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T
he rapid global spread of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), the novel virus caus-
ing COVID-19 (refs. 1–3), has created an unprecedented 

public health emergency. In the United States, efforts to slow the 
spread of disease have included, to varying extents, social distanc-
ing, home-quarantine and treating of infected patients, mandatory 
facial covering, closure of schools and non-essential businesses, and 
test–trace–isolate measures4,5. The COVID-19 pandemic and ensu-
ing response has produced a concurrent economic crisis of a scale 
not seen for nearly a century6, exacerbating the effect of the pan-
demic on different socioeconomic groups and producing adverse 
health outcomes beyond COVID-19. As a result, there is currently 
intense pressure to safely wind down these measures. Yet, in spite of 
widespread lockdowns and social distancing throughout the United 
States, many states continue to exhibit steady increases in the num-
ber of cases (https://www.worldometers.info/coronavirus/). To 
understand where and why the disease continues to spread, there 
is a pressing need for real-time individual-level data on COVID-
19 infections and tests, as well as on the behaviour, exposure and 

demographics of individuals at the population scale with granular 
location information. These data will allow medical professionals, 
public health officials and policy makers to understand the effects 
of the pandemic on society, tailor intervention measures, efficiently 
allocate testing resources and address disparities.

One approach to collecting these types of data on a population 
scale is to use web- and mobile-phone-based surveys that enable 
large-scale collection of self-reported data. Previous studies, such 
as FluNearYou, have demonstrated the potential for using online 
surveys for disease surveillance7. Since the start of the COVID-
19 pandemic, several different applications have been launched 
throughout the world to collect COVID-19 symptoms, testing 
and contact-tracing information8. Studies in the United States and 
Canada (CovidNearYou, https://covidnearyou.org/us/en-US/; and 
ref. 9), the United Kingdom (Covid Symptom Study10,11, also in the 
United States) and Israel (PredictCorona12) have reported large 
cohorts of users drawn from the general population with a goal 
towards capturing information about COVID-19 along a variety of 
dimensions, from symptoms to behaviour, and have demonstrated 
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some ability to detect and predict the spread of disease10–12. This field 
has rapidly evolved since the beginning of the pandemic, with many 
analyses of these datasets focusing on COVID-19 diagnostics (that 
is, symptoms, test results, medical background)9, care seeking13, 
contact tracing14, patient care15, effects on healthcare workers16, 
hospital attendance13, cancer17, primary care18, clinical symptoms19 
and triage20. Here, we perform a comprehensive analysis of a source 
of COVID-19-related information spanning diagnostic and behav-
ioural factors sampled from the general population during the 
beginning of the pandemic in the United States. We investigate 
exposure, demographic and behavioural factors that affect the chain 
of transmission; understand the factors for who has been tested; and 
study the degree of presence of asymptomatic, presymptomatic and 
mildly symptomatic cases21.

To fill the gap and achieve these goals, we developed How We 
Feel (HWF; http://www.howwefeel.org) (Fig. 1a–d), a web and 
mobile-phone application for collecting de-identified self-reported 
COVID-19-related data. Rather than targeting patients with sus-
pected COVID-19 or existing study cohorts, HWF aims to collect 
data from users representing the population at large. By drawing 
from a large user base across the United States who learn about 
the study through word of mouth and government partnerships, 
these results are complementary to other studies such as the Covid 
Symptom Study and CovidNearYou that also include sizable US 
populations and are targeted towards the general public. Users are 
asked to share information on demographics (gender, age, race/
ethnicity, household structure, ZIP code), COVID-19 exposure and 
pre-existing medical conditions. They then self-report daily how 
they feel (well or not well), any symptoms they may be experiencing, 
test results, behaviour (for example, use of face coverings) and senti-
ment (for example, feeling safe to go to work) (Fig. 1c and Extended 
Data Fig. 1). To protect privacy, users are not identifiable beyond 
a randomly generated number that links repeated logins on the 
same device. A key feature of the app is the ability to rapidly release 
revised versions of the survey as the pandemic evolves. In the first 
month of operation, we released three iterations of the survey with 
increasingly expanded sets of questions (Fig. 1b).

We find symptomatic subjects, healthcare workers and essen-
tial workers are more likely to be tested. Due to asymptomatic and 
mildly symptomatic individuals and heterogeneous symptom pre-
sentation, our results show that commonly used symptoms may not 
be sufficient criteria for evaluating COVID-19 infection. Further, 
we find that exposure both outside and within the household is a 
major risk factor for users testing positive and build a predictive 
model to identify likely COVID-positive users. African-American 
users, Hispanic/Latinx users, and healthcare workers and essential 
workers are at a higher risk of infection, after accounting for the 
effects of pre-existing medical conditions. Finally, we find that even 
at the height of lockdowns throughout the United States, the major-
ity of users were leaving their homes, and a large fraction were not 
engaging in social distancing or face protection.

Results
The app was launched on 2 April 2020 in the United States. As of 
12 May 2020, the app had 502,731 users in the United States, with 
3,661,716 total responses (Fig. 1b and Supplementary Table 1). In 
total, 74% of users responded on multiple days, with an average of 
seven responses per user (Extended Data Fig. 2). Each day, ~5% of 
users who accessed the app reported feeling unwell (Fig. 1b). The 
user base was distributed across all 50 states and several US territo-
ries, with the largest numbers of users in more populous states such 
as California, Texas, Florida and New York (Fig. 1d). Connecticut 
had the largest number of users per state, as the result of a partner-
ship with the Connecticut state government (Fig. 1d). Users were 
required to be 18 years of age or older and were 42 years old on aver-
age (mean, 42.0; s.d., 16.3), including 18.4% in the bracket of 60+, 

which has experienced the highest mortality rate from COVID-19 
(Fig. 1e)22,23. Users were primarily female (82.7%) (Fig. 1f) and white 
(75.5%, excluding 20.3% with missing data) (Fig. 1g). Although the 
survey ran from April 2 until May 12, users could report test results 
from earlier than April 2.

A major ongoing problem in the United States is the overall 
lack of testing across the country24 and disparities in test accessi-
bility, infection rates and mortality rates in different regions and 
communities25. In the absence of population-scale testing, it will 
be critical during a reopening to allocate limited testing resources 
to the groups or individuals most likely to be infected to track the 
spread of disease and break the chain of infection. We therefore first 
examined who in our user base was currently receiving testing. We 
analysed 4,759 users who took the Version 3 (V3) survey and who 
were PCR tested for SARS-CoV-2 (of 272,392 total users) (Fig. 2a 
and Extended Data Fig. 3a). Of these, 8.8% were PCR positive. The 
number of tests reported by test date displays a similar trend to the 
estimated number of tests across the United States, suggesting that 
our sampling captures the increase in test availability (Fig. 2a). The 
number of PCR tests per HWF user is highly correlated with exter-
nal estimates of per-capita tests by state (Fig. 2b and Extended Data 
Fig. 3b; Pearson correlation 0.77)26.

We first examined via logistic regression which factors either 
collected in the survey or inferred from US Census data by user 
ZIP code were associated with receiving a SARS-CoV-2 PCR test, 
regardless of test result. As expected, we observed a higher frac-
tion of tested users from states with higher per-capita test numbers, 
according to the COVID Tracking Project26 (Extended Data Fig. 
3b). Healthcare workers (odds ratio (OR), 2.94; 95% confidence 
interval (95% CI), 2.75, 3.15; P < 0.001) and other essential work-
ers (OR, 1.39; 95% CI, 1.28, 1.52; P < 0.001) were more likely to 
have received a PCR test compared with users who did not report 
those professions (Fig. 2c). Users who reported experiencing fever, 
cough or loss of taste/smell (among other symptoms) had higher 
odds of being tested compared with users who never reported these 
symptoms (Fig. 2c). The majority of these symptoms are listed as 
common for COVID-19 cases by the Centers for Disease Control 
and Prevention (CDC) (Fig. 2c, starred)27. A less-common symp-
tom, reporting a tight feeling in one’s chest, was also associated with 
receiving a PCR-based test (OR, 2.27; 95% CI, 1.93, 2.66; P < 0.001). 
These results suggest that the most commonly reported symptoms 
are being used as screening criteria for determining who receives 
a test, potentially missing asymptomatic and mildly symptomatic 
individuals. This group could include those who are at high risk for 
infection but do not meet the testing eligibility criteria.

To obtain a global view of self-reported symptom patterns, we 
applied an unsupervised manifold learning algorithm to visual-
ize how symptoms were correlated across users (see Methods). As 
expected, we found that symptom presentation separated broadly 
by feeling well versus feeling unwell (Fig. 2d and Extended Data Fig. 
4). Users who felt unwell were concentrated in a single cluster indi-
cating similar overall symptom profiles, which was characterized by 
high proportions of common COVID-19 symptoms as defined by 
the CDC27 (Fig. 2e), and contained the vast majority of responses 
from users with both positive (+) and negative (−) SARS-CoV-2 
PCR tests (Fig. 2f). Thus, COVID-19 symptoms tend to overlap 
with symptoms for other diseases and do not necessarily predict 
positive test results.

This overlap suggests that commonly used symptoms may not be 
sufficient criteria for evaluating COVID-19 infection. It has previ-
ously been reported that many people infected with SARS-CoV-2 are 
asymptomatic, mildly symptomatic or in the presymptomatic phase 
of their presentation28–30 and therefore unaware that they are infected. 
In our dataset, on the day of their test, most users (73%) that tested 
PCR positive for SARS-CoV-2 reported feeling unwell with the com-
mon symptoms listed by the CDC (dry cough, shortness of breath, 
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chills/shaking, fever, muscle/joint pain, sore throat, loss of taste/
smell). However, 11.5% of positive users reported feeling unwell and 
exclusively reported symptoms not listed as common for COVID-19 
by the CDC on the day of their test, and 15.4% reported feeling no 
symptoms at all (Fig. 2g). Because of the commonly used symptom- 
and occupation-based screening criteria for receiving a PCR test and 
under-testing, this total of 36.9% probably underestimates the true 
fraction of asymptomatic, presymptomatic and mildly symptomatic 
cases, which in Wuhan, China, was estimated to be ~87% (ref. 21), 
and in the United States was estimated to be >80%. A large number 
of asymptomatic cases were also observed in serological studies31,32. 
In total, 48.9% of users testing negative for SARS-CoV-2 reported 
feeling unwell with the most common COVID-19 symptoms, com-
pared with an expected false-negative rate of 20–30% for PCR-based 
tests of symptomatic patients33, again suggesting symptom presenta-
tion overlap with other diseases (Fig. 2g).

We investigated the symptoms that were most predictive of 
COVID-19 by exploring the distribution and dynamics of symp-
toms in PCR test (+) and (−) users around the test date. PCR test 

(+) users reported a higher rate of common COVID-19 symp-
toms, including dry cough, fever, loss of appetite, and loss of taste 
and/or smell, than PCR test (−) users (Fig. 2h). Many PCR-tested 
users longitudinally reported symptoms in the app in an interval 
extending ±2 weeks from their test date (Extended Data Fig. 5). We 
used these data to examine the time course of symptoms among 
those who tested positive. In the days preceding a test, dry cough, 
muscle pain and nasal congestion were among the most commonly 
reported symptoms. Reported symptoms peaked in the week fol-
lowing a test and declined thereafter (Fig. 2i). Taking the ratio of 
the symptom rates at each point in time between PCR test (+) and 
(−) users showed that the most distinguishing feature in users who 
tested positive was loss of taste and/or smell, as has been previously 
reported11 (Fig. 2j).

We next investigated medical and demographic factors associ-
ated with testing PCR positive for acute SARS-CoV-2 infection, 
focusing on 3,829 users who took the V3 survey within ±2 weeks 
of their reported PCR test date (315 positive, 3,514 negative) (Fig. 
3a and Supplementary Tables 2–6). These users are a subset of all of 
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the users who reported taking a test in the V3 survey, as some of the 
reported test results were outside of this time window. To correct for 
selection bias of receiving a PCR test when studying the risk factors 
of a positive test result, we incorporated the probability of receiv-
ing PCR tests as inverse probability weights (IPWs) into our logis-
tic model of PCR test result status (+/−) (see Methods)34. As with 
the analysis of who received a test, the reported symptom of loss 

of taste and/or smell was most strongly associated with a positive 
test result (OR, 33.17; 95% CI, 17.3, 67.94; P < 0.001). Other symp-
toms associated with testing positive included fever (OR, 6.27; 95% 
CI, 2.82, 13.70; P < 0.001) and cough (OR, 4.45; 95% CI, 2.83, 6.99; 
P < 0.001). Women were less likely to test positive than men (OR, 
0.55; 95% CI, 0.38, 0.80; P = 0.002), and both Hispanic/Latinx users 
(OR, 2.59; 95% CI, 1.67, 3.97; P < 0.001) and African-American/
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4.13 2.56 6.67
4.59 2.26 9.35

19.23 10.70 34.54
0.39 0.15 1.03
0.42 0.23 0.76
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0.60 0.17 2.04
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0.98 0.47 2.03
1.07 0.26 4.46
1.15 0.76 1.74
1.19 0.69 2.05
1.28 0.39 4.20
1.63 0.59 4.47
6.44 2.39 17.38
0.99 0.70 1.40
2.03 1.12 3.70
1.75 0.97 3.17
1.67 1.09 2.56
1.98 1.36 2.89
0.87 0.55 1.39
0.74 0.51 1.07
0.97 0.51 1.85
1.29 0.35 4.73
0.98 0.17 5.68
0.99 0.31 3.14
2.26 1.28 3.99
2.32 1.44 3.73
0.58 0.39 0.86
1.06 0.48 2.32
0.99 0.58 1.68
1.07 0.66 1.76
1.07 0.70 1.65

OR

Four-question survey sample

(1) Are you experiencing loss of taste 
    and/or smell?

(2a) Were you exposed to someone 
    with COVID-19?

(2b) If yes, do they live with you?

(3) Does anyone in your household 
    have COVID-19 symptoms?

Major HWF survey questions
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All data (0.92)

False positive rate
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4.16 2.76 6.24
0.66 0.22 1.78
0.50 0.21 1.15
0.73 0.34 1.49
0.59 0.28 1.17
0.88 0.33 2.17
0.88 0.24 2.73
1.25 0.34 4.10
1.20 0.62 2.27
1.27 0.76 2.08
1.26 0.74 2.14
1.85 0.22 12.13
1.76 0.68 4.52
4.45 2.83 6.99
6.27 2.82 13.70

33.17 17.30 67.94
0.25 0.09 0.65
0.41 0.22 0.70
0.42 0.27 0.64
0.48 0.08 1.95
0.54 0.17 1.34
0.73 0.53 0.98
0.89 0.41 1.81
1.13 0.21 4.64
1.21 0.80 1.76
1.02 0.58 1.70
1.45 0.28 4.81
1.43 0.40 3.80
6.30 2.45 14.68
1.07 0.76 1.47
1.85 1.15 3.07
1.59 0.96 2.72
1.69 1.13 2.52
1.92 1.36 2.73
0.80 0.52 1.21
0.70 0.50 1.00
0.94 0.51 1.68
0.99 0.36 3.25
3.74 0.25 83.66
0.54 0.23 2.05
2.35 1.29 4.18
2.59 1.67 3.97
0.55 0.38 0.80
0.94 0.44 1.95
1.03 0.61 1.70
1.13 0.71 1.76
1.15 0.77 1.74

Fig. 3 | SARS-CoV-2 PCR test result associations and predictions. a, Factors associated with respondents receiving and reporting a positive test  

result, as determined through logistic regression. Left: results from unweighted model. Right: results from model incorporating selection probabilities via 

IPWs. Reference categories are indicated where relevant; when not indicated, the reference is not having that specific feature. log ORs and their  

confidence intervals are plotted, with red indicating positive association and blue indicating negative association. Darker colours indicate confidence 

intervals that do not cover 0. Population density and neighbourhood household income were approximated using county-level data. L, lower bound;  

U, upper bound of 95% CIs; n = 3,829 users (315 positive, 3,514 negative) who took the V3 survey within ±2 weeks of receiving a test. b, Prediction  

of positive test results using ±2 weeks of data from the test date, using fivefold cross-validation, shown as ROC curves. The XGBoost model was  

trained on different subsets of questions: CDC symptom questions, using just the subset of COVID-19 symptoms listed by the CDC; all survey  

questions, using the entire survey; four-question survey, using a reduced set of four questions that were found to be highly predictive. Numerical  

values are AUC; n = 3,829 users.
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Black users (OR, 2.35; 95% CI, 1.29, 4.18; P = 0.004) were more 
likely to test positive than white users, highlighting potential racial 
disparities involved with COVID-19 infection risk. The odds of 
testing positive were also higher for those in high-density neigh-
bourhoods (OR, 1.85; 95% CI, 1.15, 3.07; P = 0.014). Healthcare 
workers (OR, 1.92; 95% CI, 1.36, 2.73; P < 0.001) and other essential 
workers (OR, 1.69; 95% CI,1.13, 2.52; P = 0.01) also had higher odds 
of testing positive compared with non-essential workers. Pregnant 
women were substantially more likely to test positive (OR, 6.30; 
95% CI, 2.45, 14.68; P < 0.001). However, we note that this result 
is based on a small sample of 48 pregnant women included in this 
analysis (9 test positive, 39 test negative) and is unstable, subject to 
potentially high selection bias. Performing this analysis with and 
without correction for selection bias produced similar results (Fig. 
3a). As a further sensitivity analysis, we reran the analyses exclud-
ing users from the states of California and Connecticut, the state 
containing most users (Extended Data Fig. 7a), and correcting for 
broader demographic differences using US Census data (Extended 
Data Fig. 7b), obtaining similar results to the uncorrected model in 
both cases. Finally, we performed Firth-corrected logistic regression 
to check for bias in our testing model related to the large fraction 
of users testing negative, and obtained similar results to our uncor-
rected model (Extended Data Fig. 8).

Motivated by previous studies that reported that high cluster 
transmissions occurred in families in China, Korea and Japan35–37, 
we explored household and community exposures as risk factors 
for users testing PCR positive. The odds of testing positive were 
much higher for those who reported within-household exposure to 
someone with confirmed COVID-19 than for those who reported 
no exposure at all (see Methods) (OR, 19.10; 95% CI, 12.30, 30.51; 
P < 0.001) (Fig. 3a and Supplementary Table 5). This is stronger than 
comparing the odds of testing positive among those who reported 
exposure outside their household versus no exposure at all (OR, 
3.61; 95% CI, 2.54, 5.18; P < 0.001). Further, the odds of testing PCR 
positive are much higher for those exposed in the household versus 
those exposed outside their household or not exposed at all, after 
adjusting for similar factors (OR, 10.3; 95% CI, 6.7, 15.8; P < 0.001) 
(Supplementary Table 10). These results are consistent with previ-
ous findings that indicate a very high relative risk associated with 
within-household infection36,38–41. This is compatible with the find-
ings that other closed areas with high levels of congregation and 
close proximity, such as churches42, food-processing plants43 and 
nursing homes44, have shown similarly high risks of transmission.

Developing models to predict who is likely to be SARS-CoV-2(+) 
from self-reported data has been proposed as a means to help over-
come testing limitations and identify disease hotspots11,12. We used 
data from the 3,829 users who used the app within ±2 weeks of 
their reported PCR test results to develop a set of prediction mod-
els that were able to distinguish positive and negative results with 
a high degree of predictive accuracy on cross-validated data (Fig. 
3b). We used the machine learning method XGBoost, which out-
performed other classification methods (Extended Data Fig. 6). For 
each user, we predicted their test results either using data before the 
test (pre-test), which would be most useful in predicting COVID-19 
cases in the absence of molecular testing, or using data before and 
after the test (all data) as a benchmark for the best possible pre-
diction we could make using all available data. We considered: (1) 
a symptoms-only model, which included only the most common 
COVID-19 symptoms listed by the CDC; (2) an expanded model, 
which further incorporated other features observed in the survey; 
and (3) a minimal-features model, which retained only the four most 
predictive features (loss of taste and/or smell, exposure to some-
one with COVID-19, exposure in the household to someone with 
confirmed COVID-19 and exposure to household members with 
COVID-19 symptoms) (see Methods and Supplementary Tables 
11–14). The symptoms-only model achieved a cross-validated area 

under the receiver operating characteristic (ROC) curve (AUC) of 
0.76 using data before and after a test, and AUC 0.69 using just the 
pre-test data. Expanding the set of features to include other survey 
questions substantially improved performance (cross-validated 
AUC 0.92 all data, 0.79 pre-test). In the minimal-features model, 
we were able to retain high accuracy (cross-validated AUC 0.87 all 
data, AUC 0.80 pre-test) despite only including four questions, one 
referring to a symptom and three referring to potential contact with 
known infected individuals. Restricting the observed inputs to the 
1,613 users (89 positive, 1,524 negative) who answered the survey 
in the 14 d before being tested limited the sample size and reduced 
the overall accuracy, but the relative performance of the models was 
similar (Fig. 3b).

The fact that a fraction of SARS-CoV-2(+) users report no 
symptoms or only less-common symptoms (Fig. 2g) raises the pos-
sibility that many infected users might behave in ways that could 
spread disease, such as leaving home while unaware that they are 
infectious. In spite of widespread shelter-in-place orders during the 
sample period, we found extensive heterogeneity across the United 
States in the fraction of users reporting leaving home each day, with 
61% of the responses from 24 April to 12 May indicating the user 
had left home that day (Fig. 4a). The majority (77%) of these users 
reported leaving for non-work reasons, including exercising; 19% 
left for work (Fig. 4b). Of people who left home, a majority of users, 
but not all, reported social distancing and using face protection (Fig. 
4c). Different states had persistently different levels of people wear-
ing masks and leaving home (Extended Data Fig. 9). This incom-
plete shutdown with partial adherence, and lack of total social and 
physical protective measures, coupled with insufficient isolation of 
infected cases, may contribute to continued disease spread.

Given the large number of people leaving home each day, it is 
important to understand the behaviour of people who are poten-
tially infectious and therefore likely to spread SARS-CoV-2. To this 
end, we further analysed the behaviour of people reporting to be 
PCR test (+) or (−). There was an abrupt, large increase in users 
reporting staying home after receiving a positive test result (Fig. 
4d,e). Many, but not all, PCR test (+) users reported staying home 
in the 2–7 d after their test date (7% still went to work, n = 14 of 
203 users), whereas 23% (n = 62,483 of 269,833 users) of untested 
and 26% (n = 664 of 2,533 users) of PCR test (−) users left for work 
(Fig. 4d,e). Similarly, 3% of PCR test (+) (n = 7 of 203 users) users 
reported going to work without a mask, in contrast with untested 
(12.7%, n = 34,481 of 269,833 users) and PCR test (−) (10%, n = 255 
of 2,533 users) users (Fig. 4f). Positive individuals reported com-
ing into close contact with a median of 1 individual over 3 days in 
contrast to individuals who tested negative or were untested, who 
typically came into close contact with a median of 4 people within 
3 days (Fig. 4g). Regression analysis suggested that healthcare work-
ers (OR, 9.3; 95% CI, 7.3, 11.8; P < 0.001) and other essential work-
ers (OR, 6.8; 95% CI, 5.2, 8.9; P < 0.001) were much more likely to 
go to work after taking a positive or negative test, and PCR-positive 
users were more likely to stay home (OR, 0.1; 95% CI, 0.1, 0.2; 
P < 0.001) (Fig. 4h and Supplementary Table 15).

Discussion
Using individual-level data collected from the HWF app, we showed 
that incorporating information beyond symptoms—in particu-
lar, household and community exposure—is vital for identifying 
infected individuals from self-reported data. This finding is particu-
larly important for risk assessment at the early stage of transmission 
(for example, during the latent and presymptomatic periods when 
subjects have not developed symptoms yet), so that high-risk sub-
jects can have priorities for being tested and quarantined and close 
contacts can be traced, to block the transmission chain early on. Our 
results show that vulnerable groups include subjects with household 
and community exposure, healthcare workers and essential workers,  
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and African-American and Hispanic/Latinx users. They are at 
higher risk of infection and should have priorities for being tested 
and protected. Our findings also show statistically significant racial 
disparity after adjusting for the effects of pre-existing medical con-
ditions, which needs to be addressed.

We find evidence among our users for several factors that 
could contribute to continued COVID-19 spread despite wide-
spread implementation of public health measures. These include a  

substantial fraction of users leaving their homes on a daily basis 
across the United States; users who claim to not socially isolate or 
return to work after receiving a PCR test (+) result; self-reports 
of asymptomatic, mildly symptomatic or presymptomatic pre-
sentation; and a much higher risk of infection for people with 
within-household exposure.

That said, we note several limitations of this study. The HWF 
user base is inherently a non-random sample of voluntary users of 
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and leaving for other reasons (n = 4,396 total users who reported being tested positive or negative in the V3 survey and responded on at least 1 d within 
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a smartphone app, and hence our results may not fully generalize 
to the broader US population. In particular, the study may be sub-
ject to selection bias by not capturing populations without internet 
access, such as low-income or minority populations, who may be 
at elevated risk, and over-representation of females. Our results are 
based on self-reported survey data, and hence may suffer from mis-
classification bias—particularly those based on self-reported behav-
iours. Moreover, a relatively small percentage of subjects received 
PCR testing. As shown in Fig. 2, the subjects who were tested were 
more likely to be symptomatic, healthcare workers and essential 
workers, and people of colour. Naïve regression analysis of test 
results using responses of subjects who were tested could be subject 
to selection bias. To mitigate this, we have attempted to correct for 
these selection biases via the inverse probability weighting approach 
by estimating the selection probability, the probability of receiving 
tests, using the observed covariates (see Methods). Some residual 
bias may persist if there remain some unobserved factors related 
to underlying disease status and receiving a test, or if the selection 
model is misspecified. What is more, the HWF user base may not be 
representative of the broader US population. Although our regres-
sion analysis conditioned on a wide range of covariates to account 
for possible selection bias, if any unobserved factors associated 
with underlying disease status are also related to using the app—for 
example, health literacy and access to the internet, particularly in 
vulnerable groups such as low-income families—the results may be 
subject to additional selection bias.

Although there is enormous economic pressure on states, 
businesses and individuals to be able to return to work as 
quickly as possible, our findings highlight the ongoing impor-
tance of social distancing, mask wearing and large-scale testing 
of symptomatic, asymptomatic and mildly symptomatic people, 
exposure assessment and, potentially, even more rigorous ‘test–
trace–isolate’ approaches45–48 as implemented in several states, such 
as Massachusetts, New York, New Jersey and Connecticut, which 
have bent the infection curve45–48. Applying predictive models on a 
population scale will be vitally important to provide an ‘early warn-
ing’ system for timely detection of a second wave of infections in the 
United States and for guiding an effective public policy response.

As testing resources are expected to continue to be limited, 
HWF results could be used to identify which groups should be pri-
oritized, or potentially to triage individuals for molecular testing 
based on predicted risk. HWF’s integration of behavioural, symp-
tom, exposure and demographic data provides a powerful platform 
to address emerging problems in controlling infection chains, to 
rapidly assist public health officials and governments with develop-
ing evidence-based guidelines in real-time and to stop the spread of 
COVID-19.

Methods
Ethics statement. �e HWF application was approved as exempt by the  
Ethical & Independent Review Services LLP IRB (Study ID 20049–01). �e  
analysis of HWF data was also approved as exempt by Harvard University 
Longwood Medical Area Institutional Review Board (IRB) (Protocol no. IRB20-
0514) and the Broad Institute of MIT and Harvard IRB (Protocol no. EX-1653). 
Informed consent was obtained from all users and the data were collected in 
de-identi�ed form.

Open-source software. We used the following open-source software in the 
analysis:

•	 Numpy: https://www.numpy.org (ref. 49)
•	 Matplotlib: https://www.matplotlib.org (ref. 50)
•	 Pandas: https://pandas.pydata.org/ (ref. 51)
•	 Scikit-learn: https://scikit-learn.org/stable/index.html (ref. 52)
•	 SciPy: https://www.scipy.org (ref. 53)
•	 Statsmodels: https://www.statsmodels.org/stable/index.html (ref. 54)
•	 R: http://www.r-project.org (ref. 55,56)
•	 Tidyverse: http://www.tidyverse.org (ref. 57)
•	 Data.table: https://CRAN.R-project.org/package=data.table (ref. 58)
•	 sampleSelection59

Application. The HWF application was developed in React Native (https://
reactnative.dev/), using Google App Engine (https://cloud.google.com/appengine) 
and Google BigQuery (https://cloud.google.com/bigquery) for the backend, and 
launched on the Android and iOS platforms. Users were identified only with a 
device-specific randomly generated number. Users below the age of 18 were not 
allowed to use the application.

Inclusion criteria. If a user logged in multiple times in a day, only the first time 
was retained. We excluded any users who responded to a survey version on one 
day and then on a later day responded to an older survey version. We excluded 
any users who reported different genders on different days, and we excluded any 
observations with missing feeling, gender or smoking history.

Before survey V3, users responded only whether or not they received a 
COVID-19 test, and we assumed that they received a PCR test. In survey V3, users 
reported the type of test they received, and we excluded antibodies tests from 
analyses.

Logistic regression: receiving a test. The HWF app allows users to report previous 
COVID-19 test information, including test date, test type (swab versus antibody), 
test result (positive, negative or unknown), location of test and reason for receiving 
the test (Fig. 2). A user may report that the test result is not yet known, and then 
update this information in future check-ins. A test was considered to be ‘unique’ 
if it was reported by the same user with the same test date (including ‘NA’ (not 
available), n = 11) and type. For this analysis, ‘swab’ tests were assumed to be 
PCR-based tests for SARS-CoV-2. Tests with a reported test date before 1 January 
2020 were excluded. Before V3, users were not asked about their test type. Tests 
from the same user with the same test date may have been missing a reported test 
type in earlier check-ins, but the user may have filled in this information at later 
check-ins; in this case, we consider this to be the same test and assign the reported 
test type. For each unique test, all test information (including result) from the 
user’s most recent check-in was used.

We compared testing data from HWF with the COVID Tracking Project 
(https://covidtracking.com/) for all 50 states and the District of Columbia. For 
comparison with HWF data used in this analysis, we extracted COVID Tracking 
Project data until 11 May 2020. Tests with a ‘not yet known’ test result were 
excluded from this analysis. In Extended Data Fig. 6, the left panel compares the 
number of unique swab tests divided by the number of unique users in HWF with 
the total tests per state (totalTestResults) reported by the COVID Tracking Project 
divided by the state population as estimated by the 2010 Census (https://pypi.org/
project/CensusData/). The right panel compares the proportion of unique swab 
tests in HWF with a positive result with the proportion of tests in the COVID 
Tracking Project with a positive result.

For the analysis of who received a test, the outcome was 1 if a user reported a 
swab test, or 0 otherwise. We fit a logistic regression model using demographics, 
professions, exposure and symptoms, among other covariates. Time-varying 
measures (for example, symptoms) were averaged over their V3 survey responses. 
Analysis was conducted with the statsmodel package (v.0.11.1) in Python54,55. We 
reported the log ORs and ORs, along with corresponding 95% CIs. Supplementary 
Table 3 lists the covariates used in the selection (who received a test) regression 
model, as well as the estimated coefficients, 95% CIs and P values.

Uniform manifold approximation and project for dimension deduction 
(UMAP). Of the 3,661,716 survey responses collected by HWF up until 12 May 
2020, 667,651 reported having at least one symptom (excluding ‘feeling_not_well’) 
from the set of 25 symptom questions asked across all surveys. Only these 
responses were used for UMAP analysis (Fig. 2d–f). Each of the 25 queried 
symptoms was treated as a binary variable. The input data were therefore a 
matrix of 667,651 survey responses with 25 binary symptom variables. UMAP 
was applied to this matrix following McInnes and Healy60 using the Python 
package umap-learn with parameters: n_neighbors=1000, min_dist=0.5, 
metric = ’hamming’. The resulting two-dimensional embedding was plotted 
with different colourmaps for each response in Fig. 2. The distributions of all 25 
symptoms are shown individually in Extended Data Fig. 4.

Asymptomatic analysis. Status of each symptom was categorized as a CDC 
symptom, a non-CDC symptom or asymptomatic (Fig. 2g). The CDC symptoms 
were defined as patients that reported feeling well or unwell with a dry cough, 
shortness of breath, chills/shaking, fever, muscle/joint pain, sore throat or loss of 
taste/smell. The non-CDC symptoms were defined as patients that reported feeling 
well or unwell with any symptoms that were not defined by the CDC, including 
abdominal pain, confusion, diarrhoea, facial numbness, headache, irregular 
heartbeat, loss of appetite, nasal congestion, nausea/vomiting, tinnitus, wet cough, 
runny nose and so on.

We restricted analysis to the subset of patients for which we observed 
symptom data on their test date. For each user that tested positive or negative, we 
categorized participants into three groups: {CDC symptoms, Non-CDC symptoms, 
Asymptomatic}. Participants were grouped into CDC symptoms if they reported 
any CDC symptoms and participants that reported only non-CDC symptoms 
were grouped in the Non-CDC symptoms category. Participants were considered 
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asymptomatic if they reported none of the above symptoms. Proportions were 
reported and graphically represented for each group in Fig. 2g.

COVID-19 symptoms and dynamics. In the HWF survey data up to 12 May 2020, 
a total of 8,429 unique users reported the result of a quantitative PCR (qPCR) 
COVID-19 test (1,067 positive, 7,362 negative) (Fig. 2h–j). For surveys V1–2, we 
assumed that all tests were qPCR tests since antibody tests were rare before 24 
April. In the V3 survey (24 April to 12 May 12) the test type was explicitly asked. 
Among qPCR-tested users, each response was assigned a date in days relative to the 
self-reported test date. The aggregate fraction of responses reporting each symptom 
was visualized in a histogram in Fig. 2h. The aggregate fraction of responses 
reporting each symptom at each timepoint among users that tested positive was 
visualized in a heatmap in Fig. 2i. Figure 2j shows the element-wise log ratio of 
the positive-test and negative-test heatmaps. That is, each element = log(fraction 
positive responses reporting symptom at time t/fraction negative responses 
reporting symptom at time t). The heatmaps were smoothed by taking the average 
for each symptom within a sliding window of ±1 d for visualization.

Logistic regression: test results. A large number of risk factor survey questions 
were added in V3 of the survey, so we restricted analysis to V3 survey data for 
the purposes of identifying risk factors associated with SARS-CoV-2(+) test 
results (Fig. 3a). User responses were selected using a symmetric 28-d window 
around the last reported COVID-19 swab test date for any given user. Users that 
had no reported test outcome, or reported both positive and negative outcomes 
in different responses, were removed. Users who identified as ‘other’ in the 
gender response were dropped due to small sample size. Median neighbourhood 
household income was estimated by mapping user ZIP codes to corresponding 
ZCTAs (ZIP code tabulation areas) from the census, and then using the American 
Community Survey 5-year average results from 2018 to infer a neighbourhood 
household income (B19013_001E). Population density was calculated at the county 
level for each user based on data from the Yu Group at University of California at 
Berkeley61.

Race was a categorical variable, with distinct groups: ‘white’; 
‘African-American’; ‘Hispanic/Latinx’; ‘Asian’; ‘multiracial’ for those who marked 
two or more race categories; ‘other’ for those who marked ‘other’, ‘Native American’ 
or ‘Hawaiian/Pacific Islander’; and ‘unknown’ for those who did not disclose their 
race. A given food source was marked as ‘True’ if the user had indicated the use of 
that food source over any response within the given time window.

Because the HWF app asks for a separate set of symptoms depending 
on whether or not the user reports feeling ‘well’, there is not a one-to-one 
correspondence between symptoms reported by those feeling ‘well’ and ‘not well’. 
We excluded symptoms that were only present among those feeling ‘well’ or only 
among those feeling ‘not well’. For symptoms reported by both those who were 
‘well’ and ‘not well’, we combined them into single symptoms. Supplementary Table 
2 shows the variables merged using the ‘any’ function. Each symptom’s responses 
were then averaged over all available responses over the 28-d window. Similarly, 
distribution of sleep was averaged across the time window.

Multiple logistic regression was performed using statsmodels with the binary 
response outcome being the swab test outcome (positive coded as 1, negative as 
0) to estimate coefficients, which were converted to ORs using exponentiation. 
Supplementary Table 4 lists the covariates used in this outcome regression model, 
as well as the estimated coefficients, 95% CIs and P values.

To mitigate selection bias inherent in restricting the analysis to those who 
have received a test, we used several inverse probability weighting adjustments. 
The probability of selection was estimated via the logistic regression analysis 
of who received a test (Fig. 2c). These estimated selection probabilities were 
incorporated into the outcome model via inverse probability weighting, and we 
reported confidence intervals based on robust (sandwich-form) standard errors 
and bootstrap standard errors. As inverse probability weighting can be sensitive 
to very small selection probability, we truncated them at several different values, 
using 0.1 and 0.9; and 0.05 and 0.95. The results using the truncated IPW selection 
probabilities at 0.1 and 0.9 are reported in Fig. 3. The result using truncated 
IPW selection probabilities at 0.05 and 0.95 were similar. Supplementary Table 
5 lists the covariates used in the outcome regression model with IPW truncation 
at 0.1 and 0.9, as well as the estimated coefficients, and 95% CIs. Confidence 
intervals were obtained by bootstrapping the entire model selection process with 
2,000 replicates. Specifically, for each bootstrap replicate, the entire dataset was 
resampled with replacement, a new selection/propensity model was fitted for 
who gets a test, followed by a new IPW model fit using the inferred propensities 
from the bootstrap sample. Coefficient estimates for the IPW models across the 
bootstrap samples were used to generate the confidence intervals and mean value 
of the coefficient.

For additional sensitivity analysis, we used the bivariate probit model with 
sample selection used in econometrics to simultaneously estimate a selection (who 
gets tested) equation and an outcome (who tests positive) equation incorporating 
the selection probability as an additional covariate. Due to possible collinearities, 
not all features could be used in both the selection model and the outcome model. 
Specifically, profession could only be included in the selection model, and thus 
should be interpreted with caution. Supplementary Table 6 lists the covariates 

used in the full information maximum likelihood estimates of the selection and 
outcome regression model, as well as the estimated coefficients, 95% CIs and P 
values. Qualitatively, the trends observed in the simultaneous selection/outcome 
model fitting are similar to those found in the two-step selection + IPW outcome 
logistic models.

To address sample bias in the user distribution in comparison with the 
distribution of individuals in the United States, we employed a poststratification 
correction for non-probability sampling models as an additional analysis. 
Poststratification using age, gender, ethnicity and location was performed on 
the testing selection model which generates the IPWs for the testing positive 
model. The United States was subdivided into the nine major census regions (see 
Supplementary Table 7). A joint distribution of estimated population over age, 
gender, ethnicity and region was obtained from the American Community Survey 
5-year estimates from 2018. The corresponding distribution of users was generated 
across the same variables, and the ratio between each cell in the census distribution 
and the user distribution was used as the corresponding inverse probability weight 
in the testing selection model. The testing selection model thus should represent a 
user’s probability of getting tested from a corrected user base distribution matching 
major US Census demographics. The census-corrected testing selection model 
was used to generate IPWs for the subsequent testing positive model and was 
otherwise performed in the same way as that calcuated using only the probablility 
of receiving a test, as calculated using the HowWeFeel samples. Bootstrapping was 
performed on the entire process. The coefficient estimates for the poststratification 
testing model are shown in Supplementary Table 8, while estimates and confidence 
intervals for the subsequent poststratified IPW test outcome model are shown in 
Supplementary Table 9. A comparison of results with and without poststratification 
can be found in Extended Data Fig. 9. A comparison of the census-based 
poststratification-corrected models with the uncorrected models can be found in 
Extended Data Fig. 7. Performing census-based poststratification correction yields 
model coefficients and confidence intervals that are similar compared with when 
no census-based poststratification is performed.

To assess whether or not the states with the largest numbers of users bias 
the results, we also performed a comparison between the selection and outcome 
models with IPW correction with and without users from California and 
Connecticut (Extended Data Fig. 7). When removing California and Connecticut 
data, coefficient estimates from the selection and outcome models remain largely 
similar, suggesting limited bias due to California and Connecticut. Moreover, 
there is an overall increase in confidence interval widths of the outcome model, 
reflecting an overall increase in variance. Together, this comparison suggests 
that the California and Connecticut user base adds observations without adding 
substantial bias that may make the overall sample and corresponding analyses 
unrepresentative of the entire US population.

Household transmission analysis. In the HWF survey V3, users were first asked if 
they were exposed to someone with confirmed COVID-19. If they answered ‘yes’, 
then they were asked if that person lived in their household. We removed users 
who answered something other than ‘yes’ to the first question and who answered 
the second question. Additionally, we restricted the analysis to users who reported 
a negative or positive COVID-19 swab test and those who reported two or more 
household members. The outcome of interest was the binary outcome of testing 
positive on the COVID-19 swab test. The exposure of interest was the binary 
variable of having a household member test positive for COVID-19; we grouped 
respondents who answered ‘no’ with those who did not answer the question 
regarding household members.

The rest of the analysis proceeded similarly to the analysis for Fig. 3a, including 
the covariates used and the symptom collapsing strategy for each user across their 
responses within the 2-week window before the test and 2-week window after the 
test. We also performed sensitivity analysis using symptoms before the test. The 
difference between this analysis and that in Fig. 3a is that the reference group for 
household exposure was any other exposure or no exposure, whereas the reference 
group for household exposure and for other exposure in Fig. 3a is no exposure.

For both the unadjusted and the adjusted analyses, we performed logistic 
regression without and with the covariates. Supplementary Table 10 shows  
that the 95% CIs were calculated on the log OR scale and then exponentiated  
to obtain ORs.

Sensitivity analysis: Firth regression. Because of the small number of users in 
the user base who received a SARS-CoV-2 PCR test (1.7%) and the small number 
of tested users who received a positive test (8.2%), it is possible for standard 
logistic regression to be biased. To address this issue, we performed sensitivity 
analysis with Firth regression62, as implemented in the logistf R package (https://
cran.r-project.org/package=logistf). We found very little difference between the 
Firth regression results and the logistic regression results presented in the paper 
(Extended Data Fig. 8), indicating that the imbalance of tested users or users who 
tested positive was not so severe as to bias the results.

Prediction models. XGBoost was compared across different featurizations and 
subsets of the data to assess the predictiveness of the algorithm on the HWF test 
result data (Fig. 3c). Two datasets were generated according to the data selection 
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and featurization used in the regression analysis of COVID-19 swab test outcomes, 
with the difference between the two sets being the time span used for the window, 
and the inclusion of additional features not used for inference. In the pre-test 
dataset, the window was selected such that only responses from 14 days before the 
test up until the day before the last reported test were included for analysis. The 
post-test dataset, on the other hand, is identical to the regression analysis dataset, 
using data from 14 days before and after the last reported test. The features for the 
different feature sets are shown in Supplementary Tables 11–13. Mask wearing 
and social isolation were computed as time averages of the responses to these 
questions. Models were trained and tested using five-fold cross-validation over the 
datasets. Within each fold, an additional threefold cross-validation was performed 
on the training set to optimize model hyperparameters before testing on the test 
set of that fold (see Supplementary Table 14 for grid-search coordinates). Test set 
AUCs from each fold were averaged to form a final AUC estimate. Final ROC 
curves were computed using the combined test set scoring and test set labels  
from each fold.

In addition to the models shown in the main text, we tested a range of 
classifiers, feature sets and data aggregation strategies for their performance at 
predicting COVID-19 test results from HWF survey data (shown in Extended 
Data Fig. 6). Input data were restricted to V3 survey data collected between 24 
April and 12 May, and to qPCR-tested users who responded within −10 and 
+14 d of their test: a total of 3,514 negative tests and 315 positive tests. Three 
different feature sets, each consisting of a series of binary input variables from the 
HWF survey, were used: 56 symptoms, 77 additional features or all 133 features 
together. Note that this featurization differs slightly from the featurization used in 
the logistic regression in Fig. 3a, the goal of which was estimation and inference 
rather than prediction. Each of the 3,829 qPCR-tested users responded between 1 
and 25 times within the time window of analysis. To account for time and sparse 
response rates, we binned data across time in four different ways: (1) average 
response for each feature in the 9 d preceding the test data (pre-test); (2) average 
response from −10 to +14 d (average); (3) binning the data into 3 weeks ([−10,−1], 
[0,7], [8,14]) and averaging each separately, creating a separate time-indexed 
feature label for each time bin (week_bins_avg); or (4) imputing the response 
for days with no data by backfilling, then forward filling, then proceeding as 
in point ‘(3)’ (week_bins_imp). The classifiers were implemented from the 
scikit-learn and XGBoost Python packages with the following parameter choices: 
LogisticRegression(), LassoCV(max_iter=2000), ElasticNetCV(max_iter=2000), 
RandomForestClassifier(n_estimators=100), MLPClassifier(max_iter=2000), 
XGBClassifier(). Hyperparameters for cross-validation (CV) methods were 
automatically optimized by grid-search using fivefold cross-validation. Mean AUC 
was calculated for each classifier using fivefold cross-validation.

Post-test behaviour analysis. Users with post-test information (in the 2–7 d) after 
their test date (or hypothetical test date for untested users) were collected and 
analysed (Fig. 4d–g). All featurization on this post-test window was  
identical to that of the selection/test outcome models. For computing whether a 
user went to work at least once, all responses for which users either leaving the 
house or not from V3 were used, and if any response for a user contained a ‘yes’ 
answer to leaving the house for work, the user was marked as leaving the home 
for work. Similar analysis was performed for leaving to work without a mask by 
marking the user as a ‘yes’ if they reported they were going to work and separately 
reported not using a mask when leaving the house that day. Proportions of each 
behaviour across the three populations (tested positive, tested negative and 
untested) were computed, and were bootstrapped with 2,000 replicates to generate 
confidence intervals.

Estimated number of contacts was performed similarly, except using the 
average value over individual user responses across the 2–7 d after their test.

Logistic analysis was performed to understand the effect of PCR test result on 
user behaviour in the 2–7 d after the test, adjusting for other potential covariates. 
Supplementary Table 15 lists the covariates used in the unadjusted outcome 
regression model, as well as the estimated coefficients, 95% CIs and P values.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
This work used data from the How We Feel project (http://www.howwefeel.org/). 
The data are not publicly available but researchers can apply to use the resource. 
Researchers with an appropriate IRB approval and data security approval to 
perform research involving human subjects using the HowWeFeel data can apply to 
obtain access to data used in the analysis.

Code availability
The analysis code developed for this paper can be found online at https://github.
com/weallen/HWFPaper20.
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Extended Data Fig. 1 | HWF Survey Structure. Flow of questions through the HWF survey V3 for both first time users and returning users.
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Extended Data Fig. 2 | Number of Repeat uses Per HWF user. The number of times each HWF user checked into the app.
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Extended Data Fig. 3 | Analyses Regarding Receiving PCR-based Viral Tests. a, A univariate plot of the frequency of people receiving a PCR-based viral 

test in each state. b, Correlations of viral tests per person (left) and percent of tests with positive results (right) comparing state-level data from How 

We Feel to testing data collected by the COVID Tracking Project. Each point represents a state, and the size of the point scales continuously with the 

total number of viral tests reported to How We Feel. Tests with an unresolved result at time of analysis were excluded. Several sizes shown in legend for 

reference. The dark blue dotted line is the x=y line and represents the expectation if sampling was random with respect to testing and test-positive results. 

The gray line is the best-fit linear regression line (and 95% CI) weighted by the number of viral tests reported to How We Feel.
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Extended Data Fig. 4 | uMAP Visualization of Multivariate Self-Reported Symptom Structure. Plots show individual distributions for 25 self-reported 

symptoms on the UMAP embedding shown in main text Fig. 2.
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Extended Data Fig. 5 | HWF usage Over Time Per COVID-19 Tested user. Left: Response rate of tested users. COVID-19 HWF users provided between 1 

and 39 responses each, with a mean of 9 responses per user. Right: Aggregate temporal information showing number of responses relative to COVID-19 

test date. In aggregate, we obtains > 1,843 survey responses each day within a window of 7 days of the COVID-19 test.
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Extended Data Fig. 6 | COVID-19 Test-Result Prediction Model Comparisons. Six classified models (heatmap rows) were trained to predict COVID-19 

test results from survey data among users tested within the V3 survey (N=3,829; 315 positive; April 24 - May 12), as assessed by cross-validation AUC 

measurement. Hyperparameters were optimized by grid search. The input survey data was treated in a variety of ways with models trained on either: the 

average of responses provided before the test (pre-test), the average of responses provided from 10 days before to 14 days after the test (average), the 

weekly average in this window (week_bins_avg), or the weekly average after imputing missing responses by back-filling (week_bins_imp). The analysis 

was performed on three different feature sets: all survey features (N=133), symptoms only (N=56) or non-symptoms only (N=77). The overall most 

accurate classifier was XGBoost, which was used for the analysis in Fig. 3.
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Extended Data Fig. 7 | Results of Sensitivity Analyses for Biased Geographic Locations of users and Demographics. Comparison of testing outcome 

regression analysis between IPW correction alone and a, census based post-stratification + IPW correction and b, IPW correction on dataset with CT 

and CA users removed from the analysis. From left to right is 1) the comparison of the testing selection logistic regression model, 2) comparison of the 

predicted probability of getting tested using the testing selection logistic regression model, 3) comparison of the bootstrapped mean model coefficient 

from the testing outcome model, 4) comparison of the bootstrapped 95% confidence interval widths from the testing outcome model.
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Extended Data Fig. 8 | Firth regression sensitivity analysis. a, Comparison of regression coefficients (left), p-values (center) and standard errors (right) 

from Firth regression (y-axis) vs. logistic regression from Fig. 2c in the manuscript (x-axis) for the model predicting which users would be tested. The 

dotted line is the identity (y = x) line. b, Comparison of regression coefficients (left), p-values (center) and standard errors (right) from Firth regression 

(y-axis) vs. unweighted logistic regression from Fig. 3a in the manuscript (x-axis) for the model predicting which users among the tested users would test 

positive. The dotted line is the identity (y = x) line.
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Extended Data Fig. 9 | Timecourse of user Behavior in Different States. Time course of fraction of users in each state reporting wearing masks, socially 

distancing, covering their faces when leaving home, as well as leaving home for other reasons or for work from April 25 through May 11. Arrows indicate 

states that reopened before May 10. The wide dark bands in “Left for Work” and “Left for Other” correspond to weekends. Users per state: AK 487, AL 

2590, AR 1858, AZ 5302, CA 28860, CO 6373, CT 45295, DC 749, DE 752, FL 12621, GA 6803, HI 702, IA 2797, ID 1483, IL 9799, IN 4882, KS 2476, KY 

2879, LA 1882, MA 7174, MD 4696, ME 1242, MI 8157, MN 5269, MO 4544, MS 1176, MT 784, NC 7314, ND 451, NE 1508, NH 1425, NJ 5758, NM 1667, 

NV 2057, NY 11072, OH 8244, OK 2608, OR 4371, PA 9804, RI 1051, SC 3298, SD 551, TN 4513, TX 17088, UT 3755, VA 7239, VT 587, WA 7560, WI 

4711, WV 1153, WY 440.

NATuRE HuMAN BEHAVIOuR | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


1

n
atu

re research
  |  rep

o
rtin

g
 su

m
m

ary
A

p
ril 2

0
2

0

Corresponding author(s): William E. Allen, Feng Zhang, Xihong Lin

Last updated by author(s): Jul 2, 2020

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection We used custom software made with React Native and Google App Engine to implement the application. 

Data analysis Data analysis was performed in Python and R using the following packages: Numpy, Matplotlib, Pandas, Scikit-learn, scipy, 

statsmodels,Tidyverse, Data.table. Custom software for analysis will be available at: https://github.com/weallen/HWFPaper20

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Data include potentially identifiable subject-level data and so are available by request with a signed Data Use Agreement and IRB approval. 
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This was a longitudinal association study of qualitative and quantitative data, including symptoms, demographic information, and 

behavior. 

Research sample The research sample are de-identified, volunteer users of a web and mobile-phone based application. The app was freely available 

for download and users 

Sampling strategy Users could freely download the application and use it for as many days as they wanted. 

Data collection Data were collected using a web and mobile-phone based application that allowed individuals to report demographic information, 

symptoms, and other COVID-19-related information in a de-identified way. 

Timing Data were collected from April 2 2020 to May 12 2020. 

Data exclusions If a user logged in multiple times in a day, only the first was retained. We excluded any users who responded to a survey version on 

one day and then on a later day responded to an older survey version. We excluded any users who reported different genders on 

different days, and we excluded any observations with missing feeling, gender, or smoking history.  

 

Prior to survey version 3, users responded only whether or not they received a COVID-19 test, and we assumed that they received a 

PCR test. In survey version 3, users reported the type of test they received, and we excluded antibodies tests from analyses. 

Non-participation Users used the app on average 7 times. 

Randomization There was no randomization.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics See above. 

Recruitment Users could freely download the application. They heard about it through word of mouth, online advertising, government 

press releases, and media coverage. Users who had tested COVID-19 positive or were in high risk groups may have been 

more likely to use the app, which would bias the results towards more severe 

Ethics oversight The How We Feel application was approved as exempt by the Ethical & Independent Review Services LLP IRB (Study ID: 

20049 – 01). The analysis of HWF data was also approved as exempt by Harvard University Longwood Medical Area IRB 
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(Protocol #: IRB20-0514) and the Broad Institute of MIT and Harvard IRB (Protocol #: EX-1653). Informed consent was 

obtained from all users and the data were collected in de-identified form. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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