data from 

Thailand and Cambodia (37)

b BSV (%CV) of  EmaxS was calculated based on simulations (10,000 patients) with an estimated variance of 0.430 and the applied transformation presented in Eq. 7

Parameter Estimates (% RSE) 95% CI %CV BSV (% RSE) 95% CI

Pharmacokinetics

 Artesunate

  F (%) 100 fix – 31.2 (29.4) 19.3–50.8

  MTT (h) 1.34 (18.8) 1.04–1.96 85.3 (24.9) 65.7–133.0

  CLARS/F (l/h) 1750 (8.55) 1570–2090 26.8 (44.3) 11.9–39.1

  VARS/F (l) 1300 (12.6) 1110–1660 74.7 (27.3) 57.8–129

  RUV (%) 73.2 (3.95) 69.3–78.7 – –

 Dihydroartemisinin

  CLDHA/F (l/h) 76.7 (6.99) 69.9–87.8 21.3 (30.3) 13.3–88.1

  VDHA/F (l) 102.0 (8.95) 89.5–119.0 31.6 (40.5) 21.3–131.0

  RUV (%) 58.5 (3.34) 56.6–63.4 – –

 Covariate effects

  aPARA MTT (Log10 parasitaemia) 0.115 (8.88) 0.121–0.156 – –

  aPARAmaxF 1.51 (11.9) 1.35–2.02 – –

  aPARA50F (Log10 parasitaemia) 8.32 (3.58) 8.19–9.21 – –

 Pharmacodynamics

  KGROWTH (48 h−1) 10 fix –

  BASEPARA   (Log10) 11.0 (0.704) 10.8–11.1 4.4 (19.6) 3.13–5.78

  ke0  (h−1) 0.123 (33.1) 0.0584–0.188 –

  aEC50 (nM) 30.4 (34.2) 13.5–46.1 –

  aEmaxS  (h−1) 0.268 (5.89) 0.242–0.295 b49.0 (22.4) 34.3–70.1

  EmaxR  (h−1) 0.155 (6.08) 0.142–0.172 12.2 (45.5) 6.54–35.8

  PMIX, resistant (%) 56.1 (20.9) 39.1–73.8 –

  RUV (%) 33.3 (5.91) 30.5–37.1 –



Page 8 of 10Lohy Das et al. Malar J  (2018) 17:126 

estimate of 0.268 h−1 (5.89% RSE) compared to 0.155 h−1 

(6.08% RSE) for the resistant infections, with an esti-

mated 56.1% of patients having a resistant infection.  EC50 

was estimated to 8.64  ng/ml (30.4  nM) but with a rela-

tively high uncertainty (34.2% RSE). �ere were no sig-

nificant covariates in the final pharmacodynamic model. 

�e eta shrinkage was 35.0, 18.0 and 27.0% for Emax 

(sensitive), baseline and Emax (resistant) parameters, 

respectively, while epsilon shrinkage was 6%. �e final 

pharmacokinetic-pharmacodynamic model parameters 

and VPCs are presented in Table 2 and Fig. 2.

Resistance nomogram

Data from the current analysis were used as external vali-

dation for a recently developed nomogram from a study 

in �ailand and Cambodia [4, 36]. Applying the baseline-

adapted nomogram to identify patients with resistant 

parasite infections, resulted in 90.1% overall sensitivity 

and 92.1% overall accuracy compared to 55.1 and 75.2%, 

respectively, using the traditional day-3 positivity test. 

Complete performance of the baseline-adapted nomo-

gram in comparison to the currently used day-3 positivity 

test is presented in Table 3.

Discussion
�e spread of artemisinin resistance is threatening 

the effectiveness of artemisinin-based combination 

therapies, and it is crucial to monitor the spread and 

development of artemisinin resistance in Southeast Asia 

and elsewhere.

�e final population pharmacokinetic model of ARS-

DHA was similar to that recently developed on data 

from a study conducted in �ailand and Cambodia 

[36]. �e absorption of ARS was described using a tran-

sit compartment absorption model followed by a single 

distribution compartment for both ARS and DHA. �e 

estimated population pharmacokinetic parameters were 

in good agreement with that estimated in previous stud-

ies, except for  VARS, which was somewhat larger in this 

study [27, 37, 38]. Data presented here cannot elucidate 

the reason for potential systematic differences but it is 

well known that ARS is unstable and can rapidly undergo 

ex vivo conversion to DHA if not collected optimally [16, 

39]. �us, potential differences might be due to slightly 

different collection procedures in different studies. It was 

not surprising that body weight had a significant impact 

on pharmacokinetic parameters, considering that most 

physiological parameters scale by body weight. In addi-

tion, the malaria disease effect on absorption parameters 

(MTT and F) described in the previous study from �ai-

land and Cambodia [36] was implemented a priori. �e 

current study featured plasma concentration data from 

the first administered dose only and the effect of declin-

ing parasite densities (i.e. malaria disease effect) on phar-

macokinetic parameters could not have been modeled 

beyond the first dose. Inclusion of this effect based on 

prior information was incorporated to prevent bias in the 

drug potency estimate  (EC50) since the pharmacokinetic 

model would have otherwise predicted higher plasma 

concentrations beyond the first dose.

�e pharmacokinetic-pharmacodynamic model devel-

oped here described the observed parasite data well. 

A delayed effect model was superior to a direct effect 

model, and resulted in a half-life of the effect delay 

of almost 6  h, which is somewhat shorter to the 10  h 

described previously in Cambodia and �ailand [36]. 

�e estimated delayed effect might reflect a delayed 

removal of injured and/or dead parasites, which contrib-

utes to an apparent sustained killing of parasites beyond 

the dosing interval. A frequentist prior based on the 

�ailand–Cambodia study was included to support the 

estimation of  EC50 and the artemisinin sensitive Emax 

value. Prior information was deliberately not applied for 

other model parameters such as the artemisinin resistant 

Emax value since resistance could differ both between 

regions and over time [40]. However, the results indi-

cated rather similar estimates of resistant infections in 

Myanmar (performed in year 2011; Emax = 0.155, RSE 

6.08%) and �ailand–Cambodia (performed in year 2007; 

Emax = 0.187, RSE 4.88%). �is is in line with a recent 

molecular genotyping study that demonstrated that the 

Table 3 Predictive performance of  the  baseline-adapted 

nomogram and the day-3 positivity test

Statistics metric Baseline‑adapted 
nomogram

Day‑3 positivity test

Negative results (N) The nomogram predicts 
the individual parasite 
density ratio (Ratioi) to be 
above the “Cut-off”

Non-resistant if 
observed parasitae-
mia is below LLOQ 
at day 3

Positive results (P) The nomogram predicts 
the individual parasite 
density ratio (Ratioi) to be 
below the “Cut-off”

Resistant if observed 
parasitaemia is 
above LLOQ at 
day 3

True positive (TP) The approach predicts correctly the patient to 
have a resistant infection

True negative (TN) The approach predicts correctly the patient to 
have a sensitive infection

Sensitivity TP

TP+FN
Probability of pre-

dicting correctly 
patients with 
resistant infections

90% 55%

Specificity TN

TP+FP
Probability of pre-

dicting correctly 
patients with 
sensitive infections

95% 95%

Accuracy 
TP+TN

TP+TN+FP+FN

Proportion of all cor-
rect predictions

93% 75%
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artemisinin resistant genotype appears to have spread 

mostly throughout the region from 2008 to recent years 

(2014–2015), rather than developed regionally [11].

A total of 56% of patients recruited in this study was 

estimated to have artemisinin resistant infections, demon-

strating a high prevalence of artemisinin resistance in the 

region. However, the original parasite clearance analysis 

of these data reported that 19 out of 52 (36.5%) patients 

in this study had microscopy detectable parasite densities 

on day 3 (i.e. day-3 positivity test), which is substantially 

lower than the model-based analyses (5). �is is in line 

with findings from a previous study in �ailand–Cam-

bodia that also suggested that the day-3 positivity test 

underestimates the number of artemisinin resistant infec-

tions compared to a model-based analysis. A likely expla-

nation could be the inability of the day-3 positivity test to 

take into account the impact of baseline parasite biomass.

�e baseline-adapted nomogram was developed based 

on the relationship that the baseline parasite density 

is directly proportional to the parasite clearance time, 

assuming similar drug dependent elimination of parasites 

[36]. �e presented nomogram was suggested to perform 

better than the commonly used day-3 positivity test, and 

to have high sensitivity in identifying patients with arte-

misinin resistant infections [36]. External validation of 

the nomogram using the data collected in this study in 

Myanmar showed an overall performance of 90% sensi-

tivity and accuracy, exceeding the expectations of 80% 

sensitivity and accuracy presented previously [36]. �is 

can be attributed primarily to few patients with low base-

line parasite densities (i.e. below  1010.5 parasites were the 

nomogram is known to be less accurate). �e reference 

test of day-3 positivity demonstrated similar inadequate 

sensitivity (55%) and overall accuracy (75%) as previously 

concluded. �e developed baseline-adapted nomogram 

offered a high overall accuracy, but primarily a better 

sensitivity to identify artemisinin resistant malaria infec-

tions compared to the traditional day-3 analysis. It also 

provides a simplified and field-adapted identification of 

resistant infections by using only one parasite measure-

ment post-dosing. However, the use of the nomogram 

requires further validation in different epidemiological 

settings, in adults and children with different levels of 

immunity as well as different kelch 13 mutations.

�e high prevalence of artemisinin resistance found in 

this study supports the concern that artemisinin resist-

ance is spreading in the Greater Mekong sub-region. 

A widespread resistance to artemisinins could poten-

tially reverse the positive trend of recent years of declin-

ing morbidity and mortality from malaria [1]. �erefore, 

it is imperative that containment efforts are scaled-up 

throughout Myanmar to stop the artemisinin resistance 

from spreading. In areas where artemisinin resistance is 

already prevalent, appropriate actions needs to be taken to 

mitigate the effects, especially the impact on selection for 

partner drug resistance. Prolonged artemisinin treatment 

from 3 to 5 days or administration of triple artemisinin-

based combinations has been proposed as potential inter-

ventions to reduce the pressure on the partner drug and 

thus combat artemisinin resistance [41, 42].

Conclusion
�e pharmacokinetic-pharmacodynamic model devel-

oped here was able to describe the concentration-effect 

relationship of ARS and DHA in southern Myanmar. �e 

model was able to confirm a high level of artemisinin 

resistance in this region. Urgent containment efforts and 

clinical and parasitological monitoring should remain a 

high priority [43]. In addition, the predictive value of a 

simple baseline-adapted nomogram for identification of 

artemisinin-resistant infections was evaluated and out-

performed the traditionally used day-3 positivity test and 

supports its implementation in clinical use.
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