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ABSTRACT

The current review addresses the following 3 frequently

encountered challenges in the design and analysis of popu-

lation pharmacokinetic studies in pediatrics: (1) body size

adjustments during the development of pharmacostatistical

models, (2) design and validation of limited sampling strat-

egies, and (3) the integration of historical priors in data

analysis and trial simulation. Size adjustments with empiric

approaches based on body weight or body surface area

have frequently proven as a pragmatic tool to overcome

large size differences in a pediatric study population.

Allometric size adjustments, however, provide a more

mechanistic, physiologically based approach that, if used a

priori, allows delineation of the effect of size from that of

other covariates that show a high degree of collinearity.

The frequent lack of dense data sets in pediatric clinical

pharmacology because of ethical and logistic constraints

in study design can be overcome with the application of

D-optimality-based limited sampling schemes in combina-

tion with Bayesian and nonlinear mixed-effects modeling

approaches. Empirically based dose selection and clinical

trial designs for pediatric clinical pharmacology studies

can be improved by applying clinical trial simulation

techniques, especially if they integrate adult and pediatric

in vitro and/or in vivo data as historic priors. Although

integration of these concepts and techniques in population

pharmacokinetic analyses is not only limited to pediatric

research, their application allows researchers to overcome

some major hurdles frequently encountered in pharma-

cokinetic studies in pediatrics and, thus, provides the basis

for additional clinical pharmacology research in this

previously insufficiently studied fraction of the general

population.

KEYWORDS: population pharmacokinetics, pediatrics,

bodysize, sparse sampling, clinical trial simulation

INTRODUCTION

One of the major areas of the application of population

pharmacokinetic (POPPK) approaches is the analysis of

drug concentration measurements in pediatric populations.

The first POPPK analyses in pediatric patients were per-

formed not long after introduction of the nonlinear mixed-

effects modeling methodology to clinical pharmacology.1-3

The subsequent widespread application of this modeling

technique in pediatric pharmacokinetic (PK) studies can

particularly be ascribed to its ability to analyze studies with

sparse and unbalanced PK data collection, which are

frequent features in pediatrics because of ethical, as well as

logistic constraints in the conduct of these studies. An

extensive use of this approach has additionally been spurred

by the recent regulatory incentives for the conduct of pedi-

atric PK studies during clinical drug development.4 Pedia-

tric POPPK studies are now explicitly recommended in the

draft guidance documents on pediatric PK studies by the

US Food and Drug Administration.5

There are numerous challenges in the design, conduct, and

analysis of POPPK studies in pediatric populations that are

distinctively different from the problems encountered in

similar studies for adult populations. This article will focus

on the following 3 issues that the authors think are of par-

ticular importance: (1) body-size adjustments during the

development of pharmacostatistical models in pediatrics,

(2) design and validation of limited sampling strategies in

pediatric PK studies, and (3) the integration of historical

priors (adult and pediatric data) into pediatric POPPK and

clinical trial simulation (CTS) models.

SIZEADJUSTMENTS IN POPPK STUDIES

Populations in pediatric PK studies frequently cover a

much wider relative range in body size than comparable

studies in adults. It is not unusual, for example, that the
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body weight (BW) of the smallest-sized individual is

<10% of the BW of the largest-sized individual in the

study.6,7 Because PK parameters like clearance and volume

are usually functions of body size, the effect of body size

overlays and may potentially even mask the effects of

other covariates, which are usually phenotypic, genotypic,

or demographic patient characteristics that are tested for

their value in predicting PK parameters. To identify covari-

ates other than body size, it is, thus, highly desirable to

standardize or adjust these parameters to an appropriate

body size measure. This is crucial in screening potential

covariate effects at the beginning of a covariate model de-

velopment exercise via a visual or mathematical data anal-

ysis of structural-based, model-derived PK parameters.8,9

Another, even more potentially important reason for size

correction being a necessity in POPPK analyses of pedia-

tric data is the frequently observed collinearity between

covariates. Collinearity refers to a situation where, within a

set of covariates, some of the covariates are highly corre-

lated with others, that is, some of the covariates are nearly

totally predicted by the others. In this situation, it becomes

extremely difficult to estimate the contribution of indi-

vidual covariates on a PK parameter, because no reliable

estimates for individual regression coefficients can be

determined. In pediatric PK data sets, size parameters, like

BW, height, and body surface area (BSA), are frequently

highly correlated with other development- or maturation-

related parameters, for example, renal function or age in

newborns and infants. An example for the collinearity of

these parameters in a pediatric study population is shown

in Figure 1. Collinearity among covariates in pediatric PK

data sets is usually more pronounced the wider the size

range included in the study.

The implications of collinearity in covariates on the

model-building process in nonlinear mixed-effect model-

ing have been explored by Bonate.10 He concludes that

models that include covariates showing a high degree of

correlation (r > 0.5) when included in the model at the

same time may indicate that one or both are not relevant to

the structural model even when, in fact, they are. Thus, col-

linearity is a potential source for errors in identifying cova-

riates that are predictor variables for PK parameters.

Allometric Versus Empirical Body Size Adjustments

The methodology used to adjust PK parameters for body

size in POPPK analyses can mainly be differentiated into

allometric versus empirical approaches. The latter ones

have traditionally focused on BW and BSA but could also

include other size descriptors, such as ideal BW, lean body
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Figure 1. Example for collinearity in a pediatric covariate data set (n 5 40; age range 12 days to 2 years). Creatinine clearance

(CreaCL) was estimated based on serum creatinine, height, and age according to Schwartz et al.88
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mass, fat-free mass, body cell mass, or liver weight.11-13 In

the following sections we will only focus on BW and BSA.

Allometric Size Adjustments

Allometry is a methodology used to relate morphology and

body function to the size of an organism. Allometric scaling

of PK has found wide application in drug development,

especially to predict PK parameters in humans based on data

from several animal species during the transition from pre-

clinical to clinical drug development.14-16 The science of

allometry is well established17-19 and has been repeatedly

suggested for size standardization in PK.20-22 In the allomet-

ric size adjustment approach, PK parameters are related to

the BW of an individual subject via a power model:

Pi ¼ Ps � BW
b ð1Þ

where BW is the BW of the individual in kg, Pi is the PK

parameter of the individual subject, and Ps is the intercept

on a log-log scale. The standard parameter Ps represents

Pi for an individual with the (theoretical) weight of 1 kg.

The allometric coefficient b tends to have a value of

0.75 for clearance terms, 1 for volumes terms, and 0.25 for

half-lives.22-24

Although allometric relationships were initially derived

based on empirical observations,25 physiologists have pro-

vided mechanistic frameworks supporting the quarter-

power allometric scaling laws, including the relationship

between whole-organism metabolic rate and BW26 and,

more recently, a general model of transport of essential

materials through space filling fractal networks of branch-

ing tubes as encountered in the vascular system of mamma-

lian species.17,18

To obtain a more meaningful, readily interpretable stand-

ard parameter Ps, as well as to increase numerical stability

during the optimization procedure with a population analy-

sis software package, it has been suggested to express BW

relative to a standard weight BWs. In this case, Ps may be

used as the standard parameter for a 70-kg reference indi-

vidual (if BWs is 70 kg), a typical or representative individ-

ual in the studied population (if BWs is the BW of the typi-

cal or representative individual), or the mean or median

weight of the population (if BWs is the mean or median

BW).27 Hence, equation 1 can be rewritten as

Pi ¼ Ps �
BW

BWs

� �b

ð2Þ

although it should be noted that Ps in equation 1 is not the

same as in equation 2.

Allometric size adjustments using fixed allometric coeffi-

cients of 0.75 for clearance terms and 1 for volume terms

have repeatedly been used in pediatric PK analyses and

have especially been reported in more recent publications.

Rajagopalan and Gastonguay,6 for example, applied allo-

metric size adjustment to characterize the POPPK of cipro-

floxacin in a pediatric population with a wide age range of

0.27 to 16.9 years. Similarly, Anderson et al21 used this

approach to investigate the effect of age on the PK of acet-

aminophen (paracetamol) in pediatric patients ranging

from 1 day to 15 years after allometric adjustment of size

differences.

A major advantage of the allometric size adjustment is

that it is a mechanistic approach that is based on a well-

described scientific framework that can be related to basic

physiologic functions.17,18 As such, allometric size adjust-

ments are often not used as variables to be estimated

during the data modeling process but are fixed as an under-

lying theoretical basis, thereby allowing researchers to

delineate secondary covariate effects from the effect of

size. Using this approach, however, careful consideration

has to be given to the fact that the strong assumptions asso-

ciated with allometric size adjustments may not hold for all

of the studied populations,20 and concerns have been raised

recently about the validity and limitations of the underly-

ing scientific basis, especially the values used for allomet-

ric coefficients.28 Hu and Hayton,22 for example, suggested

the use of an allometric exponent of 0.75 for the clearance

of drugs that are eliminated mainly by metabolism or by

metabolism and excretion combined, whereas an exponent

of 0.67 might be more appropriate for drugs that are elimi-

nated mainly by renal excretion. Other researchers19,29

suggested that the 0.75 power law is only applicable for the

relationship between weight and basal metabolic rate but

not maximum metabolic rate, which requires an allometric

exponent of 0.86. The implications for this observation on

allometric size adjustments in PK are, so far, unclear.

In addition, the clearance of subjects with unusual body

composition by obesity or pathophysiological conditions,

for example, may not fit an allometric model using total

BW with an exponent of 0.75 derived from ��healthy�� indi-

viduals. Ideal or lean BW and/or a different allometric

coefficient may in this case be more appropriate to

describe the relationship between size and clearance.

Nevertheless, the allometric approach may offer in this

case the opportunity to quantify the effect of ��obesity�� as

an additional categorical or continuous covariate (eg, via

body mass index), thereby allowing to better characterize

the PK of a drug in this special population compared with

the healthy population and to derive adequate dosing

adjustments compared with standard dosing.

Empiric Size Adjustments

BW and BSA are most frequently used for empirical size

adjustments in pediatric POPPK analyses, generally using
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linear relationships. The decision to use one or the other,

however, seems to be arbitrary.30

Bailey et al,31 for example, used BW-adjusted clearance

expressed as milliliters per hour per kilogram to describe

the effect of age on this parameter for milrinone in the

treatment of low cardiac output syndrome in pediatric

patients after cardiac surgery. The same approach was also

used in the characterization of the POPPK of digoxin in

pediatric patients.32 For the PK of ciprofloxacin in cystic

fibrosis patients, Schaefer et al33 did not follow this direct

proportionality approach but, rather, modeled a linear rela-

tionship between clearance and weight by using a slope

and intercept. Although less frequently used, more com-

plex relationships, such as a second-order polynominal

function to describe the apparent clearance of sumatriptan

in children as a function of BW, have been applied.34

BSA, especially in oncology, but also pediatrics, has been

used for size-based dosage adjustments to account for the

fact that many physiologic processes are slower in larger

individuals or animals than in smaller ones and that smaller

species are generally more tolerant of drug treatment than

larger species when doses are calculated on a unit BW

basis. BSA is generally predicted based on BW and height

via the classic Dubois equation35 or the methods by Gehan

and George36 or Mosteller.37

Shi et al,38 for example, related oral clearance and volume

of distribution of sotalol in pediatric patients with tachyar-

rhythmias to BSA via a linear relationship. Sallas et al39

used BSA as a predictor for oral clearance of the anticon-

vulsant oxcarbazepine in children using a power model

with an exponent of 0.9. The rationale for using BSA rather

than BW for size adjustments was, in both cases, a better

model fit during the covariate building step of the POPPK

analysis. Although this may be inherently related to the

fact that BSA is a better size measure than BW to predict

PK parameters for these drugs, it may also be caused by

BSA being more highly correlated with pediatric matura-

tion-related developmental changes in the PK of these

compounds not solely produced by size changes.

An advantage of empirical size adjustments for PK

parameters using BW, especially if they have a simple

structure, is their easy translation into BW-based dosage

recommendations familiar to clinicians, such as milligrams

per kilogram of BW. Volume terms may be adequately

represented by a linear relationship to BW, which is identi-

cal to the allometric approach for BW (b 5 1). However, it

is well known that the clearance of drug-eliminating organs

is usually not linearly related to BW.30,40 BSA may gener-

ally be a better predictor for clearance values than BW,

because a linear BSA adjustment is approximately equiva-

lent to an allometric size-adjustment approach using BW

with a coefficient of b 5 0.67, which is relatively close to

the coefficient of b 5 0.75 used with the allometric ap-

proach. BSA, however, is not directly measured, but is a

secondary covariate estimated from BW and height via

empirical relationships,35-37 thereby introducing additional

error into size-based predictions of PK parameters.

It has been shown previously that for clearance terms, the

difference between allometric size adjustments and empiric

size adjustments based on linear relationships to BW or

BSA is only minor at higher weights in the adult range

around 70 kg but shows progressively increasing devia-

tions at lower BWs typical for pediatric subjects, especially

those in the first years of life.20,30 Thus, the methodology

of size adjustments becomes particularly relevant for PK

data analysis in pediatric populations.

Size Adjustments A Priori Versus as Part

of Covariate Modeling

Independent of the approach used, allometric or empirical,

body size adjustments in POPPK analysis can be performed

either a priori within the development of the structural base

model before other covariates are evaluated or can be per-

formed as part of the covariate model-building procedure.

The latter approach has been used more frequently for

empirical size adjustments but can also be applied to the

allometric approach.

Incorporating the allometric size adjustments in the model-

building procedure can be accomplished in 2 different

ways, either by fixing the allometric exponent thereby cre-

ating a nonnested model or by estimating it as parameter of

a nested model during the covariate model building.

Yukawa et al,41 for example, used the latter approach to

investigate the effect of concomitant administration of car-

bamazepine and valproic acid on the oral clearance of clo-

nazepam in a pediatric and adult population of 160 patients

with an age range of 0.3 to 28 years. In their final model,

estimates for the allometric exponent ranged between

20.181 and 20.231 for clearance expressed in the unit

milliliter per hour per kilogram dependent on the concur-

rent medication, which is equivalent to exponents of 0.769

to 0.819 for clearance expressed in the unit milliliter per

hour. The advantage of this approach is that no assump-

tions on the relationship between the size measure and the

parameters are made, and a superior description of the ana-

lyzed data is frequently achieved.

The incorporation of the size adjustment in the covariate

model building procedure, however, may have severe limi-

tations if collinearity between size measures and other

covariates is present in the data set. In this case, the effect

of size and other correlated covariates on PK parameters

may become indistinguishable from each other, and some

covariates may appear to be irrelevant for the model

although they are mechanistically relevant. In such a situa-
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tion, it appears advantageous to first perform an allometric

size adjustment of affected PK parameters a priori in the

base model using fixed allometric coefficients, thereby ex-

cluding the effect of size from the covariate model building

procedure. This modified base model can then be used to

delineate the effect of other potential covariates, for exam-

ple, using previously described covariate model building

strategies.42 This approach is, of course, a tradeoff between

the potential identifiability of secondary covariates other

than size and the strong and potentially erroneous assump-

tion of the validity of the allometric size adjustments

with fixed exponents, and the individual modeler has to

decide whether its application is justified based on a com-

prehensive review of the information that is relevant for

the data set.

Investigating the PK of zidovudine in HIV-infected infants

and children, Capparelli et al43 provided a prime example

for the application of a priori size adjustments to detect the

effect of secondary covariates. Because of the noted colli-

nearity of several potential covariates, allometric size ad-

justments with fixed coefficients of 0.75 for clearance and

1 for volume of distribution were incorporated in the base

model before other potential covariates were evaluated.

Concurrent antiretroviral medication, age, liver enzyme

measurements, and repeated versus single-dosing status

were identified as significant covariates for allometrically

scaled zidovudine oral clearance, whereas gender, total

bilirubin, and serum creatinine were without significant

effect on zidovudine PK.

LIMITED SAMPLINGMETHODS IN PEDIATRIC PK

Limited sampling studies are becoming more common

because of many factors, including the availability of

POPPK analysis software. They are attractive because of

their ability to determine important clinical PK information

accurately and without bias while providing convenient

schedules with minimal blood draws and reduced load on

clinical laboratories. This is accomplished by first deter-

mining the optimal sparse sampling times given the con-

straints of the study (eg, time of day, number of samples

that can be obtained, and convenience to the patient and

clinical laboratory) and, second, by using the most appro-

priate techniques to analyze these results. These issues

become even more important in pediatrics where, in many

cases, limited sampling PK studies are the only option.44

One example of a drug where a limited sampling model

was shown to be relevant is etoposide, used in the treat-

ment of pediatric acute lymphocytic leukemia, which has

shown a relation between the PK parameters and efficacy

and toxicity.45-49 A limited sampling model with just

2 samples (at 3 and 5.5 hours after dosing) was developed

for this drug that had very little bias (percent error <3%)

and very good accuracy (percent absolute error <8%).50

Therefore, the authors were able to study questions on effi-

cacy and toxicity of the drug while only needing 2 samples

per subject at reasonable times, which made this study

acceptable for both the patient and the clinical staff.

Development and Implementation

of Sampling Strategies

The most important aspect to consider when developing a

limited sampling strategy is the prior information available

on the drug in the specific patient population. For example,

drugs for which the PK are functions of either age and/or

BSA (eg, temazolomide51) would require either an age/

BSA-specific population or a priori knowledge of the rela-

tion between age/BSA of the 2 different populations so as

not to bias the results. A good set of prior data (informa-

tively sampled data from a statistically reasonable-sized

population of subjects) allows first developing and then

validating of the limited sampling model.

First, strategies are considered for developing limited sam-

pling models in individual PK studies. The general techni-

que is to use the prior PK data along with D-optimality

sampling methods50,52,53 to define a sequence of sampling

times that provide the most information for the PK model

parameter estimates (eg, clearance or volume of distri-

bution) by minimizing their standard error estimates. In

D-optimality, this is accomplished by minimizing with

respect to sample times the negative determinant of the

Fisher Information Matrix (of which the inverse is the

variance/covariance matrix of the parameter estimates).

Once the sampling times are determined, a Bayesian para-

meter estimation method is implemented, which uses the

prior parameter distribution as a form of constraint on the

parameters being estimated, to estimate the parameters in

the sparsely sampled data set. Bayesian methods are avail-

able in a variety of programs, including ADAPT II.54

In general, the more informative the data (either more sam-

ples or more optimally placed samples), the less of an

effect the prior distribution has on the estimation.

Hypothetical examples of several cases of informative and

noninformative data are given in Figure 2. Here it can be

observed that in the cases where the data are informative,

the model description of the data is reasonable even when

it was fit using an inappropriate set of prior data, thus indi-

cating that the prior data has little influence in these cases.

But, in the case of less-informative data, the prior data has

a strong influence on the model fit, and the importance of

using an appropriate set of priors is observed. In particular,

when the model was fit to the noninformative data using an

inappropriate set of prior data, the results were poor.

When working with a population study with only sparse

data per subject, a similar technique as described above
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can be used if a prior data set already exists. Specifically,

each individual�s PK parameters should be first estimated

using Bayesian methods, and then the population param-

eters and measures of variability (interindividual and

intraindividual variability) should be estimated via a linear

mixed-effects modeling approach. This technique is refer-

red to as the 2-stage approach.55

Although this is a good method for handling problems

where reasonable sets of prior PK parameters exists, it is

not appropriate in the more challenging case where there is

not a prior set of data in the particular patient population.

Whereas this is not as desirable a setting for limited sam-

pling modeling, there are methods to allow studies of this

type. First, assumptions on the POPPK must be made to

develop an acceptable sparse sampling scheme. For exam-

ple, the PK from a prior adult study could be used prelimi-

narily in a pediatric study. Then, once some pediatric PK

data become available, the prior distribution results can

be updated. A similar D-optimality approach to the one

described above is used to determine appropriate sampling

times, although in this case, the Fisher Information Matrix

of the population parameters is used.56 This method is

flexible, because all of the subjects do not necessarily need

to be sampled at the same times, but, rather, they can be

divided into several groups, and each group can be sampled

at a different sequence of times so that the sampling for the

full population is more complete. Once the sparse sampling

scheme is determined, the next step is to analyze the data

by nonlinear mixed-effects modeling methods available

in programs such as NONMEM (GloboMax LLC,

Hanover, MD) or S-PLUS (Insightful Corp, Seattle, WA).

These methods give both estimates of the POPPK parame-

ters and their measures of variability, along with estimates

of each subject�s parameters.

Limited Sampling Model Validation

The validation of limited sampling models is a critical

aspect to their development. One of the most straight-

forward methods of validation is through an independent

set of data with complete sampling where the limited sam-

pling scheme is a subset of the complete sampling scheme.

In this case, model parameters are first estimated using the

full set of data, and then these results are compared with

estimates determined only using the subset of samples in

the limited sampling scheme. By estimating the accuracy

(absolute percent error) and bias (percent error),57 we can

determine whether the PK parameter estimates generated

by the limited sampling model are acceptably close to

those estimated with the densely sampled data.

Another option for validation is Monte-Carlo simulations.

Here, a data set is simulated, based on the known distribu-

tion of the PK parameters, at the proposed limited sam-

pling times. The advantage of the simulated data set is that

the actual PK parameters for each individual are known a

priori. Therefore, the PK parameters estimated for the

simulated limited sampling data set can be compared with

the known parameters, and bias and accuracy can be

assessed in the same manner as described above.

A more indirect approach to describing the accuracy and

bias of a sampling scheme is through the D-optimality

methods,52,56 which generate predicted estimates of the

variability for the parameter estimates given a sampling

scheme and a prior distribution of parameters. Thus,

assuming the prior PK are reasonable representations of

the limited sampling study, this gives a measure of the

error associated with the estimated parameters.

One drawback to limited sampling studies in the past has

been the difficulty and availability of the computational

Figure 2. Hypothetical concentration versus time curves describing (A) informative data with full sampling, (B) informative

data with limited sampling, (C) noninformative data with limited sampling. In all of the cases, the simulated data are represented

by the diamonds (¤), the simulated model curve is represented by the solid line (——), the Bayesian fit curve with appropriate

priors is represented by the dashed line (- - -), and the Bayesian fit curve with inappropriate priors is represented by the dotted

line (. . .).
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methods needed. But these limitations have been overcome

with the current accessibility of powerful desktop comput-

ing and user-friendly PK software, which can perform

Bayesian parameter estimation and D-optimality. These

software programs are used by clinical pharmacists to effi-

ciently generate a patient�s individual PK parameters,

which are then used to effectively adjust the individual

patient�s dosages to target specific drug plasma levels.58-60

As more limited sampling methods become available and

larger populations are studied, this type of dose adjustment

will become more common.

INTEGRATING PRIORS INTO PEDIATRIC
POPPK ANDCTS

Clinical Translation: Adult to Pediatric Assumptions

Although the current climate for pediatric investigations is

certainly much improved amid more heightened sensitivity

to the ��therapeutic orphans�� of the past, there are still limit-

ed opportunities to assess drugs, both new chemical

entities and existing, approved medicines, in pediatric popu-

lations.61 Likewise, given the need to assess dose finding,

safety, and efficacy in the fewest drug exposures, pediatric

investigators must depend a great deal on the knowledge

obtained from the adult drug development. Pediatric rese-

arch often relies on the following assumptions derived from

the adult drug development experience: (1) the disease

etiology is similar between adults and pediatric subpopula-

tions, that is, in vivo pharmacology models still provide a

rationale for drug use in pediatric settings; (2) the exposure-

response and concentration-effect relationships established

in adults are similar to those in pediatric populations; and

(3) the safety and efficacy conferred from a recommended

adult regimen can be conferred to pediatric populations,

assuming that comparable drug exposure can be achieved.

The clinical setting for pediatric pharmacotherapy is simi-

lar to that for adult drug utilization. A key assumption in

this linkage is that drug exposure can be measured in pedi-

atrics and a scale established to match that attained in

adults. This mandates the performance of PK studies—the

measurement and tracking of relevant, active molecular

species (the parent and relevant metabolites) at the site of

action or a surrogate of the active site resulting from

administration of a drug to children. Under those situations

in which potential alterations of the activity of an agent in

children are observed, pharmacodynamic (PD) studies

must also be undertaken. PK-PD models then allow the

exploration of dose and regimen scenarios that can be used

in the ��scaling�� exercise.

Extension of PK-PD and POPPK Models for CTS

The extension of PK-PD relationships to predict clinical

trial outcomes has been advocated,62 and several examples

exist that demonstrate the ability to use prior assumptions

to define CTS scenarios ultimately used to defend study

designs. Most commonly, this work has focused on indus-

trial applications with the intention of screening drug can-

didates, defining clinical trial designs and predicting drug

performance.62-67 A key element to this process is the iden-

tification and assembly of the relevant ��prior knowledge,��

as well as the construction of intermediate relationships

and/or models that can serve as elements in the larger clini-

cal trial construct (see Figure 3). These models are, like-

wise, evolutionary in that they continue to develop as new

experimental data are generated and made available.

CTS can be used for dose selection and clinical trial design

optimization in a number of adult indications. For dose

selection, CTS has been described for pregabalin,62 darbe-

poetin a,68 and docetaxel.69 For the anticancer drug doce-

taxel, a series of CTS were initiated to test whether a

specific subset of adult patients with non-small cell lung

cancer might benefit from dose intensification. PK and PD

models for time-to-progression, death, and dropout were

developed and validated with the use of phase II data from

151 patients with non-small cell lung cancer. The simula-

tion process was evaluated by comparison of the original

phase II data with the predicted results. Simulations

were undertaken for the evaluation of whether a phase III

trial of 2 different doses of docetaxel in these patients

would result in improved survival. In the simulated phase

III trial, although median survival was slightly longer

in the 125-mg/m2 docetaxel group than in the 100-mg/m2

group, the difference was significant in only 6 of 100 trials.

Hence, given the small likelihood that a meaningful

Activity

Profile

Target

Profile

In vitro

C-E

In vivo

C-E

Animal PK

Human PK

Toxicity

Profile

Design

Factors

Dose - Exposure

PK Model

Concentration -

Effect

PK/PD Model

Clinical Trial

Outcome Model

Figure 3. Incorporation of modeling and simulation into CTS

construct.
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difference in clinical outcomes would actually exist, the

simulation was the basis for not conducting such a trial.

CTS for clinical trial designs has been described recently

for naratriptan70 and ivabradine,71 again in adults. Ivabra-

dine is a new bradycardic agent that may be of use for

stable angina pectoris. To investigate the optimal balance

among efficacy, safety, drug regimen, and number of

patients to include in a phase III study, Monte Carlo simu-

lations were performed. Chest pain was simulated using a

physiologic model in which the coronary reserve was deriv-

ed from the heart rate. Safety was defined as being heart

rate dependent. Using a PK-PD model established to pre-

dict drug effect coupled with the resampling of heart

rate profiles from a historical database, 100 clinical trials

were simulated for 5 oral doses (2.5, 5, 10, 20, and 40 mg

once daily or twice daily) of ivabradine. Only 25% of

the simulated trials showed a significant effect of ivabra-

dine with doses up to 10 mg once daily, whereas >80%

of the trials showed an effect with a 40-mg daily dose. The

number of subjects to include in a future trial to obtain a

15% decrease in chest pain under the assumption of a 68%

base risk was determined to be 239 subjects per group with

10 mg twice daily or 196 with 20 mg once daily.

The approach for CTS involves pooling all of the available

prior knowledge deemed appropriate to define drug expo-

sure-activity-outcome relationships into study designs that

have been chosen based on their ability to address the

medical needs of the given therapeutic area population

combination. Functional relationships for these sequential

relationships are connected based on defined dependencies,

and Monte Carlo simulation is used to generate replicate

outcomes for an individual study across the range of eva-

luable PK, PD, and design parameters. The process is

repeated so that the likelihood that a particular design will

yield the expected outcomes can be estimated. The princi-

pal methodology used at this stage is Monte Carlo simula-

tion, as mentioned previously.72 The foundation of the drug

exposure model is typically based on nonlinear mixed-

effect representation, either via actual modeling or from

historical parameter estimates. The analysis of replicates of

virtual trials requires the same statistical methodology and

consideration as the single occurrence of an actual trial.

An empirical determination of error rate can be made via a

likelihood ratio test (implemented in NONMEM). A vari-

ety of graphical techniques, including coplots, mean abso-

lute error percentage versus sample size plots, histograms

(ie, likelihood ratio x
2 values for showing the percentage

of trials falling within an interval), and box plots, can be

used to summarize the results of simulated trials. There is

no simple sample-size calculation for a population nonlin-

ear mixed-effects modeling analysis. Simulation studies

have shown that, in general, a sample size of approxi-

mately 100 subjects is necessary for accurate and precise

estimation of fixed-effect and random-effect parameters

where interindividual variance is moderate.73,74

Pediatric Experience and Regulatory Support

The use of CTS for the design of efficient clinical trials is

not well developed in pediatrics. Modeling techniques, for

the most part, are limited to studies that provide dose pre-

dictions based on PK data obtained previously from pedi-

atric patients. Dose prediction based on pediatric priors

necessitates repeated measures. Bayesian approaches for

dose predictions based on prior PK data obtained in pedi-

atric patients have been performed for imipramine and

desipramine,75 gentamicin,76 theophylline,77 cefuroxime,78

chloramphenicol,79 vancomycin,80 and digoxin.32 These

dose predictions, however, have not been tested in clinical

trials nor have they been used in CTS settings to evaluate

and/or optimize design elements. Another Bayesian

approach-based dose prediction model that used prior pedi-

atric and adult PK data was performed for the prediction of

amikacin concentrations. In this study, the dose predictions

were tested by comparing predicted values of plasma con-

centrations with actual concentrations of 12 patients who

were not initially involved with the development of the

model.81

Adult priors from a population PD model were also used as

the basis of initial dosing guidance in children for the low

molecular weight heparin tinzaparin.82 In this setting, a

Bayesian forecasting model was used as a guide in the dos-

ing of a prospective study of which the objectives were to

determine the once-daily dose of tinzaparin required in

children to achieve anti-Xa levels of 0.5 to 1.0 IU/mL

4 hours postdose, to determine the PK of the dose of tinza-

parin in children with thromboembolism that achieves

plasma anti-Xa concentrations similar to adults being

treated for thromboembolism, and to obtain some long-

term safety data for therapeutic doses of tinzaparin in

children with thromboembolism.83 An additional outcome

of this trial was the development of a pediatric dosing rule

that extended from neonates to adolescents. Most impor-

tant was the prospective use of modeling and simulation

for the following purposes: (1) to examine the information

content of the sampling scheme, (2) to examine the time to

dose stabilization during the ��adjustment�� phase, and (3) to

examine the sensitivity of the model to changes in both PK

properties and the variation about such properties.84

Bayesian forecasting can facilitate the evaluation of clini-

cal trial performance metrics and possibly outcomes for a

proposed model. With a real-time application of Bayesian

forecasting, it is possible to extend this type of feedback

to consider study designs that may change based on in-

process results as in the tinzaparin example. Willis et al85

recently presented the results of a Bayesian forecasting
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approach to examine the predictive capacity of POPPK

models developed from adult transplant patients receiving

tacrolimus to explain the variation in pediatric liver and

adult kidney transplant recipients. This work serves as a

good example of the potential for discrepancy between the

adult priors and the data obtained in pediatric patients.

Although there were several reasons cited for the discrep-

ancy between the observed and predicted results, the major

finding was that the extension of the adult models to pedi-

atrics was not reasonable because of the imprecision in the

adult parameter estimates (ie, drug clearance, specifically).

Hence, the evaluation of the ��priors�� against expectations

(and actual observations, in this case) in the critically ill

pediatric population is a necessary step in this process,

especially if we seek to propose that an actual clinical trial

be conducted in children. Previous clinical trials performed

in critically ill children have not fully taken into account

all of the possible estimates of drug exposure response. For

example, POPPK studies have identified covariates such as

renal failure, hepatic failure, and concomitant administra-

tion of CYP3A inhibitors as important predictors of altered

midazolam and metabolite PK in pediatric intensive care

patients,86 and yet significant unexplained variability

exists, prohibiting the management of individual patients.

The FDA provides guidance with respect to pediatric clini-

cal trials in the way of a flowchart for determining whether

such trials need to be conducted (Figure 4), and, assuming

they do, another flowchart is used to define the nature of

Pediatric Study Decision Tree 

Reasonable to assume (pediatrics vs adults)

• Similar disease progression?

• Similar response to intervention?

NO YES TO BOTH 

NO NO

Reasonable to assume similar

concentration-response (C-R) 

in pediatrics and adults? 

YES

• Conduct PK studies 

• Conduct safety/efficacy trials 

• Conduct PK studies to achieve 

levels similar to adults

• Conduct safety trials 

Is there a PD measurement

that can be used to predict 

efficacy?

YES

• Conduct PK/PD studies to get 

C-R for PD measurement

• Conduct PK studies to achieve 

target concentrations based on C-R 

• Conduct safety trials 

Figure 4. FDA-proposed decision tree for the evaluation of pediatric populations.
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the trial design(s) to fulfill regulatory requirements, as well

as the necessity of dose adjustment for pediatric subpopu-

lations (Figure 5). Although the approach may be some-

what minimalistic and does not ensure the generation of

meaningful dosing guidance, it is a means to encourage

pediatric investigation and, as such, is a step in the right

direction. With respect to the operating characteristics of

the flowchart (Figure 4), it is strongly dependent on assum-

ptions about drug action, dose-exposure relationships, and

clinical outcomes. Ironically and despite the recent efforts

of FDA in this area, the Pediatric Guidance remains in

draft form.5 In a recent communication,87 the FDA has

implored pharmaceutical sponsors to develop new tools

to ��identify successful products and eliminate impending

failures more efficiently and earlier in the development

process.�� The plea from the FDA in this area is based on a

request that sponsors identify ways to bridge between the

laboratory and the whole organism and correlate early

markers of safety and benefit with actual outcomes in

patients. A likely outcome of model-based approaches in

pediatric investigation is the compilation of information

(data, models, and experimental design constructs) that

will constitute a pediatric knowledge base. The FDA has

particularly focused on such approaches for pediatric

research citing the following:

Although the results of each individual trial have been

informative for the particular drug studied, a significant

opportunity now exists for analysis of what has been col-

lectively learned about the PK, PD, safety, and efficacy of

drugs in children. Such an analysis could begin to build a

knowledge base to better inform pediatric trials.

There is clearly a need to identify methods by which effi-

cient and informative pediatric clinical trials can be per-

formed. A requirement for such methods should be that

they yield results to improve the safety and efficacy of

pharmacotherapy. Many drug candidates lack pediatric

dosing guidelines for critically ill children, specifically.

The application of CTS techniques to this area would seem

to be timely and in the best interest of our children.

CONCLUSIONS

We reviewed in the present article 3 issues that are fre-

quently raised during the design, conduct, and analysis of

POPPK studies in pediatric populations. Size adjustments

based on allometric or empiric approaches have both been

used in POPPK analyses, but the allometric approach

seems to be more mechanistically and physiologically

based, whereas the empiric approaches are more a prag-

matic tool to overcome large size differences in a study

population without providing additional insight into other

mechanistically based covariates affecting the PK of the

studied drug.

Limited sampling designs are a frequently used feature in

POPPK analysis in pediatric populations. Sufficient meth-

odology is currently available to allow for the design of

D-optimality based sampling schemes and validation of

these schemes. Furthermore, reliable and unbiased results

can be obtained using various Bayesian and nonlinear

mixed-effects modeling approaches.

In many instances, empiricism is the basis on which the

administration of drugs to pediatric populations proceeds.

The pursuit of relationships between systemic exposure

and both response and toxicity, specifically in pediatric

populations, is, likewise, rational. Despite the empiricism

associated with many agents, including cancer chemother-

apy administration, progress has been made in the deriva-

tion of such relationships and models and has been shown

to have an impact on outcome. More studies are definitely

needed to improve pediatric pharmacotherapy. The integra-

tion of model-based techniques as a tool in these investiga-

tions would also seem to be both rational and necessary.
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